
Abaqus User Subroutine

Milad Vahidian, Ph.D. Candidate of Mechanical Engineering

2

Course Outline
1. DISP

2. DLOAD

3. UTRACLOAD

4. UTEMP

5. FILM

6. DFLUX

7. UEXPAN

8. UAMP

9. SIGINI

10. UFILD

11. USDFLD

12. UVARM

13. UMAT

14. UHYPER

15. UELMAT

16. UEL

Abaqus/Standard
User Subroutines

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

3

Course Outline

Abaqus/Explicit
 User Subroutines

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

1. VDISP

2. VDLOAD

3. VUTEMP

4. VDFLUX

5. VUEXPAN

6. VUAMP

7. VUFILD

8. VUSDFLD

9. VUVARM

10. VUMAT

11. VUHYPER

12. VUEL

Abaqus Documentation

Reference

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Writing User Subroutines with ABAQUS

SIMULIA Documentation

User Subroutine

1- Abaqus/CAE 2022

2-Microsoft Visual Studio 2019

3-Intel Parallel Studio 2020

(CAE=Complete Abaqus Environment)

Linking Abaqus & FORTRAN

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Adding this address to “Abaqus Command”, “Abaqus Verification”, and “Abaqus CAE” target

 “C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2020.4.311\windows\bin\ifortvars.bat” intel64 vs2019 &

❑ Abaqus Verification: run Abaqus Verification and cheek the .log file out

❑ Abaqus Command: Enter “abaqus info=system” , “abaqus verify -user_std” and “abaqus verify -user_exp”

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Linking Abaqus & FORTRAN: Modifying Target
Installing Abaqus/CAE, Visual Studio, and Intel Parallel Studio respectively.Step 1:

Step 2: Modifying Target

VerificationStep 3:

Adding this Code to abq2022.bat (By default) in C:\SIMULIA\Commands

Verification

❑ Abaqus Verification: run Abaqus Verification and cheek the .log file out

❑ Abaqus Command: Enter “abaqus info=system”, “abaqus verify -user_std”, and “abaqus verify -user_exp”

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Linking Abaqus & FORTRAN: Modifying abq2022
Installing Abaqus/CAE, Visual Studio, and Intel Parallel Studio respectively.Step 1:

Step 2: Finding the directory of “ifortvars.bat”, “ifort.exe”, and “vcvars64.bat”

C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2020.4.311\windows\bin

Adding these variable and associated directory into “Environment variables”Step 3:

Step 4: Modifying abq2022

@call ifortvars.bat intel64 vs2019

Step 5:

By default:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Where User Subroutines Fit into Abaqus/Standard

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Where User Subroutines Fit into Abaqus/Standard

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Where User Subroutines Fit into Abaqus/Explicit

11

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 12

Some Tips

➢ User Subroutines are written as C, C++, or Fortran code

➢ In The First iteration of an increment all of user subroutines are called twice

During the first call the initial stiffness matrix is being formed using the configuration of the model at the
start of the increment.

During the second call a new stiffness, based on the updated configuration of the model, is created.

➢ In these subsequent iterations the corrections to the model's configuration are calculated using
the stiffness from the end of the previous iteration.

In subsequent iterations the subroutines are called only once.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 13

Some Tips

➢ Restart analyses

When an analysis that includes a user subroutine is restarted, the user subroutine must be specified again because
the subroutine object or source code is not stored on the restart (. res) file.

➢ Using multiple user subroutines in a model

When multiple user subroutines are needed in the analysis, the individual routines can be combined into a
single file.

A given user subroutine (such as UMAT or FILM) should appear only once in the specified user subroutine
source or object code.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 14

Code Unit Number Description

Abaqus/Standard 1 Internal database

 2 Solver file

 6 Printed output (.dat) file (You can write output to this file.)

 7 Message (.msg) file (You can write output to this file.)

 8 Results (.fil) file

 10 Internal database

 12 Restart (.res) file

 19–30 Internal databases (scratch files). Unit numbers 21 and 22 are always written to disk.

 73 Text file containing meshed beam cross-section properties (.bsp)

15

Code Unit Number Description

Abaqus/Explicit 6 Printed output (.log)

 12 Restart (.res) file

 13 Old restart (.res) file, if applicable

 15 Analysis Preprocessor (.dat or .pre) file

 23 Communications (.023) file

 60 Global package (.pac) file

 61 Global state (.abq) file

 62 Temporary file

 63 Global selected results (.sel) file

 64 Message (.msg) file

 65 Output database (.odb) file

 67 Old package (.pac) file, if import from Abaqus/Explicit

 68 Old state (.abq) file, if import from Abaqus/Explicit

 69 Internal database; temporary file

If domain-parallel 70 Local package (.pac.1) file for CPU #1

 71 Local state (.abq.1) file for CPU #1

 73 Local selected results (.sel.1) file for CPU #1

 80 Local package (.pac.2) file for CPU #2

 81 Local state (.abq.2) file for CPU #2

 83 Local selected results (.sel.2) file for CPU #2

 ... Add three files, incrementing units by 10, for each additional CPU

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 16

Some Tips

These units do not have to be opened within the
user subroutine— they are opened by Abaqus.

➢ The following unit numbers can be used within a user subroutine to read and write data from files:

15-18

100+

➢ In Abaqus/Standard user subroutines can write debug output to:

Message File (.msg)

Print Output File (.dat)

Log File (.log)

Unit 7

Unit *

Unit 6

➢ In Abaqus/Explicit user subroutines can write debug output to the message

Write to the status (.sta) Unit 6

Log File (.log) Unit *

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 17

Some Tips

When a file is opened in a user subroutine, Abaqus assumes that it is located in the scratch directory created for the simulation.

➢ Path names for external files

Therefore, full path names must be used in the OPEN statements in the subroutine to specify the location of the files.

The following example opens, reads and closes an external file:

open(unit=15, file=‘/nfs_scratch/wdir/ndw/TempHist.inp’)

read(15,*) (timehist(j), j=1,25

i = 1

do while (.true.)

read(15,*,end=100) index(i),(temphist(i,j), j=1,25)
i = i + 1

end do

100 close(15)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 18

Some Tips

The Abaqus execution procedure, which compiles and links the user subroutine with the rest of Abaqus, will
include the aba_param.inc file automatically.

➢ Every user subroutine in Abaqus/Standard must include the statement:

include 'aba_param.inc'

As the first statement after the argument list

The file specifies implicit real*8 (a-h, o-z) for double precision machines

➢ It is not necessary to find this file and copy it to any particular directory: Abaqus will know where to find it

➢ Every user subroutine in Abaqus/ Explicit must include the statement

include 'vaba_param.inc'

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 19

Some Tips
➢ Naming conventions

If user subroutines call other subroutines or use COMMON blocks to pass information, the names of such
subroutines or COMMON blocks should begin with the letter K since this letter is never used to start the
name of any subroutine or COMMON block in Abaqus.

➢ Subroutine argument lists

▪ The variables passed into a user subroutine via the argument list are classified as either variables to be
defined, variables that can be updated, or variables passed in for information.

▪ The user must not alter the values of the "variables passed in for information." Doing so will yield
unpredictable results.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 20

Some Tips
➢ Solution-dependent state variables

• Solution-dependent state variables (SDVs) are values that can be defined to evolve with the solution. An example of
a solution-dependent state variable for the UEL subroutine is strain.

• Several user subroutines allow the user to define SDVs.

• Within these user subroutines the SDVs can be defined as functions of any variables passed into the user subroutine.

• It is the user's responsibility to calculate the evolution of the SDVs within the subroutine; Abaqus just stores the
variables for the user subroutine.

• For most subroutines the number of such variables required at the integration points or nodes is entered as the
only value on the data line of the *DEPVAR option.

• For subroutines (V)UEL, UELMAT, and UGENS the VARIABLES parameter must be used on the *USER ELEMENT
and *SHELL GENERAL SECTION options, as appropriate.

• For subroutine FRIC the number of variables is defined with the DEPVAR parameter on the *FRICTION option

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 21

Some Tips

➢ Solution-dependent state variables

• There are two methods available for defining the initial values of solution-dependent variables.

• The *INITIAL CONDITIONS, TYPE=SOLUTION option can be used to define the variable field in a tabular format

• For complicated cases user subroutine SDVINI can be used to define the initial values of the SDVs (Abaqus/Standard
only).

• Invoke this subroutine by adding the USER parameter to the *INITIAL CONDITIONS, TYPE=SOLUTION option.

SDV: In Field Output

STATEV: In UMAT

DepVar: In Property NSTATV

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 22

Some Tips
➢ Testing suggestions

Always develop and test user subroutines on the smallest possible model.

Do not include other complicated features, such as contact, unless they are absolutely necessary when testing the subroutine.

Test the most basic variant of the user subroutine before adding any new features to it.

When appropriate, try to test the user subroutine with models where only values of the nodal degrees of freedom
(displacement, rotations, temperature) are specified.

Then test the subroutine with models where fluxes and nodal degrees of freedom are specified.

Ensure that arrays passed into a user subroutine with a given dimension are not used as if they had a larger dimension.
For example, if a user subroutine is written such that the number of SDVs is 10 but only 8 SDVs are specified on the
*DEPVAR option, the user subroutine will overwrite data stored by Abaqus with unpredictable consequences.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 23

Some Tips
➢ User subroutines may also be written in C or C++

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 24

An Introduction to Fortran
Fortran, as derived from Formula Translating System, is a general-purpose,

imperative programming language. It is used for numeric and scientific computing

Fortran was originally developed by IBM in the 1950s for scientific and engineering applications. Fortran ruled
this programming area for a long time and became very popular for high performance computing

• Numerical analysis and scientific computation
• Structured programming
• Array programming
• Modular programming
• Generic programming
• High performance computing on supercomputers
• Object oriented programming
• Concurrent programming
• Reasonable degree of portability between computer systems

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 25

An Introduction to Fortran

program program_name
implicit none

! type declaration statements
! executable statements

end program program_name

The implicit none statement allows the compiler to check
that all your variable types are declared properly. You must

always use implicit none at the start of every program.

Fortran is case-insensitive, except for string literals.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 26

Fortran Keywords

The non-I/O keywords

allocatable allocate assign assignment block data

call case character common complex

contains continue cycle data deallocate

default do double precision else else if

elsewhere end block data end do end function end if

end interface end module end program end select end subroutine

end type end where entry equivalence exit

external function go to if implicit

in inout integer intent interface

intrinsic kind len logical module

namelist nullify only operator optional

out parameter pause pointer private

program public real recursive result

return save select case stop subroutine

target then type type() use

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 27

Fortran Keywords

The I/O related keywords

backspace close endfile format inquire

open print read rewind Write

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 28

Fortran Intrinsic Data Types

Integer type

Real type

Complex type

Logical type

Character type

integer(kind = 2) :: integer_var

real :: real_var

real :: real_var

complex :: complex_var

logical :: logical_var

character(len = 40) :: name

complex_var = cmplx (2.0, -7.0)

logical_var = .true.

name = “Hello World”

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 29

Constants
Fixed Values That The Program Cannot Alter During Its Execution

real, parameter :: pi = 3.1415927

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 30

Variable Declaration
Variables are declared at the beginning of a program (or subprogram) in a type declaration statement.

Syntax

type-specifier :: variable_name

Later you can assign values to these variables, like,

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 31

Arithmetic Operators
Operator Description Example

+ Addition Operator, adds two operands. A + B will give 8

- Subtraction Operator, subtracts second operand from the first. A - B will give 2

* Multiplication Operator, multiplies both operands. A * B will give 15

/ Division Operator, divides numerator by de-numerator. A / B will give 1

** Exponentiation Operator, raises one operand to the power of the other. A ** B will give 125

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 32

Relational Operators

Operator Equivalent Description Example

== .eq.
Checks if the values of two operands are equal or not, if yes then condition becomes
true.

(A == B) is not true.

/= .ne.
Checks if the values of two operands are equal or not, if values are not equal then
condition becomes true.

(A != B) is true.

> .gt.
Checks if the value of left operand is greater than the value of right operand, if yes
then condition becomes true.

(A > B) is not true.

< .lt.
Checks if the value of left operand is less than the value of right operand, if yes then
condition becomes true.

(A < B) is true.

>= .ge.
Checks if the value of left operand is greater than or equal to the value of right
operand, if yes then condition becomes true.

(A >= B) is not true.

<= .le.
Checks if the value of left operand is less than or equal to the value of right operand,
if yes then condition becomes true.

(A <= B) is true.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 33

Logical Operators

Operator Description Example

.and.
Called Logical AND operator. If both the operands are non-zero, then condition
becomes true.

(A .and. B) is false.

.or.
Called Logical OR Operator. If any of the two operands is non-zero, then
condition becomes true.

(A .or. B) is true.

.not.
Called Logical NOT Operator. Use to reverses the logical state of its operand. If a
condition is true then Logical NOT operator will make false.

!(A .and. B) is true.

.eqv.
Called Logical EQUIVALENT Operator. Used to check equivalence of two logical
values.

(A .eqv. B) is false.

.neqv.
Called Logical NON-EQUIVALENT Operator. Used to check non-equivalence of
two logical values.

(A .neqv. B) is true.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 34

Decisions
Sr. No Statement & Description

1
If… then construct
An if… then… end if statement consists of a logical expression followed by one or more statements.

2
If… then...else construct
An if… then statement can be followed by an optional else statement, which executes when the logical expression is false.

3
if...else if...else Statement
An if statement construct can have one or more optional else-if constructs. When the if condition fails, the immediately
followed else-if is executed. When the else-if also fails, its successor else-if statement (if any) is executed, and so on.

4
nested if construct
You can use one if or else if statement inside another if or else if statement(s).

5
select case construct
A select case statement allows a variable to be tested for equality against a list of values.

6
nested select case construct
You can use one select case statement inside another select case statement(s).

https://www.tutorialspoint.com/fortran/If_then_construct.htm
https://www.tutorialspoint.com/fortran/If_then_else_construct.htm
https://www.tutorialspoint.com/fortran/if_elseif_else_construct.htm
https://www.tutorialspoint.com/fortran/nested_if_construct.htm
https://www.tutorialspoint.com/fortran/select_case_construct.htm
https://www.tutorialspoint.com/fortran/nested_select_case_construct.htm

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 35

Decisions

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 36

Loops
Sr. No Loop Type & Description

1
do loop
This construct enables a statement, or a series of statements, to be carried out iteratively, while a given condition is true.

2
do while loop
Repeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body.

3
nested loops
You can use one or more loop construct inside any other loop construct.

Sr. No Control Statement & Description

1
exit
If the exit statement is executed, the loop is exited, and the execution of the program continues at the first executable
statement after the end do statement.

2
cycle
If a cycle statement is executed, the program continues at the start of the next iteration.

3
stop
If you wish execution of your program to stop, you can insert a stop statement

https://www.tutorialspoint.com/fortran/fortran_do_loop.htm
https://www.tutorialspoint.com/fortran/fortran_do_while_loop.htm
https://www.tutorialspoint.com/fortran/fortran_nested_loop.htm
https://www.tutorialspoint.com/fortran/fortran_exit.htm
https://www.tutorialspoint.com/fortran/fortran_cycle.htm
https://www.tutorialspoint.com/fortran/fortran_stop.htm

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 37

Loops

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 38

Characters
Character Declaration

type-specifier :: variable_name character(len = 15) :: surname, firstname

len(string): It returns the length of a character string

index(string, sustring): It finds the location of a substring in another string, returns 0 if not found.

achar(int): It converts an integer into a character

iachar(c): It converts a character into an integer

trim(string): It returns the string with the trailing blanks removed.

scan(string, chars): It searches the "string" from left to right (unless back=.true.) for the first occurrence of any character contained in "chars". It returns
an integer giving the position of that character, or zero if none of the characters in "chars" have been found.

verify(string, chars): It scans the "string" from left to right (unless back=.true.) for the first occurrence of any character not contained in "chars". It
returns an integer giving the position of that character, or zero if only the characters in "chars" have been found

adjustl(string): It left justifies characters contained in the "string"

adjustr(string): It right justifies characters contained in the "string"

len_trim(string): It returns an integer equal to the length of "string" (len(string)) minus the number of trailing blanks

repeat(string, ncopy): It returns a string with length equal to "ncopy" times the length of "string", and containing "ncopy" concatenated copies of "string"

lle(char, char): Compares whether the first character is lexically less than or equal to the second

lge(char, char): Compares whether the first character is lexically greater than or equal to the second

lgt(char, char): Compares whether the first character is lexically greater than the second

llt(char, char): Compares whether the first character is lexically less than the second

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 39

Arrays
Declaring Arrays

real, dimension(5) :: numbers

integer, dimension (5,5) :: matrix

integer, dimension (-3:2,0:4) :: matrix

real, dimension(2:6) :: numbers

Assigning Values

numbers(1) = 2.0

Do i = 1,5
 numbers(i) = i * 2.0
End Do

numbers = (/1.5, 3.2, 4.5, 0.9, 7.2/)

Array Sections

array ([lower]:[upper][:stride], ...)

array ([lower]:[upper])

array ([lower]:)

array (:[upper])

B(2:10:2) = (/1.5, 3.2, 4.5, 0.9, 7.2/)

B(2:10:2) = [1.5, 3.2, 4.5, 0.9, 7.2]

B(2:10) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)

B(2:) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)

B(:8) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 40

Arrays

Rank
It is the number of dimensions an array has. For example, for the array named matrix, rank is 2, and for the array
named numbers, rank is 1.

Extent
It is the number of elements along a dimension. For example, the array numbers has extent 5 and the array named
matrix has extent 3 in both dimensions.

Shape
The shape of an array is a one-dimensional integer array, containing the number of elements (the extent) in each
dimension. For example, for the array matrix, shape is (3, 3) and the array numbers it is (5).

