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User Subroutine

1- Abaqus/CAE 2022

2-Microsoft Visual Studio 2019

3-Intel Parallel Studio 2020

(CAE=Complete Abaqus Environment)

Linking Abaqus & FORTRAN
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Adding this address to “Abaqus Command”, “Abaqus Verification”, and “Abaqus CAE”  target

 “C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2020.4.311\windows\bin\ifortvars.bat” intel64 vs2019 & 

❑ Abaqus Verification: run Abaqus Verification and cheek the .log file out

❑ Abaqus Command: Enter “abaqus info=system” , “abaqus verify -user_std” and “abaqus verify -user_exp”
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Linking Abaqus & FORTRAN: Modifying Target
Installing Abaqus/CAE, Visual Studio, and Intel Parallel Studio respectively.Step 1: 

Step 2: Modifying Target

VerificationStep 3: 



Adding this Code to abq2022.bat (By default) in C:\SIMULIA\Commands

Verification

❑ Abaqus Verification: run Abaqus Verification and cheek the .log file out

❑ Abaqus Command: Enter “abaqus info=system”, “abaqus verify -user_std”, and “abaqus verify -user_exp”
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Linking Abaqus & FORTRAN: Modifying abq2022
Installing Abaqus/CAE, Visual Studio, and Intel Parallel Studio respectively.Step 1: 

Step 2: Finding the directory of “ifortvars.bat”, “ifort.exe”, and “vcvars64.bat”

C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2020.4.311\windows\bin

Adding these variable and associated directory into “Environment variables”Step 3: 

Step 4: Modifying abq2022

@call ifortvars.bat intel64 vs2019

Step 5: 

By default: 
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Where User Subroutines Fit into Abaqus/Standard
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Where User Subroutines Fit into Abaqus/Standard
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Where User Subroutines Fit into Abaqus/Explicit
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Some Tips

➢ User Subroutines are written as C, C++, or Fortran code 

➢ In The First iteration of an increment all of user subroutines are called twice 

During the first call the initial stiffness matrix is being formed using the configuration of the model at the 
start of the increment. 

During the second call a new stiffness, based on the updated configuration of the model, is created. 

➢ In these subsequent iterations the corrections to the model's configuration are calculated using 
the stiffness from the end of the previous iteration. 

In subsequent iterations the subroutines are called only once. 



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 13

Some Tips

➢ Restart analyses 

When an analysis that includes a user subroutine is restarted, the user subroutine must be specified again because 
the subroutine object or source code is not stored on the restart ( . res) file. 

➢ Using multiple user subroutines in a model 

When multiple user subroutines are needed in the analysis, the individual routines can be combined into a 
single file.

A given user subroutine (such as UMAT or FILM) should appear only once in the specified user subroutine 
source or object code. 
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Code Unit Number Description 

Abaqus/Standard 1 Internal database 

 2 Solver file 

 6 Printed output (.dat) file (You can write output to this file.) 

 7 Message (.msg) file (You can write output to this file.) 

 8 Results (.fil) file 

 10 Internal database 

 12 Restart (.res) file 

 19–30 Internal databases (scratch files). Unit numbers 21 and 22 are always written to disk. 

 73 Text file containing meshed beam cross-section properties (.bsp) 



15

Code Unit Number Description 

Abaqus/Explicit 6 Printed output (.log)

 12 Restart (.res) file 

 13 Old restart (.res) file, if applicable 

 15 Analysis Preprocessor (.dat or .pre) file 

 23 Communications (.023) file 

 60 Global package (.pac) file 

 61 Global state (.abq) file 

 62 Temporary file 

 63 Global selected results (.sel) file 

 64 Message (.msg) file 

 65 Output database (.odb) file 

 67 Old package (.pac) file, if import from Abaqus/Explicit

 68 Old state (.abq) file, if import from Abaqus/Explicit

 69 Internal database; temporary file 

If domain-parallel 70 Local package (.pac.1) file for CPU #1 

 71 Local state (.abq.1) file for CPU #1 

 73 Local selected results (.sel.1) file for CPU #1 

 80 Local package (.pac.2) file for CPU #2 

 81 Local state (.abq.2) file for CPU #2 

 83 Local selected results (.sel.2) file for CPU #2 

 ... Add three files, incrementing units by 10, for each additional CPU 
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Some Tips

These units do not have to be opened within the 
user subroutine— they are opened by Abaqus. 

➢ The following unit numbers can be used within a user subroutine to read and write data from files: 

15-18 

100+

➢ In Abaqus/Standard user subroutines can write debug output to:

Message File (.msg)

Print Output File (.dat)

Log File (.log)

Unit 7 

Unit * 

Unit 6 

➢ In Abaqus/Explicit user subroutines can write debug output to the message 

Write to the status (.sta) Unit 6 

Log File (.log) Unit * 
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Some Tips

When a file is opened in a user subroutine, Abaqus assumes that it is located in the scratch directory created for the simulation. 

➢ Path names for external files 

Therefore, full path names must be used in the OPEN statements in the subroutine to specify the location of the files. 

The following example opens, reads and closes an external file: 

open(unit=15, file=‘/nfs_scratch/wdir/ndw/TempHist.inp’)

read(15,*) (timehist(j), j=1,25

i = 1

do while ( .true. )

read(15,*,end=100) index(i),(temphist(i,j), j=1,25)
i = i + 1

end do

100 close(15)
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Some Tips

The Abaqus execution procedure, which compiles and links the user subroutine with the rest of Abaqus, will 
include the aba_param.inc file automatically. 

➢ Every user subroutine in Abaqus/Standard must include the statement:

include 'aba_param.inc' 

As the first statement after the argument list

The file specifies implicit real*8 (a-h, o-z) for double precision machines

➢ It is not necessary to find this file and copy it to any particular directory: Abaqus will know where to find it

➢ Every user subroutine in Abaqus/ Explicit must include the statement

include 'vaba_param.inc' 
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Some Tips
➢  Naming conventions

If user subroutines call other subroutines or use COMMON blocks to pass information, the names of such 
subroutines or COMMON blocks should begin with the letter K since this letter is never used to start the 
name of any subroutine or COMMON block in Abaqus.

➢ Subroutine argument lists

▪ The variables passed into a user subroutine via the argument list are classified as either variables to be 
defined, variables that can be updated, or variables passed in for information.

▪ The user must not alter the values of the "variables passed in for information." Doing so will yield 
unpredictable results.
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Some Tips
➢ Solution-dependent state variables

• Solution-dependent state variables (SDVs) are values that can be defined to evolve with the solution. An example of 
a solution-dependent state variable for the UEL subroutine is strain.

• Several user subroutines allow the user to define SDVs.

• Within these user subroutines the SDVs can be defined as functions of any variables passed into the user subroutine.

• It is the user's responsibility to calculate the evolution of the SDVs within the subroutine; Abaqus just stores the 
variables for the user subroutine.

• For most subroutines the number of such variables required at the integration points or nodes is entered as the 
only value on the data line of the *DEPVAR option.

•  For subroutines (V)UEL, UELMAT, and UGENS the VARIABLES parameter must be used on the *USER ELEMENT 
and *SHELL GENERAL SECTION options, as appropriate.

• For subroutine FRIC the number of variables is defined with the DEPVAR parameter on the *FRICTION option
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Some Tips

➢ Solution-dependent state variables

• There are two methods available for defining the initial values of solution-dependent variables.

• The *INITIAL CONDITIONS, TYPE=SOLUTION option can be used to define the variable field in a tabular format 

• For complicated cases user subroutine SDVINI can be used to define the initial values of the SDVs (Abaqus/Standard 
only). 

• Invoke this subroutine by adding the USER parameter to the *INITIAL CONDITIONS, TYPE=SOLUTION option. 

SDV: In Field Output

STATEV: In UMAT

DepVar: In Property NSTATV
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Some Tips
➢ Testing suggestions

Always develop and test user subroutines on the smallest possible model.

Do not include other complicated features, such as contact, unless they are absolutely necessary when testing the subroutine.

Test the most basic variant of the user subroutine before adding any new features to it.

When appropriate, try to test the user subroutine with models where only values of the nodal degrees of freedom 
(displacement, rotations, temperature) are specified.

Then test the subroutine with models where fluxes and nodal degrees of freedom are specified.

Ensure that arrays passed into a user subroutine with a given dimension are not used as if they had a larger dimension.
For example, if a user subroutine is written such that the number of SDVs is 10 but only 8 SDVs are specified on the 
*DEPVAR option, the user subroutine will overwrite data stored by Abaqus with unpredictable consequences.
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Some Tips
➢ User subroutines may also be written in C or C++
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An Introduction to Fortran
Fortran, as derived from Formula Translating System, is a general-purpose, 

imperative programming language. It is used for numeric and scientific computing

Fortran was originally developed by IBM in the 1950s for scientific and engineering applications. Fortran ruled 
this programming area for a long time and became very popular for high performance computing

• Numerical analysis and scientific computation
• Structured programming
• Array programming
• Modular programming
• Generic programming
• High performance computing on supercomputers
• Object oriented programming
• Concurrent programming
• Reasonable degree of portability between computer systems
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An Introduction to Fortran

program program_name
implicit none      

! type declaration statements
! executable statements  

end program program_name

The implicit none statement allows the compiler to check 
that all your variable types are declared properly. You must 

always use implicit none at the start of every program.

Fortran is case-insensitive, except for string literals.
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Fortran Keywords

The non-I/O keywords

allocatable allocate assign assignment block data

call case character common complex

contains continue cycle data deallocate

default do double precision else else if

elsewhere end block data end do end function end if

end interface end module end program end select end subroutine

end type end where entry equivalence exit

external function go to if implicit

in inout integer intent interface

intrinsic kind len logical module

namelist nullify only operator optional

out parameter pause pointer private

program public real recursive result

return save select case stop subroutine

target then type type() use
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Fortran Keywords

The I/O related keywords

backspace close endfile format inquire

open print read rewind Write
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Fortran Intrinsic Data Types

Integer type

Real type

Complex type

Logical type

Character type

integer(kind = 2) :: integer_var

real :: real_var

real :: real_var

complex :: complex_var

logical :: logical_var

character(len = 40) :: name 

complex_var = cmplx (2.0, -7.0)

logical_var = .true.

name = “Hello World” 
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Constants
Fixed Values That The Program Cannot Alter During Its Execution

real, parameter :: pi = 3.1415927
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Variable Declaration
Variables are declared at the beginning of a program (or subprogram) in a type declaration statement.

Syntax

type-specifier :: variable_name

Later you can assign values to these variables, like,
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Arithmetic Operators
Operator Description Example

+ Addition Operator, adds two operands. A + B will give 8

- Subtraction Operator, subtracts second operand from the first. A - B will give 2

* Multiplication Operator, multiplies both operands. A * B will give 15

/ Division Operator, divides numerator by de-numerator. A / B will give 1

** Exponentiation Operator, raises one operand to the power of the other. A ** B will give 125
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Relational Operators

Operator Equivalent Description Example

== .eq.
Checks if the values of two operands are equal or not, if yes then condition becomes 
true.

(A == B) is not true.

/= .ne.
Checks if the values of two operands are equal or not, if values are not equal then 
condition becomes true.

(A != B) is true.

> .gt.
Checks if the value of left operand is greater than the value of right operand, if yes 
then condition becomes true.

(A > B) is not true.

< .lt.
Checks if the value of left operand is less than the value of right operand, if yes then 
condition becomes true.

(A < B) is true.

>= .ge.
Checks if the value of left operand is greater than or equal to the value of right 
operand, if yes then condition becomes true.

(A >= B) is not true.

<= .le.
Checks if the value of left operand is less than or equal to the value of right operand, 
if yes then condition becomes true.

(A <= B) is true.
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Logical Operators

Operator Description Example

.and.
Called Logical AND operator. If both the operands are non-zero, then condition 
becomes true.

(A .and. B) is false.

.or.
Called Logical OR Operator. If any of the two operands is non-zero, then 
condition becomes true.

(A .or. B) is true.

.not.
Called Logical NOT Operator. Use to reverses the logical state of its operand. If a 
condition is true then Logical NOT operator will make false.

!(A .and. B) is true.

.eqv.
Called Logical EQUIVALENT Operator. Used to check equivalence of two logical 
values.

(A .eqv. B) is false.

.neqv.
Called Logical NON-EQUIVALENT Operator. Used to check non-equivalence of 
two logical values.