Size It is the number of elements an array contains. For the array matrix, it is 9, and for the array numbers, it is 5.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 41

Vector and matrix multiplication

Function Description

dot_product(vector_a, vector_b)
This function returns a scalar product of two input vectors, which must have the same
length.

matmul(matrix_a, matrix_b)
It returns the matrix product of two matrices, which must be consistent, i.e. have the
dimensions like (m, k) and (k, n)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 42

Reduction Functions

Function Description

all(mask, dim)
It returns a logical value that indicates whether all relations in mask are .true., along with only the desired
dimension if the second argument is given.

any(mask, dim)
It returns a logical value that indicates whether any relation in mask is .true., along with only the desired
dimension if the second argument is given.

count(mask, dim)
It returns a numerical value that is the number of relations in mask which are .true., along with only the
desired dimension if the second argument is given.

maxval(array, dim, mask)
It returns the largest value in the array array, of those that obey the relation in the third argument mask, if
that one is given, along with only the desired dimension if the second argument dim is given.

minval(array, dim, mask)
It returns the smallest value in the array array, of those that obey the relation in the third argument mask, if
that one is given, along with only the desired dimension if the second argument DIM is given.

product(array, dim, mask)
It returns the product of all the elements in the array array, of those that obey the relation in the third
argument mask, if that one is given, along with only the desired dimension if the second argument dim is
given.

sum(array, dim, mask)
It returns the sum of all the elements in the array array, of those that obey the relation in the third argument
mask, if that one is given, along with only the desired dimension if the second argument dim is given.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 43

Inquiry Functions

Function & Description

allocated(array)
It is a logical function which indicates if the array is allocated.

lbound(array, dim)
It returns the lower dimension limit for the array. If dim (the dimension) is not given as an argument, you get an integer vector, if dim is included, you
get the integer value with exactly that lower dimension limit, for which you asked.

shape(source)
It returns the shape of an array source as an integer vector.

size(array, dim)
It returns the number of elements in an array. If dim is not given, and the number of elements in the relevant dimension if dim is included.

ubound(array, dim)
It returns the upper dimensional limits.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 44

Construction Functions

Function Description

merge(tsource, fsource, mask)
This function joins two arrays. It gives the elements in tsource if the condition in mask is .true. and fsource if the
condition in mask is .false. The two fields tsource and fsource have to be of the same type and the same shape. The
result also is of this type and shape. Also, mask must have the same shape.

pack(array, mask, vector)

It packs an array to a vector with the control of mask. The shape of the logical array mask, has to agree with the
one for array, or else mask must be a scalar. If vector is included, it has to be an array of rank 1 (i.e. a vector) with
at least as many elements as those that are true in mask, and have the same type as array. If mask is a scalar with
the value .true. then vector instead must have the same number of elements as array.

spread(source, dim, ncopies)

It returns an array of the same type as the argument source with the rank increased by one. The parameters dim
and ncopies are integer. if ncopies is negative the value zero is used instead. If source is a scalar, then spread
becomes a vector with ncopies elements that all have the same value as source. The parameter dim indicates
which index is to be extended. it has to be within the range 1 and 1+(rank of source), if source is a scalar then dim
has to be one. The parameter ncopies is the number of elements in the new dimensions.

unpack(vector, mask, array)

It scatters a vector to an array under control of mask. The shape of the logical array mask has to agree with the
one for array. The array vector has to have the rank 1 (i.e. it is a vector) with at least as many elements as those
that are true in mask, and also has to have the same type as array. If array is given as a scalar then it is considered
to be an array with the same shape as mask and the same scalar elements everywhere.
The result will be an array with the same shape as mask and the same type as vector. The values will be those
from vector that are accepted, while in the remaining positions in array the old values are kept.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 45

Reshape Functions

Function Description

reshape(source, shape, pad, order)

It constructs an array with a specified shape starting from the elements in a
given array source. If pad is not included then the size of source has to be at
least product (shape). If pad is included, it has to have the same type as source.
If order is included, it has to be an integer array with the same shape as shape
and the values must be a permutation of (1,2,3,...,n), where n is the number of
elements in shape , it has to be less than, or equal to 7.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 46

Manipulation Functions

Function Description

cshift(array, shift, dim)

It performs circular shift by shift positions to the left, if shift is positive and to the right if it is
negative. If array is a vector the shift is being done in a natural way, if it is an array of a higher rank
then the shift is in all sections along the dimension dim. If dim is missing it is considered to be 1, in
other cases it has to be a scalar integer number between 1 and n (where n equals the rank of array).
The argument shift is a scalar integer or an integer array of rank n-1 and the same shape as the array,
except along the dimension dim (which is removed because of the lower rank). Different sections can
therefore be shifted in various directions and with various numbers of positions.

eoshift(array, shift, boundary, dim)

It is end-off shift. It performs shift to the left if shift is positive and to the right if it is negative. Instead
of the elements shifted out new elements are taken from boundary. If array is a vector the shift is
being done in a natural way, if it is an array of a higher rank, the shift on all sections is along the
dimension dim. if dim is missing, it is considered to be 1, in other cases it has to have a scalar integer
value between 1 and n (where n equals the rank of array). The argument shift is a scalar integer if
array has rank 1, in the other case it can be a scalar integer or an integer array of rank n-1 and with
the same shape as the array except along the dimension dim (which is removed because of the lower
rank).

transpose (matrix) It transposes a matrix, which is an array of rank 2. It replaces the rows and columns in the matrix.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 47

Location Functions

Function Description

maxloc(array, mask)
It returns the position of the greatest element in the array, if mask is included only for those which
fulfil the conditions in mask, position is returned and the result is an integer vector.

minloc(array, mask)
It returns the position of the smallest element in the array, if mask is included only for those which
fulfil the conditions in mask, position is returned and the result is an integer vector.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 48

Basic Input Output

read(*,*) item1, item2, item3...
print *, item1, item2, item3
write(*,*) item1, item2, item3...

Formatted Input Output

read fmt, variable_list
print fmt, variable_list
write fmt, variable_list

format specification

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 49

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 50

Procedures
A procedure is a group of statements that perform a well-defined task and can be invoked from your

program. Information (or data) is passed to the calling program, to the procedure as arguments.

Functions

Subroutines

function name(arg1, arg2,)
 [declarations, including those for the arguments]
 [executable statements]
end function [name]

function name(arg1, arg2,)
 [declarations, including those for the arguments]
 [executable statements]
end function [name]

subroutine name(arg1, arg2,)
 [declarations, including those for the arguments]
 [executable statements]
end subroutine [name]

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 51

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 52

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 53

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 54

Numeric Functions
Function Description

abs(a) It returns the absolute value of A

aimag(z) It returns the imaginary part of a complex number Z

aint(a [, kind]) It truncates fractional part of A towards zero, returning a real, whole number.

anint(a [, kind]) It returns a real value, the nearest integer or whole number.

ceiling(a [, kind]) It returns the least integer greater than or equal to number A.

cmplx(x [, y, kind]) It converts the real variables X and Y to a complex number X + iY; if Y is absent, 0 is used.

conjg(z) It returns the complex conjugate of any complex number Z.

dble(a) It converts A to a double precision real number.

dim(x, y) It returns the positive difference of X and Y.

dprod(x, y) It returns the double precision real product of X and Y.

floor(a [, kind]) It provides the greatest integer less than or equal to number A.

int(a [, kind]) It converts a number (real or integer) to integer, truncating the real part towards zero.

max(a1, a2 [, a3,...]) It returns the maximum value from the arguments, all being of same type.

min(a1, a2 [, a3,...]) It returns the minimum value from the arguments, all being of same type.

mod(a, p) It returns the remainder of A on division by P, both arguments being of the same type (A-INT(A/P)*P)

modulo(a, p) It returns A modulo P: (A-FLOOR(A/P)*P)

nint(a [, kind]) It returns the nearest integer of number A

real(a [, kind]) It Converts to real type

sign(a, b) It returns the absolute value of A multiplied by the sign of P. Basically it transfers the of sign of B to A.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 55

Mathematical Functions
Function Description

acos(x) It returns the inverse cosine in the range (0, π), in radians.

asin(x) It returns the inverse sine in the range (-π/2, π/2), in radians.

atan(x) It returns the inverse tangent in the range (-π/2, π/2), in radians.

atan2(y, x) It returns the inverse tangent in the range (-π, π), in radians.

cos(x) It returns the cosine of argument in radians.

cosh(x) It returns the hyperbolic cosine of argument in radians.

exp(x) It returns the exponential value of X.

log(x) It returns the natural logarithmic value of X.

log10(x) It returns the common logarithmic (base 10) value of X.

sin(x) It returns the sine of argument in radians.

sinh(x) It returns the hyperbolic sine of argument in radians.

sqrt(x) It returns square root of X.

tan(x) It returns the tangent of argument in radians.

tanh(x) It returns the hyperbolic tangent of argument in radians.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 56

Numeric Inquiry Functions

Function Description

digits(x) It returns the number of significant digits of the model.

epsilon(x)
It returns the number that is almost negligible compared to one. In other words, it returns the
smallest value such that REAL(1.0, KIND(X)) + EPSILON(X) is not equal to REAL(1.0, KIND(X)).

huge(x) It returns the largest number of the model

maxexponent(x) It returns the maximum exponent of the model

minexponent(x) It returns the minimum exponent of the model

precision(x) It returns the decimal precision

radix(x) It returns the base of the model

range(x) It returns the decimal exponent range

tiny(x) It returns the smallest positive number of the model

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 57

Floating-Point Manipulation Functions

Function Description

exponent(x) It returns the exponent part of a model number

fraction(x) It returns the fractional part of a number

nearest(x, s) It returns the nearest different processor number in given direction

rrspacing(x) It returns the reciprocal of the relative spacing of model numbers near given number

scale(x, i) It multiplies a real by its base to an integer power

set_exponent(x, i) it returns the exponent part of a number

spacing(x) It returns the absolute spacing of model numbers near given number

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 58

Bit Manipulation Functions

Function Description

bit_size(i) It returns the number of bits of the model

btest(i, pos) Bit testing

iand(i, j) Logical AND

ibclr(i, pos) Clear bit

ibits(i, pos, len) Bit extraction

ibset(i, pos) Set bit

ieor(i, j) Exclusive OR

ior(i, j) Inclusive OR

ishft(i, shift) Logical shift

ishftc(i, shift [, size]) Circular shift

not(i) Logical complement

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 59

Character Functions
Function Description

achar(i) It returns the Ith character in the ASCII collating sequence.

adjustl(string) It adjusts string left by removing any leading blanks and inserting trailing blanks

adjustr(string) It adjusts string right by removing trailing blanks and inserting leading blanks.

char(i [, kind]) It returns the Ith character in the machine specific collating sequence

iachar(c) It returns the position of the character in the ASCII collating sequence.

ichar(c) It returns the position of the character in the machine (processor) specific collating sequence.

index(string, substring [, back])
It returns the leftmost (rightmost if BACK is .TRUE.) starting position of SUBSTRING within
STRING.

len(string) It returns the length of a string.

len_trim(string) It returns the length of a string without trailing blank characters.

lge(string_a, string_b) Lexically greater than or equal

lgt(string_a, string_b) Lexically greater than

lle(string_a, string_b) Lexically less than or equal

llt(string_a, string_b) Lexically less than

repeat(string, ncopies) Repeated concatenation

scan(string, set [, back])
It returns the index of the leftmost (rightmost if BACK is .TRUE.) character of STRING that belong
to SET, or 0 if none belong.

trim(string) Removes trailing blank characters

verify(string, set [, back]) Verifies the set of characters in a string

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 60

Kind & Logical Functions

Function Description

kind (x) It returns the kind type parameter value.

selected_int_kind (r) It returns kind of type parameter for specified exponent range.

selected_real_kind ([p, r]) Real kind type parameter value, given precision and range.

logical (l [, kind]) Convert between objects of type logical with different kind type parameters.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 61

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 62

Program Libraries
RANDLIB, random number and statistical distribution generators
BLAS
EISPACK
GAMS–NIST Guide to Available Math Software
Some statistical and other routines from NIST
LAPACK
LINPACK
MINPACK
MUDPACK
NCAR Mathematical Library
The Netlib collection of mathematical software, papers, and databases.
ODEPACK
ODERPACK, a set of routines for ranking and ordering.
Expokit for computing matrix exponentials
SLATEC
SPECFUN
STARPAC
StatLib statistical library
TOMS
Sorting and merging strings

Boundary Conditions
𝐵(x,y,z,t)

BCs: 𝐵(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

BCs: B (t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutinei.e., Decomposable

i.e., Indecomposable

DISP

Amplitude Analytical Field

Abaqus User Subroutine To Specify Prescribed Boundary Conditions or Connectors Motion

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

64

DISP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Specify Prescribed Boundary Conditions or Connectors Motion

User Subroutine Interface

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 65

Variables to Be Defined

U

U(1)

U(2)

U(3)

First Time Derivative of U(1)

Second Time Derivative of U(1)

All variable types except rotation: the total value of the prescribed variable at this point.

Rotation variable type: the incremental value of the prescribed rotation at this point.

=
𝑑𝑈 1

𝑑𝑡

=
𝑑2𝑈 1

𝑑𝑡2

66

Variables Passed in for Information

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

KSTEP

KINC

TIME

NODE

NOEL

JDOF

COORDS

Step number

Increment number

TIME(1)

TIME(2)

TIME(3)

Current value of step time

Current value of total time

Current value of time increment

Node number

Element number

Degree of Freedom: NEXT SLIDE

An array containing the current
coordinates of this point.

This array cannot be used if user subroutine
DISP is used to prescribe connector motions.

This variable cannot be used if user subroutine DISP is used to prescribe connector motions.

This variable cannot be used if user subroutine DISP is used to prescribe boundary conditions.

Degrees of freedom

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈3 = 5cos 10𝜋t 𝑠𝑖𝑛
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35

Disp Subroutine Problem

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈1 = 5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35

Disp Subroutine Problem

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐹𝑖𝑥𝑒𝑑

𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈1 = 5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35

Disp Subroutine Problem

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐹𝑖𝑥𝑒𝑑

𝑈1 = −5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35

𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

Disp Subroutine Problem

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

@ 𝑥2 + 𝑦2 = 100 ==> 𝑈3 = 𝑒−0.1𝑡

COORDS NODE

72

DLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Load
𝐹(𝑥, 𝑦, 𝑧, 𝑡)

Indecomposable Load: 𝐹(𝑥, 𝑦, 𝑧, 𝑡) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Decomposable Load: F (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

Amplitude

The load is monitored by writing output to the printed output (.dat) file

Analytical Field

Abaqus User Subroutine To Specify Non-uniform Distributed Load

DLOAD
Variables to be defined: F

F 𝐹

𝐿2 for surface loads and
𝐹

𝐿3 for body forces.

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value
of the load proportionality factor

Current value of total time

NOEL Element number

NPT

LAYER

KSPT

COORDS

JLTYP

SNAME

Load integration point number within the element

Layer number (for body forces in layered solids)

Section point number within the current layer

An array containing the coordinates
of the load integration pointSurface name for a surface-based load definition

(JLTYP=0). For a body force or an element-based
surface load the surface name is passed in as blank.

Load type

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

DLOAD
F 𝐹

𝐿
 for Line loads,

𝐹

𝐿2 for surface loads, and
𝐹

𝐿3 for body forces.

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value of the load proportionality factor 𝜆, in a Riks step

Current value of total time

NOEL Element number

NPT

LAYER

KSPT

COORDS

JLTYP

SNAME

Load integration point number within the element

Layer number (for body forces in layered solids)

Section point number within the current layer

An array containing the coordinates of the load integration point. These are the current coordinates if geometric
nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

Surface name for a surface-based load definition (JLTYP=0). For a body force or an
element-based surface load the surface name is passed in as blank.

Load type

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

DLOAD
JLTYP Load type Description Elements

0 Surface-based load

1 BXNU Nonuniform body force in global X-directions

1 BRNU Nonuniform body force in radial directions

2 BYNU (except for axisymmetric elements) Nonuniform body force in global Y-directions

2 BZNU (for axisymmetric elements only) Nonuniform body force in global Z-directions

3
BZNU (for three-dimensional elements and

asymmetric-axisymmetric)
Nonuniform body force in global Z-directions

20 PNU Nonuniform pressure

21 P1NU Nonuniform force per unit length in beam local 1-directions Beam

22 P2NU Nonuniform force per unit length in beam local 2-directions Beam

23 P3NU

24 P4NU

25 P5NU

26 P6NU

27 PINU Nonuniform internal pressure PIPE & ELBOW

28 PENU Nonuniform external pressure PIPE & ELBOW

41 PXNU Nonuniform force per unit length in global X-directions Beam

42 PYNU Nonuniform force per unit length in global Y-directions Beam

43 PZNU Nonuniform force per unit length in global Z-directions Beam

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

DLOAD

SNAME
Surface name for a surface-based load definition (JLTYP=0). For a body force or an element-

based surface load the surface name is passed in as blank.

SNAME
(Surface Name)

Part

Assembly ASSEMBLY_SURFACENAME

ASSEMBLY_PART-#_SURFACENAME

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Loads

Plate’s dimensions: 300x200 (mm), thickness: 2 (mm)

Body force: exert on whole plate

Surface Force (Pressure): exert on entire plate

𝐹𝑏 𝑥, 𝑦, 𝑡 = 𝑒𝑡 𝑠𝑖𝑛
𝜋𝑥

300
sin

𝜋𝑦

200

𝑃 𝑥, 𝑦, 𝑡 = 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑥

300
𝑠𝑖𝑛

𝜋𝑦

200

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

Simulation time: 1 (s)

Hint: the JLTYP

Material properties: E=200 GPa 𝜈 = 0.3

All edge has been pinned

DLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐸 = 200 𝐺𝑃𝑎, 𝜈 = 0.3, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛: 500 × 500 × 5

Dload: Moving Load

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

𝑟 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

𝐷𝑅

𝑅1

Moving Load:

Force reign is being changed by Time. 𝐹𝑜𝑟𝑐𝑒 𝑟𝑒𝑖𝑔𝑛 = 𝑓 𝑡

𝐸 = 200𝐺𝑃𝑎, 𝜈 = 0.3, 𝑑𝑖𝑚𝑒𝑛𝑠𝑡𝑖𝑜𝑛: 500 × 500 × 5

Dload: Moving Load

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

𝐕 = ሶ𝑟 𝐞𝑟 + 𝑟 ሶ𝜃 𝐞𝜽

𝐞𝑟 = 𝑐𝑜𝑠 𝜃 𝐞𝒙 + 𝑠𝑖𝑛 𝜃 𝐞𝑦

𝐞𝜽 = − 𝑠𝑖𝑛 𝜃 𝐞𝑥 + 𝑐𝑜𝑠 𝜃 𝐞𝑦

𝐕𝑥 = ሶ𝑟 𝑐𝑜𝑠 𝜃 − 𝑟 ሶ𝜃 𝑠𝑖𝑛(𝜃)

𝐕𝑦 = − ሶ𝑟 𝑠𝑖𝑛 𝜃 + 𝑟 ሶ𝜃 𝑐𝑜𝑠(𝜃)

where
𝑟 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

𝐸 = 200𝐺𝑃𝑎
 𝜈 = 0.3

Dload: Periodic Travelling Wave

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐹𝑏 𝑥, 𝑦, 𝑧, 𝑡 = 𝑐𝑜𝑠 𝑘𝑧 − 𝜔𝑡 𝑠𝑖𝑛
𝜋𝑥

300
𝑠𝑖𝑛

𝜋𝑦

200

Body Load:

𝑘 =
2𝜋

𝜆
= 2𝜋 𝜔 =

2𝜋

𝑇
= 𝜋

B.C’s.

exert on right Up:

exert on left Bottom:

𝑃 𝑥, 𝑦, 𝑡 = sin
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35
𝑐𝑜𝑠(10𝜋𝑡)

Simulation time: 1(s)

Material properties:
 E=210 GPa 𝜈 = 0.3 Thickness=2 mm

@ x=70 ==> 𝑈1 = 0, 𝑈2 = 0, 𝑈3 = sin
𝜋𝑦

35

@ x=-70 ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = −sin
𝜋𝑦

35

@ y=35 ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = sin
𝜋𝑥

70

@ y=-35 ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = −sin
𝜋𝑥

70

@ 𝑥2 + 𝑦2 = 100 ==> 𝑈3 = 𝑒−0.1𝑡

𝑃 𝑥, 𝑦, 𝑡 = −sin
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35
𝑐𝑜𝑠(10𝜋𝑡)

Pressure

x

y

Disp + Dload Subroutine

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Body Load

82Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Traction
𝐹(𝑡, 𝑥, 𝑦, 𝑧, 𝑛)

Indecomposable: 𝐹(𝑡, 𝑥, 𝑦, 𝑧, 𝑛) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Decomposable: 𝐹 𝑡, 𝑥, 𝑦, 𝑧, 𝑛 = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

Amplitude Analytical Field

Abaqus User Subroutine To Specify Non-uniform Traction Loads

UTRACLOAD

Abaqus User Subroutine To Specify Non-uniform Traction Loads

83

UTRACLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

T_USER Loading direction of the distributed traction load

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value
of the load proportionality factor

Current value of total time

NOEL Element number

NPT

DIRCOS

COORDS

JLTYP

Load integration point number within the element

Orientation of the face or edge in the
reference configuration

An array containing the coordinates
of the load integration point

Identifies the load type

SNAME
Surface name for a surface-based load

definition. For an element-based or edge-based
load the surface name is passed in as blank

ALPHA Magnitude of the distributed traction load

UTRACLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

T_USER

Loading direction of the distributed traction
load. The direction of T_USER should not
change during a step. If it does, convergence
difficulties might arise.

DIRCOS

Orientation of the face or edge in the reference configuration. For three-dimensional facets the first and second columns
are the normalized local directions in the plane of the surface, and the third column is the normal to the face. For solid
elements the normal points inward; for shell elements the normal points outward. For two-dimensional facets the first
column is the normalized tangent, the second column is the facet normal, and the third column is not used. For three-
dimensional shell edges the first column is the tangent to the shell edge (shear direction), the second column is the in-
plane normal (normal direction), and the third column is the normal to the plane of the shell (transverse direction).

ALPHA
Magnitude of the distributed traction load. Units are

𝐹

𝐿2 for surface loads,
𝐹

𝐿
 for edge loads, and F for edge

moments. For a static analysis that uses the modified Riks method ALPHA must be defined as a function of
the load proportionality factor, λ.

Load directions
are needed

Load directions
will be ignored

General Surface Traction

Shear Surface Traction

General Edge Traction

Normal Edge Traction

Transverse Edge Traction

Edge Moment

COORDS
An array containing the coordinates of the load integration point. These are the current coordinates if geometric
nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

Shear Edge Traction

UTRACLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Identifies the load type for which this call to UTRACLOAD is being made. JLTYP

The load type

Surface-based Load

Element-based Surface Load

Edge-based Load

j in the load type identifies the face or edge of the element underlying the surface

Face Number

Edge Number

This information is useful when several different nonuniform
distributed loads are being imposed on an element at the same time

SNAME
(Surface Name)

Part

Assembly ASSEMBLY_SURFACENAME

ASSEMBLY_PART-#_SURFACENAME

SNAME Surface name for a surface-based load definition. For an element-based or edge-based load the surface name is
passed in as blank

UTRACLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Distributed Loads Can Be Defined As Element-based Or Surface-based

Element-based Element bodies, Element surfaces, or Element edges

Geometric surfaces or Geometric edgesSurface-based

Types of Distributed Loads

Body Loads

Surface Loads

Edge Loads

Element-based

Element-based

Surface-based

Element-based

Surface-based

Types of Distributed Loads

UTRACLOAD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Load Description Load Label JLTYP

Nonuniform shear
surface traction

TRSHRNU 510+j

TRSHR1NU 511

TRSHR2NU 512

TRSHR3NU 513

TRSHR4NU 514

TRSHR5NU 515

TRSHR6NU 516

Nonuniform
general surface

traction
TRVECNU 520+j

TRVEC1NU 521

TRVEC2NU 522

TRVEC3NU 523

TRVEC4NU 524

TRVEC5NU 525

TRVEC6NU 526

Load Description Load Label JLTYP

Nonuniform general
edge traction

EDLDNU 540+j

EDLD1NU 543

EDLD2NU 544

EDLD3NU 545

EDLD4NU 546

Nonuniform normal
edge traction

EDNORNU 550+j

EDNOR1NU 553

EDNOR2NU 554

EDNOR3NU 555

EDNOR4NU 556

Nonuniform shear
edge traction

EDSHRNU 560+j

EDSHRNU 563

EDSHRNU 564

EDSHRNU 565

EDSHRNU 566

Load Description Load Label JLTYP

Nonuniform
transverse edge

traction
EDTRANU 570+j

EDTRANU 573

EDTRANU 574

EDTRANU 575

EDTRANU 576

Nonuniform edge
moment

EDMOMNU 580+j

EDMOM1NU 583

EDMOM2NU 584

EDMOM3NU 585

EDMOM4NU 586

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 88

UTRACLOAD

NOEL

NPT

DIRCOS

COORDS

JLTYP

SNAME

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 89

Prescribed Temperature
𝑇𝑒𝑚𝑝(x,y,z,t)

𝑇𝑒𝑚𝑝(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Temp(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

Abaqus User Subroutine To Specify Prescribed Temperature

UTEMP

Note the close similarity between the UTEMP and DISP Subroutines

Abaqus User Subroutine To Specify Prescribed Temperature

90

UTEMP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

TEMP

NSECPT

KSTEP

KINC

TIME

NODE

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Node number

COORDS An array containing the current
coordinates of this point.

Step number

Increment number

Maximum number of section values
required for any node in the model

Array of temperature values
at node number NODE

91

UTEMP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

TEMP

NSECPT

KSTEP

KINC

TIME

NODE

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Node number

COORDS An array containing the current coordinates of this point.

Step number

Increment number

Maximum number of section values
required for any node in the model

Array of temperature values at
node number NODE

If the node is not connected to a beam or shell element NSECPT=1

Otherwise

Beam Section

Shell Section

NSECPT, is determined by the
particular section type

n equally spaced points
through each layer

NSECPT=n

Reference surface together
with gradients with

respect to the thickness

Origin of the cross-section
together with gradients

NSECPT=2

NSECPT=3

NSECPT=2

2D

3D

92

FILM

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define Non-uniform Film Coefficient and Associated Sink Temp for Heat Transfer Analysis

Film Coefficient
and

 Associated Sink Temp

ℎ(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

h(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

𝐪″ = ℎ 𝑇𝑠 − 𝑇∞

Convective Heat Flux

Convection Heat
Transfer Coefficient

Surface Temperature

𝑊

 𝐾
Film Coefficient

Fluid Temperature Sink Temperature

𝜃0(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

𝜃0(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

93

FILM

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define Non-uniform Film Coefficient and Associated Sink Temp for Heat Transfer Analysis

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 94

Heat Transfer

Conduction

Convention

Radiation

Fourier’s law
𝐪″ = −𝑘 ∇𝑇 = −𝑘

𝜕𝑇

𝜕𝑥
𝒊 +

𝜕𝑇

𝜕𝑦
 𝒋 +

𝜕𝑇

𝜕𝑧
 𝒌

The direction of Heat Flux is
normal to the cross-sectional area

Temperature Gradient

Thermal Conductivity

Rate of heat energy transfer per
unit surface area normal to the

direction of transport

Newton’s law
𝐪″ = ℎ 𝑇𝑠 − 𝑇∞

Convective Heat Flux

(𝑊/𝑚2)

Convection Heat
Transfer Coefficient

Fluid Temperature

Surface Temperature

𝑞″ = 𝜀 𝜎 𝑇𝑠
4 − 𝑇𝑠𝑢𝑟

4

Radiation Heat Flux

Stefan–Boltzmann constant

5.67 × 10−8
𝑊

𝑚2𝐾4

Absolute Temperature (K) Of The Surface

emissivity

Absolute Temperature (K) Surrounding

𝑊

𝑚 𝐾

𝑊

𝑚2 𝐾
Film Coefficient

Sink Temperature

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 95

Film Coefficient Node-based Element-basedSurface-based
𝐽

𝑇𝐿2𝜃

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 96

H

SINK Sink Temperature

H(1)

H(2)

Magnitude of the Film coefficient at this point

Rate of change of the film coefficient with respect to the surface temperature at this point

Film Coefficient

Node-based

Element-based

Surface-based

𝐽

𝑇𝐿2𝜃

𝐽

𝑇𝐿2𝜃2

𝑑ℎ/𝑑𝜃

The rate of convergence during the solution of the nonlinear equations in an increment is improved by
defining this value, especially when the film coefficient is a strong function of surface temperature

Sink Temperature

Node-based

Element-based

Surface-based

Variables to Be Defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 97

Variables Passed in for Information
TEMP

KSTEP

TIME

NOEL

TIME(1)

TIME(2)

Current value of step time

Current value of total time

COORDS
An array containing the coordinates of this point. These are the current coordinates if geometric nonlinearity is

accounted for during the step; otherwise, the array contains the original coordinates of the point.

Step Number

Increment Number

NPT

KINC

Estimated Surface Temperature At This Time At This Point

Element number
(This variable is passed in as zero for node-based films)

Surface integration point number
 (This variable is passed in as zero for node-based films)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 98

Variables Passed in for Information

FIELD

NFIELD Number of field variables

Surface name for which this call to FILM is being made for a surface-based film coefficient specification (JLTYP=0).
 (This variable is passed in as blank for both node-based and element-based films)

NODE
Node Number

(This variable is passed in as zero for both element-based and surface-based films)

SNAME

Interpolated values of field variables at this point

AREA
Nodal area for node-based films. AREA will be passed into the routine as the nodal

area specified as part of the node-based film coefficient specification.
(This variable is passed in as zero for both element-based and surface-based films)

JLTYP Identifies the element face for which this call to FILM is being
made for an element-based film coefficient specification

JLTYP Film type

0 Node-based or surface-based loading

11 F1NU (FNEGNU for heat transfer shells)

12 F2NU (FPOSNU for heat transfer shells)

13 F3NU

14 F4NU

15 F5NU

16 F6NU

Bottom

Top

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 99

Example
Transient Heat Transfer

𝑆𝐼 (𝑚)

Density 𝜌 = 7800

Thermal Conductivity 𝑘 = 1.4

Specific Heat 𝑐𝑝 = 260

Film Coefficient ℎ = 10 + 0.2𝜃

Sink Temperature 𝜃0 = 100 + 2𝑡

Initial Temperature 𝜃𝑖 = 30

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 100

Distributed Flux
𝑞(x,y,z,T,t)

𝑞(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

𝑞(x,y,z,t) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

DFLUX
Abaqus User Subroutine To Define Non-uniform Distributed Flux in a Heat Transfer or Mass Diffusion Analysis

Note the close similarity between the DFLUX and DLOAD Subroutines

101

DFLUX

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define Non-uniform Distributed Flux in a Heat Transfer or Mass Diffusion Analysis

FLUX

SOL

KSTEP

KINC

TIME

NOEL

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Element number

COORDS An array containing the
coordinates of this point (NODE)

Step number

Increment number

Estimated value of the solution variable

NPT

JLTYP

TEMP

PRESS

SNAME

FLUX(1)

FLUX(2)

Magnitude of flux

Rate of change of the flux with respect to
the temperature/mass concentration

Integration point number

Identifies the flux type

Current value of temperature
at this integration point

Current value of the equivalent
pressure stress at this integration point

Surface name for a surface-based
flux definition (JLTYP=0).

Only in
transient
analysis

Only for
a mass

diffusion
analysis

Only for
a mass

diffusion
analysis

102Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

FLUX

FLUX(1)

FLUX(2)

Magnitude of flux

Rate of change of the flux with respect to the temperature

Surface Flux:
𝐽

𝑇𝐿2 /
𝑃𝐿

𝑇

Body Flux:
𝐽

𝑇𝐿3 /
𝑃

𝑇

FLUX
Heat Flux:

Mass Diffusion Flux: Rate of mass transfer per unit surface area normal to the direction of transport

Rate of heat energy transfer per unit surface area normal to the direction of transport Volume

Volume

FLUX
Surface-based

Element-based Body Flux / Surface Flux

Surface Flux

Surface Flux:
𝐽

𝑇𝐿2𝜃

Body Flux:
𝐽

𝑇𝐿3𝜃

Surface Flux:
𝐿

𝑇

Body Flux:
1

𝑇

Heat Transfer

Mass Diffusion
Rate of change of the flux with respect to the mass concentration

𝑑𝑞/𝑑𝜃

𝑑𝑞/𝑑𝑐

In transient heat transfer cases where a nondefault amplitude is used to vary the applied fluxes, the time
average flux over the time increment must be defined rather than the value at the end of the time increment

The convergence rate during the solution of the nonlinear equations in an increment is improved by defining this value,
especially when the flux is a strong function of temperature in heat transfer analysis or concentration in mass diffusion analysis

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 103

Abaqus Conventions

Dimension Indicator Example (S.I. units)

Length 𝐿 Meter

Mass 𝑀 Kilogram

Time 𝑇 Second

Temperature 𝜃 Degree Celsius

Electric Current 𝐴 Ampere

Force 𝐹 Newton

Energy 𝐽 Joule

Electric Charge 𝐶 Coulomb

Electric Potential 𝜑 Volt

Mass Concentration 𝑃 Parts Per Million

Fluid Electric Potential 𝜑𝑒 Volt

Ion Concentration In The Electrolyte 𝐶𝑒 Mol Per Cubic Meter

104Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

SOL

COORDS
An array containing the coordinates of this point (NODE). These are the current coordinates if geometric

nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

temperature in a heat transfer analysis
or

 concentration in a mass diffusion analysis

JLTYP

TEMP

PRESS

SNAME

Identifies the flux type

Current value of temperature at this integration point

Current value of the equivalent pressure stress at this integration point

Surface name for a surface-based flux definition (JLTYP=0). For a body flux
or an element-based surface flux the surface name is passed in as blank.

NEXT SLIDE

Only For A Mass Diffusion Analysis

Only For A Mass Diffusion Analysis

Estimated value of the solution variable

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 105

Flux Identifier
JLTYP Flux Type Description

0 Surface-based flux Nonuniform Surface Flux

1 BFNU
Nonuniform body flux per unit volume with magnitude supplied via user

subroutine DFLUX

11 S1NU (SNEGNU for heat transfer shells)
Nonuniform surface flux per unit area into the bottom face of the element

with magnitude supplied via user subroutine DFLUX

12 S2NU (SPOSNU for heat transfer shells)
Nonuniform surface flux per unit area into the top face of the element with

magnitude supplied via user subroutine DFLUX.

13 S3NU Nonuniform surface flux per unit area into the face 3 of the element

14 S4NU Nonuniform surface flux per unit area into the face 4 of the element

15 S5NU Nonuniform surface flux per unit area into the face 5 of the element

16 S6NU Nonuniform surface flux per unit area into the face 6 of the element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 106

Example

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

200 𝑚𝑚 × 100 𝑚𝑚 × 1 𝑚𝑚

𝑞(x, y, z, t) = 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑥

100
𝑠𝑖𝑛

𝜋𝑦

50

𝑞(x, y, z, θ, t)= 𝑒𝜃 + 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑥

100
𝑠𝑖𝑛

𝜋𝑦

50

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 107

Material Constant

45
𝑊

𝑚 𝐾
 =

𝑚 𝑊

𝑚𝑚 𝐾
 Conductivity Specific Heat 420

𝐽

𝑘𝑔 𝑘
 = 420 × 106 𝑚𝐽

𝑡𝑜𝑛 𝐾

Commonly used unit 𝑆𝐼 value 𝑆𝐼 (𝑚𝑚) value

Stiffness of steel 210 𝐺𝑃𝑎 210 × 109 Pa 210000 𝑀𝑃𝑎

Density of steel 7850 𝑘𝑔

𝑚3
7.85 × 10−9 𝑡𝑜𝑛𝑛𝑒

𝑚𝑚3

Gravitational constant 9.81 𝑚

𝑠2 9810
𝑚𝑚

𝑠2

pressure 1 𝑏𝑎𝑟 105 Pa 0.1 𝑀𝑃𝑎

Absolute zero
temperature

-273.15 °C 0 K °C and K both acceptable

Stefan-Boltzmann
constant

5.67 × 10−8
𝑊

𝑚2𝐾4
5.67 × 10−11

𝑚𝑊

𝑚𝑚2𝐾4

Universal gas constant 8.31446
𝐽

𝐾 𝑚𝑜𝑙
8314.46

𝑚𝐽

𝐾 𝑚𝑜𝑙

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 108

UMDFLUX
Abaqus User Subroutine To Specifying Moving or Stationary Nonuniform Heat Flux in a Heat Transfer Analysis

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 109

JLTYP

Identifies the moving flux type for
which this call to UMDFLUX is being

made; only the concentrated heat flux
type is supported (JLTYP=1)

JLTYP Flux Type Description

0 MBFNU
Nonuniform moving or stationary concentrated heat
fluxes with magnitudes supplied via user subroutine

UMDFLUX.

Abaqus User Subroutines To Define Incremental Thermal Strains

110

UEXPAN

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Thermal Strains Are Complicated Functions Of Temperature, Time, Field Variables, And State Variables

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 111

Variables to Be Defined

EXPAN

DEXPANDT

Variation Of Thermal
Strains With Respect

To Temperature

Increments
Of

Thermal Strain

Isotropic
Expansion

Orthotropic
Expansion

Anisotropic
Expansion

Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀33
𝑡ℎ 0 0 0

Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀33
𝑡ℎ Δ𝜀12

𝑡ℎ Δ𝜀13
𝑡ℎ Δ𝜀23

𝑡ℎ

Δ𝜀𝑡ℎ = Δ𝜀𝑡ℎ Δ𝜀𝑡ℎ Δ𝜀𝑡ℎ 0 0 0

3D Stress

Plane Stress Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀12
𝑡ℎ

Isotropic
Expansion

Orthotropic
Expansion

Anisotropic
Expansion

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀33
𝑡ℎ

𝜕𝜃
0 0 0

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃
0 0 0

3D Stress

Plane Stress
𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀12
𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀33
𝑡ℎ

𝜕𝜃

𝜕𝜀12
𝑡ℎ

𝜕𝜃

𝜕𝜀13
𝑡ℎ

𝜕𝜃

𝜕𝜀23
𝑡ℎ

𝜕𝜃

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 112

Variables Passed in for Information
TEMP

TIME(1)

TIME(2)

Step Time At The End Of The Increment

Total Time At The End Of The Increment

DTIME

NOEL User-defined Element Number

PREDEF

DPRED

CMNAME

TIME

TEMP(1)

TEMP(2)

Current Temperature (at the end of the increment)

Temperature Increment

Time Increment

User-specified Material Name Or Gasket Behavior Name, Left Justified

Array Of Increments Of Predefined Field Variables

Array Containing The Values Of All The User-specified Predefined Field Variables At This Point
(initial values at the beginning of the analysis and current values during the analysis)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 113

Variables That Can Be Updated

STATEV

NSTATEV
Number of solution-dependent state variables associated with this material or gasket behavior type

(specified when space is allocated for the array)

These are supplied as values at the start of the increment and
can be updated to their values at the end of the increment.

UEXPAN is called twice
Per Material Point Per Iteration.

User subroutine UEXPAN allows for the incremental thermal strains to be only weakly dependent on the state variables. The
Jacobian terms arising from the derivatives of the thermal strains with respect to the state variables are not taken into account

In the first call for a given material point and iteration, the values
supplied are those at the start of the increment and can be updated.

In the second call for the same material point and iteration, the
values supplied are those returned from the first call, and they

can be updated again to their values at the end of the increment.

Array Containing The User-defined Solution-dependent State Variables At This Point.

Coupled Temperature-displacement
And

Coupled Thermal-electrical-structural

Others

114

UAMP
Abaqus User Subroutines

To Specify Amplitude

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

SIGINI

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An Initial Stress Field

115

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 116

Variables to Be Defined
SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the initial

coordinates of this point

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number
within the current layer

Element type name

NAMES(1):

NAMES(2):

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 117

Variables Passed in for Information
SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the initial

coordinates of this point

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number
within the current layer

Element type name

NAMES(1):

NAMES(2):

118

SIGINI

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An Initial Stress Field

SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the current

coordinates of this point.

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number within the current layer

Element type name

NAMES(1):

NAMES(2):

3D Stress: 6

Axisymmetric, and (Generalized) Plane Strain: 4

** INITIAL CONDITIONS
* INITIAL CONDITIONS, TYPE=STRESS, USER

Keyword

Plane Stress: 3

119

SIGINI

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

120

UFIELD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Specify Predefined Field Variables

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 121

Variables to Be Defined
FIELD(NSECPT, NFIELD) Array Of Predefined Field Variable Values

Array of predefined field variable values at node number NODE. When updating only one field variable at a time, only the value of the specified field
variable (see KFIELD below) must be returned. In this case NFIELD is passed into user subroutine UFIELD with a value of 1, and FIELD is thus
dimensioned as FIELD(NSECPT,1). When updating all field variables simultaneously, the values of the specified number of field variables at the point
must be returned. In this case FIELD is dimensioned as FIELD(NSECPT,NFIELD), where NFIELD is the number of field variables specified and KFIELD
has no meaning.
If NODE is part of any element other than a beam or shell, only one value of each field variable must be returned (NSECPT=1). Otherwise, the number
of values to be returned depends on the mode of temperature and field variable input selected for the beam or shell section. The following cases are
possible:
Temperatures and field variables for a beam section are given as values at the points shown in the beam section descriptions. The number of values
required, NSECPT, is determined by the particular section type specified, as described in Beam Cross-Section Library.
Temperatures and field variables are given as values at n equally spaced points through each layer of a shell section. The number of values required,
NSECPT, is equal to n.
Temperatures and field variables for a beam section are given as values at the origin of the cross-section together with gradients with respect to the 2-
direction and, for three-dimensional beams, the 1-direction of the section; or temperatures and field variables for a shell section are given as values at
the reference surface together with gradients through the thickness. The number of values required, NSECPT, is 3 for three-dimensional beams, 2 for
two-dimensional beams, and 2 for shells. Give the midsurface value first, followed by the first and (if necessary) second gradients, as described in Beam
Elements and Shell Elements.
Since field variables can also be defined directly, it is important to understand the hierarchy used in situations of conflicting information (see
Predefined Fields).
When the array FIELD is passed into user subroutine UFIELD, it will contain either the field variable values from the previous increment or those values
obtained from the results file if this method was used. You are then free to modify these values within this subroutine.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 122

Variables Passed in for Information

NSECPT

COORDS
An array containing the coordinates of this node. These are the current coordinates if geometric nonlinearity
is accounted for during the step; otherwise, the array contains the original coordinates of the node

KFIELD

KSTEP

KINC

TIME

NODE

TEMP(NSECPT)

DTEMP(NSECPT)

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Current temperature at the node. If user subroutines UTEMP and UFIELD are both used, user subroutine
UTEMP is processed before user subroutine UFIELD.