(A .neqv. B) is true.
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Decisions
Sr. No Statement & Description

1
If… then construct 
An if… then… end if statement consists of a logical expression followed by one or more statements.

2
If… then...else construct 
An if… then statement can be followed by an optional else statement, which executes when the logical expression is false.

3
if...else if...else Statement 
An if statement construct can have one or more optional else-if constructs. When the if condition fails, the immediately 
followed else-if is executed. When the else-if also fails, its successor else-if statement (if any) is executed, and so on.

4
nested if construct 
You can use one if or else if statement inside another if or else if statement(s).

5
select case construct 
A select case statement allows a variable to be tested for equality against a list of values.

6
nested select case construct 
You can use one select case statement inside another select case statement(s).

https://www.tutorialspoint.com/fortran/If_then_construct.htm
https://www.tutorialspoint.com/fortran/If_then_else_construct.htm
https://www.tutorialspoint.com/fortran/if_elseif_else_construct.htm
https://www.tutorialspoint.com/fortran/nested_if_construct.htm
https://www.tutorialspoint.com/fortran/select_case_construct.htm
https://www.tutorialspoint.com/fortran/nested_select_case_construct.htm
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Decisions
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Loops
Sr. No Loop Type & Description

1
do loop
This construct enables a statement, or a series of statements, to be carried out iteratively, while a given condition is true.

2
do while loop
Repeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body.

3
nested loops
You can use one or more loop construct inside any other loop construct.

Sr. No Control Statement & Description

1
exit
If the exit statement is executed, the loop is exited, and the execution of the program continues at the first executable 
statement after the end do statement.

2
cycle
If a cycle statement is executed, the program continues at the start of the next iteration.

3
stop
If you wish execution of your program to stop, you can insert a stop statement

https://www.tutorialspoint.com/fortran/fortran_do_loop.htm
https://www.tutorialspoint.com/fortran/fortran_do_while_loop.htm
https://www.tutorialspoint.com/fortran/fortran_nested_loop.htm
https://www.tutorialspoint.com/fortran/fortran_exit.htm
https://www.tutorialspoint.com/fortran/fortran_cycle.htm
https://www.tutorialspoint.com/fortran/fortran_stop.htm
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Loops
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Characters
Character Declaration

type-specifier :: variable_name character(len = 15) :: surname, firstname 

len(string): It returns the length of a character string

index(string, sustring): It finds the location of a substring in another string, returns 0 if not found.

achar(int): It converts an integer into a character

iachar(c): It converts a character into an integer

trim(string): It returns the string with the trailing blanks removed.

scan(string, chars): It searches the "string" from left to right (unless back=.true.) for the first occurrence of any character contained in "chars". It returns 
an integer giving the position of that character, or zero if none of the characters in "chars" have been found.

verify(string, chars): It scans the "string" from left to right (unless back=.true.) for the first occurrence of any character not contained in "chars". It 
returns an integer giving the position of that character, or zero if only the characters in "chars" have been found

adjustl(string): It left justifies characters contained in the "string"

adjustr(string): It right justifies characters contained in the "string"

len_trim(string): It returns an integer equal to the length of "string" (len(string)) minus the number of trailing blanks

repeat(string, ncopy): It returns a string with length equal to "ncopy" times the length of "string", and containing "ncopy" concatenated copies of "string"

lle(char, char): Compares whether the first character is lexically less than or equal to the second

lge(char, char): Compares whether the first character is lexically greater than or equal to the second

lgt(char, char): Compares whether the first character is lexically greater than the second

llt(char, char): Compares whether the first character is lexically less than the second
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Arrays
Declaring Arrays

real, dimension(5) :: numbers

integer, dimension (5,5) :: matrix

integer, dimension (-3:2,0:4) :: matrix 

real, dimension(2:6) :: numbers

Assigning Values

numbers(1) = 2.0

Do i  = 1,5
   numbers(i) = i * 2.0
End Do

numbers = (/1.5, 3.2, 4.5, 0.9, 7.2/)

Array Sections

array ([lower]:[upper][:stride], ...)

array ([lower]:[upper])

array ([lower]: )

array ( :[upper])

B(2:10:2) = (/1.5, 3.2, 4.5, 0.9, 7.2/)

B(2:10:2) = [1.5, 3.2, 4.5, 0.9, 7.2]

B(2:10) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)

B(2:) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)

B(:8) = (/1.5, 3.2, 3.6, 4.5, 5.4, 6.8, 0.9, 7.2/)
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Arrays

Rank
It is the number of dimensions an array has. For example, for the array named matrix, rank is 2, and for the array 
named numbers, rank is 1.

Extent
It is the number of elements along a dimension. For example, the array numbers has extent 5 and the array named 
matrix has extent 3 in both dimensions.

Shape
The shape of an array is a one-dimensional integer array, containing the number of elements (the extent) in each 
dimension. For example, for the array matrix, shape is (3, 3) and the array numbers it is (5).

Size It is the number of elements an array contains. For the array matrix, it is 9, and for the array numbers, it is 5.
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Vector and matrix multiplication

Function Description

dot_product(vector_a, vector_b)
This function returns a scalar product of two input vectors, which must have the same 
length.

matmul(matrix_a, matrix_b)
It returns the matrix product of two matrices, which must be consistent, i.e. have the 
dimensions like (m, k) and (k, n)
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Reduction Functions

Function Description

all(mask, dim)
It returns a logical value that indicates whether all relations in mask are .true., along with only the desired 
dimension if the second argument is given.

any(mask, dim)
It returns a logical value that indicates whether any relation in mask is .true., along with only the desired 
dimension if the second argument is given.

count(mask, dim)
It returns a numerical value that is the number of relations in mask which are .true., along with only the 
desired dimension if the second argument is given.

maxval(array, dim, mask)
It returns the largest value in the array array, of those that obey the relation in the third argument mask, if 
that one is given, along with only the desired dimension if the second argument dim is given.

minval(array, dim, mask)
It returns the smallest value in the array array, of those that obey the relation in the third argument mask, if 
that one is given, along with only the desired dimension if the second argument DIM is given.

product(array, dim, mask)
It returns the product of all the elements in the array array, of those that obey the relation in the third 
argument mask, if that one is given, along with only the desired dimension if the second argument dim is 
given.

sum(array, dim, mask)
It returns the sum of all the elements in the array array, of those that obey the relation in the third argument 
mask, if that one is given, along with only the desired dimension if the second argument dim is given.
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Inquiry Functions

Function & Description

allocated(array)
It is a logical function which indicates if the array is allocated.

lbound(array, dim)
It returns the lower dimension limit for the array. If dim (the dimension) is not given as an argument, you get an integer vector, if dim is included, you 
get the integer value with exactly that lower dimension limit, for which you asked.

shape(source)
It returns the shape of an array source as an integer vector.

size(array, dim)
It returns the number of elements in an array. If dim is not given, and the number of elements in the relevant dimension if dim is included.

ubound(array, dim)
It returns the upper dimensional limits.
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Construction Functions

Function Description

merge(tsource, fsource, mask)
This function joins two arrays. It gives the elements in tsource if the condition in mask is .true. and fsource if the 
condition in mask is .false. The two fields tsource and fsource have to be of the same type and the same shape. The 
result also is of this type and shape. Also, mask must have the same shape.

pack(array, mask, vector)

It packs an array to a vector with the control of mask. The shape of the logical array mask, has to agree with the 
one for array, or else mask must be a scalar. If vector is included, it has to be an array of rank 1 (i.e. a vector) with 
at least as many elements as those that are true in mask, and have the same type as array. If mask is a scalar with 
the value .true. then vector instead must have the same number of elements as array.

spread(source, dim, ncopies)

It returns an array of the same type as the argument source with the rank increased by one. The parameters dim 
and ncopies are integer. if ncopies is negative the value zero is used instead. If source is a scalar, then spread 
becomes a vector with ncopies elements that all have the same value as source. The parameter dim indicates 
which index is to be extended. it has to be within the range 1 and 1+(rank of source), if source is a scalar then dim 
has to be one. The parameter ncopies is the number of elements in the new dimensions.

unpack(vector, mask, array)

It scatters a vector to an array under control of mask. The shape of the logical array mask has to agree with the 
one for array. The array vector has to have the rank 1 (i.e. it is a vector) with at least as many elements as those 
that are true in mask, and also has to have the same type as array. If array is given as a scalar then it is considered 
to be an array with the same shape as mask and the same scalar elements everywhere.
The result will be an array with the same shape as mask and the same type as vector. The values will be those 
from vector that are accepted, while in the remaining positions in array the old values are kept.



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 45

Reshape Functions

Function Description

reshape(source, shape, pad, order)

It constructs an array with a specified shape starting from the elements in a 
given array source. If pad is not included then the size of source has to be at 
least product (shape). If pad is included, it has to have the same type as source. 
If order is included, it has to be an integer array with the same shape as shape 
and the values must be a permutation of (1,2,3,...,n), where n is the number of 
elements in shape , it has to be less than, or equal to 7.
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Manipulation Functions

Function Description

cshift(array, shift, dim)

It performs circular shift by shift positions to the left, if shift is positive and to the right if it is 
negative. If array is a vector the shift is being done in a natural way, if it is an array of a higher rank 
then the shift is in all sections along the dimension dim. If dim is missing it is considered to be 1, in 
other cases it has to be a scalar integer number between 1 and n (where n equals the rank of array ). 
The argument shift is a scalar integer or an integer array of rank n-1 and the same shape as the array, 
except along the dimension dim (which is removed because of the lower rank). Different sections can 
therefore be shifted in various directions and with various numbers of positions.

eoshift(array, shift, boundary, dim)

It is end-off shift. It performs shift to the left if shift is positive and to the right if it is negative. Instead 
of the elements shifted out new elements are taken from boundary. If array is a vector the shift is 
being done in a natural way, if it is an array of a higher rank, the shift on all sections is along the 
dimension dim. if dim is missing, it is considered to be 1, in other cases it has to have a scalar integer 
value between 1 and n (where n equals the rank of array). The argument shift is a scalar integer if 
array has rank 1, in the other case it can be a scalar integer or an integer array of rank n-1 and with 
the same shape as the array except along the dimension dim (which is removed because of the lower 
rank).

transpose (matrix) It transposes a matrix, which is an array of rank 2. It replaces the rows and columns in the matrix.
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Location Functions

Function Description

maxloc(array, mask)
It returns the position of the greatest element in the array, if mask is included only for those which 
fulfil the conditions in mask, position is returned and the result is an integer vector.

minloc(array, mask)
It returns the position of the smallest element in the array, if mask is included only for those which 
fulfil the conditions in mask, position is returned and the result is an integer vector.
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Basic Input Output

read(*,*) item1, item2, item3...
print *,  item1, item2, item3
write(*,*) item1, item2, item3...

Formatted Input Output

read  fmt, variable_list 
print fmt, variable_list 
write fmt, variable_list 

format specification
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Procedures
A procedure is a group of statements that perform a well-defined task and can be invoked from your 

program. Information (or data) is passed to the calling program, to the procedure as arguments.

Functions

Subroutines

function name(arg1, arg2, ....)  
   [declarations, including those for the arguments]   
   [executable statements] 
end function [name]

function name(arg1, arg2, ....)  
   [declarations, including those for the arguments]   
   [executable statements] 
end function [name]

subroutine name(arg1, arg2, ....)    
   [declarations, including those for the arguments]
   [executable statements]  
end subroutine [name]
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Numeric Functions
Function Description

abs(a) It returns the absolute value of A

aimag(z) It returns the imaginary part of a complex number Z

aint(a [, kind]) It truncates fractional part of A towards zero, returning a real, whole number.

anint(a [, kind]) It returns a real value, the nearest integer or whole number.

ceiling(a [, kind]) It returns the least integer greater than or equal to number A.

cmplx(x [, y, kind]) It converts the real variables X and Y to a complex number X + iY; if Y is absent, 0 is used.

conjg(z) It returns the complex conjugate of any complex number Z.

dble(a) It converts A to a double precision real number.

dim(x, y) It returns the positive difference of X and Y.

dprod(x, y) It returns the double precision real product of X and Y.

floor(a [, kind]) It provides the greatest integer less than or equal to number A.

int(a [, kind]) It converts a number (real or integer) to integer, truncating the real part towards zero.

max(a1, a2 [, a3,...]) It returns the maximum value from the arguments, all being of same type.

min(a1, a2 [, a3,...]) It returns the minimum value from the arguments, all being of same type.

mod(a, p) It returns the remainder of A on division by P, both arguments being of the same type (A-INT(A/P)*P)

modulo(a, p) It returns A modulo P: (A-FLOOR(A/P)*P)

nint(a [, kind]) It returns the nearest integer of number A

real(a [, kind]) It Converts to real type

sign(a, b) It returns the absolute value of A multiplied by the sign of P. Basically it transfers the of sign of B to A.