Step Number

Increment Number

Node Number

Maximum number of section values required for any node in the model

User-specified field variable number. This variable is meaningful only when updating
individual field variables at a time.

Temperature increment at the node

NFIELD User-specified number of field variables to be updated. This variable is meaningful only
when updating multiple field variables simultaneously.

123

UVARM

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Generate Element Output

124

UVARM

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Generate Element Output

UVARM allows you to define output quantities that are functions of any of the available integration point quantities

Cannot be used with linear perturbation procedures, except for the static perturbation procedure

Will be called at all material calculation points of elements for which the material definition includes the specification
of user-defined output variables

The data are provided in double precision for output to the data (.dat) and results (.fil) files and are written to the
output database (.odb) file in single precision.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 125

Variables to Be Defined

UVAR(NUVARM) An array containing the user-defined output variables.

These are passed in as the values at the beginning of the increment and
must be returned as the values at the end of the increment.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 126

Variables Passed in for Information
DIRECT(3,3) An array containing the direction cosines of the material directions in terms of the global basis directions

First Material Direction

Second Material Direction

Third Material Direction

DIRECT(1,1), DIRECT(2,1), DIRECT(3,1)

DIRECT(1,2), DIRECT(2,2), DIRECT(3,2)

DIRECT(1,3), DIRECT(2,3), DIRECT(3,3)

First Column

Second Column

Third Column

For shell and membrane elements, the first two directions are in the plane of
the element and the third direction is the normal

This information is not available for beam and truss elements

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 127

Variables Passed in for Information
T(3,3)

An array containing the direction cosines of the material orientation
components relative to the element basis directions

Orientation is not available for beam and truss elements

The orientation that defines the material directions in terms of the element basis directions

The orientation that defines the material directions in terms of the global basis directions

T(3,3)

DIRECT(3,3)

For Continuum Elements T and DIRECT are identical

For shell and membrane elements T 3,3 =
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1

𝜃 is the counterclockwise rotation around the normal vector that defines the orientation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 128

Variables Passed in for Information
TIME(1)

TIME(2)

DTIME

CMNAME

ORNAME

NUVARM

NOEL

NPT Integration point number

Element number

User-specified number of user-defined output variables

User-specified local orientation name, left justified

User-specified material name, left justified

Time increment

Value of total time at the end of the current increment

Value of step time at the end of the current increment

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 129

Variables Passed in for Information
LAYER

KSPT

KSTEP

KINC

NDI

NSHR

COORD Coordinates at this material (integration) point

Number of shear stress components at this point

Number of direct stress components at this point

Increment number

Step number

Section point number within the current layer

Layer number (for composite shells and layered solids)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 130

Variables Passed in for Information

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variables that must be passed into the GETVRM utility routine

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 131

GETVRM
Obtaining Material Point Information in an Abaqus/Standard Analysis

Utility Routine Interface

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 132

Elements supported by GETVRM
Since the GETVRM capability pertains to material point quantities, it cannot be used for most of

the element types that do not require a material definition.

The following element types are, therefore, not supported:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 133

Variables to Be Provided to the Utility Routine
VAR Output Variable Key

Variable Name Variable Key

All stress components S

𝑖𝑗𝑡ℎ component of stress
(𝑖 ≤ 𝑗 ≤ 3)

𝐒𝑖𝑗

All principal stresses SP

Minimum, intermediate, and maximum
principal stresses

 (𝑆𝑃1 ≤ 𝑆𝑃2 ≤ 𝑆𝑃3)
𝐒𝐏𝑛

All stress invariant components
(MISES, TRESC, PRESS, INV3) SINV

Signed von Mises equivalent stress S_MISES

Mises equivalent stress MISES

Variable Name Variable Key

All strain components E

𝑖𝑗𝑡ℎ component of strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐄𝑖𝑗

All principal strains EP

Minimum, intermediate, and
maximum principal strains

 (𝐸𝑃1 ≤ 𝐸𝑃2 ≤ 𝐸𝑃3)
𝐄𝐏𝑛

All nominal strain components NE

𝑖𝑗𝑡ℎ component of nominal strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐍𝐄𝑖𝑗

All principal nominal strains NEP

Minimum, intermediate, and
maximum principal nominal strains

(𝑁𝐸𝑃1 ≤ 𝑁𝐸𝑃2 ≤ 𝑁𝐸𝑃3)
𝐍𝐄𝐏𝑛

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 134

Variables to Be Provided to the Utility Routine

The components for a
requested variable

Single index components (and requests without components) are returned in
positions 1, 2, 3, etc

Double index components (tensors) are returned in the order 11, 22, 33, 12,13, 23 for
symmetric tensors, followed by 21, 31, 32 for unsymmetric tensors, such as the
deformation gradient

Three values are always returned for principal value requests, the minimum value first
and maximum value third, regardless of the dimensionality of the analysis.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 135

Variables to Be Provided to the Utility Routine

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 136

Variables Returned from the Utility Routine

ARRAY

JARRAY

FLGRAY

JRCD

Real array containing individual components of the output variable

Integer array containing individual components of the output variable

Character array containing flags corresponding to the individual components.
 Flags will contain either YES, NO, or N/A (not applicable)

Return code

0

1

No error

Output request error

All components of the output request are zero

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 137

UVARM EXAMPLE

138

USDFLD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Redefine Field Variables at Material Point

139

USDFLD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Redefine a Field Variables at Material Point

Allows you to define field variables at a material point as functions of time or any of the available material
point quantities except the user-defined output variables UVARM and UVARMn

User subroutine USDFLD is typically used when complex material behavior needs to be modeled, and the
user does not want to develop a UMAT or VUMAT subroutine, respectively.

Most material properties in Abaqus can be defined as functions of field variables, 𝑓𝑖

USDFLD allows the user to define 𝑓𝑖 at every integration point of an element

The subroutines have access to solution data, so 𝑓𝑖 𝜎, 𝜀, 𝜀𝑝𝑙 , ሶ𝜀, … ;

therefore, the material properties can be a function of the solution data.

USDFLD or VUSDFLD is used to introduce solution-dependent material properties since such
properties can easily be defined as functions of field variables

140

USDFLD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Redefine a Field Variables at Material Point

Typically the user must define the dependence of material properties, such as elastic modulus or yield stress,
as functions of field variables, 𝑓𝑖 .

This can be accomplished using
either tabular input or
additional user subroutines

Using tabular definition for built-in Abaqus material models

Using other user subroutines to define
the material behavior as a function of 𝑓𝑖 .

CREEP

HETVAL

UEXPAN

UHARD

UHYPEL

UMAT

UMATHT

UTRS

E.g., field variables defined in
USDFLD are passed into UMAT

The material properties defined in these subroutines are made functions of the 𝑓𝑖

141

USDFLD

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Redefine a Field Variables at Material Point

Abaqus will use linear interpolation between data points in the tabular input and will use the last available
material data if 𝑓𝑖 , is outside of the range specified—it does not extrapolate the data provided.

The range of 𝑓𝑖 , does not have to be the same for each material property.

The USDFLD routine is then written to define the values of 𝑓𝑖 on an integration point-by-integration point basis.

Damage to the material

𝑓𝑖 Functionally Graded Material (FGM)

Bone Remodeling

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 142

USDFLD

In Abaqus/Standard the USDFLD subroutine has access to material point quantities only at
the start of the increment; thus, the solution dependence introduced in this way is explicit

The material properties are not influenced by the results obtained during the increment

Hence, the accuracy of the results depends on the size of the time increment

Therefore, the user can control the time increment in the USDFLD subroutine by means of the variable PNEWDT

Abaqus User Subroutines To Redefine a Field Variables at Material Point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 143

USDFLD
Abaqus User Subroutines To Redefine a Field Variables at Material Point

What values for the field variables does Abaqus use?

Field variables 𝑓𝑖 are considered
nodal data by Abaqus

When Abaqus begins to calculate the element stresses and
stiffness (i.e., the element loop), it interpolates the nodal values

of 𝑓𝑖 to the integration (material) points of the elements.

When subroutine USDFLD is used, however, these interpolated 𝑓𝑖 are
replaced with the values defined in the USDFLD subroutine before

the material properties of an element are calculated.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 144

Variables to Be Defined

FIELD(NFIELD) An array containing the field variables at the current material point.

The updated values are used to calculate the values of material properties that are defined to depend on field
variables and are passed into other user subroutines (CREEP, HETVAL, UEXPAN, UHARD, UHYPEL, UMAT,

UMATHT, and UTRS) that are called at this material point.

The values defined by USDFLD are not stored by Abaqus

These are passed in with the values interpolated from the nodes at the end of the current increment, as
specified with initial condition definitions, predefined field variable definitions, or user subroutine UFIELD.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 145

Variables That Can Be Updated

STATEV(NSTATV) An array containing the solution-dependent state variables

These are passed in as the values at the beginning of the increment.

Solution-dependent state variables (SDVs) must be used in USDFLD, 𝑓𝑖 if have any history dependence

In all cases STATEV can be updated in this subroutine, and the updated values are passed into other user
subroutines (CREEP, HETVAL, UEXPAN, UMAT, UMATHT, and UTRS) that are called at this material point

The number of state variables associated with the current
material point is defined with the *DEPVAR option (keyword)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 146

Variables That Can Be Updated

PNEWDT Ratio of suggested new time increment to the time increment being used

This variable allows you to provide input to the automatic
time incrementation algorithms in Abaqus/Standard

If Automatic Time
Incrementation Is Chosen

Abaqus/Standard uses an automatic time incrementation algorithm
to control the size of the time increment used in an analysis.

This algorithm allows Abaqus/Standard to reduce the time increment size when convergence is unlikely or the
results are not accurate enough and to increase the time increment when convergence is easily obtained

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 147

Variables That Can Be Updated
PNEWDT is set to a large value before each call to USDFLD

IF PNEWDT is redefined
to be less than 1.0

IF PNEWDT is given a value
that is greater than 1.0

(For all calls to user subroutines
for this iteration and the increment

converges in this iteration)

Abaqus must abandon the time increment and attempt it again with a smaller time increment

The suggested new time increment provided to the
automatic time integration algorithms is PNEWDT*DTIME

where the PNEWDT used is the minimum value for all calls to user subroutines that allow redefinition of PNEWDT for this iteration.

Abaqus may increase the time increment

The suggested new time increment provided to the
automatic time integration algorithms is PNEWDT*DTIME

Where the PNEWDT used is the minimum value for all calls to user subroutines for this iteration.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 148

Variables Passed in for Information
DIRECT(3,3) An array containing the direction cosines of the material directions in terms of the global basis directions

First Material Direction

Second Material Direction

Third Material Direction

DIRECT(1,1), DIRECT(2,1), DIRECT(3,1)

DIRECT(1,2), DIRECT(2,2), DIRECT(3,2)

DIRECT(1,3), DIRECT(2,3), DIRECT(3,3)

First Column

Second Column

Third Column

For shell and membrane elements, the first two directions are in the plane of
the element and the third direction is the normal

This information is not available for beam and truss elements

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 149

Variables Passed in for Information
T(3,3)

An array containing the direction cosines of the material orientation
components relative to the element basis directions

Orientation is not available for beam and truss elements

The orientation that defines the material directions in terms of the element basis directions

The orientation that defines the material directions in terms of the global basis directions

T(3,3)

DIRECT(3,3)

For Continuum Elements T and DIRECT are identical

For shell and membrane elements T 3,3 =
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1

𝜃 is the counterclockwise rotation around the normal vector that defines the orientation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 150

Variables Passed in for Information

CELENT

TIME(1)

TIME(2)

DTIME

Characteristic
Element length

First-order Element Length of a line across an element

Half of the length of a line across an element

Beams and Trusses

Second-order Element

Along the element axis

Membranes and Shells Characteristic length in the reference surface

Axisymmetric element Characteristic length in the (𝑟, 𝑧) plane only

Value of step time at the beginning of the current increment

Value of total time at the beginning of the current increment

Time increment

𝑆𝑄𝑅𝑇(𝐷𝐽𝐴𝐶 ∗ 𝐷𝐵𝐿𝐸(𝑁𝐼𝑁𝑃𝑇))

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 151

Variables Passed in for Information

CMNAME

ORNAME

User-specified material name, left justified

User-specified local orientation name, left justified

NFIELD

NSTATV

Number of field variables defined at this material point

User-defined number of solution-dependent state variables

NOEL Element number

NPT Integration point number

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 152

Variables Passed in for Information
LAYER

KSPT

Layer number (for composite shells and layered solids)

Section point number within the current layer

KSTEP

KINC

NDI

NSHR

COORD

Step number

Increment number

Number of direct stress components at this point

Number of shear stress components at this point

Coordinates at this material point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 153

Variables Passed in for Information

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variables that must be passed into the GETVRM utility routine

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 154

GETVRM
Obtaining Material Point Information in an Abaqus/Standard Analysis

Utility Routine Interface

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 155

Elements supported by GETVRM
Since the GETVRM capability pertains to material point quantities, it cannot be used for most of

the element types that do not require a material definition.

The following element types are, therefore, not supported:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 156

Variables to Be Provided to the Utility Routine
VAR Output Variable Key

Variable Name Variable Key

All stress components S

𝑖𝑗𝑡ℎ component of stress
(𝑖 ≤ 𝑗 ≤ 3)

𝐒𝑖𝑗

All principal stresses SP

Minimum, intermediate, and maximum
principal stresses

 (𝑆𝑃1 ≤ 𝑆𝑃2 ≤ 𝑆𝑃3)
𝐒𝐏𝑛

All stress invariant components
(MISES, TRESC, PRESS, INV3) SINV

Signed von Mises equivalent stress S_MISES

Mises equivalent stress MISES

Variable Name Variable Key

All strain components E

𝑖𝑗𝑡ℎ component of strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐄𝑖𝑗

All principal strains EP

Minimum, intermediate, and
maximum principal strains

 (𝐸𝑃1 ≤ 𝐸𝑃2 ≤ 𝐸𝑃3)
𝐄𝐏𝑛

All nominal strain components NE

𝑖𝑗𝑡ℎ component of nominal strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐍𝐄𝑖𝑗

All principal nominal strains NEP

Minimum, intermediate, and
maximum principal nominal strains

(𝑁𝐸𝑃1 ≤ 𝑁𝐸𝑃2 ≤ 𝑁𝐸𝑃3)
𝐍𝐄𝐏𝑛

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 157

Variables to Be Provided to the Utility Routine

The components for a
requested variable

Single index components (and requests without components) are returned in
positions 1, 2, 3, etc

Double index components (tensors) are returned in the order 11, 22, 33, 12,13, 23 for
symmetric tensors, followed by 21, 31, 32 for unsymmetric tensors, such as the
deformation gradient

Three values are always returned for principal value requests, the minimum value first
and maximum value third, regardless of the dimensionality of the analysis.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 158

Variables to Be Provided to the Utility Routine

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 159

Variables Returned from the Utility Routine

ARRAY

JARRAY

FLGRAY

JRCD

Real array containing individual components of the output variable

Integer array containing individual components of the output variable

Character array containing flags corresponding to the individual components.
 Flags will contain either YES, NO, or N/A (not applicable)

Return code

0

1

No error

Output request error

All components of the output request are zero

160

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

161

UMAT

User Subroutine Interface

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

162

UMAT
Variables passed in for information

STRAN(NTENS)

DSTRAN(NTENS)

TIME(1)

TIME(2)

DTIME

TEMP

DTEMP

PREDEF

DPRED

CMNAME

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

An array containing the total (mechanical) strains at the beginning of the increment

Array of (mechanical) strain increments

Time increment

Temperature at the start of the increment

Increment of temperature

Array of interpolated values of predefined field variables

Array of increments of predefined field variables

User-defined material name

Value of step time at the beginning of the current increment or frequency

Value of total time at the beginning of the current increment

Engineering Shear
Components

To avoid conflict, you should not use “ABQ_” as
the leading string for CMNAME

163

UMAT
Variables passed in for information

PROPS(NPROPS)

NPROPS

COORDS

DROT(3,3)

DFGRD0(3,3)

DFGRD1(3,3)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Array of material constants

Number of material constants

An array containing the coordinates of this point

Rotation increment matrix

CELENT Characteristic element length

Array containing the deformation gradient at the beginning of the increment

Array containing the deformation gradient at the end of the increment

NTENS=NDI+NSHR

NSTATV

Size of the stress or strain component array

Number of solution-dependent state variables

NDI

NSHR

Number of direct stress
components at this point

Number of engineering shear
stress components at this point

stress and strain components are already rotated
by this amount before UMAT is called

First-order

Second-order

length of a line across an element

Half of the First-order

Identity matrix if nonlinear
geometric effects are not

included in the step definition

3D Stress: 6Axisymmetric, and (Generalized) Plane Strain: 4Plane Stress: 3

164

UMAT
Variables passed in for information

NOEL

NPT

KINC

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Element number

Integration point number

LAYER Layer number (for composite shells and layered solids)

KSPT

JSTEP(1)

JSTEP(2) Procedure type key

JSTEP(3)

JSTEP(4)

Increment number

1 if current step is a linear perturbation procedure; 0 otherwise

1 if NLGEOM=YES for the current step; 0 otherwise

Step number

Section point number within the current layer

165

UMAT
Variables to be defined

DDSDDE(NTENS,NTENS) Jacobian matrix of the constitutive model

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐟: vector-valued function of several variables

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 166

Consistent Jacobian base on Constitutive Laws

Total-form Constitutive Laws

Rate-form Constitutive Laws

𝛿 𝐽𝛔 = 𝐽 𝐂 ∶ 𝛿𝐃 + 𝛿𝐖. 𝛔 − 𝛔. 𝛿𝐖

𝛿𝐃 = 𝑠𝑦𝑚 𝛿𝐅 . 𝐅−1

𝛿𝐖 = 𝑎𝑠𝑦𝑚 𝛿𝐅 . 𝐅−1

𝐂 =
1

𝐽

𝜕Δ 𝐽𝛔

𝜕Δ𝛆

Exact Consistent Jacobian

Exact Consistent Jacobian

Determinant of the
Deformation Gradient

Rate-form constitutive laws express relationships between
stress rates and strain rates, offering advantages in handling
path-dependent material behavior and large deformations

total-form constitutive laws relate
current stress states directly to current
strain states or deformation measures

more stable numerically and less prone
to accumulation of errors over time

Rate-form constitutive laws establish relationships
between rates of stress and rates of strain or deformation,

providing a differential framework that describes how
stress evolves with changing deformation states.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 167

Rate-form Constitutive Laws

The mathematical framework of rate-form constitutive laws requires careful consideration of objectivity,
particularly when dealing with finite deformations and rotations. Since stress rates must be frame-indifferent to
ensure physical consistency, various objective stress rates have been developed to maintain this requirement

The choice of objective stress rate significantly impacts the material model's behavior and numerical
performance. Common objective stress rates include the Truesdell rate, the Green-Naghdi rate, and the Zaremba-
Jaumann rate of the Cauchy stress, each with distinct mathematical properties and applications

Rate-form constitutive laws excel in capturing certain types of material behavior that are difficult to
represent with total-form approaches. They naturally accommodate path-dependent phenomena, rate-
sensitive materials, and complex loading histories where the material response depends on the sequence
and rate of deformation rather than just the final state

168

UMAT
Variables to be defined

DDSDDE(NTENS,NTENS)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Determinant of the Deformation Gradient

If the volume change is
small, the Jacobian matrix

can be approximated as ∆𝝈: Cauchy stress increments

𝐂 =
𝜕∆𝝈

𝜕∆𝜺

For viscoelastic behavior in the frequency domain,
the Jacobian matrix must be dimensioned as

DDSDDE(NTENS,NTENS,2)
DDSDDE(NTENS,NTENS,2)

Stiffness contribution
(storage modulus)DDSDDE(NTENS,NTENS,1)

Damping contribution
(loss modulus)

large-deformation problems with small volume changes
 (e.g., metal plasticity)

For small-deformation problems
(e.g., linear elasticity)

Loss of quadratic convergence may occur

An incorrect definition of the material Jacobian affects only the
convergence rate; the results (if obtained) are unaffected

169

UMAT
Variables to be defined

STRESS(NTENS)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

This array is passed in as the “true” (Cauchy) stress tensor at the
beginning of the increment and must be updated in this routine to be

the stress tensor at the end of the increment

𝜏 = 𝐽 𝜎

Kirchhoff stress

Determinant of the
Deformation Gradient

In finite-strain problems the stress tensor has already been rotated to account
for rigid body motion in the increment before UMAT is called, so that only the
corotational part of the stress integration should be done in UMAT.

Hybrid formulation Total

Incremental (default)

Incompressible

170

UMAT
Variables to be defined

STATEV(NSTATV) Solution-dependent State Variables SDV: In Field Output

STATEV: In UMAT

DepVar: In Property

They are values that can be defined to evolve with the solution of an analysis

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

SSE Specific Elastic Strain Energy

SPD Specific Plastic Dissipation

Specific Creep DissipationSCD

These are passed in as the values at the beginning of the increment unless they are updated in user subroutines USDFLD or UEXPAN,
in which case the updated values are passed in. In all cases STATEV must be returned as the values at the end of the increment

They are used for energy output

171

UMAT
Variables to be defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Only in a fully coupled thermal-stress or a coupled thermal-electrical-structural analysis

RPL

DDSDDT(NTENS)

DRPLDE(NTENS)

DRPLDT

Volumetric heat generation per unit time at the end of the increment caused by
mechanical working of the material

Variation of the stress increments with respect to the temperature

Variation of RPL with respect to the strain increments

Variation of RPL with respect to the temperature

172

UMAT
Variables That Can Be Updated

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

PNEWDT Ratio of suggested new time increment to the time increment being used

This variable allows you to provide input to the automatic time incrementation algorithms in Abaqus/Standard

The suggested new time increment provided to the automatic time integration algorithms is PNEWDT × DTIME,
where the PNEWDT used is the minimum value for all calls to user subroutines that allow redefinition of PNEWDT
for this iteration.

173

Formulation Approach

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Total Lagrangian Approach

Updated Lagrangian Approach

Eulerian Approach

For the updated Lagrangian approach, the discrete equations are formulated in the
current configuration, which is assumed to be the new reference configuration. The

stress is measured by the Cauchy stress.
The dependent variables are chosen to be the stress 𝜎 𝐗, 𝑡 and the velocity 𝑣(𝐗, 𝑡).

In developing the updated Lagrangian formulation, we will sometimes need the
dependent variables to be expressed in terms of the Eulerian coordinates.

For the total Lagrangian approach, the discrete equations are formulated with respect
to the reference configuration. The independent variables are 𝑡 and 𝐗 = 𝜒(𝐱) and the

dependent variable is displacement 𝑢 𝑋, 𝑡 .

In an Eulerian formulation, the nodes are fixed in space and the dependent variables
are functions of the Eulerian spatial coordinate 𝑥 and the time 𝑡. The stress measure is

the Cauchy stress 𝜎 𝐱, 𝑡 , the measure of deformation is the rate-of-deformation
𝛻𝑣(𝐱, 𝑡), and the motion will be described by the velocity 𝑣(𝐱, 𝑡).

174

Description of Motion

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐱 = 𝜒(𝐗, 𝑡), 𝜒(𝑋, 0) = 𝑋

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗
𝑑𝐱 = 𝐅 . 𝑑𝐗

𝐽 = 𝑑𝑒𝑡 𝐅

175

Measure of Stress

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

S: Second Piola-Kirchhoff stress is defined to be the initial (transformed current) force per unit undeformed area.

𝝈: Cauchy Stress (True Stress) is defined to be the current force per
unit deformed area.

P: First Piola-Kirchhoff stress tensor (known as the Lagrangian stress tensor or transpose of Nominal stress) is defined
to be the current force per unit undeformed area.

𝝉: Kirchhoff stress
𝜏 = 𝐽 𝜎

Push Forward of The Second Piola-Kirchhoff Stress 𝜏 = 𝐅. 𝐒. 𝐅T

Cauchy Stress Scaled by The Determinant of The Jacobian

𝝈 = 𝝈𝑇

𝐒 = 𝐒T

176

Constitutive Models

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Elasticity

Plasticity

Linear Elasticity

Non-linear Elasticity

Kirchhoff Material

Cauchy Elastic Material

Green Elastic Material (Hyperelastic Material)

Hypoelastic Material

Stress As A Function Of The Deformation History Of The Body

All tensor quantities are defined in the corotational coordinate system that rotates with the material point

177

Non-linear Elasticity

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Kirchhoff Material

Cauchy Elastic Material

Green Elastic Material (Hyperelastic Material)

Hypoelastic Material
Rate of Cauchy stress
is related to the rate-
of-deformation

is path-independent and fully reversible
where the stress is derived from a strain

(or stored) energy potential

Second Piola-Kirchhoff stress Lagrangian (Green) strain

Elastic Moduli (Stiffness Tensor)

objective rate of the
Cauchy stress

rate-of-deformation

objective function Depend on stress

incrementally
linear and
reversible

no dependence on the
history of the motion

Right Cauchy-Green Deformation Tensor

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 178

Objective Stress Rates
The rate of change of the internal virtual work is required for use in the Newton (Newton–Raphson) Method

Solver Element Type Constitutive Model Objective Rate

Abaqus/Standard

Solid (Continuum) All built-in and user-defined materials Jaumann

Structural
(Shells, Membranes, Beams, Trusses)

All built-in and user-defined materials Green- Naghdi

Abaqus/Explicit

Solid (Continuum) All except hyperelastic, viscoelastic, brittle cracking, and VUMAT Jaumann

Solid (Continuum) Hyperelastic, viscoelastic, brittle cracking, and VUMAT Green- Naghdi

Structural
(Shells, Membranes, Beams, Trusses)

All built-in and user-defined materials Green- Naghdi

𝑑

𝑑𝑡
𝐽𝛔 = 𝐂′: 𝐃 + 𝐽 𝐖. 𝛔 − 𝛔. 𝐖

Rate of change due to material response

Change of stress due to rotation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 179

Corotational Derivatives
Most General Form Of Linearized Material Behavior

𝐒 = 𝐂 ∶ 𝐄

Stiffness Tensor

𝐽𝐅−1. 𝝈. 𝐅−𝑇 = 𝐂 ∶ 𝐄 𝐽𝝈 = 𝐅 . 𝐂 ∶ 𝐄 . 𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 = ሶ𝐅 . 𝐂 ∶ 𝐄 . 𝐅𝑇 + 𝐅 . 𝐂 ∶ ሶ𝐄 . 𝐅𝑇 + 𝐅 . 𝐂 ∶ 𝐄 . ሶ𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 = 𝐋 . 𝐽𝝈 + 𝐽𝝈 . 𝐋𝑇 + 𝐅 . 𝐂 ∶ 𝐅𝑇 . 𝐃 . 𝐅 𝐄 . 𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 − 𝐋 . 𝐽𝝈 − 𝐽𝝈 . 𝐋𝑇 = 𝐅 . 𝐅. 𝐂 . 𝐅𝑇 . 𝐅𝑇 ∶ 𝐃

Rigid Body Rotation Of
The Stiffness Tensor

𝐂′:

𝑑∇

𝑑𝑡
𝐽𝝈 =

𝑑

𝑑𝑡
𝐽𝝈 − 𝐋 . 𝐽𝝈 − 𝐽𝝈 . 𝐋𝑇 = 𝐂′ ∶ 𝐃

𝑑∇ 𝐽

𝑑𝑡
𝐽𝝈 =

𝑑

𝑑𝑡
𝐽𝝈 − 𝐽 𝐖 . 𝝈 − 𝝈 . 𝐖 = 𝐂′ ∶ 𝐃

Lie Derivative

Jaumann Derivative

∇𝐯 = 𝐋 = ሶ𝐅𝐅−1

𝑑∇

𝑑𝑡
𝐽𝝈

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 180

Corotational Derivatives
𝐃 =

1

2

𝜕𝐯

𝜕𝑥
+

𝜕𝐯

𝜕𝑥

𝑇

𝐖 =
1

2

𝜕𝐯

𝜕𝑥
−

𝜕𝐯

𝜕𝑥

𝑇
ሶ𝐞𝛼 = 𝛀 . 𝐞𝛼ሶ𝐞𝛼 = 𝐖 . 𝐞𝛼

𝛀 = ሶ𝐑 . 𝐑𝑇𝐅 = 𝐔 . 𝐑

Rigid Body Rotation In The Polar Decomposition Of The Deformation Gradient

Rate Associated With The Constitutive Response Caused By The Rigid Body Spin

Corotational Rate

Jaumann

Green-Naghdi

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 181

The Principle of Virtual Displacement

ම

Ω

𝝈 ∶ ∇ 𝛿𝐯 𝑑𝑣 = ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠

ම

Ω

𝝈 ∶ 𝛿𝐝 𝑑𝑣 = ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠 𝐰 =
1

2
∇v 𝑇 − ∇v

∇𝐯 = 𝐝 + 𝐰
𝐝 =

1

2
∇v 𝑇 + ∇v

ම

Ω

𝝈 ∶ 𝛿
1

2
ሶ𝐅𝐅−1 + ሶ𝐅𝐅−1 𝑇

𝑑𝑣 = ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠

“virtual” work rate

Rate-of-deformation

Rate-of-spin

∇𝐯 = 𝐋 = ሶ𝐅𝐅−1

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 182

The Principle of Virtual Displacement

Kirchhoff stress tensor

For initial
volume and area

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 183

The Principle of Virtual Displacement

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 184

Newton–Raphson Method

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations

Higher Order Term
Are Dropped

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝟎 ∆𝐝 = −
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝

−1

𝐑 𝐝𝑚, 𝑡𝑛+1
𝐝m+1 = 𝐝m + ∆𝐝

Jacobian Matrix

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
=

𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
−

𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
Load Stiffness Matrix

Tangent Stiffness Matrix

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 185

Abaqus Consistent Jacobian

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
𝐊int = ම

Ω

𝜕 𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

ම

Ω0

𝐽𝝈 ∶ 𝛿𝐃 𝑑𝑉 = ම

Ω0

𝐟0 . 𝛿𝐕 𝑑𝑉 + ඾

Γ0

𝐭0. 𝛿𝐕 𝑑𝑆

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
𝐊ext = ම

Ω

𝜕 𝐟0. 𝛿𝐕

𝜕𝐃
𝑑𝑉 + ඾

Γ

𝜕 𝐭0 . 𝛿𝐕

𝜕𝐃
𝑑𝑆

For initial
volume and area

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 186

Abaqus Consistent Jacobian

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝑑𝑉 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗 +

𝜕 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝐽𝜎𝑖𝑗 𝑑𝑉 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗 + 𝛿I𝑖𝑗𝑘𝑙 (𝐽𝜎𝑖𝑗) 𝑑𝑉

𝐊int = ම

Ω

𝜕 𝐽𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗 𝑑𝑉

187

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

𝑑

𝑑𝑡
𝐽𝛔 = 𝐂′: 𝐃 + 𝐽 𝐖. 𝛔 − 𝛔. 𝐖

Rate of change due to material response

Change of stress due to rotation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 188

Isotropic Isothermal Linear Elasticity

Definition Of
The Constitutive

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only
(In Corotational Framework)

Transformation of the
constitutive rate equation

into an incremental
equation

Forward Euler
(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

ሶ𝜎𝐽
𝑖𝑗 = 𝜆𝛿𝑖𝑗 ሶ𝜀𝑘𝑘 + 2𝜇 ሶ𝜀𝑖𝑗

Jaumann
(corotational)

rate form

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘 + 2𝜇Δ𝜀𝑖𝑗

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗

The time increment must be controlled

The algorithm is more complicated and often requires
local iteration.

However, there is usually no stability limit.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 189

Isotropic Isothermal Linear Elasticity
Forward Euler

(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘 + 2𝜇Δ𝜀𝑖𝑗

𝑦 𝑡0 + ℎ = 𝑦 𝑡0 + ℎ ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =
𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

𝑦 𝑡1 − ℎ = 𝑦 𝑡1 − ℎ ሶ𝑦 𝑡1 ሶ𝑦 𝑡1 =
𝑦 𝑡1 − 𝑦 𝑡1 − ℎ = 𝑡0

ℎ

𝑦 𝑡0 +
ℎ

2
= 𝑦 𝑡0 +

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =

𝑦 𝑡0 +
ℎ
2 − 𝑦 𝑡0 −

ℎ
2

ℎ

𝑦 𝑡0 −
ℎ

2
= 𝑦 𝑡0 −

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 +

ℎ

2
=

𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 190

Isotropic Isothermal Linear Elasticity
𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗Index Notation

Voigt Notation

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=

2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=
𝐸

1 + 𝜈 1 − 2𝜈

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 /2 0 0

0 0 0 0 1 − 2𝜈 /2 0

0 0 0 0 0 1 − 2𝜈 /2

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 191

Newton–Raphson Method

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations

Higher Order Term
Are Dropped

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝟎 ∆𝐝 = −
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝

−1

𝐑 𝐝𝑚, 𝑡𝑛+1
𝐝m+1 = 𝐝m + ∆𝐝

Jacobian Matrix

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
=

𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
−

𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
Load Stiffness Matrix

Tangent Stiffness Matrix

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 192

The Finite Element Method

𝐊𝑒 𝐮𝑒 𝐮𝑒 = 𝐅𝑒 R = 𝐊𝑒 𝐮𝑒 𝐮𝑒 − 𝐅𝑒
Iterative procedure

193

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 194

Isotropic Non-isothermal Linear Elasticity

Definition Of
The Constitutive

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only
(In Corotational Framework)

Transformation of the constitutive rate
equation into an incremental equation

ሶ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗 ሶ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇 ሶ𝜀𝑖𝑗

𝑒𝑙 + ሶ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2 ሶ𝜇𝜀𝑖𝑗

𝑒𝑙

Jaumann
(corotational)

rate form

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

𝑒𝑙

𝜎𝑖𝑗 = 𝜆 𝑇 𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2𝜇 𝑇 𝜀𝑖𝑗

𝑒𝑙
𝜀𝑖𝑗

𝑒𝑙 = 𝜀𝑖𝑗 − 𝛼𝑇𝛿𝑖𝑗

ሶ𝜀𝑖𝑗
𝑒𝑙 = ሶ𝜀𝑖𝑗 − 𝛼 ሶ𝑇𝛿𝑖𝑗

Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 195

Isotropic Non-isothermal Linear Elasticity

Definition Of
The Stress Rate Only

(In Corotational Framework)

Transformation of the
constitutive rate equation

into an incremental equation

Forward Euler
(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

Jaumann (corotational) rate form

The time increment must be
controlled

The algorithm is more complicated
and often requires local iteration.

However, there is usually no
stability limit.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 196

Isotropic Non-isothermal Linear Elasticity
Forward Euler

(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

𝑦 𝑡0 + ℎ = 𝑦 𝑡0 + ℎ ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =
𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

𝑦 𝑡1 − ℎ = 𝑦 𝑡1 − ℎ ሶ𝑦 𝑡1 ሶ𝑦 𝑡1 =
𝑦 𝑡1 − 𝑦 𝑡1 − ℎ = 𝑡0

ℎ

𝑦 𝑡0 +
ℎ

2
= 𝑦 𝑡0 +

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =

𝑦 𝑡0 +
ℎ
2 − 𝑦 𝑡0 −

ℎ
2

ℎ

𝑦 𝑡0 −
ℎ

2
= 𝑦 𝑡0 −

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 +

ℎ

2
=

𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 197

Isotropic Non-isothermal Linear Elasticity

Index Notation

Voigt Notation

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=

2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=
𝐸

1 + 𝜈 1 − 2𝜈

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 /2 0 0

0 0 0 0 1 − 2𝜈 /2 0

0 0 0 0 0 1 − 2𝜈 /2

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

𝑒𝑙 Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 198

Linear Interpolation

𝐸 𝑇 = 𝑁1𝐸 𝑇1 + 𝑁2𝐸 𝑇2

𝜈 𝑇 = 𝑁1𝜈 𝑇1 + 𝑁2𝜈 𝑇2

𝑁2 =
𝑇 − 𝑇1

𝑇2 − 𝑇1

𝑁1 =
𝑇2 − 𝑇

𝑇2 − 𝑇1

𝑁1 + 𝑁2 = 1

𝐸 𝑇 − 𝐸 𝑇1 =
𝐸 𝑇2 − 𝐸 𝑇1

𝑇2 − 𝑇1
𝑇 − 𝑇1 𝐸 𝑇 =

𝑇 − 𝑇1

𝑇2 − 𝑇1
𝐸 𝑇2 −

𝑇 − 𝑇1

𝑇2 − 𝑇1
𝐸 𝑇1 + 𝐸 𝑇1

𝐸 𝑇 =
𝑇2 − 𝑇

𝑇2 − 𝑇1
𝐸 𝑇1 +

𝑇 − 𝑇1

𝑇2 − 𝑇1
𝐸 𝑇2

𝑁1 𝑁2

199

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 200

Green Elastic Material (Hyperelastic Material)

Definition Of
The Constitutive

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only
(In Corotational Framework)

Transformation of the
constitutive rate equation

into an incremental
equation

Forward Euler
(explicit integration)

Backward Euler
(implicit integration)

Midpoint MethodJaumann
(corotational)

rate form

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 201

Green Elastic Material (Hyperelastic Material)

𝑈 ҧ𝐼1, ҧ𝐼2, 𝐼3 = 𝐽𝑒𝑙 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1
𝐽𝑒𝑙 − 1

2

ҧ𝐼1 = ҧ𝜆1
2

+ ҧ𝜆2
2

+ ҧ𝜆3
2

= 𝑡𝑟 ത𝐵 = 𝑡𝑟(ҧ𝐶)

ҧ𝐼2 = ҧ𝜆1
−2

+ ҧ𝜆2
−2

+ ҧ𝜆3
−2

=
1

2
𝑡𝑟 ത𝐵 2 − 𝑡𝑟 ത𝐵. ത𝐵 =

1

2
𝑡𝑟 ҧ𝐶 2 − 𝑡𝑟 ҧ𝐶. ҧ𝐶

𝐼3 = 𝐽𝑒𝑙

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗

Deformation Gradient Distortion Gradient

ത𝐅 = 𝐽−
1
3 𝐅

Volume-preserving, Or Isochoric Part of F

Jacobian Determinant

Deviatoric Right Cauchy-
green Deformation Tensor

Deviatoric Left Cauchy-
green Deformation Tensor

ത𝐂 = ത𝐅𝑇 . ത𝐅

ഥ𝐁 = ത𝐅 . ത𝐅𝑇

Compressible Mooney–Rivlin Hyperelasticity

ҧ𝜆𝑖: Deviatoric Stretches

ҧ𝐼𝑖 ∶Deviatoric Invariants

𝐽𝑒𝑙: Elastic Volume Ratio

𝐽: Total Volume Ratio

𝐽𝑒𝑙 =
𝐽

𝐽𝑡ℎ

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 202

Compressible Mooney–Rivlin Hyperelasticity

𝑈 ҧ𝐼1, ҧ𝐼2, 𝐼3 = 𝐽𝑒𝑙 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1
𝐽𝑒𝑙 − 1

2

ҧ𝐼1 = ҧ𝜆1
2

+ ҧ𝜆2
2

+ ҧ𝜆3
2

= 𝑡𝑟 ത𝐵 = 𝑡𝑟(ҧ𝐶)