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 55

Mathematical Functions
Function Description

acos(x) It returns the inverse cosine in the range (0, π), in radians.

asin(x) It returns the inverse sine in the range (-π/2, π/2), in radians.

atan(x) It returns the inverse tangent in the range (-π/2, π/2), in radians.

atan2(y, x) It returns the inverse tangent in the range (-π, π), in radians.

cos(x) It returns the cosine of argument in radians.

cosh(x) It returns the hyperbolic cosine of argument in radians.

exp(x) It returns the exponential value of X.

log(x) It returns the natural logarithmic value of X.

log10(x) It returns the common logarithmic (base 10) value of X.

sin(x) It returns the sine of argument in radians.

sinh(x) It returns the hyperbolic sine of argument in radians.

sqrt(x) It returns square root of X.

tan(x) It returns the tangent of argument in radians.

tanh(x) It returns the hyperbolic tangent of argument in radians.
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Numeric Inquiry Functions

Function Description

digits(x) It returns the number of significant digits of the model.

epsilon(x)
It returns the number that is almost negligible compared to one. In other words, it returns the 
smallest value such that REAL( 1.0, KIND(X)) + EPSILON(X) is not equal to REAL( 1.0, KIND(X)).

huge(x) It returns the largest number of the model

maxexponent(x) It returns the maximum exponent of the model

minexponent(x) It returns the minimum exponent of the model

precision(x) It returns the decimal precision

radix(x) It returns the base of the model

range(x) It returns the decimal exponent range

tiny(x) It returns the smallest positive number of the model
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Floating-Point Manipulation Functions

Function Description

exponent(x) It returns the exponent part of a model number

fraction(x) It returns the fractional part of a number

nearest(x, s) It returns the nearest different processor number in given direction

rrspacing(x) It returns the reciprocal of the relative spacing of model numbers near given number

scale(x, i) It multiplies a real by its base to an integer power

set_exponent(x, i) it returns the exponent part of a number

spacing(x) It returns the absolute spacing of model numbers near given number
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Bit Manipulation Functions

Function Description

bit_size(i) It returns the number of bits of the model

btest(i, pos) Bit testing

iand(i, j) Logical AND

ibclr(i, pos) Clear bit

ibits(i, pos, len) Bit extraction

ibset(i, pos) Set bit

ieor(i, j) Exclusive OR

ior(i, j) Inclusive OR

ishft(i, shift) Logical shift

ishftc(i, shift [, size]) Circular shift

not(i) Logical complement
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Character Functions
Function Description

achar(i) It returns the Ith character in the ASCII collating sequence.

adjustl(string) It adjusts string left by removing any leading blanks and inserting trailing blanks

adjustr(string) It adjusts string right by removing trailing blanks and inserting leading blanks.

char(i [, kind]) It returns the Ith character in the machine specific collating sequence

iachar(c) It returns the position of the character in the ASCII collating sequence.

ichar(c) It returns the position of the character in the machine (processor) specific collating sequence.

index(string, substring [, back])
It returns the leftmost (rightmost if BACK is .TRUE.) starting position of SUBSTRING within 
STRING.

len(string) It returns the length of a string.

len_trim(string) It returns the length of a string without trailing blank characters.

lge(string_a, string_b) Lexically greater than or equal

lgt(string_a, string_b) Lexically greater than

lle(string_a, string_b) Lexically less than or equal

llt(string_a, string_b) Lexically less than

repeat(string, ncopies) Repeated concatenation

scan(string, set [, back])
It returns the index of the leftmost (rightmost if BACK is .TRUE.) character of STRING that belong 
to SET, or 0 if none belong.

trim(string) Removes trailing blank characters

verify(string, set [, back]) Verifies the set of characters in a string
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Kind & Logical Functions

Function Description

kind (x) It returns the kind type parameter value.

selected_int_kind (r) It returns kind of type parameter for specified exponent range.

selected_real_kind ([p, r]) Real kind type parameter value, given precision and range.

logical (l [, kind]) Convert between objects of type logical with different kind type parameters.
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Program Libraries
RANDLIB, random number and statistical distribution generators
BLAS
EISPACK
GAMS–NIST Guide to Available Math Software
Some statistical and other routines from NIST
LAPACK
LINPACK
MINPACK
MUDPACK
NCAR Mathematical Library
The Netlib collection of mathematical software, papers, and databases.
ODEPACK
ODERPACK, a set of routines for ranking and ordering.
Expokit for computing matrix exponentials
SLATEC
SPECFUN
STARPAC
StatLib statistical library
TOMS
Sorting and merging strings



Boundary Conditions
𝐵(x,y,z,t)

BCs: 𝐵(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

BCs:  B (t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutinei.e., Decomposable

i.e., Indecomposable

DISP

Amplitude Analytical Field

Abaqus User Subroutine To Specify Prescribed Boundary Conditions or Connectors Motion
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DISP
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Abaqus User Subroutine To Specify Prescribed Boundary Conditions or Connectors Motion

User Subroutine Interface
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Variables to Be Defined

U

U(1)

U(2)

U(3)

First Time Derivative of U(1)

Second Time Derivative of U(1)

All variable types except rotation: the total value of the prescribed variable at this point.

Rotation variable type: the incremental value of the prescribed rotation at this point.

=
𝑑𝑈 1

𝑑𝑡
 

=
𝑑2𝑈 1

𝑑𝑡2  
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Variables Passed in for Information
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KSTEP

KINC

TIME

NODE

NOEL

JDOF

COORDS

Step number

Increment number

TIME(1)

TIME(2)

TIME(3)

Current value of step time

Current value of total time

Current value of time increment

Node number

Element number

Degree of Freedom:    NEXT SLIDE

An array containing the current 
coordinates of this point.

This array cannot be used if user subroutine 
DISP is used to prescribe connector motions.

This variable cannot be used if user subroutine DISP is used to prescribe connector motions.

This variable cannot be used if user subroutine DISP is used to prescribe boundary conditions.



Degrees of freedom
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𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈3 = 5cos 10𝜋t  𝑠𝑖𝑛
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35

Disp Subroutine Problem
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𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈1 = 5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35

Disp Subroutine Problem
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𝐹𝑖𝑥𝑒𝑑



𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

𝑈1 = 5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35

Disp Subroutine Problem
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𝐹𝑖𝑥𝑒𝑑

𝑈1 = −5 𝑐𝑜𝑠 10𝜋𝑡 𝑠𝑖𝑛
𝜋𝑦

35



𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1 𝑚𝑚

𝑥

𝑦

Disp Subroutine Problem
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@ 𝑥2 + 𝑦2 = 100 ==> 𝑈3 = 𝑒−0.1𝑡

COORDS NODE
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DLOAD
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Load
𝐹(𝑥, 𝑦, 𝑧, 𝑡)

Indecomposable Load: 𝐹(𝑥, 𝑦, 𝑧, 𝑡) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Decomposable Load:  F (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

Amplitude

The load is monitored by writing output to the printed output (.dat) file

Analytical Field

Abaqus User Subroutine To Specify Non-uniform Distributed Load



DLOAD
Variables to be defined:  F

F 𝐹

𝐿2 for surface loads and 
𝐹

𝐿3 for body forces.

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value 
of the load proportionality factor

Current value of total time

NOEL Element number

NPT

LAYER

KSPT

COORDS

JLTYP

SNAME

Load integration point number within the element 

Layer number (for body forces in layered solids)

Section point number within the current layer

An array containing the coordinates 
of the load integration pointSurface name for a surface-based load definition 

(JLTYP=0). For a body force or an element-based 
surface load the surface name is passed in as blank.

Load type
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DLOAD
F 𝐹

𝐿
 for Line loads,  

𝐹

𝐿2 for surface loads, and 
𝐹

𝐿3 for body forces.

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value of the load proportionality factor 𝜆, in a Riks step

Current value of total time

NOEL Element number

NPT

LAYER

KSPT

COORDS

JLTYP

SNAME

Load integration point number within the element 

Layer number (for body forces in layered solids)

Section point number within the current layer

An array containing the coordinates of the load integration point. These are the current coordinates if geometric 
nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

Surface name for a surface-based load definition (JLTYP=0). For a body force or an 
element-based surface load the surface name is passed in as blank.

Load type
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DLOAD
JLTYP Load type Description Elements

0 Surface-based load

1 BXNU Nonuniform body force in global X-directions

1 BRNU Nonuniform body force in radial directions

2 BYNU (except for axisymmetric elements) Nonuniform body force in global Y-directions

2 BZNU (for axisymmetric elements only) Nonuniform body force in global Z-directions

3
BZNU (for three-dimensional elements and 

asymmetric-axisymmetric)
Nonuniform body force in global Z-directions

20 PNU Nonuniform pressure

21 P1NU Nonuniform force per unit length in beam local 1-directions Beam

22 P2NU Nonuniform force per unit length in beam local 2-directions Beam

23 P3NU

24 P4NU

25 P5NU

26 P6NU

27 PINU Nonuniform internal pressure PIPE & ELBOW

28 PENU Nonuniform external pressure PIPE & ELBOW

41 PXNU Nonuniform force per unit length in global X-directions Beam

42 PYNU Nonuniform force per unit length in global Y-directions Beam

43 PZNU Nonuniform force per unit length in global Z-directions Beam
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DLOAD

SNAME
Surface name for a surface-based load definition (JLTYP=0). For a body force or an element-

based surface load the surface name is passed in as blank.

SNAME 
(Surface Name)

Part

Assembly ASSEMBLY_SURFACENAME

ASSEMBLY_PART-#_SURFACENAME

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran



Loads

Plate’s dimensions: 300x200 (mm), thickness: 2 (mm)

Body force: exert on whole plate  

Surface Force (Pressure): exert on entire plate 

𝐹𝑏 𝑥, 𝑦, 𝑡 = 𝑒𝑡 𝑠𝑖𝑛
𝜋𝑥

300
sin

𝜋𝑦

200

𝑃 𝑥, 𝑦, 𝑡 = 𝑐𝑜𝑠 10𝜋𝑡  𝑠𝑖𝑛
𝜋𝑥

300
𝑠𝑖𝑛

𝜋𝑦

200

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

Simulation time: 1 (s)

Hint: the JLTYP

Material properties: E=200 GPa   𝜈 = 0.3

All edge has been pinned 

DLOAD
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𝐸 = 200 𝐺𝑃𝑎,  𝜈 = 0.3,  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛: 500 × 500 × 5 

Dload: Moving Load
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𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

𝑟 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥

𝐷𝑅

𝑅1

Moving Load:

Force reign is being changed by Time. 𝐹𝑜𝑟𝑐𝑒 𝑟𝑒𝑖𝑔𝑛 = 𝑓 𝑡



𝐸 = 200𝐺𝑃𝑎,  𝜈 = 0.3,  𝑑𝑖𝑚𝑒𝑛𝑠𝑡𝑖𝑜𝑛: 500 × 500 × 5 

Dload: Moving Load
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𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

𝐕 = ሶ𝑟 𝐞𝑟 + 𝑟 ሶ𝜃 𝐞𝜽

𝐞𝑟 = 𝑐𝑜𝑠 𝜃 𝐞𝒙 + 𝑠𝑖𝑛 𝜃 𝐞𝑦

𝐞𝜽 = − 𝑠𝑖𝑛 𝜃 𝐞𝑥 + 𝑐𝑜𝑠 𝜃 𝐞𝑦

𝐕𝑥 = ሶ𝑟 𝑐𝑜𝑠 𝜃 − 𝑟 ሶ𝜃 𝑠𝑖𝑛(𝜃)

𝐕𝑦 = − ሶ𝑟 𝑠𝑖𝑛 𝜃 + 𝑟 ሶ𝜃 𝑐𝑜𝑠(𝜃)

where
𝑟 = 𝑥2 + 𝑦2

𝜃 = tan−1
𝑦

𝑥



𝐸 = 200𝐺𝑃𝑎
 𝜈 = 0.3

Dload: Periodic Travelling Wave

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐹𝑏 𝑥, 𝑦, 𝑧, 𝑡 = 𝑐𝑜𝑠 𝑘𝑧 − 𝜔𝑡  𝑠𝑖𝑛
𝜋𝑥

300
𝑠𝑖𝑛

𝜋𝑦

200

Body Load:

𝑘 =
2𝜋

𝜆
= 2𝜋 𝜔 =

2𝜋

𝑇
= 𝜋



B.C’s.

exert on right Up:

exert on left Bottom:

𝑃 𝑥, 𝑦, 𝑡 = sin
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35
𝑐𝑜𝑠(10𝜋𝑡)

Simulation time: 1(s)

Material properties:
 E=210 GPa   𝜈 = 0.3     Thickness=2 mm

@ x=70  ==> 𝑈1 = 0, 𝑈2 = 0, 𝑈3 = sin
𝜋𝑦

35

@ x=-70  ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = −sin
𝜋𝑦

35

@ y=35  ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = sin
𝜋𝑥

70

@ y=-35  ==>𝑈1 = 0, 𝑈2 = 0, 𝑈3 = −sin
𝜋𝑥

70

@ 𝑥2 + 𝑦2 = 100 ==> 𝑈3 = 𝑒−0.1𝑡

𝑃 𝑥, 𝑦, 𝑡 = −sin
𝜋𝑥

70
𝑠𝑖𝑛

𝜋𝑦

35
𝑐𝑜𝑠(10𝜋𝑡)

Pressure

x

y

Disp + Dload Subroutine
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Body Load
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Traction
𝐹(𝑡, 𝑥, 𝑦, 𝑧, 𝑛)

Indecomposable: 𝐹(𝑡, 𝑥, 𝑦, 𝑧, 𝑛) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Decomposable: 𝐹 𝑡, 𝑥, 𝑦, 𝑧, 𝑛 = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

Amplitude Analytical Field

Abaqus User Subroutine To Specify Non-uniform Traction Loads

UTRACLOAD



Abaqus User Subroutine To Specify Non-uniform Traction Loads

83

UTRACLOAD
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T_USER Loading direction of the distributed traction load

KSTEP

KINC

Step number

Increment number

TIME
TIME(1)

TIME(2)

Current value of step time or current value 
of the load proportionality factor

Current value of total time

NOEL Element number

NPT

DIRCOS

COORDS

JLTYP

Load integration point number within the element 

Orientation of the face or edge in the 
reference configuration

An array containing the coordinates 
of the load integration point

Identifies the load type

SNAME
Surface name for a surface-based load 

definition. For an element-based or edge-based 
load the surface name is passed in as blank

ALPHA Magnitude of the distributed traction load
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T_USER

Loading direction of the distributed traction 
load. The direction of T_USER should not 
change during a step. If it does, convergence 
difficulties might arise.

DIRCOS

Orientation of the face or edge in the reference configuration. For three-dimensional facets the first and second columns 
are the normalized local directions in the plane of the surface, and the third column is the normal to the face. For solid 
elements the normal points inward; for shell elements the normal points outward. For two-dimensional facets the first 
column is the normalized tangent, the second column is the facet normal, and the third column is not used. For three-
dimensional shell edges the first column is the tangent to the shell edge (shear direction), the second column is the in-
plane normal (normal direction), and the third column is the normal to the plane of the shell (transverse direction).

ALPHA
Magnitude of the distributed traction load. Units are

𝐹

𝐿2 for surface loads,
𝐹

𝐿
 for edge loads, and F for edge 

moments. For a static analysis that uses the modified Riks method ALPHA must be defined as a function of 
the load proportionality factor, λ. 

Load directions 
are needed 

Load directions 
will be ignored

General Surface Traction

Shear Surface Traction

General Edge Traction

Normal Edge Traction

Transverse Edge Traction

Edge Moment

COORDS
An array containing the coordinates of the load integration point. These are the current coordinates if geometric 
nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

Shear Edge Traction
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Identifies the load type for which this call to UTRACLOAD is being made. JLTYP

The load type

Surface-based Load

Element-based Surface Load

Edge-based Load

j  in the load type identifies the face or edge of the element underlying the surface

Face Number

Edge Number

This information is useful when several different nonuniform 
distributed loads are being imposed on an element at the same time

SNAME 
(Surface Name)

Part

Assembly ASSEMBLY_SURFACENAME

ASSEMBLY_PART-#_SURFACENAME

SNAME Surface name for a surface-based load definition. For an element-based or edge-based load the surface name is 
passed in as blank
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Distributed Loads Can Be Defined As Element-based Or Surface-based

Element-based Element bodies, Element surfaces, or Element edges

Geometric surfaces or Geometric edgesSurface-based

Types of Distributed Loads

Body Loads

Surface Loads

Edge Loads

Element-based

Element-based

Surface-based

Element-based

Surface-based

Types of Distributed Loads
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Load Description Load Label JLTYP

Nonuniform shear 
surface traction

TRSHRNU 510+j

TRSHR1NU 511

TRSHR2NU 512

TRSHR3NU 513

TRSHR4NU 514

TRSHR5NU 515

TRSHR6NU 516

Nonuniform 
general surface 

traction
TRVECNU 520+j

TRVEC1NU 521

TRVEC2NU 522

TRVEC3NU 523

TRVEC4NU 524

TRVEC5NU 525

TRVEC6NU 526

Load Description Load Label JLTYP

Nonuniform general 
edge traction

EDLDNU 540+j

EDLD1NU 543

EDLD2NU 544

EDLD3NU 545

EDLD4NU 546

Nonuniform normal 
edge traction

EDNORNU 550+j

EDNOR1NU 553

EDNOR2NU 554

EDNOR3NU 555

EDNOR4NU 556

Nonuniform shear 
edge traction

EDSHRNU 560+j

EDSHRNU 563

EDSHRNU 564

EDSHRNU 565

EDSHRNU 566

Load Description Load Label JLTYP

Nonuniform 
transverse edge 

traction
EDTRANU 570+j

EDTRANU 573

EDTRANU 574

EDTRANU 575

EDTRANU 576

Nonuniform edge 
moment

EDMOMNU 580+j

EDMOM1NU 583

EDMOM2NU 584

EDMOM3NU 585

EDMOM4NU 586
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UTRACLOAD

NOEL

NPT

DIRCOS

COORDS

JLTYP

SNAME
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Prescribed Temperature
𝑇𝑒𝑚𝑝(x,y,z,t)

𝑇𝑒𝑚𝑝(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Temp(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

Abaqus User Subroutine To Specify Prescribed Temperature

UTEMP

Note the close similarity between the UTEMP and DISP Subroutines



Abaqus User Subroutine To Specify Prescribed Temperature

90

UTEMP

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

TEMP

NSECPT

KSTEP

KINC

TIME

NODE

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Node number

COORDS An array containing the current 
coordinates of this point.

Step number

Increment number

Maximum number of section values 
required for any node in the model

Array of temperature values 
at node number NODE
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TEMP

NSECPT

KSTEP

KINC

TIME

NODE

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Node number

COORDS An array containing the current coordinates of this point.

Step number

Increment number

Maximum number of section values 
required for any node in the model

Array of temperature values at 
node number NODE

If the node is not connected to a beam or shell element NSECPT=1

Otherwise

Beam Section

Shell Section

NSECPT, is determined by the 
particular section type

n equally spaced points 
through each layer

NSECPT=n

Reference surface together 
with gradients with 

respect to the thickness

Origin of the cross-section 
together with gradients

NSECPT=2

NSECPT=3

NSECPT=2

2D

3D
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Abaqus User Subroutine To Define Non-uniform Film Coefficient and Associated Sink Temp for Heat Transfer Analysis

Film Coefficient 
and

 Associated Sink Temp

ℎ(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

h(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

𝐪″ = ℎ 𝑇𝑠 − 𝑇∞

Convective Heat Flux

Convection Heat 
Transfer Coefficient

Surface Temperature

𝑊

 𝐾
Film Coefficient

Fluid Temperature Sink Temperature

𝜃0(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

𝜃0(t,x,y,z) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)
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Abaqus User Subroutine To Define Non-uniform Film Coefficient and Associated Sink Temp for Heat Transfer Analysis
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Heat Transfer

Conduction

Convention

Radiation

Fourier’s law
𝐪″ = −𝑘 ∇𝑇 = −𝑘

𝜕𝑇

𝜕𝑥
𝒊 +

𝜕𝑇

𝜕𝑦
 𝒋 +

𝜕𝑇

𝜕𝑧
 𝒌

The direction of Heat Flux is 
normal to the cross-sectional area

Temperature Gradient

Thermal Conductivity

Rate of heat energy transfer per 
unit surface area normal to the 

direction of transport

Newton’s law
𝐪″ = ℎ 𝑇𝑠 − 𝑇∞

Convective Heat Flux

(𝑊/𝑚2)

Convection Heat 
Transfer Coefficient

Fluid Temperature

Surface Temperature

𝑞″ = 𝜀 𝜎  𝑇𝑠
4 − 𝑇𝑠𝑢𝑟

4  

Radiation Heat Flux

Stefan–Boltzmann constant

5.67 × 10−8
𝑊

𝑚2𝐾4

Absolute Temperature (K) Of The Surface

emissivity

Absolute Temperature (K) Surrounding

𝑊

𝑚 𝐾

𝑊

𝑚2 𝐾
Film Coefficient

Sink Temperature
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Film Coefficient Node-based Element-basedSurface-based
𝐽

𝑇𝐿2𝜃



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 96

H

SINK Sink Temperature

H(1)

H(2)

Magnitude of the Film coefficient at this point

Rate of change of the film coefficient with respect to the surface temperature at this point

Film Coefficient

Node-based

Element-based

Surface-based

𝐽

𝑇𝐿2𝜃

𝐽

𝑇𝐿2𝜃2

𝑑ℎ/𝑑𝜃

The rate of convergence during the solution of the nonlinear equations in an increment is improved by 
defining this value, especially when the film coefficient is a strong function of surface temperature

Sink Temperature

Node-based

Element-based

Surface-based

Variables to Be Defined



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 97

Variables Passed in for Information
TEMP

KSTEP

TIME

NOEL

TIME(1)

TIME(2)

Current value of step time

Current value of total time

COORDS
An array containing the coordinates of this point. These are the current coordinates if geometric nonlinearity is 

accounted for during the step; otherwise, the array contains the original coordinates of the point.

Step Number

Increment Number

NPT

KINC

Estimated Surface Temperature At This Time At This Point

Element number
(This variable is passed in as zero for node-based films)

Surface integration point number
 (This variable is passed in as zero for node-based films)
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Variables Passed in for Information

FIELD

NFIELD Number of field variables

Surface name for which this call to FILM is being made for a surface-based film coefficient specification (JLTYP=0).
 (This variable is passed in as blank for both node-based and element-based films)

NODE
Node Number

(This variable is passed in as zero for both element-based and surface-based films)

SNAME

Interpolated values of field variables at this point

AREA
Nodal area for node-based films. AREA will be passed into the routine as the nodal 

area specified as part of the node-based film coefficient specification.
(This variable is passed in as zero for both element-based and surface-based films)

JLTYP Identifies the element face for which this call to FILM is being 
made for an element-based film coefficient specification

JLTYP Film type

0 Node-based or surface-based loading

11 F1NU (FNEGNU for heat transfer shells)

12 F2NU (FPOSNU for heat transfer shells)

13 F3NU

14 F4NU

15 F5NU

16 F6NU

Bottom

Top 
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Example
Transient Heat Transfer

𝑆𝐼 (𝑚)

Density 𝜌 = 7800

Thermal Conductivity 𝑘 = 1.4

Specific Heat 𝑐𝑝 = 260

Film Coefficient ℎ = 10 + 0.2𝜃

Sink Temperature 𝜃0 = 100 + 2𝑡

Initial Temperature 𝜃𝑖 = 30
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Distributed Flux
𝑞(x,y,z,T,t)

𝑞(t,x,y,z) ≠ 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

𝑞(x,y,z,t) = 𝑇(𝑡) 𝑅(𝑥, 𝑦, 𝑧)

Subroutine

Abaqus/CAE
Subroutine

i.e., Decomposable

i.e., Indecomposable

Amplitude Analytical Field

DFLUX
Abaqus User Subroutine To Define Non-uniform Distributed Flux in a Heat Transfer or Mass Diffusion Analysis

Note the close similarity between the DFLUX and DLOAD Subroutines
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Abaqus User Subroutine To Define Non-uniform Distributed Flux in a Heat Transfer or Mass Diffusion Analysis

FLUX

SOL

KSTEP

KINC

TIME

NOEL

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Element number

COORDS An array containing the 
coordinates of this point (NODE)

Step number

Increment number

Estimated value of the solution variable

NPT

JLTYP

TEMP

PRESS

SNAME

FLUX(1)

FLUX(2)

Magnitude of flux

Rate of change of the flux with respect to 
the temperature/mass concentration

Integration point number

Identifies the flux type

Current value of temperature 
at this integration point

Current value of the equivalent 
pressure stress at this integration point

Surface name for a surface-based 
flux definition (JLTYP=0). 