ҧ𝐼2 = ҧ𝜆1
−2

+ ҧ𝜆2
−2

+ ҧ𝜆3
−2

=
1

2
𝑡𝑟 ത𝐵 2 − 𝑡𝑟 ത𝐵. ത𝐵 =

1

2
𝑡𝑟 ҧ𝐶 2 − 𝑡𝑟 ҧ𝐶. ҧ𝐶

𝐼3 = 𝐽𝑒𝑙

ҧ𝜆𝑖: Deviatoric Stretches

ҧ𝐼𝑖 ∶Deviatoric Invariants

𝐽𝑒𝑙: Elastic Volume Ratio

𝐽: Total Volume Ratio

𝐒 = 2
𝜕𝑈

𝜕𝐂
= 2

𝜕𝑈

𝜕 ҧ𝐼1

𝜕 ҧ𝐼1

𝜕𝐂
+

𝜕𝑈

𝜕 ҧ𝐼𝟐

𝜕 ҧ𝐼𝟐

𝜕𝐂
+

𝜕𝑈

𝜕𝐽𝑒𝑙

𝜕𝐽𝑒𝑙

𝜕𝐂
𝛔 =

1

𝐽
𝐅. 𝐒. 𝐅𝑇

𝐽𝑒𝑙 =
𝐽

𝐽𝑡ℎ

𝜎𝑖𝑗 =
2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1
𝐽𝑒𝑙 − 1 𝛿𝑖𝑗

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 203

Compressible Mooney–Rivlin Hyperelasticity
𝜎𝑖𝑗 =

2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1
𝐽𝑒𝑙 − 1 𝛿𝑖𝑗

𝛿 𝐽𝜎𝑖𝑗 − 𝐽 𝛿𝑊𝑖𝑘𝜎𝑘𝑗 + 𝜎𝑖𝑗𝛿𝑊𝑘𝑗 = 𝐽𝐶𝑖𝑗𝑘𝑙𝛿𝐷𝑘𝑙

𝛿𝐷𝑖𝑗 =
1

2
𝛿𝐹𝑖𝑚𝐹𝑚𝑗

−1 + 𝐹𝑚𝑖
−1𝛿𝐹𝑗𝑚

𝛿𝑊𝑖𝑗 =
1

2
𝛿𝐹𝑖𝑚𝐹𝑚𝑗

−1 − 𝐹𝑚𝑖
−1𝛿𝐹𝑗𝑚

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝐶10

1

2
𝛿𝑖𝑘

ത𝐵𝑗𝑙 + ത𝐵𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙
ത𝐵𝑗𝑘 + ത𝐵𝑖𝑙𝛿𝑗𝑘 −

2

3
𝛿𝑖𝑗

ത𝐵𝑘𝑙 −
2

3
ത𝐵𝑖𝑗𝛿𝑘𝑙 +

2

9
𝛿𝑖𝑗𝛿𝑘𝑙

ത𝐵𝑚𝑚 +
2

𝐷1
2𝐽 − 1 𝛿𝑖𝑗𝛿𝑘𝑙

𝐂𝑒 = 4𝐁 .
𝜕2𝑈

𝜕𝐁 ⨂ 𝜕𝐁
 . 𝐁

𝐂 =
1

𝐽
𝐂𝑒 +

1

2
𝝈 ഥ⨂ 𝐈 + 𝐈 ഥ⨂ 𝝈 + 𝝈 ⨂ 𝐈 + 𝐈 ⨂ 𝝈

𝐶𝑖𝑗𝑘𝑙
𝑒 = 4𝐵𝑖𝑚

𝜕2𝑈

𝜕𝐵𝑚𝑗 𝜕𝐵𝑘𝑛
 𝐵𝑛𝑙

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 204

Compressible Mooney–Rivlin Hyperelasticity

The convention used for stress and strain components in Abaqus is that they are ordered:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 205

Compressible Neo-Hookean Hyperelasticity

𝐂 =
1

𝐽
𝜆 𝐈 ⊗ 𝐈 + 𝜇 − 𝜆 𝑙𝑛 𝐽𝑒 𝐈 ഥ⨂ 𝐈 + 𝐈 ⨂ 𝐈 +

1

2
𝝉 ഥ⨂ 𝐈 + 𝐈 ഥ⨂ 𝝉 + 𝝉 ⨂ 𝐈 + 𝐈 ⨂ 𝝉

𝜓 =
1

2
𝜆 𝑙𝑛 𝐽𝑒

2
+

1

2
𝜇 𝐼1 − 3 − 2𝑙𝑛 𝐽𝑒

𝛕 = 2
𝜕𝜓

𝜕𝐁
. 𝐁 = 𝐅. 𝐒. 𝐅𝑇 = 𝜆 𝑙𝑛 𝐽𝑒 − 𝜇 𝐈 + 𝜇 𝐁

𝜆 =
𝐸𝜈

1 + 𝜈 1 − 2𝜈
𝜇 =

𝐸

2 1 + 𝜈

206

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 207

Green Elastic Material (Hyperelastic Material)

Definition Of
The Constitutive

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only
(In Corotational Framework)

Transformation of the
constitutive rate equation

into an incremental
equation

Forward Euler
(explicit integration)

Backward Euler
(implicit integration)

Midpoint MethodJaumann
(corotational)

rate form

Total-form constitutive laws

Rate-form constitutive laws

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 208

Almost Incompressible or Fully Incompressible Elastic Materials

In user subroutine UMAT incompressible materials can be modeled via a
penalty method; that is, you ensure that a finite bulk modulus is used.

The bulk modulus should be large enough
to model incompressibility sufficiently but

small enough to avoid loss of precision

As a general guideline, the bulk modulus should
be about 104 − 106 times the shear modulus

Almost Incompressible

The tangent bulk modulus

Option 1

Option 2

For all cases the first option should be to use user subroutine
UHYPER instead of user subroutine UMAT when it is possible to do so

few different options are
available depending on

whether hybrid or nonhybrid
elements are used

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 209

Almost Incompressible or Fully Incompressible Elastic Materials

In user subroutine UMAT incompressible materials can be modeled via a
penalty method; that is, you ensure that a finite bulk modulus is used.

Option 1

Option 2

For all cases the first option should be to use user subroutine
UHYPER instead of user subroutine UMAT when it is possible to do so

few different options are
available depending on

whether hybrid or nonhybrid
elements are used

Hybrid Element Nonhybrid Element

Abaqus/Standard, by default, replaces the pressure stress calculated
from your definition of STRESS with that derived from the Lagrange

multiplier and modifies the Jacobian appropriately

Suitable for material models that
use an incremental formulation

(metal plasticity)

but is not consistent with a total
formulation that is commonly used

for hyperelastic materials

lead to convergence problems

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 210

Hybrid Elements
Hybrid Elements are used to Modeling Near-Incompressible and Fully incompressible Materials

For a fully incompressible material
the bulk elastic modulus is infinite

Infinite Stiffness Matrix

For a nearly incompressible material
the stiffness matrix become ill

conditioned, so that small rounding
errors during the computation result

in large errors in the solution

Hydrostatic Stress distribution as an
additional unknown variable, which

must be computed at the same time as
the displacement field

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 211

Almost Incompressible or Fully Incompressible Elastic Materials
Hybrid Elements

Abaqus/Standard, by default, replaces the pressure
stress calculated from your definition of STRESS

with that derived from the Lagrange multiplier and
modifies the Jacobian appropriately

Hybrid
Formulation

Total

Incremental (default)

(e.g., metal plasticity)

Assumes that the response of the material can be
written as the sum of its deviatoric and volumetric parts

and that these parts are decoupled from each other

(e.g., hyperelastic materials)

Almost
Incompressible

Fully
Incompressible

Only the deviatoric stress and Jacobian need to be
defined for a fully incompressible material response

through user subroutine UMAT

Total Lagrange Multiplier–based Formulation

Incremental Lagrange Multiplier–based Formulation

Alternate Total Formulation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 212

Total Hybrid Formulation

𝑈 ҧ𝐼1, ҧ𝐼2, መ𝐽 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1

መ𝐽 − 1
2

𝐒 =
2

𝐽
DEV

𝜕𝑈

𝜕 ҧ𝐼1
+ ҧ𝐼1

𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 −
𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 . ഥ𝐁

Ƹ𝑝 = −
𝜕𝑈𝑣𝑜𝑙

𝜕 መ𝐽

STRESS (NTENS+2):

STRESS (NTENS+3):

෡𝐾 = −𝐽
𝜕 Ƹ𝑝

𝜕 መ𝐽
= 𝐽

𝜕2𝑈𝑣𝑜𝑙

𝜕 መ𝐽 2

𝜕 ෡𝐾

𝜕 መ𝐽
= 𝐽

𝜕3𝑈𝑣𝑜𝑙

𝜕 መ𝐽 3

STRESS (NTENS+1): መ𝐽Read only:

Write only:

The volumetric part of the
strain energy density potential

Hydrostatic/Volumetric Part Of The Stress Tensor

Deviatoric Part Of The Stress Tensor

The Total Hybrid Formulation assumes that the response of the material can be written as the sum of its deviatoric
and volumetric parts and that these parts are decoupled from each other

෡𝐾 = 𝐽
2

𝐷1

𝜕 ෡𝐾

𝜕 መ𝐽
= 0

Alternate Variable

Stress

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 213

Total Hybrid Formulation

𝑈 ҧ𝐼1, ҧ𝐼2, መ𝐽 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1

መ𝐽 − 1
2

The volumetric part of the
strain energy density potential

The Total Hybrid Formulation assumes that the response of the material can be written as the sum of its deviatoric
and volumetric parts and that these parts are decoupled from each other

𝜎𝑖𝑗 =
2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1

መ𝐽 − 1 𝛿𝑖𝑗

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝐶10

1

2
𝛿𝑖𝑘

ത𝐵𝑗𝑙 + ത𝐵𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙
ത𝐵𝑗𝑘 + ത𝐵𝑖𝑙𝛿𝑗𝑘 −

2

3
𝛿𝑖𝑗

ത𝐵𝑘𝑙 −
2

3
ത𝐵𝑖𝑗𝛿𝑘𝑙 +

2

9
𝛿𝑖𝑗𝛿𝑘𝑙

ത𝐵𝑚𝑚 + 𝐽
2

𝐷1
𝛿𝑖𝑗𝛿𝑘𝑙

𝐒 =
2

𝐽
DEV

𝜕𝑈

𝜕 ҧ𝐼1
+ ҧ𝐼1

𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 −
𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 . ഥ𝐁

Ƹ𝑝 = −
𝜕𝑈𝑣𝑜𝑙

𝜕 መ𝐽

Stress

Hydrostatic/Volumetric Part Of The Stress Tensor

Deviatoric Part Of The Stress Tensor

Alternate Variable

෡𝐾𝛿𝑖𝑘
ത𝐵𝑗𝑙 + ത𝐵𝑖𝑙𝛿𝑗𝑘

Objectivity and Material Symmetry
The principle of objectivity or material-frame indifference states that material properties are independent of

superimposed rigid-body motions.

For Hyperelastic materials, the principle of objectivity implies that 𝑊 only depends on 𝐅 through 𝐂, so
that we can write 𝑊 𝐅 = −𝑊(𝐂).

Hyperelastic Materials

𝑊 𝐗, 𝑡 = 𝑊 𝐹 𝐗, 𝑡 , 𝐗 = −𝑊 𝐂 𝐗, 𝑡 , 𝐗

A material is said to be symmetric with respect to a linear transformation if the reference configuration is mapped
by this transformation to another configuration which is mechanically indistinguishable from it

Hyperelastic Materials

𝐓 = 2𝐽
𝜕𝑊

𝜕𝐈3
− 𝑝 𝐈 +

2

𝐽

𝜕𝑊

𝜕𝐈1
+

2

𝐽

𝜕𝑊

𝜕𝐈2
𝐈1 𝐁 + −

2

𝐽

𝜕𝑊

𝜕𝐈2
𝑩𝟐

𝑝 = 0 for compressible materials and 𝐽 = 𝐼3 = 1 for incompressible materials.

Alternative Representation

𝐓 = 2𝐽
𝜕𝑊

𝜕𝐈3
−

2𝐈2

𝐽

𝜕𝑊

𝜕𝐈2
− 𝑝 𝐈 +

2

𝐽

𝜕𝑊

𝜕𝐈1
𝐁 + −2

𝜕𝑊

𝜕𝐈2
𝑩−𝟏

Cayley–Hamilton theorem

𝑝 = 0 for compressible materials and 𝐽 = 𝐼3 = 1 for incompressible materials.

Choice of Strain-Energy Functions

Neo-Hookean Materials

Incompressible

Incompressible
Mooney–Rivlin

Materials

Incompressible
Ogden Materials

Incompressible
Fung–Demiray Materials

217

UHYPER

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Hyperelastic Material

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 218

Hyperelastic Material

𝑈 = 𝑓 𝐼1, 𝐼2, 𝐼3 𝑈 = ഥ𝑈𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐 + 𝑈ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝑓 ҧ𝐼1, ҧ𝐼2 𝑓 𝐽 = 𝐼3

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗

Deformation Gradient Distortion Gradient

ത𝐅 = 𝐽−
1
3 𝐅

Volume-preserving, Or Isochoric Part of F

Jacobian Determinant

Deviatoric Right Cauchy-
green Deformation Tensor

Deviatoric Left Cauchy-
green Deformation Tensor

ത𝐂 = ത𝐅𝑇 . ത𝐅

ഥ𝐁 = ത𝐅 . ത𝐅𝑇

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 219

Variables to Be Defined

U(1)

U(2)

Strain Energy Density Function
Compressible

Incompressible

At least one derivative involving 𝐽 should be nonzero

All derivatives involving 𝐽 will be ignored

The deviatoric part of the strain energy density of the primary material response

This quantity is needed only if the current material definition also includes Mullins effect

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 220

Mullins Effect

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 221

Variables Passed in for Information

UI1

UI2

UI3

𝜕 ഥ𝑈

𝜕 ҧ𝐼2

𝜕 ഥ𝑈

𝜕 ҧ𝐼1

UI1(1)

UI1(2)

UI1(3)
𝜕 ഥ𝑈

𝜕𝐽

UI2(1) UI2(3)UI2(2)

UI2(4) UI2(5) UI2(6)

𝜕2 ഥ𝑈

𝜕 ҧ𝐼 1
 2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕𝐽

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕 ҧ𝐼2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼 2
 2

𝜕2 ഥ𝑈

𝜕𝐽2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼2𝜕𝐽

UI3(1) UI3(3)UI3(2)

UI3(4) UI3(5) UI3(6)

𝜕3 ഥ𝑈

𝜕 ҧ𝐼 1
 2𝜕𝐽

𝜕3 ഥ𝑈

𝜕 ҧ𝐼2𝜕𝐽2

𝜕3 ഥ𝑈

𝜕 ҧ𝐼1𝜕𝐽2

𝜕3 ഥ𝑈

𝜕 ҧ𝐼 2
 2𝜕𝐽

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕 ҧ𝐼2𝜕𝐽

𝜕3 ഥ𝑈

𝜕𝐽3

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 222

Variables Passed in for Information

STATEV
Array containing the user-defined solution-dependent state variables at this point. These are
supplied as values at the start of the increment or as values updated by other user subroutines and
must be returned as values at the end of the increment.

223

UHYPER_STRETCH

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Hyperelastic Material in Term of Principal Stretches

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 224

Variables to Be Defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 225

Variables Passed in for Information

226

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An
Element With Access to Abaqus Materials

UELMAT is available for a subset of the procedures supported for
user subroutine UEL

UEL

UELMAT

UELMAT can access some of the Abaqus
materials through utility routines

MATERIAL_LIB_HT

MATERIAL_LIB_MECH

Abaqus User Subroutines To Define An Element

227

UELMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An (Nonlinear) Element With Access to Abaqus Materials

...

*USER ELEMENT, TYPE=U1, NODES=#, COORDINATES=#, PROPERTIES=#, I PROPERTIES=#,

VARIABLES=#, UNSYMM, INTEGRATION=#, TENSOR=.. .

*ELEMENT, TYPE=U1, ELSET=SOLID

*UEL PROPERTY, ELSET=SOLID, MATERIAL=MAT

*MATERIAL, NAME=MAT

Number of element integration points

THREED (3D stress/displacement or heat transfer)
TWOD (2D heat transfer)
PSTRAIN (plane strain)
PSTRESS (plane stress)

Specifies the
element type

Data line(s)

Data line(s)

Data line(s)

228

UELMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An (Nonlinear) Element With Access to Abaqus Materials

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 229

Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of
load vectors

NRHS=1 in most nonlinear problems

NRHS=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 230

Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element

The maximum of
Maximum number of coordinates required at any node point

Value of the largest active degree of freedom

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 231

Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 10000

𝑛 ≤ 9000

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 232

Variables Passed in for Information
MATERIALLIB A variable that must be passed to the utility

routines performing material point computations

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

* DEFGRAD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

 ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

* NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

 ...

MATERIAL_LIB_MECH

MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

* RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

* COORDS(3)

 ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

* FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

* DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

 ...

Accessing
Abaqus Materials

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 233

Variables Passed in for Information
PROPS(*)

A floating point array containing the NPROPS real property values defined for use
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value
n in JDLTYP

Loads of type U𝑛NU are identified by the negative
integer value −n in JDLTYP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 234

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(1) Procedure Type

General Nonlinear
Procedures

Linear Perturbation
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 235

Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 236

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 237

Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only.

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 238

Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 239

𝑈 (𝐾1) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1)
Time rate of change of the variables (velocities, rates of rotation).
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements,
rotations, temperatures, depending on the degree of freedom) at the nodes of the
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 240

Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load of in the base state.

DDLMAG

General Nonlinear Steps

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL.

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the
distributed load for the current time increment

The load magnitude is defined in UEL; therefore,
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 241

Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of
The Array

First (K1)
1

2

The value of the field variable at the end of the increment

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 242

Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array
depend on the solution procedure currently being used when UEL is called, as indicated by the
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 243

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the right-hand-

side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations

Jacobian Matrix

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX RHS

NDOFEL× NDOFEL DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 244

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the
right-hand-side vectors of the overall system of equations.

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most
Nonlinear
Analysis

RHS should contain the residual vector
(external forces minus internal forces)

Modified Riks
Static Procedure

Increments of external load on the element

NRHS=1

NRHS=2

Direct Steady-state
Analyses

Mode-based Procedures

NRHS=2

The first column in RHS

The second column in RHS

Residual Vector (external forces minus internal forces)

The first column in RHS

The second column in RHS

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 245

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array

All nonzero entries in AMATRX should be
defined, even if the matrix is symmetric

The matrix is unsymmetric

The matrix is symmetric

AMATRX

AMATRX

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 246

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the
current increment. They should be updated to be the values at the end of the increment,
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They
should be returned containing perturbation values if you want to output such quantities.

General
Nonlinear Steps

Linear
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 247

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the
current increment. They should be updated to the values at the end of the current increment

Linear
Perturbation Steps

Mode-based
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 248

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy”

Electrostatic energy

Associated with such effects as artificial stiffness introduced to
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero
increment output. In this case the energy values returned will be
used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 249

Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time
incrementation is chosen

This variable allows you to provide input to the automatic
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
(LFLAGS(3)=1)

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored
unless CONVERT SDI=YES is specified for this step

If automatic time
incrementation is not selected

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 250

Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again
with a smaller time increment. The suggested new time increment provided

to the automatic time integration algorithms is PNEWDT × DTIME, where
the PNEWDT used is the minimum value for all calls to user subroutines

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested
new time increment provided to the automatic time integration

algorithms is PNEWDT × DTIME, where the PNEWDT used is the
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 251

Accessing Abaqus Materials

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

* DFGRD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

 ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

* NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

 ...

MATERIAL_LIB_MECH

MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

* RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

* COORDS(3)

 ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

* FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

* DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

 ...

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 252

MATERIAL_LIB_MECH

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

* DFGRD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

 ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

* NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

 ...

Returns the stress and the material Jacobian at the element material point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 253

MATERIAL_LIB_MECH

MATERIALLIB Variable containing information about the Abaqus material. This variable is passed into user subroutine UELMAT

STRAN

DSTRAN

NPT

DVDV0

Strain at the beginning of the increment

Strain increment

Integration point number

Ratio of the current volume to the reference volume at the integration point

Variables to Be Provided to the Utility Routine

DVMAT Volume at the integration point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 254

MATERIAL_LIB_MECH

DPREDEF

NPREDF

CELENT

COORDS

Variables to Be Provided to the Utility Routine

PREDEF

DFGRD Array containing the deformation gradient at the end of the increment

Array of interpolated values of predefined field variables at the integration point at the start of the increment

Array of increments of predefined field variables

Number of predefined field variables, including temperature

Characteristic element length

An array containing the coordinates of this point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 255

MATERIAL_LIB_MECH

DDSDDE

Variables Returned from the Utility Routine

STRESS Stress tensor at the end of the increment

Jacobian matrix of the constitutive model

DDSDDE(i, j) defines the change in the 𝑖𝑡ℎ stress component at the end of the time increment caused by an infinitesimal perturbation
of the 𝑗𝑡ℎ component of the strain increment array

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 256

MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

* RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

* COORDS(3)

 ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

* FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

* DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

 ...

Returns heat fluxes, internal energy time derivative, volumetric heat generation rate, and their derivatives at the element material point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 257

MATERIAL_LIB_HT

MATERIALLIB Variable containing information about the Abaqus material. This variable is passed into user subroutine UELMAT

NPT Integration point number

Variables to Be Provided to the Utility Routine

DPREDEF

NPREDF

PREDEF Array of interpolated values of predefined field variables at the integration point at the start of the increment

Array of increments of predefined field variables

Number of predefined field variables, including temperature

DVMAT Volume at the integration point

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 258

MATERIAL_LIB_HT

CELENT

COORDS

Variables to Be Provided to the Utility Routine

DTEMDX

Temperature at the integration point at the start of the increment, 𝜃

Characteristic element length

An array containing the coordinates of this point

TEMP

Spatial gradients of temperature, 𝜕𝜃/𝜕𝑥 the end of the increment

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 259

MATERIAL_LIB_HT

RHODUDT

Variables Returned from the Utility Routine

RHOUDOT Time derivative of the internal thermal energy per unit mass, U, multiplied by density at the end of increment

Variation of internal thermal energy per unit mass with respect to temperature multiplied by density
evaluated at the end of the increment

RHODUDG

FLUX

𝜌
𝑑𝑈

𝑑𝑡

𝜌
𝜕𝑈

𝜕𝜃

Variation of internal thermal energy per unit mass with respect to the spatial gradients of temperature
multiplied by density at the end of the increment

𝜌
𝜕𝑈

𝜕
𝜕𝜃
𝜕𝑥

Heat flux vector, 𝒇, at the end of the increment

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 260

MATERIAL_LIB_HT

DFDG

Variables Returned from the Utility Routine

DFDT Variation of the heat flux vector with respect to temperature evaluated at the end of the increment

Variation of the heat flux vector with respect to the spatial gradients of temperature at the end of the
increment

RPL

DRPLDT

𝜕𝒇

𝜕𝜃

𝜕𝒇

𝜕
𝜕𝜃
𝜕𝑥

Volumetric heat generation per unit time at the end of the increment

Variation of RPL with respect to temperature

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 261

262

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Modeling nonstructural physical processes that are coupled to structural behavior

Applying solution-dependent loads

Modeling active control mechanisms

When user-defined
elements is useful ?

Advantages of the User-defined
element Subroutine instead of
writing a complete FEA code

ABAQUS offers a large selection of structural
elements, analysis procedures, and modeling tools

ABAQUS offers pre- and postprocessing

Maintaining and porting subroutines is much easier than
maintaining and porting a complete finite element program

263

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

A linear user element can be created in Abaqus/Standard by defining the stiffness and mass matrices directly using
the *MATRIX option

A nonlinear finite element is implemented in user subroutine UEL (Abaqus/Standard), UELMAT (Abaqus/Standard),
or VUEL (Abaqus/Explicit)

Multiple user elements can be implemented in a single UEL/UELMAT/VUEL routine and can be utilized together

Abaqus/Standard provides
two user subroutines for
defining a user element

UEL

UELMAT
Provides access to a

subset of material models
available in Abaqus

Need not code the constitutive
law in the user element routine

Available for a subset of the
procedures supported for a UEL

264

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

The number of nodes on the element

The number of coordinates present at each node

The degrees of freedom active at each node

Characteristics of
the User element

Element Properties
must be determined

The number of element properties to be defined external to the UEL

The number of solution-dependent state variables (SDVs) to be stored per element

The number of (distributed) load types available for the element

265

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐹𝑁 = 𝐹𝑒𝑥𝑡
𝑁 − 𝐹𝑖𝑛𝑡

𝑁 = 0

𝐹𝑒𝑥𝑡
𝑁 is the external flux (due to applied distributed loads) and 𝐹𝑖𝑛𝑡

𝑁 is the internal flux (due to stresses, e.g.) at node N

In nonlinear user elements the fluxes/forces will often depend on the
increments in the degrees of freedom Δ𝑢𝑁 and the internal state variables 𝐻𝛼

State variables must be updated in the user subroutine

Degrees of Freedom

Displacements Nodal Forces

Rotations Moments

Temperatures Heat Fluxes

𝐴𝑀𝑇𝑅𝐼𝑋 = 𝑅𝐻𝑆

RHSLHS

266

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

The solution of the (nonlinear) system of equations in general steps requires defining the element Jacobian (stiffness matrix):

The Jacobian should include all direct and indirect dependencies of 𝐹𝑁 on 𝑢𝑁, which includes terms of the form

A more accurately defined Jacobian improves convergence in general steps

The Jacobian (stiffness) determines the solution for linear perturbation steps, so it must be exact

The Jacobian can be symmetric or nonsymmetric

𝐾𝑁𝑀 = −
𝑑𝐹𝑁

𝑑𝑢𝑀

𝐾𝑁𝑀 = −
𝜕𝐹𝑁

𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝑢𝑀

Element Jacobian

Element Jacobian / Stiffness Matrix
AMATRIX

Internal State Variables

267

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Material Model

Available in Abaqus UELMAT

NOT Available in Abaqus UEL UMAT
Material Model is Nonlinear

268

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

A user element is defined with the *USER ELEMENT option

This option must appear in the input file before the user element is invoked with the *ELEMENT option

The syntax for interfacing to UEL is as follows:

Writing INP

269

User-defined Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

*USER ELEMENT, TYPE=U1, NODES=2, PROPERTIES=4, I PROPERTIES=2

COORDINATES=3, VARIABLES=12, UNSYMM

1, 2, 3

*ELEMENT, TYPE=U1

101, 101, 102

*ELGEN, ELSET=UEL

101, 5

*UEL PROPERTY, ELSET=UEL

0.002, 2.1E11, 0.3, 7200., 2,5

Data line(s)

Data line(s)

Data line(s)

Data line(s)

Enter the values of the element properties.
Enter all floating-point values first, followed immediately by the integer values

270

UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define An (Nonlinear) Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 271

Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of
load vectors

NRHS=1 in most nonlinear problems

NRSH=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 272

Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element

The maximum of
Maximum number of coordinates required at any node point

Value of the largest active degree of freedom

Number of
Coordinate

Components

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 273

Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 1000

𝑛 ≤ 10000

User element type ID

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 274

Variables Passed in for Information
PROPS(*)

A floating-point array containing the NPROPS real property values defined for use
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value
n in JDLTYP

Loads of type U𝑛NU are identified by the negative
integer value −n in JDLTYP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 275

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(1)
Defines The

Procedure Type

General Nonlinear
Procedures

Linear Perturbation
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 276

Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 277

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 278

Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only.

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 279

Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 280

𝑈 (𝐾1) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1)
Time rate of change of the variables (velocities, rates of rotation).
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements,
rotations, temperatures, depending on the degree of freedom) at the nodes of the
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 281

Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load of in the base state.

DDLMAG

General Nonlinear Steps

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL.

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the
distributed load for the current time increment

The load magnitude is defined in UEL; therefore,
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 282

Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of
The Array

First (K1)
1

2

The value of the field variable at the end of the increment

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 283

Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array
depend on the solution procedure currently being used when UEL is called, as indicated by the
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 284

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*) An array containing the contributions of this element to the right-hand-
side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations

Jacobian Matrix

−
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX
RHS

NDOFEL× NDOFEL DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 285

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 286

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 287

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 288

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the
right-hand-side vectors of the overall system of equations.

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most
Nonlinear
Analysis

RHS should contain the residual vector
(external forces minus internal forces)

Modified Riks
Static Procedure

Increments of external load on the element

NRHS=1

NRHS=2

Direct Steady-state
Analyses

Mode-based Procedures

NRHS=2

The first column in RHS

The second column in RHS

Residual Vector (external forces minus internal forces)

The first column in RHS

The second column in RHS

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 289

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array

All nonzero entries in AMATRX should be
defined, even if the matrix is symmetric

The matrix is unsymmetric

The matrix is symmetric

AMATRX

AMATRX

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 290

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the
current increment. They should be updated to be the values at the end of the increment,
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They
should be returned containing perturbation values if you want to output such quantities.

General
Nonlinear Steps

Linear
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 291

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the
current increment. They should be updated to the values at the end of the current increment

Linear
Perturbation Steps

Mode-based
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 292

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy”

Electrostatic energy

Associated with such effects as artificial stiffness introduced to
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero
increment output. In this case the energy values returned will be
used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 293

Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time
incrementation is chosen

This variable allows you to provide input to the automatic
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
(LFLAGS(3)=1)

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored
unless CONVERT SDI=YES is specified for this step

If automatic time
incrementation is not selected

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 294

Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again
with a smaller time increment. The suggested new time increment provided

to the automatic time integration algorithms is PNEWDT × DTIME, where
the PNEWDT used is the minimum value for all calls to user subroutines

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested
new time increment provided to the automatic time integration

algorithms is PNEWDT × DTIME, where the PNEWDT used is the
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 295

Hints to Write UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 296

UEL Variables

Available in UEL

Coordinates; displacements; incremental displacements; and, for dynamics, velocities and accelerations

SDVs at the start of the increment

Total and incremental values of time, temperature, and user-defined field variables

User element properties

Load types as well as total and incremental load magnitudes

Element type and user-defined element number

Procedure type flag and, for dynamics, integration operator values

Current step and increment numbers

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 297

UEL Variables

Must be Defined

Right-hand-side vector (residual nodal fluxes or forces)

Jacobian (stiffness) matrix

Solution-dependent state variables

RHS(MLVARX,*)

ENERGY(8)

SVARS(*)

AMATRX(NDOFEL,NDOFEL)

May be Defined

Energies associated with the element (strain energy, plastic dissipation,
kinetic energy, etc.)

Suggested new (reduced) time increment PNEWDT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 298

UEL Conventions

The solution variables (displacement, velocity, etc.) are arranged on a node/degree of freedom basis

The degrees of freedom of the first node are first, followed by the degrees of freedom of the second node, etc.

The flux vector and Jacobian matrix must be ordered in the same way

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 299

UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of
whether a local nodal transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 300

UEL Ex: 3D Truss
𝑘𝑒 =

𝐴𝐸

𝐿
1 −1

−1 1

𝑅 =
𝑇 0

0 𝑇
=

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿

𝐾𝑒 = 𝑅 𝑇 𝑘𝑒 𝑅

Global
Coordinate

Local
Coordinate

𝑅
Global

Coordinate

Local
Coordinate

𝑅 𝑇

𝑘𝑒 𝑢𝑒 = 𝑓𝑒

𝑅 𝐹𝑒 = 𝑓𝑒

Local
Coordinate

𝑅 𝑈𝑒 = 𝑢𝑒

𝐾𝑒 𝑈𝑒 = 𝐹𝑒

𝑘𝑒 𝑅 𝑈𝑒 = 𝑅 𝐹𝑒

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 301

UEL Ex: 3D Truss

𝐾𝑒 = 𝑅 𝑇 𝑘𝑒 𝑅

𝐾𝑒 𝑈𝑒 = 𝐹𝑒

𝑅 𝑇 𝑓𝑒 = 𝐹𝑒

Residual Vector
(external forces minus internal forces)

AMATRX(NDOFEL,NDOFEL) RHS(MLVARX,*)

𝑅 =
𝑇 0

0 𝑇
=

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿

Nodal Variables

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 302

Hints to Write UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 303

UEL Variables

Available in UEL

Coordinates; displacements; incremental displacements; and, for dynamics, velocities and accelerations

SDVs at the start of the increment

Total and incremental values of time, temperature, and user-defined field variables

User element properties

Load types as well as total and incremental load magnitudes

Element type and user-defined element number

Procedure type flag and, for dynamics, integration operator values

Current step and increment numbers

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 304

UEL Variables

Must be Defined

Right-hand-side vector (residual nodal fluxes or forces)

Jacobian (stiffness) matrix

Solution-dependent state variables

RHS(MLVARX,*)

ENERGY(8)

SVARS(*)

AMATRX(NDOFEL,NDOFEL)

May be Defined

Energies associated with the element (strain energy, plastic dissipation,
kinetic energy, etc.)

Suggested new (reduced) time increment PNEWDT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 305

UEL Conventions

The solution variables (displacement, velocity, etc.) are arranged on a node/degree of freedom basis

The degrees of freedom of the first node are first, followed by the degrees of freedom of the second node, etc.

The flux vector and Jacobian matrix must be ordered in the same way

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 306

UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of
whether a local nodal transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 307

UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of whether a local nodal
transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system

The Jacobian must be formulated as a full matrix, even if it is symmetric

If the UNSYMM parameter is not used, Abaqus will symmetrize the Jacobian defined by the user

For transient heat transfer and dynamic analysis, heat capacity and inertia contributions must be included in the flux
vector

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 308

UEL formulation aspects and usage hints
At the start of a new increment, the increment in solution variable(s) is extrapolated from the previous increment.

The flux vector and the Jacobian must be based on these extrapolated
values

If extrapolation is not desired, it can be switched off with
 *STEP, EXTRAPOLATION=NO

If the increment in solution variable(s) is too large, the variable
PNEWDT can be used to suggest a new time increment.

Abaqus will abandon the current time Ramp linearly over step
increment and will attempt the increment again with one that is a
factor PNEWDT smaller

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 309

Testing the UEL
Complex UELs may have many potential problem areas. Do not use a large model when trying to debug a UEL

Verify the UEL with
a one-element model

Run tests using general steps in which all solution variables are prescribed to verify the
resultant fluxes

Run tests using linear perturbation steps in which all loads are prescribed to verify the element
Jacobian (stiffness)

Run tests using general steps in which all loads are prescribed to verify the consistency of the
Jacobian and the flux vector

Gradually increase the complexity of the test problems. Compare the results with standard Abaqus elements, if possible

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 310

UEL Ex: 3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 311

Interpolation
𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2 + ⋯ + 𝑁8𝑢8

𝑣 = 𝑁1𝑣1 + 𝑁2𝑣2 + ⋯ + 𝑁8𝑣8

𝑤 = 𝑁1𝑤1 + 𝑁2𝑤2 + ⋯ + 𝑁8𝑤8

𝑢
𝑣
𝑤

=

𝑁1 0 0 𝑁2 0 0 … 𝑁8 0 0
0 𝑁1 0 0 𝑁2 0 … 0 𝑁8 0
0 0 𝑁1 0 0 𝑁2 … 0 0 𝑁8

𝑢1

𝑣1
𝑤1

𝑢2

𝑣2

𝑤2

.

.

.
𝑢8

𝑣8

𝑤8

3 × 1

24 × 1

3 × 24

𝑈 = 𝑁 𝜉, 𝜂, 𝜁 𝑎

Milad Vahidian, Ph.D. Student of Mechanical Engineering 312

3D Linear Elastic
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝜀𝑥𝑦

𝜀𝑥𝑧

𝜀𝑦𝑧

=

𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝑢
𝑣
𝑤

𝐵 = 𝐿 𝑁

𝜀 = 𝐿 𝑈

𝑈 = 𝑁 𝑎

𝐿

𝜕𝑁1

𝜕𝑥
0 0

𝜕𝑁2

𝜕𝑥
0 0 …

𝜕𝑁8

𝜕𝑥
0 0

0
𝜕𝑁1

𝜕𝑦
0 0

𝜕𝑁2

𝜕𝑦
0 … 0

𝜕𝑁8

𝜕𝑦
0

0 0
𝜕𝑁1

𝜕𝑧
0 0

𝜕𝑁2

𝜕𝑧
… 0 0

𝜕𝑁8

𝜕𝑧
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑥
0 …

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥
0

𝜕𝑁1

𝜕𝑧
0

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑧
0

𝜕𝑁2

𝜕𝑥
…

𝜕𝑁8

𝜕𝑧
0

𝜕𝑁8

𝜕𝑥

0
𝜕𝑁1

𝜕𝑧

𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑧

𝜕𝑁2

𝜕𝑦
… 0

𝜕𝑁8

𝜕𝑧

𝜕𝑁8

𝜕𝑦

6 × 1

3 × 1

6 × 3

6 × 24

6 × 3 3 × 24

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 313

Jacobian
𝐵 = 𝐿 𝑁

𝐵 =

𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝑖 = 1 𝑡𝑜 8

Introduction to Nonlinear Finite Element Analysis by N. H. Kim

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 314

Element Stiffness Matrix

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 315

𝑢𝑖+1 = 𝑢𝑖 + Δ𝑢

𝐏 𝑢 = Ԧ𝑓
System of Nonlinear
Algebraic Equations

Increment

𝐏 𝑢𝑖+1 ≈ 𝐏 𝑢𝑖 +
𝜕𝐏 𝑢𝑖

𝜕𝑢𝑖
 Δ𝑢 = Ԧ𝑓

𝐏 𝑢𝑖+1 ≈ 𝐏 𝑢𝑖 + 𝐊𝑇
𝑖 𝑢𝑖 Δ𝑢 = Ԧ𝑓

𝐊𝑇
𝑖 𝑢𝑖 Δ𝑢 = Ԧ𝑓 − 𝐏 𝑢𝑖

𝑢𝑖+1 = 𝑢𝑖 + Δ𝑢

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 316

Steps to Write Linear UEL
The header is usually followed by dimensioning of local arrays. It is good practice to define constants via parameters and to include comments1

2 Shape Functions and Derivative of shape functions in local coordinates

4

Computing a Jacobian matrix and a determinant of Jacobian matrix3

Derivative of shape functions in global coordinates

Form [B] matrix

Computing a stiffness matrix

5

6

DO I_INPT=1, NINPT

END DO

3D Linear Elastic
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can
be made regarding the stress or strain distributions.

Milad Vahidian, Ph.D. Student of Mechanical Engineering 317

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane Stress Plane Strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 318

Milad Vahidian, Ph.D. Student of Mechanical Engineering 319

By substitution

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 320

Variational Approach

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 321

Interpolation
Four node Iso-parametric Element

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 322

Stiffness Matrix

4

4

4

4

𝐿 𝑁 =

𝜖 = 𝐿 𝑈

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 323

Stiffness Matrix

4

4

44

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 324

Stiffness Matrix

4

4

44

3D Linear Elastic

Milad Vahidian, Ph.D. Student of Mechanical Engineering 325

Stiffness Matrix

Next Slide

3D Linear Elastic

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 326

DO iIntPt = 1, nIntPt
wi =

DO jIntPt = 1, nIntPt
wj =

DO kIntPt = 1, nIntPt
wk =

END

END
END

Milad Vahidian, Ph.D. Student of Mechanical Engineering 327

a. Loop over the Integration points i = 1 to nIntPt

b. Retrieve the weight wi as samp(ig, 2)

c. Loop over the Integration points jg = 1 to nIntPt
d. Retrieve the weight wj as samp(jg, 2)
e. Loop over the Integration points jg = 1 to nIntPt
f. Retrieve the weight wk as samp(jg, 2)
g. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local
h. coordinates, ξ = samp(ig, 1) and η = samp(jg, 1).
i. Evaluate the Jacobian jac = der ∗ coord v. Evaluate the determinant of the Jacobian as d = det(jac)
j. Compute the inverse of the Jacobian as jac1 = inv(jac)
k. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der
l. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as

ke = ke + d ∗ thick ∗ wi ∗ wj ∗ B ∗ D ∗ B

4. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q4

328

Body Forces

Traction Forces

Concentrated Forces

When the nodes of an element are numbered anticlockwise
a tangential force, such as 𝑞𝑡 , is positive if it acts

anticlockwise. A normal force, such as 𝑞𝑛 , is positive if it
acts toward the interior of the element

In practice, when the loads are uniformly distributed they are
replaced by equivalent nodal loads. The preceding development is

to be used only if the shape of the loading is complicated.