Only in 
transient 
analysis

Only for 
a mass 

diffusion 
analysis

Only for 
a mass 

diffusion 
analysis
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FLUX

FLUX(1)

FLUX(2)

Magnitude of flux

Rate of change of the flux with respect to the temperature

Surface Flux: 
𝐽

𝑇𝐿2 /
𝑃𝐿

𝑇

Body Flux: 
𝐽

𝑇𝐿3 /
𝑃

𝑇

FLUX
Heat Flux:

Mass Diffusion Flux: Rate of mass transfer per unit surface area normal to the direction of transport

Rate of heat energy transfer per unit surface area normal to the direction of transport Volume

Volume

FLUX
Surface-based

Element-based Body Flux / Surface Flux 

Surface Flux 

Surface Flux: 
𝐽

𝑇𝐿2𝜃

Body Flux: 
𝐽

𝑇𝐿3𝜃

Surface Flux: 
𝐿

𝑇

Body Flux: 
1

𝑇

Heat Transfer

Mass Diffusion
Rate of change of the flux with respect to the mass concentration

𝑑𝑞/𝑑𝜃

𝑑𝑞/𝑑𝑐

In transient heat transfer cases where a nondefault amplitude is used to vary the applied fluxes, the time 
average flux over the time increment must be defined rather than the value at the end of the time increment

The convergence rate during the solution of the nonlinear equations in an increment is improved by defining this value, 
especially when the flux is a strong function of temperature in heat transfer analysis or concentration in mass diffusion analysis
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Abaqus Conventions

Dimension Indicator Example (S.I. units)

Length 𝐿 Meter

Mass 𝑀 Kilogram

Time 𝑇 Second

Temperature 𝜃 Degree Celsius

Electric Current 𝐴 Ampere

Force 𝐹 Newton

Energy 𝐽 Joule

Electric Charge 𝐶 Coulomb

Electric Potential 𝜑 Volt

Mass Concentration 𝑃 Parts Per Million

Fluid Electric Potential 𝜑𝑒 Volt

Ion Concentration In The Electrolyte 𝐶𝑒 Mol Per Cubic Meter
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SOL

COORDS
An array containing the coordinates of this point (NODE). These are the current coordinates if geometric 

nonlinearity is accounted for during the step; otherwise, the array contains the original coordinates of the point.

temperature in a heat transfer analysis 
or

 concentration in a mass diffusion analysis

JLTYP

TEMP

PRESS

SNAME

Identifies the flux type

Current value of temperature at this integration point

Current value of the equivalent pressure stress at this integration point

Surface name for a surface-based flux definition (JLTYP=0). For a body flux 
or an element-based surface flux the surface name is passed in as blank. 

NEXT SLIDE

Only For A Mass Diffusion Analysis

Only For A Mass Diffusion Analysis

Estimated value of the solution variable 
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Flux Identifier
JLTYP Flux Type Description

0 Surface-based flux Nonuniform Surface Flux

1 BFNU
Nonuniform body flux per unit volume with magnitude supplied via user 

subroutine DFLUX

11 S1NU (SNEGNU for heat transfer shells)
Nonuniform surface flux per unit area into the bottom face of the element 

with magnitude supplied via user subroutine DFLUX

12 S2NU (SPOSNU for heat transfer shells)
Nonuniform surface flux per unit area into the top face of the element with 

magnitude supplied via user subroutine DFLUX.

13 S3NU Nonuniform surface flux per unit area into the face 3 of the element

14 S4NU Nonuniform surface flux per unit area into the face 4 of the element

15 S5NU Nonuniform surface flux per unit area into the face 5 of the element

16 S6NU Nonuniform surface flux per unit area into the face 6 of the element
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Example

𝑂
𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑙𝑎𝑡𝑒

𝑥

𝑦

200 𝑚𝑚 × 100 𝑚𝑚 × 1 𝑚𝑚

𝑞(x, y, z, t) = 𝑐𝑜𝑠 10𝜋𝑡  𝑠𝑖𝑛
𝜋𝑥

100
𝑠𝑖𝑛

𝜋𝑦

50

𝑞(x, y, z, θ, t)= 𝑒𝜃 + 𝑐𝑜𝑠 10𝜋𝑡  𝑠𝑖𝑛
𝜋𝑥

100
𝑠𝑖𝑛

𝜋𝑦

50
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Material Constant

45 
𝑊

𝑚 𝐾
 = 

𝑚 𝑊

𝑚𝑚 𝐾
 Conductivity Specific Heat 420 

𝐽

𝑘𝑔 𝑘
 = 420 × 106 𝑚𝐽

𝑡𝑜𝑛 𝐾

Commonly used unit 𝑆𝐼 value 𝑆𝐼 (𝑚𝑚) value

Stiffness of steel 210 𝐺𝑃𝑎 210 × 109 Pa 210000 𝑀𝑃𝑎

Density of steel 7850 𝑘𝑔

𝑚3
7.85 × 10−9 𝑡𝑜𝑛𝑛𝑒

𝑚𝑚3

Gravitational constant 9.81 𝑚

𝑠2 9810
𝑚𝑚

𝑠2

pressure 1 𝑏𝑎𝑟 105 Pa 0.1 𝑀𝑃𝑎

Absolute zero 
temperature

-273.15 °C 0 K °C and K both acceptable

Stefan-Boltzmann 
constant

5.67 × 10−8
𝑊

𝑚2𝐾4
5.67 × 10−11

𝑚𝑊

𝑚𝑚2𝐾4

Universal gas constant 8.31446
𝐽

𝐾 𝑚𝑜𝑙
8314.46

𝑚𝐽

𝐾 𝑚𝑜𝑙
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UMDFLUX
Abaqus User Subroutine To Specifying Moving or Stationary Nonuniform Heat Flux in a Heat Transfer Analysis
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JLTYP

Identifies the moving flux type for 
which this call to UMDFLUX is being 

made; only the concentrated heat flux 
type is supported (JLTYP=1)

JLTYP Flux Type Description

0 MBFNU
Nonuniform moving or stationary concentrated heat 
fluxes with magnitudes supplied via user subroutine 

UMDFLUX.
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UEXPAN
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Thermal Strains Are Complicated Functions Of Temperature, Time, Field Variables, And State Variables
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Variables to Be Defined

EXPAN

DEXPANDT

Variation Of Thermal 
Strains With Respect 

To Temperature

Increments 
Of 

Thermal Strain

Isotropic
Expansion

Orthotropic 
Expansion

Anisotropic 
Expansion

Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀33
𝑡ℎ 0 0 0

Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀33
𝑡ℎ Δ𝜀12

𝑡ℎ Δ𝜀13
𝑡ℎ Δ𝜀23

𝑡ℎ 

Δ𝜀𝑡ℎ = Δ𝜀𝑡ℎ Δ𝜀𝑡ℎ Δ𝜀𝑡ℎ 0 0 0

3D Stress

Plane Stress Δ𝜀𝑡ℎ = Δ𝜀11
𝑡ℎ Δ𝜀22

𝑡ℎ Δ𝜀12
𝑡ℎ

Isotropic
Expansion

Orthotropic 
Expansion

Anisotropic 
Expansion

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀33
𝑡ℎ

𝜕𝜃
0 0 0

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃
0 0 0

3D Stress

Plane Stress
𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀12
𝑡ℎ

𝜕𝜃

𝜕𝜀𝑡ℎ

𝜕𝜃
=

𝜕𝜀11
𝑡ℎ

𝜕𝜃

𝜕𝜀22
𝑡ℎ

𝜕𝜃

𝜕𝜀33
𝑡ℎ

𝜕𝜃

𝜕𝜀12
𝑡ℎ

𝜕𝜃

𝜕𝜀13
𝑡ℎ

𝜕𝜃

𝜕𝜀23
𝑡ℎ

𝜕𝜃
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Variables Passed in for Information
TEMP

TIME(1)

TIME(2)

Step Time At The End Of The Increment

Total Time At The End Of The Increment

DTIME

NOEL User-defined Element Number

PREDEF

DPRED

CMNAME

TIME

TEMP(1)

TEMP(2)

Current Temperature (at the end of the increment) 

Temperature Increment

Time Increment

User-specified Material Name Or Gasket Behavior Name, Left Justified

Array Of Increments Of Predefined Field Variables

Array Containing The Values Of All The User-specified Predefined Field Variables At This Point 
(initial values at the beginning of the analysis and current values during the analysis)
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Variables That Can Be Updated

STATEV

NSTATEV
Number of solution-dependent state variables associated with this material or gasket behavior type 

(specified when space is allocated for the array)

These are supplied as values at the start of the increment and 
can be updated to their values at the end of the increment. 

UEXPAN is called twice 
Per Material Point Per Iteration.

User subroutine UEXPAN allows for the incremental thermal strains to be only weakly dependent on the state variables. The 
Jacobian terms arising from the derivatives of the thermal strains with respect to the state variables are not taken into account

In the first call for a given material point and iteration, the values 
supplied are those at the start of the increment and can be updated.

In the second call for the same material point and iteration, the 
values supplied are those returned from the first call, and they 

can be updated again to their values at the end of the increment.

Array Containing The User-defined Solution-dependent State Variables At This Point. 

Coupled Temperature-displacement 
And

Coupled Thermal-electrical-structural

Others
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UAMP
Abaqus User Subroutines 

To Specify Amplitude
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Abaqus User Subroutines To Define An Initial Stress Field
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Variables to Be Defined
SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the initial 

coordinates of this point

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number 
within the current layer

Element type name

NAMES(1):

NAMES(2):
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Variables Passed in for Information
SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the initial 

coordinates of this point

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number 
within the current layer

Element type name

NAMES(1):

NAMES(2):
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SIGINI

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define An Initial Stress Field

SIGMA(i)

NTENS

NCRDS

NOEL Element number

COORDS
An array containing the current 

coordinates of this point.

Number of stresses

NPT

LREBAR

NAMES

𝑖𝑡ℎ stress component

Integration point number in the element

Rebar flag

Name of the rebar

KSTP

Number of coordinates

LAYER Layer number

Section point number within the current layer

Element type name

NAMES(1):

NAMES(2):

3D Stress: 6

Axisymmetric, and (Generalized) Plane Strain: 4

** INITIAL CONDITIONS
* INITIAL CONDITIONS, TYPE=STRESS, USER

Keyword

Plane Stress: 3
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SIGINI
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UFIELD
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Abaqus User Subroutines To Specify Predefined Field Variables
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Variables to Be Defined
FIELD(NSECPT, NFIELD) Array Of Predefined Field Variable Values

Array of predefined field variable values at node number NODE. When updating only one field variable at a time, only the value of the specified field 
variable (see KFIELD below) must be returned. In this case NFIELD is passed into user subroutine UFIELD with a value of 1, and FIELD is thus 
dimensioned as FIELD(NSECPT,1). When updating all field variables simultaneously, the values of the specified number of field variables at the point 
must be returned. In this case FIELD is dimensioned as FIELD(NSECPT,NFIELD), where NFIELD is the number of field variables specified and KFIELD 
has no meaning.
If NODE is part of any element other than a beam or shell, only one value of each field variable must be returned (NSECPT=1). Otherwise, the number 
of values to be returned depends on the mode of temperature and field variable input selected for the beam or shell section. The following cases are 
possible:
Temperatures and field variables for a beam section are given as values at the points shown in the beam section descriptions. The number of values 
required, NSECPT, is determined by the particular section type specified, as described in Beam Cross-Section Library.
Temperatures and field variables are given as values at n equally spaced points through each layer of a shell section. The number of values required, 
NSECPT, is equal to n.
Temperatures and field variables for a beam section are given as values at the origin of the cross-section together with gradients with respect to the 2-
direction and, for three-dimensional beams, the 1-direction of the section; or temperatures and field variables for a shell section are given as values at 
the reference surface together with gradients through the thickness. The number of values required, NSECPT, is 3 for three-dimensional beams, 2 for 
two-dimensional beams, and 2 for shells. Give the midsurface value first, followed by the first and (if necessary) second gradients, as described in Beam 
Elements and Shell Elements.
Since field variables can also be defined directly, it is important to understand the hierarchy used in situations of conflicting information (see 
Predefined Fields).
When the array FIELD is passed into user subroutine UFIELD, it will contain either the field variable values from the previous increment or those values 
obtained from the results file if this method was used. You are then free to modify these values within this subroutine.