Plane Stress Problem: Q4

Milad Vahidian, Ph.D. Student of Mechanical Engineering 329

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: Q4

Milad Vahidian, Ph.D. Student of Mechanical Engineering 330

Calculation of the Element Resultants

SUPPORT REACTIONS

If 𝛿𝑝 = 0

Plane Stress Problem: Q4

Milad Vahidian, Ph.D. Student of Mechanical Engineering 331

Calculation of the Element Resultants
Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this
we set ngp = 1.
1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points jg = 1 to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local
coordinates ξ = samp(ig, 1) and η = samp(jg, 1)
d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der

h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps = bee ∗ eld
j. Compute the stresses as sigma = dee ∗ eps

4. Store the stresses in the matrix SIGMA(nel, 3)

Plane Stress Problem: Q4

332

VUEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define An (Nonlinear) Element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 333

Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of
load vectors

NRHS=1 in most nonlinear problems

NRSH=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 334

Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element

The maximum of
Maximum number of coordinates required at any node point

Value of the largest active degree of freedom

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 335

Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 10000

𝑛 ≤ 9000

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 336

Variables Passed in for Information
PROPS(*)

A floating point array containing the NPROPS real property values defined for use
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value
n in JDLTYP

Loads of type U𝑛NU are identified by the negative
integer value −n in JDLTYP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 337

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(1)
Defines The

Procedure Type

General Nonlinear
Procedures

Linear Perturbation
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 338

Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 339

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution

procedure and requirements for element calculations.

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 340

Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only.

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 341

Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 342

𝑈 (𝐾1) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1)
Time rate of change of the variables (velocities, rates of rotation).
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements,
rotations, temperatures, depending on the degree of freedom) at the nodes of the
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 343

Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load of in the base state.

DDLMAG

General Nonlinear Steps

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL.

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the
distributed load for the current time increment

The load magnitude is defined in UEL; therefore,
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 344

Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of
The Array

First (K1)
1

2

The value of the field variable at the end of the increment

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 345

Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array
depend on the solution procedure currently being used when UEL is called, as indicated by the
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 346

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*) An array containing the contributions of this element to the right-hand-
side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations

Jacobian Matrix

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX RHS

NDOFEL× NDOFEL DU(MLVARX,*)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 347

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the
right-hand-side vectors of the overall system of equations.

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most
Nonlinear
Analysis

RHS should contain the residual vector
(external forces minus internal forces)

Modified Riks
Static Procedure

Increments of external load on the element

NRHS=1

NRHS=2

Direct Steady-state
Analyses

Mode-based Procedures

NRHS=2

The first column in RHS

The second column in RHS

Residual Vector (external forces minus internal forces)

The first column in RHS

The second column in RHS

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 348

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array

All nonzero entries in AMATRX should be
defined, even if the matrix is symmetric

The matrix is unsymmetric

The matrix is symmetric

AMATRX

AMATRX

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 349

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the
current increment. They should be updated to be the values at the end of the increment,
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They
should be returned containing perturbation values if you want to output such quantities.

General
Nonlinear Steps

Linear
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 350

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the
current increment. They should be updated to the values at the end of the current increment

Linear
Perturbation Steps

Mode-based
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 351

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy”

Electrostatic energy

Associated with such effects as artificial stiffness introduced to
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero
increment output. In this case the energy values returned will be
used only for output purposes and are not updated permanently.

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 352

Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time
incrementation is chosen

This variable allows you to provide input to the automatic
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
(LFLAGS(3)=1)

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored
unless CONVERT SDI=YES is specified for this step

If automatic time
incrementation is not selected

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 353

Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again
with a smaller time increment. The suggested new time increment provided

to the automatic time integration algorithms is PNEWDT × DTIME, where
the PNEWDT used is the minimum value for all calls to user subroutines

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested
new time increment provided to the automatic time integration

algorithms is PNEWDT × DTIME, where the PNEWDT used is the
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:

354

Continuum Mechanics

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Balance Equations: Balance of Mass

ම

Ω

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 𝑑𝑣

𝐷𝑚

𝐷𝑡
=

𝐷 𝜌𝑑𝑣

𝐷𝑡
= ම

Ω

𝛾(𝑥, 𝑡) 𝑑𝑣

Spatial Form:

𝐷

𝐷𝑡
ම

Ω

𝜌(𝑥, 𝑡) 𝑑𝑣 = ම

Ω

𝛾(𝑥, 𝑡) 𝑑𝑣

Material Form:

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 = 𝛾(𝑥, 𝑡)

𝜌0 = 𝐽𝜌

Rate Of the Mass Entrance Per Current Volume

𝑑 𝐽𝜌

𝑑𝑡
= 𝐽𝛾(𝑥, 𝑡)

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 = 0

𝛾 𝑥, 𝑡 = 0

355

Continuum Mechanics

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Balance Equations: Balance of Linear Momentum

356

Continuum Mechanics

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Balance Equations: Balance of Angular Momentum

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 357

Solution Procedures in Total Lagrangian Approach

𝐊𝑒 𝐮𝑒 𝐮𝑒 = 𝐅𝑒 R = 𝐊𝑒 𝐮𝑒 𝐮𝑒 − 𝐅𝑒
Iterative procedure

Where

Where

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 358

Abaqus Consistent Jacobian

𝐊int = ම

Ω0

𝜕 𝐽𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝑑𝑉 = ම

Ω0

𝜕𝐽

𝜕𝐷𝑘𝑙
𝜎𝑖𝑗 𝛿𝐷𝑖𝑗 +

𝜕𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
𝐽 𝛿𝐷𝑖𝑗 +

𝜕 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝐽𝜎𝑖𝑗 𝑑𝑉

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕𝐽

𝜕𝐷𝑘𝑙
𝜎𝑖𝑗 𝛿𝐷𝑖𝑗 +

𝜕𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
𝐽 𝛿𝐷𝑖𝑗 𝑑𝑉

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 359

Procedures And Basic Equations

	Slide 1: Abaqus User Subroutine
	Slide 2: Course Outline
	Slide 3: Course Outline
	Slide 4: Reference
	Slide 5: Linking Abaqus & FORTRAN
	Slide 6: Linking Abaqus & FORTRAN: Modifying Target
	Slide 7: Linking Abaqus & FORTRAN: Modifying abq2022
	Slide 8: Where User Subroutines Fit into Abaqus/Standard
	Slide 9: Where User Subroutines Fit into Abaqus/Standard
	Slide 10: Where User Subroutines Fit into Abaqus/Explicit
	Slide 11
	Slide 12: Some Tips
	Slide 13: Some Tips
	Slide 14
	Slide 15
	Slide 16: Some Tips
	Slide 17: Some Tips
	Slide 18: Some Tips
	Slide 19: Some Tips
	Slide 20: Some Tips
	Slide 21: Some Tips
	Slide 22: Some Tips
	Slide 23: Some Tips
	Slide 24: An Introduction to Fortran
	Slide 25: An Introduction to Fortran
	Slide 26: Fortran Keywords
	Slide 27: Fortran Keywords
	Slide 28: Fortran Intrinsic Data Types
	Slide 29: Constants
	Slide 30: Variable Declaration
	Slide 31: Arithmetic Operators
	Slide 32: Relational Operators
	Slide 33: Logical Operators
	Slide 34: Decisions
	Slide 35: Decisions
	Slide 36: Loops
	Slide 37: Loops
	Slide 38: Characters
	Slide 39: Arrays
	Slide 40: Arrays
	Slide 41: Vector and matrix multiplication
	Slide 42: Reduction Functions
	Slide 43: Inquiry Functions
	Slide 44: Construction Functions
	Slide 45: Reshape Functions
	Slide 46: Manipulation Functions
	Slide 47: Location Functions
	Slide 48: Basic Input Output
	Slide 49
	Slide 50: Procedures
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Numeric Functions
	Slide 55: Mathematical Functions
	Slide 56: Numeric Inquiry Functions
	Slide 57: Floating-Point Manipulation Functions
	Slide 58: Bit Manipulation Functions
	Slide 59: Character Functions
	Slide 60: Kind & Logical Functions
	Slide 61
	Slide 62: Program Libraries
	Slide 63: DISP
	Slide 64: DISP
	Slide 65: Variables to Be Defined
	Slide 66: Variables Passed in for Information
	Slide 67: Degrees of freedom
	Slide 68: Disp Subroutine Problem
	Slide 69: Disp Subroutine Problem
	Slide 70: Disp Subroutine Problem
	Slide 71: Disp Subroutine Problem
	Slide 72: DLOAD
	Slide 73: DLOAD
	Slide 74: DLOAD
	Slide 75: DLOAD
	Slide 76: DLOAD
	Slide 77: DLOAD
	Slide 78: Dload: Moving Load
	Slide 79: Dload: Moving Load
	Slide 80: Dload: Periodic Travelling Wave
	Slide 81: Disp + Dload Subroutine
	Slide 82: UTRACLOAD
	Slide 83: UTRACLOAD
	Slide 84: UTRACLOAD
	Slide 85: UTRACLOAD
	Slide 86: UTRACLOAD
	Slide 87: UTRACLOAD
	Slide 88: UTRACLOAD
	Slide 89: UTEMP
	Slide 90: UTEMP
	Slide 91: UTEMP
	Slide 92: FILM
	Slide 93: FILM
	Slide 94: Heat Transfer
	Slide 95
	Slide 96: Variables to Be Defined
	Slide 97: Variables Passed in for Information
	Slide 98: Variables Passed in for Information
	Slide 99: Example
	Slide 100: DFLUX
	Slide 101: DFLUX
	Slide 102
	Slide 103: Abaqus Conventions
	Slide 104
	Slide 105: Flux Identifier
	Slide 106: Example
	Slide 107: Material Constant
	Slide 108: UMDFLUX
	Slide 109
	Slide 110: UEXPAN
	Slide 111: Variables to Be Defined
	Slide 112: Variables Passed in for Information
	Slide 113: Variables That Can Be Updated
	Slide 114: UAMP
	Slide 115: SIGINI
	Slide 116: Variables to Be Defined
	Slide 117: Variables Passed in for Information
	Slide 118: SIGINI
	Slide 119: SIGINI
	Slide 120: UFIELD
	Slide 121: Variables to Be Defined
	Slide 122: Variables Passed in for Information
	Slide 123: UVARM
	Slide 124: UVARM
	Slide 125: Variables to Be Defined
	Slide 126: Variables Passed in for Information
	Slide 127: Variables Passed in for Information
	Slide 128: Variables Passed in for Information
	Slide 129: Variables Passed in for Information
	Slide 130: Variables Passed in for Information
	Slide 131: GETVRM
	Slide 132: Elements supported by GETVRM
	Slide 133: Variables to Be Provided to the Utility Routine
	Slide 134: Variables to Be Provided to the Utility Routine
	Slide 135: Variables to Be Provided to the Utility Routine
	Slide 136: Variables Returned from the Utility Routine
	Slide 137: UVARM EXAMPLE
	Slide 138: USDFLD
	Slide 139: USDFLD
	Slide 140: USDFLD
	Slide 141: USDFLD
	Slide 142: USDFLD
	Slide 143: USDFLD
	Slide 144: Variables to Be Defined
	Slide 145: Variables That Can Be Updated
	Slide 146: Variables That Can Be Updated
	Slide 147: Variables That Can Be Updated
	Slide 148: Variables Passed in for Information
	Slide 149: Variables Passed in for Information
	Slide 150: Variables Passed in for Information
	Slide 151: Variables Passed in for Information
	Slide 152: Variables Passed in for Information
	Slide 153: Variables Passed in for Information
	Slide 154: GETVRM
	Slide 155: Elements supported by GETVRM
	Slide 156: Variables to Be Provided to the Utility Routine
	Slide 157: Variables to Be Provided to the Utility Routine
	Slide 158: Variables to Be Provided to the Utility Routine
	Slide 159: Variables Returned from the Utility Routine
	Slide 160: UMAT
	Slide 161: UMAT
	Slide 162: UMAT
	Slide 163: UMAT
	Slide 164: UMAT
	Slide 165: UMAT
	Slide 166: Consistent Jacobian base on Constitutive Laws
	Slide 167: Rate-form Constitutive Laws
	Slide 168: UMAT
	Slide 169: UMAT
	Slide 170: UMAT
	Slide 171: UMAT
	Slide 172: UMAT
	Slide 173: Formulation Approach
	Slide 174: Description of Motion
	Slide 175: Measure of Stress
	Slide 176: Constitutive Models
	Slide 177: Non-linear Elasticity
	Slide 178: Objective Stress Rates
	Slide 179: Corotational Derivatives
	Slide 180: Corotational Derivatives
	Slide 181: The Principle of Virtual Displacement
	Slide 182: The Principle of Virtual Displacement
	Slide 183: The Principle of Virtual Displacement
	Slide 184: Newton–Raphson Method
	Slide 185: Abaqus Consistent Jacobian
	Slide 186: Abaqus Consistent Jacobian
	Slide 187: UMAT
	Slide 188: Isotropic Isothermal Linear Elasticity
	Slide 189: Isotropic Isothermal Linear Elasticity
	Slide 190: Isotropic Isothermal Linear Elasticity
	Slide 191: Newton–Raphson Method
	Slide 192: The Finite Element Method
	Slide 193: UMAT
	Slide 194: Isotropic Non-isothermal Linear Elasticity
	Slide 195: Isotropic Non-isothermal Linear Elasticity
	Slide 196: Isotropic Non-isothermal Linear Elasticity
	Slide 197: Isotropic Non-isothermal Linear Elasticity
	Slide 198: Linear Interpolation
	Slide 199: UMAT
	Slide 200: Green Elastic Material (Hyperelastic Material)
	Slide 201: Green Elastic Material (Hyperelastic Material)
	Slide 202: Compressible Mooney–Rivlin Hyperelasticity
	Slide 203: Compressible Mooney–Rivlin Hyperelasticity
	Slide 204: Compressible Mooney–Rivlin Hyperelasticity
	Slide 205: Compressible Neo-Hookean Hyperelasticity
	Slide 206: UMAT
	Slide 207: Green Elastic Material (Hyperelastic Material)
	Slide 208: Almost Incompressible or Fully Incompressible Elastic Materials
	Slide 209: Almost Incompressible or Fully Incompressible Elastic Materials
	Slide 210: Hybrid Elements
	Slide 211: Almost Incompressible or Fully Incompressible Elastic Materials
	Slide 212: Total Hybrid Formulation
	Slide 213: Total Hybrid Formulation
	Slide 214: Objectivity and Material Symmetry
	Slide 215: Hyperelastic Materials
	Slide 216: Choice of Strain-Energy Functions
	Slide 217: UHYPER
	Slide 218: Hyperelastic Material
	Slide 219: Variables to Be Defined
	Slide 220: Mullins Effect
	Slide 221: Variables Passed in for Information
	Slide 222: Variables Passed in for Information
	Slide 223: UHYPER_STRETCH
	Slide 224: Variables to Be Defined
	Slide 225: Variables Passed in for Information
	Slide 226: User-defined Element
	Slide 227: UELMAT
	Slide 228: UELMAT
	Slide 229: Variables Passed in for Information
	Slide 230: Variables Passed in for Information
	Slide 231: Variables Passed in for Information
	Slide 232: Variables Passed in for Information
	Slide 233: Variables Passed in for Information
	Slide 234: Variables Passed in for Information
	Slide 235: Variables Passed in for Information
	Slide 236: Variables Passed in for Information
	Slide 237: Variables Passed in for Information
	Slide 238: Variables Passed in for Information
	Slide 239: Variables Passed in for Information
	Slide 240: Variables Passed in for Information
	Slide 241: Variables Passed in for Information
	Slide 242: Variables Passed in for Information
	Slide 243: Variables to Be Defined
	Slide 244: Variables to Be Defined
	Slide 245: Variables to Be Defined
	Slide 246: Variables to Be Defined
	Slide 247: Variables to Be Defined
	Slide 248: Variables to Be Defined
	Slide 249: Variables That Can Be Updated
	Slide 250: Variables That Can Be Updated
	Slide 251: Accessing Abaqus Materials
	Slide 252: MATERIAL_LIB_MECH
	Slide 253: MATERIAL_LIB_MECH
	Slide 254: MATERIAL_LIB_MECH
	Slide 255: MATERIAL_LIB_MECH
	Slide 256: MATERIAL_LIB_HT
	Slide 257: MATERIAL_LIB_HT
	Slide 258: MATERIAL_LIB_HT
	Slide 259: MATERIAL_LIB_HT
	Slide 260: MATERIAL_LIB_HT
	Slide 261
	Slide 262: User-defined Element
	Slide 263: User-defined Element
	Slide 264: User-defined Element
	Slide 265: User-defined Element
	Slide 266: User-defined Element
	Slide 267: User-defined Element
	Slide 268: User-defined Element
	Slide 269: User-defined Element
	Slide 270: UEL
	Slide 271: Variables Passed in for Information
	Slide 272: Variables Passed in for Information
	Slide 273: Variables Passed in for Information
	Slide 274: Variables Passed in for Information
	Slide 275: Variables Passed in for Information
	Slide 276: Variables Passed in for Information
	Slide 277: Variables Passed in for Information
	Slide 278: Variables Passed in for Information
	Slide 279: Variables Passed in for Information
	Slide 280: Variables Passed in for Information
	Slide 281: Variables Passed in for Information
	Slide 282: Variables Passed in for Information
	Slide 283: Variables Passed in for Information
	Slide 284: Variables to Be Defined
	Slide 285
	Slide 286
	Slide 287
	Slide 288: Variables to Be Defined
	Slide 289: Variables to Be Defined
	Slide 290: Variables to Be Defined
	Slide 291: Variables to Be Defined
	Slide 292: Variables to Be Defined
	Slide 293: Variables That Can Be Updated
	Slide 294: Variables That Can Be Updated
	Slide 295
	Slide 296: UEL Variables
	Slide 297: UEL Variables
	Slide 298: UEL Conventions
	Slide 299: UEL formulation aspects and usage hints
	Slide 300: UEL Ex: 3D Truss
	Slide 301: UEL Ex: 3D Truss
	Slide 302: Hints to Write UEL
	Slide 303: UEL Variables
	Slide 304: UEL Variables
	Slide 305: UEL Conventions
	Slide 306: UEL formulation aspects and usage hints
	Slide 307: UEL formulation aspects and usage hints
	Slide 308: UEL formulation aspects and usage hints
	Slide 309: Testing the UEL
	Slide 310: UEL Ex: 3D Linear Elastic
	Slide 311: Interpolation
	Slide 312: 3D Linear Elastic
	Slide 313: Jacobian
	Slide 314: Element Stiffness Matrix
	Slide 315
	Slide 316: Steps to Write Linear UEL
	Slide 317: 3D Linear Elastic
	Slide 318
	Slide 319: 3D Linear Elastic
	Slide 320: 3D Linear Elastic
	Slide 321: 3D Linear Elastic
	Slide 322: 3D Linear Elastic
	Slide 323: 3D Linear Elastic
	Slide 324: 3D Linear Elastic
	Slide 325: 3D Linear Elastic
	Slide 326
	Slide 327: Plane Stress Problem: Q4
	Slide 328: Plane Stress Problem: Q4
	Slide 329: Plane Stress Problem: Q4
	Slide 330: Plane Stress Problem: Q4
	Slide 331: Plane Stress Problem: Q4
	Slide 332: VUEL
	Slide 333: Variables Passed in for Information
	Slide 334: Variables Passed in for Information
	Slide 335: Variables Passed in for Information
	Slide 336: Variables Passed in for Information
	Slide 337: Variables Passed in for Information
	Slide 338: Variables Passed in for Information
	Slide 339: Variables Passed in for Information
	Slide 340: Variables Passed in for Information
	Slide 341: Variables Passed in for Information
	Slide 342: Variables Passed in for Information
	Slide 343: Variables Passed in for Information
	Slide 344: Variables Passed in for Information
	Slide 345: Variables Passed in for Information
	Slide 346: Variables to Be Defined
	Slide 347: Variables to Be Defined
	Slide 348: Variables to Be Defined
	Slide 349: Variables to Be Defined
	Slide 350: Variables to Be Defined
	Slide 351: Variables to Be Defined
	Slide 352: Variables That Can Be Updated
	Slide 353: Variables That Can Be Updated
	Slide 354: Continuum Mechanics
	Slide 355: Continuum Mechanics
	Slide 356: Continuum Mechanics
	Slide 357: Solution Procedures in Total Lagrangian Approach
	Slide 358: Abaqus Consistent Jacobian
	Slide 359: Procedures And Basic Equations