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 122

Variables Passed in for Information

NSECPT

COORDS
An array containing the coordinates of this node. These are the current coordinates if geometric nonlinearity 
is accounted for during the step; otherwise, the array contains the original coordinates of the node

KFIELD

KSTEP

KINC

TIME

NODE

TEMP(NSECPT)

DTEMP(NSECPT)

TIME(1)

TIME(2)

Current value of step time

Current value of total time

Current temperature at the node. If user subroutines UTEMP and UFIELD are both used, user subroutine 
UTEMP is processed before user subroutine UFIELD.

Step Number

Increment Number

Node Number

Maximum number of section values required for any node in the model

User-specified field variable number. This variable is meaningful only when updating 
individual field variables at a time.

Temperature increment at the node

NFIELD User-specified number of field variables to be updated. This variable is meaningful only 
when updating multiple field variables simultaneously.
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Abaqus User Subroutines To Generate Element Output
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Abaqus User Subroutines To Generate Element Output

UVARM allows you to define output quantities that are functions of any of the available integration point quantities

Cannot be used with linear perturbation procedures, except for the static perturbation procedure

Will be called at all material calculation points of elements for which the material definition includes the specification 
of user-defined output variables

The data are provided in double precision for output to the data (.dat) and results (.fil) files and are written to the 
output database (.odb) file in single precision.
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Variables to Be Defined

UVAR(NUVARM) An array containing the user-defined output variables. 

These are passed in as the values at the beginning of the increment and 
must be returned as the values at the end of the increment.
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Variables Passed in for Information
DIRECT(3,3) An array containing the direction cosines of the material directions in terms of the global basis directions

First Material Direction

Second Material Direction

Third Material Direction

DIRECT(1,1), DIRECT(2,1), DIRECT(3,1)

DIRECT(1,2), DIRECT(2,2), DIRECT(3,2)

DIRECT(1,3), DIRECT(2,3), DIRECT(3,3)

First Column

Second Column

Third Column

For shell and membrane elements, the first two directions are in the plane of 
the element and the third direction is the normal

This information is not available for beam and truss elements
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Variables Passed in for Information
T(3,3)

An array containing the direction cosines of the material orientation 
components relative to the element basis directions

Orientation is not available for beam and truss elements

The orientation that defines the material directions in terms of the element basis directions

The orientation that defines the material directions in terms of  the global basis directions

T(3,3)

DIRECT(3,3)

For Continuum Elements T and DIRECT are identical

For shell and membrane elements T 3,3 =
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1

𝜃 is the counterclockwise rotation around the normal vector that defines the orientation
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Variables Passed in for Information
TIME(1)

TIME(2)

DTIME

CMNAME

ORNAME

NUVARM

NOEL

NPT Integration point number

Element number

User-specified number of user-defined output variables

User-specified local orientation name, left justified

User-specified material name, left justified

Time increment

Value of total time at the end of the current increment

Value of step time at the end of the current increment
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Variables Passed in for Information
LAYER

KSPT

KSTEP

KINC

NDI

NSHR

COORD Coordinates at this material (integration) point

Number of shear stress components at this point

Number of direct stress components at this point

Increment number

Step number

Section point number within the current layer

Layer number (for composite shells and layered solids)
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Variables Passed in for Information

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variables that must be passed into the GETVRM utility routine
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GETVRM
Obtaining Material Point Information in an Abaqus/Standard Analysis

Utility Routine Interface
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Elements supported by GETVRM
Since the GETVRM capability pertains to material point quantities, it cannot be used for most of 

the element types that do not require a material definition.

The following element types are, therefore, not supported:
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Variables to Be Provided to the Utility Routine
VAR Output Variable Key

Variable Name Variable Key

All stress components S

𝑖𝑗𝑡ℎ component of stress 
(𝑖 ≤ 𝑗 ≤ 3)

𝐒𝑖𝑗

All principal stresses SP

Minimum, intermediate, and maximum 
principal stresses

 (𝑆𝑃1 ≤ 𝑆𝑃2 ≤ 𝑆𝑃3)
𝐒𝐏𝑛

All stress invariant components 
(MISES, TRESC, PRESS, INV3) SINV

Signed von Mises equivalent stress S_MISES

Mises equivalent stress MISES

Variable Name Variable Key

All strain components E

𝑖𝑗𝑡ℎ component of strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐄𝑖𝑗

All principal strains EP

Minimum, intermediate, and 
maximum principal strains

 (𝐸𝑃1 ≤ 𝐸𝑃2 ≤ 𝐸𝑃3)
𝐄𝐏𝑛

All nominal strain components NE

𝑖𝑗𝑡ℎ component of nominal strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐍𝐄𝑖𝑗

All principal nominal strains NEP

Minimum, intermediate, and 
maximum principal nominal strains 

(𝑁𝐸𝑃1 ≤ 𝑁𝐸𝑃2 ≤ 𝑁𝐸𝑃3)
𝐍𝐄𝐏𝑛
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Variables to Be Provided to the Utility Routine

The components for a 
requested variable

Single index components (and requests without components) are returned in 
positions 1, 2, 3, etc

Double index components (tensors) are returned in the order 11, 22, 33, 12,13, 23 for 
symmetric tensors, followed by 21, 31, 32 for unsymmetric tensors, such as the 
deformation gradient

Three values are always returned for principal value requests, the minimum value first 
and maximum value third, regardless of the dimensionality of the analysis.
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Variables to Be Provided to the Utility Routine

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable
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Variables Returned from the Utility Routine

ARRAY

JARRAY

FLGRAY

JRCD

Real array containing individual components of the output variable

Integer array containing individual components of the output variable

Character array containing flags corresponding to the individual components.
 Flags will contain either YES, NO, or N/A (not applicable)

Return code

0

1

No error

Output request error

All components of the output request are zero
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UVARM EXAMPLE
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Abaqus User Subroutine To Redefine Field Variables at Material Point
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Abaqus User Subroutines To Redefine a Field Variables at Material Point

Allows you to define field variables at a material point as functions of time or any of the available material 
point quantities except the user-defined output variables UVARM and UVARMn

User subroutine USDFLD is typically used when complex material behavior needs to be modeled, and the 
user does not want to develop a UMAT or VUMAT subroutine, respectively.

Most material properties in Abaqus can be defined as functions of field variables, 𝑓𝑖

USDFLD allows the user to define 𝑓𝑖 at every integration point of an element

The subroutines have access to solution data, so 𝑓𝑖 𝜎, 𝜀, 𝜀𝑝𝑙 , ሶ𝜀, … ;

therefore, the material properties can be a function of the solution data.

USDFLD or VUSDFLD is used to introduce solution-dependent material properties since such 
properties can easily be defined as functions of field variables
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Abaqus User Subroutines To Redefine a Field Variables at Material Point

Typically the user must define the dependence of material properties, such as elastic modulus or yield stress, 
as functions of field variables, 𝑓𝑖 .

This can be accomplished using 
either tabular input or 
additional user subroutines

Using tabular definition for built-in Abaqus material models

Using other user subroutines to define 
the material behavior as a function of 𝑓𝑖 .

CREEP

HETVAL

UEXPAN

UHARD

UHYPEL

UMAT

UMATHT

UTRS

E.g., field variables defined in 
USDFLD are passed into UMAT

The material properties defined in these subroutines are made functions of the 𝑓𝑖 
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Abaqus User Subroutines To Redefine a Field Variables at Material Point

Abaqus will use linear interpolation between data points in the tabular input and will use the last available 
material data if 𝑓𝑖  , is outside of the range specified—it does not extrapolate the data provided.

The range of 𝑓𝑖 , does not have to be the same for each material property.

The USDFLD routine is then written to define the values of 𝑓𝑖 on an integration point-by-integration point basis.

Damage to the material

𝑓𝑖 Functionally Graded Material (FGM) 

Bone Remodeling
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USDFLD

In Abaqus/Standard the USDFLD subroutine has access to material point quantities only at 
the start of the increment; thus, the solution dependence introduced in this way is explicit

The material properties are not influenced by the results obtained during the increment

Hence, the accuracy of the results depends on the size of the time increment

Therefore, the user can control the time increment in the USDFLD subroutine by means of the variable PNEWDT

Abaqus User Subroutines To Redefine a Field Variables at Material Point
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USDFLD
Abaqus User Subroutines To Redefine a Field Variables at Material Point

What values for the field variables does Abaqus use?

Field variables 𝑓𝑖 are considered 
nodal data by Abaqus

When Abaqus begins to calculate the element stresses and 
stiffness (i.e., the element loop), it interpolates the nodal values 

of 𝑓𝑖 to the integration (material) points of the elements.

When subroutine USDFLD is used, however, these interpolated 𝑓𝑖 are 
replaced with the values defined in the USDFLD subroutine before 

the material properties of an element are calculated.
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Variables to Be Defined

FIELD(NFIELD) An array containing the field variables at the current material point. 

The updated values are used to calculate the values of material properties that are defined to depend on field 
variables and are passed into other user subroutines (CREEP, HETVAL, UEXPAN, UHARD, UHYPEL, UMAT, 

UMATHT, and UTRS) that are called at this material point.

The values defined by USDFLD are not stored by Abaqus

These are passed in with the values interpolated from the nodes at the end of the current increment, as 
specified with initial condition definitions, predefined field variable definitions, or user subroutine UFIELD. 
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Variables That Can Be Updated

STATEV(NSTATV) An array containing the solution-dependent state variables

These are passed in as the values at the beginning of the increment. 

Solution-dependent state variables (SDVs) must be used in USDFLD, 𝑓𝑖 if have any history dependence

In all cases STATEV can be updated in this subroutine, and the updated values are passed into other user 
subroutines (CREEP, HETVAL, UEXPAN, UMAT, UMATHT, and UTRS) that are called at this material point

The number of state variables associated with the current 
material point is defined with the *DEPVAR option (keyword)
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Variables That Can Be Updated

PNEWDT Ratio of suggested new time increment to the time increment being used

This variable allows you to provide input to the automatic 
time incrementation algorithms in Abaqus/Standard

If Automatic Time 
Incrementation Is Chosen

Abaqus/Standard uses an automatic time incrementation algorithm 
to control the size of the time increment used in an analysis.

This algorithm allows Abaqus/Standard to reduce the time increment size when convergence is unlikely or the 
results are not accurate enough and to increase the time increment when convergence is easily obtained
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Variables That Can Be Updated
PNEWDT is set to a large value before each call to USDFLD

IF PNEWDT is redefined 
to be less than 1.0

IF PNEWDT is given a value 
that is greater than 1.0

(For all calls to user subroutines 
for this iteration and the increment 

converges in this iteration)

Abaqus must abandon the time increment and attempt it again with a smaller time increment

The suggested new time increment provided to the 
automatic time integration algorithms is PNEWDT*DTIME

where the PNEWDT used is the minimum value for all calls to user subroutines that allow redefinition of PNEWDT for this iteration.

Abaqus may increase the time increment

The suggested new time increment provided to the 
automatic time integration algorithms is PNEWDT*DTIME

Where the PNEWDT used is the minimum value for all calls to user subroutines for this iteration.
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Variables Passed in for Information
DIRECT(3,3) An array containing the direction cosines of the material directions in terms of the global basis directions

First Material Direction

Second Material Direction

Third Material Direction

DIRECT(1,1), DIRECT(2,1), DIRECT(3,1)

DIRECT(1,2), DIRECT(2,2), DIRECT(3,2)

DIRECT(1,3), DIRECT(2,3), DIRECT(3,3)

First Column

Second Column

Third Column

For shell and membrane elements, the first two directions are in the plane of 
the element and the third direction is the normal

This information is not available for beam and truss elements
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Variables Passed in for Information
T(3,3)

An array containing the direction cosines of the material orientation 
components relative to the element basis directions

Orientation is not available for beam and truss elements

The orientation that defines the material directions in terms of the element basis directions

The orientation that defines the material directions in terms of  the global basis directions

T(3,3)

DIRECT(3,3)

For Continuum Elements T and DIRECT are identical

For shell and membrane elements T 3,3 =
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1

𝜃 is the counterclockwise rotation around the normal vector that defines the orientation
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Variables Passed in for Information

CELENT

TIME(1)

TIME(2)

DTIME

Characteristic 
Element length

First-order Element Length of a line across an element

Half of the length of a line across an element

Beams and Trusses

Second-order Element

Along the element axis

Membranes and Shells Characteristic length in the reference surface

Axisymmetric element Characteristic length in the (𝑟, 𝑧) plane only

Value of step time at the beginning of the current increment

Value of total time at the beginning of the current increment

Time increment

𝑆𝑄𝑅𝑇(𝐷𝐽𝐴𝐶 ∗ 𝐷𝐵𝐿𝐸(𝑁𝐼𝑁𝑃𝑇))



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 151

Variables Passed in for Information

CMNAME

ORNAME

User-specified material name, left justified

User-specified local orientation name, left justified

NFIELD

NSTATV

Number of field variables defined at this material point

User-defined number of solution-dependent state variables

NOEL Element number

NPT Integration point number



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 152

Variables Passed in for Information
LAYER

KSPT

Layer number (for composite shells and layered solids)

Section point number within the current layer

KSTEP

KINC

NDI

NSHR

COORD

Step number

Increment number

Number of direct stress components at this point

Number of shear stress components at this point

Coordinates at this material point
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Variables Passed in for Information

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variables that must be passed into the GETVRM utility routine
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GETVRM
Obtaining Material Point Information in an Abaqus/Standard Analysis

Utility Routine Interface
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Elements supported by GETVRM
Since the GETVRM capability pertains to material point quantities, it cannot be used for most of 

the element types that do not require a material definition.

The following element types are, therefore, not supported:
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Variables to Be Provided to the Utility Routine
VAR Output Variable Key

Variable Name Variable Key

All stress components S

𝑖𝑗𝑡ℎ component of stress 
(𝑖 ≤ 𝑗 ≤ 3)

𝐒𝑖𝑗

All principal stresses SP

Minimum, intermediate, and maximum 
principal stresses

 (𝑆𝑃1 ≤ 𝑆𝑃2 ≤ 𝑆𝑃3)
𝐒𝐏𝑛

All stress invariant components 
(MISES, TRESC, PRESS, INV3) SINV

Signed von Mises equivalent stress S_MISES

Mises equivalent stress MISES

Variable Name Variable Key

All strain components E

𝑖𝑗𝑡ℎ component of strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐄𝑖𝑗

All principal strains EP

Minimum, intermediate, and 
maximum principal strains

 (𝐸𝑃1 ≤ 𝐸𝑃2 ≤ 𝐸𝑃3)
𝐄𝐏𝑛

All nominal strain components NE

𝑖𝑗𝑡ℎ component of nominal strain
(𝑖 ≤ 𝑗 ≤ 3)

𝐍𝐄𝑖𝑗

All principal nominal strains NEP

Minimum, intermediate, and 
maximum principal nominal strains 

(𝑁𝐸𝑃1 ≤ 𝑁𝐸𝑃2 ≤ 𝑁𝐸𝑃3)
𝐍𝐄𝐏𝑛
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Variables to Be Provided to the Utility Routine

The components for a 
requested variable

Single index components (and requests without components) are returned in 
positions 1, 2, 3, etc

Double index components (tensors) are returned in the order 11, 22, 33, 12,13, 23 for 
symmetric tensors, followed by 21, 31, 32 for unsymmetric tensors, such as the 
deformation gradient

Three values are always returned for principal value requests, the minimum value first 
and maximum value third, regardless of the dimensionality of the analysis.
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Variables to Be Provided to the Utility Routine

JMAC

JMATYP

MATLAYO

LACCFLA Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable

Variable that must be passed into the GETVRM utility routine to access an output variable
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Variables Returned from the Utility Routine

ARRAY

JARRAY

FLGRAY

JRCD

Real array containing individual components of the output variable

Integer array containing individual components of the output variable

Character array containing flags corresponding to the individual components.
 Flags will contain either YES, NO, or N/A (not applicable)

Return code

0

1

No error

Output request error

All components of the output request are zero
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Abaqus User Subroutines To Define a Material's Mechanical Behavior
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UMAT

User Subroutine Interface
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UMAT
Variables passed in for information

STRAN(NTENS)

DSTRAN(NTENS)

TIME(1)

TIME(2)

DTIME

TEMP

DTEMP

PREDEF

DPRED

CMNAME
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An array containing the total (mechanical) strains at the beginning of the increment

Array of (mechanical) strain increments

Time increment

Temperature at the start of the increment

Increment of temperature

Array of interpolated values of predefined field variables

Array of increments of predefined field variables

User-defined material name

Value of step time at the beginning of the current increment or frequency

Value of total time at the beginning of the current increment

Engineering Shear 
Components

To avoid conflict, you should not use “ABQ_” as 
the leading string for CMNAME
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Variables passed in for information

PROPS(NPROPS)

NPROPS

COORDS

DROT(3,3)

DFGRD0(3,3)

DFGRD1(3,3)
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Array of material constants

Number of material constants

An array containing the coordinates of this point

Rotation increment matrix

CELENT Characteristic element length

Array containing the deformation gradient at the beginning of the increment

Array containing the deformation gradient at the end of the increment

NTENS=NDI+NSHR

NSTATV

Size of the stress or strain component array

Number of solution-dependent state variables

NDI

NSHR

Number of direct stress 
components at this point

Number of engineering shear 
stress components at this point

stress and strain components are already rotated 
by this amount before UMAT is called

First-order

Second-order

length of a line across an element 

Half of the First-order

Identity matrix if nonlinear 
geometric effects are not 

included in the step definition

3D Stress: 6Axisymmetric, and (Generalized) Plane Strain: 4Plane Stress: 3
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NOEL

NPT

KINC
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Element number

Integration point number

LAYER Layer number (for composite shells and layered solids)

KSPT

JSTEP(1)

JSTEP(2) Procedure type key

JSTEP(3)

JSTEP(4)

Increment number

1 if current step is a linear perturbation procedure; 0 otherwise

1 if NLGEOM=YES for the current step; 0 otherwise

Step number

Section point number within the current layer
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DDSDDE(NTENS,NTENS) Jacobian matrix of the constitutive model
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𝐟: vector-valued function of several variables



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 166

Consistent Jacobian base on Constitutive Laws

Total-form Constitutive Laws  

Rate-form Constitutive Laws

𝛿 𝐽𝛔 = 𝐽 𝐂 ∶ 𝛿𝐃 + 𝛿𝐖. 𝛔 − 𝛔. 𝛿𝐖 

𝛿𝐃 = 𝑠𝑦𝑚 𝛿𝐅 . 𝐅−1

𝛿𝐖 = 𝑎𝑠𝑦𝑚 𝛿𝐅 . 𝐅−1

𝐂 =
1

𝐽

𝜕Δ 𝐽𝛔

𝜕Δ𝛆

Exact Consistent Jacobian

Exact Consistent Jacobian

Determinant of the 
Deformation Gradient

Rate-form constitutive laws express relationships between 
stress rates and strain rates, offering advantages in handling 
path-dependent material behavior and large deformations

total-form constitutive laws relate 
current stress states directly to current 
strain states or deformation measures

more stable numerically and less prone 
to accumulation of errors over time

Rate-form constitutive laws establish relationships 
between rates of stress and rates of strain or deformation, 

providing a differential framework that describes how 
stress evolves with changing deformation states.
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Rate-form Constitutive Laws

The mathematical framework of rate-form constitutive laws requires careful consideration of objectivity, 
particularly when dealing with finite deformations and rotations. Since stress rates must be frame-indifferent to 
ensure physical consistency, various objective stress rates have been developed to maintain this requirement

The choice of objective stress rate significantly impacts the material model's behavior and numerical 
performance. Common objective stress rates include the Truesdell rate, the Green-Naghdi rate, and the Zaremba-
Jaumann rate of the Cauchy stress, each with distinct mathematical properties and applications

Rate-form constitutive laws excel in capturing certain types of material behavior that are difficult to 
represent with total-form approaches. They naturally accommodate path-dependent phenomena, rate-
sensitive materials, and complex loading histories where the material response depends on the sequence 
and rate of deformation rather than just the final state
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Variables to be defined

DDSDDE(NTENS,NTENS)

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Determinant of the Deformation Gradient

If the volume change is 
small, the Jacobian matrix 

can be approximated as ∆𝝈: Cauchy stress increments

𝐂 =
𝜕∆𝝈

𝜕∆𝜺

For viscoelastic behavior in the frequency domain, 
the Jacobian matrix must be dimensioned as 

DDSDDE(NTENS,NTENS,2)
DDSDDE(NTENS,NTENS,2)

Stiffness contribution 
(storage modulus)DDSDDE(NTENS,NTENS,1)

Damping contribution 
(loss modulus)

large-deformation problems with small volume changes
 (e.g., metal plasticity)

For small-deformation problems 
(e.g., linear elasticity) 

Loss of quadratic convergence may occur

An incorrect definition of the material Jacobian affects only the 
convergence rate; the results (if obtained) are unaffected
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STRESS(NTENS)
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This array is passed in as the “true” (Cauchy) stress tensor at the 
beginning of the increment and must be updated in this routine to be 

the stress tensor at the end of the increment

𝜏 = 𝐽 𝜎

Kirchhoff stress

Determinant of the 
Deformation Gradient

In finite-strain problems the stress tensor has already been rotated to account 
for rigid body motion in the increment before UMAT is called, so that only the 
corotational part of the stress integration should be done in UMAT.

Hybrid formulation Total

Incremental (default)

Incompressible
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Variables to be defined

STATEV(NSTATV) Solution-dependent State Variables SDV: In Field Output

STATEV: In UMAT

DepVar: In Property

They are values that can be defined to evolve with the solution of an analysis
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SSE Specific Elastic Strain Energy

SPD Specific Plastic Dissipation

Specific Creep DissipationSCD

These are passed in as the values at the beginning of the increment unless they are updated in user subroutines USDFLD or UEXPAN, 
in which case the updated values are passed in. In all cases STATEV must be returned as the values at the end of the increment

They are used for energy output
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Only in a fully coupled thermal-stress or a coupled thermal-electrical-structural analysis

RPL

DDSDDT(NTENS)

DRPLDE(NTENS)

DRPLDT

Volumetric heat generation per unit time at the end of the increment caused by 
mechanical working of the material

Variation of the stress increments with respect to the temperature

Variation of RPL with respect to the strain increments

Variation of RPL with respect to the temperature
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PNEWDT Ratio of suggested new time increment to the time increment being used

This variable allows you to provide input to the automatic time incrementation algorithms in Abaqus/Standard

The suggested new time increment provided to the automatic time integration algorithms is PNEWDT × DTIME, 
where the PNEWDT used is the minimum value for all calls to user subroutines that allow redefinition of PNEWDT 
for this iteration.
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Formulation Approach 
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Total Lagrangian Approach

Updated Lagrangian Approach

Eulerian Approach

For the updated Lagrangian approach, the discrete equations are formulated in the 
current configuration, which is assumed to be the new reference configuration. The 

stress is measured by the Cauchy stress. 
The dependent variables are chosen to be the stress 𝜎 𝐗, 𝑡  and the velocity 𝑣(𝐗, 𝑡).

In developing the updated Lagrangian formulation, we will sometimes need the 
dependent variables to be expressed in terms of the Eulerian coordinates. 

For the total Lagrangian approach, the discrete equations are formulated with respect 
to the reference configuration. The independent variables are 𝑡 and 𝐗 = 𝜒(𝐱) and the 

dependent variable is displacement 𝑢 𝑋, 𝑡 .

In an Eulerian formulation, the nodes are fixed in space and the dependent variables 
are functions of the Eulerian spatial coordinate 𝑥 and the time 𝑡. The stress measure is 

the Cauchy stress 𝜎 𝐱, 𝑡 , the measure of deformation is the rate-of-deformation 
𝛻𝑣(𝐱, 𝑡), and the motion will be described by the velocity 𝑣(𝐱, 𝑡). 
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Description of Motion

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

𝐱 = 𝜒(𝐗, 𝑡),  𝜒(𝑋, 0)  =  𝑋

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗
𝑑𝐱 = 𝐅 . 𝑑𝐗

𝐽 = 𝑑𝑒𝑡 𝐅 
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Measure of Stress
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S: Second Piola-Kirchhoff stress is defined to be the initial (transformed current) force per unit undeformed area.

𝝈: Cauchy Stress (True Stress) is defined to be the current force per 
unit deformed area.

P: First Piola-Kirchhoff stress tensor (known as the Lagrangian stress tensor or transpose of Nominal stress) is defined 
to be the current force per unit undeformed area.

𝝉: Kirchhoff stress 
𝜏 = 𝐽 𝜎

Push Forward of The Second Piola-Kirchhoff Stress 𝜏 = 𝐅. 𝐒. 𝐅T

Cauchy Stress Scaled by The Determinant of The Jacobian

𝝈 = 𝝈𝑇

𝐒 = 𝐒T
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Constitutive Models
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Elasticity

Plasticity

Linear Elasticity

Non-linear Elasticity

Kirchhoff Material

Cauchy Elastic Material

Green Elastic Material (Hyperelastic Material)

Hypoelastic Material

Stress As A Function Of The Deformation History Of The Body

All tensor quantities are defined in the corotational coordinate system that rotates with the material point
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Non-linear Elasticity
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Kirchhoff Material

Cauchy Elastic Material

Green Elastic Material (Hyperelastic Material)

Hypoelastic Material
Rate of Cauchy stress 
is related to the rate-
of-deformation

is path-independent and fully reversible 
where the stress is derived from a strain 

(or stored) energy potential

Second Piola-Kirchhoff stress Lagrangian (Green) strain

Elastic Moduli (Stiffness Tensor)

objective rate of the 
Cauchy stress

rate-of-deformation

objective function Depend on stress

incrementally 
linear and 
reversible

no dependence on the 
history of the motion

Right Cauchy-Green Deformation Tensor
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Objective Stress Rates
The rate of change of the internal virtual work is required for use in the Newton (Newton–Raphson) Method

Solver Element Type Constitutive Model Objective Rate

Abaqus/Standard

Solid (Continuum) All built-in and user-defined materials Jaumann

Structural 
(Shells, Membranes, Beams, Trusses)

All built-in and user-defined materials Green- Naghdi

Abaqus/Explicit

Solid (Continuum) All except hyperelastic, viscoelastic, brittle cracking, and VUMAT Jaumann

Solid (Continuum) Hyperelastic, viscoelastic, brittle cracking, and VUMAT Green- Naghdi

Structural 
(Shells, Membranes, Beams, Trusses)

All built-in and user-defined materials Green- Naghdi

𝑑

𝑑𝑡
𝐽𝛔 = 𝐂′: 𝐃 + 𝐽 𝐖. 𝛔 − 𝛔. 𝐖

Rate of change due to material response

Change of stress due to rotation
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Corotational Derivatives
Most General Form Of Linearized Material Behavior

𝐒 = 𝐂 ∶ 𝐄

Stiffness Tensor

𝐽𝐅−1. 𝝈. 𝐅−𝑇 = 𝐂 ∶ 𝐄 𝐽𝝈 = 𝐅 . 𝐂 ∶ 𝐄  . 𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 = ሶ𝐅 . 𝐂 ∶ 𝐄  . 𝐅𝑇 + 𝐅 . 𝐂 ∶ ሶ𝐄  . 𝐅𝑇 + 𝐅 . 𝐂 ∶ 𝐄  . ሶ𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 = 𝐋 . 𝐽𝝈 + 𝐽𝝈 . 𝐋𝑇 + 𝐅 . 𝐂 ∶ 𝐅𝑇 . 𝐃 . 𝐅 𝐄 . 𝐅𝑇

𝑑

𝑑𝑡
𝐽𝝈 − 𝐋 . 𝐽𝝈 − 𝐽𝝈 . 𝐋𝑇 = 𝐅 . 𝐅. 𝐂 . 𝐅𝑇 . 𝐅𝑇 ∶ 𝐃

Rigid Body Rotation Of 
The Stiffness Tensor

𝐂′:

𝑑∇

𝑑𝑡
𝐽𝝈 =

𝑑

𝑑𝑡
𝐽𝝈 − 𝐋 . 𝐽𝝈 − 𝐽𝝈 . 𝐋𝑇 = 𝐂′ ∶ 𝐃

𝑑∇ 𝐽

𝑑𝑡
𝐽𝝈 =

𝑑

𝑑𝑡
𝐽𝝈 − 𝐽 𝐖 . 𝝈 − 𝝈 . 𝐖 = 𝐂′ ∶ 𝐃

Lie Derivative

Jaumann Derivative

∇𝐯 = 𝐋 = ሶ𝐅𝐅−1

𝑑∇

𝑑𝑡
𝐽𝝈
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Corotational Derivatives
𝐃 =

1

2

𝜕𝐯

𝜕𝑥
+

𝜕𝐯

𝜕𝑥
 

𝑇

𝐖 =
1

2

𝜕𝐯

𝜕𝑥
−

𝜕𝐯

𝜕𝑥
 

𝑇
ሶ𝐞𝛼 = 𝛀 . 𝐞𝛼ሶ𝐞𝛼 = 𝐖 . 𝐞𝛼

𝛀 = ሶ𝐑 . 𝐑𝑇𝐅 = 𝐔 . 𝐑

Rigid Body Rotation In The Polar Decomposition Of The Deformation Gradient

Rate Associated With The Constitutive Response Caused By The Rigid Body Spin

Corotational Rate

Jaumann

Green-Naghdi
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The Principle of Virtual Displacement

ම

Ω

𝝈 ∶ ∇ 𝛿𝐯 𝑑𝑣 =  ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠

ම

Ω

𝝈 ∶ 𝛿𝐝 𝑑𝑣 =  ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠 𝐰 =
1

2
∇v 𝑇 − ∇v

∇𝐯 = 𝐝 + 𝐰
𝐝 =

1

2
∇v 𝑇 + ∇v

ම

Ω

𝝈 ∶ 𝛿
1

2
ሶ𝐅𝐅−1 + ሶ𝐅𝐅−1 𝑇

𝑑𝑣 =  ම

Ω

𝐟 . 𝛿𝐯 𝑑𝑣 + ඾

Γ

𝐭 . 𝛿𝐯 𝑑𝑠

“virtual” work rate

Rate-of-deformation

Rate-of-spin

∇𝐯 = 𝐋 = ሶ𝐅𝐅−1
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The Principle of Virtual Displacement

Kirchhoff stress tensor

For initial 
volume and area
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The Principle of Virtual Displacement
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Newton–Raphson Method

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations 

Higher Order Term 
Are Dropped

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝟎 ∆𝐝 = −
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝

−1

𝐑 𝐝𝑚, 𝑡𝑛+1
𝐝m+1 = 𝐝m + ∆𝐝

Jacobian Matrix 

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
=

𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
−

𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
Load Stiffness Matrix

Tangent Stiffness Matrix
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Abaqus Consistent Jacobian

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
𝐊int = ම

Ω

𝜕 𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

ම

Ω0

𝐽𝝈 ∶ 𝛿𝐃 𝑑𝑉 =  ම

Ω0

𝐟0 . 𝛿𝐕 𝑑𝑉 + ඾

Γ0

𝐭0. 𝛿𝐕 𝑑𝑆

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
𝐊ext = ම

Ω

𝜕 𝐟0. 𝛿𝐕

𝜕𝐃
𝑑𝑉 + ඾

Γ

𝜕 𝐭0 . 𝛿𝐕

𝜕𝐃
𝑑𝑆

For initial 
volume and area
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Abaqus Consistent Jacobian

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝑑𝑉 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗 +

𝜕 𝛿𝐷𝑖𝑗

𝜕𝐷𝑘𝑙
𝐽𝜎𝑖𝑗  𝑑𝑉 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗 + 𝛿I𝑖𝑗𝑘𝑙 (𝐽𝜎𝑖𝑗) 𝑑𝑉

𝐊int = ම

Ω

𝜕 𝐽𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

𝐊𝑖𝑗𝑘𝑙 = ම

Ω0

𝜕 𝐽𝜎𝑖𝑗

𝜕𝐷𝑘𝑙
 𝛿𝐷𝑖𝑗  𝑑𝑉
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Abaqus User Subroutines To Define a Material's Mechanical Behavior

𝑑

𝑑𝑡
𝐽𝛔 = 𝐂′: 𝐃 + 𝐽 𝐖. 𝛔 − 𝛔. 𝐖

Rate of change due to material response

Change of stress due to rotation
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Isotropic Isothermal Linear Elasticity

Definition Of 
The Constitutive 

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only 
(In Corotational Framework)

Transformation of the 
constitutive rate equation 

into an incremental 
equation

Forward Euler 
(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

ሶ𝜎𝐽
𝑖𝑗 = 𝜆𝛿𝑖𝑗 ሶ𝜀𝑘𝑘 + 2𝜇 ሶ𝜀𝑖𝑗

Jaumann 
(corotational) 

rate form

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘 + 2𝜇Δ𝜀𝑖𝑗

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗

The time increment must be controlled

The algorithm is more complicated and often requires 
local iteration.

However, there is usually no stability limit.
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Isotropic Isothermal Linear Elasticity
Forward Euler 

(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘 + 2𝜇Δ𝜀𝑖𝑗

𝑦 𝑡0 + ℎ = 𝑦 𝑡0 + ℎ ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =
𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

𝑦 𝑡1 − ℎ = 𝑦 𝑡1 − ℎ ሶ𝑦 𝑡1 ሶ𝑦 𝑡1 =
𝑦 𝑡1 − 𝑦 𝑡1 − ℎ = 𝑡0

ℎ

𝑦 𝑡0 +
ℎ

2
= 𝑦 𝑡0 +

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =

𝑦 𝑡0 +
ℎ
2 − 𝑦 𝑡0 −

ℎ
2

ℎ

𝑦 𝑡0 −
ℎ

2
= 𝑦 𝑡0 −

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 +

ℎ

2
=

𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ
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Isotropic Isothermal Linear Elasticity
𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗Index Notation

Voigt Notation

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=

2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=
𝐸

1 + 𝜈 1 − 2𝜈

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 /2 0 0

0 0 0 0 1 − 2𝜈 /2 0

0 0 0 0 0 1 − 2𝜈 /2

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23
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Newton–Raphson Method

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations 

Higher Order Term 
Are Dropped

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝟎 ∆𝐝 = −
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝

−1

𝐑 𝐝𝑚, 𝑡𝑛+1
𝐝m+1 = 𝐝m + ∆𝐝

Jacobian Matrix 

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
=

𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
−

𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊int =
𝜕𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝

𝐊ext =
𝜕𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1

𝜕𝐝
Load Stiffness Matrix

Tangent Stiffness Matrix
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The Finite Element Method

𝐊𝑒 𝐮𝑒 𝐮𝑒 = 𝐅𝑒 R = 𝐊𝑒 𝐮𝑒 𝐮𝑒 − 𝐅𝑒
Iterative procedure
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Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE
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Isotropic Non-isothermal Linear Elasticity

Definition Of 
The Constitutive 

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only 
(In Corotational Framework)

Transformation of the constitutive rate 
equation into an incremental equation

ሶ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗 ሶ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇 ሶ𝜀𝑖𝑗

𝑒𝑙 + ሶ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2 ሶ𝜇𝜀𝑖𝑗

𝑒𝑙

Jaumann 
(corotational) 

rate form

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

𝑒𝑙

𝜎𝑖𝑗 = 𝜆 𝑇 𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2𝜇 𝑇 𝜀𝑖𝑗

𝑒𝑙
𝜀𝑖𝑗

𝑒𝑙 = 𝜀𝑖𝑗 − 𝛼𝑇𝛿𝑖𝑗

ሶ𝜀𝑖𝑗
𝑒𝑙 = ሶ𝜀𝑖𝑗 − 𝛼 ሶ𝑇𝛿𝑖𝑗

Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗
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Isotropic Non-isothermal Linear Elasticity

Definition Of 
The Stress Rate Only 

(In Corotational Framework)

Transformation of the 
constitutive rate equation 

into an incremental equation

Forward Euler 
(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

Jaumann (corotational) rate form

The time increment must be 
controlled

The algorithm is more complicated 
and often requires local iteration.

However, there is usually no 
stability limit.
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Isotropic Non-isothermal Linear Elasticity
Forward Euler 

(explicit integration)

Backward Euler
(implicit integration)

Midpoint Method

𝑦 𝑡0 + ℎ = 𝑦 𝑡0 + ℎ ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =
𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

𝑦 𝑡1 − ℎ = 𝑦 𝑡1 − ℎ ሶ𝑦 𝑡1 ሶ𝑦 𝑡1 =
𝑦 𝑡1 − 𝑦 𝑡1 − ℎ = 𝑡0

ℎ

𝑦 𝑡0 +
ℎ

2
= 𝑦 𝑡0 +

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 =

𝑦 𝑡0 +
ℎ
2 − 𝑦 𝑡0 −

ℎ
2

ℎ

𝑦 𝑡0 −
ℎ

2
= 𝑦 𝑡0 −

ℎ

2
 ሶ𝑦 𝑡0 ሶ𝑦 𝑡0 +

ℎ

2
=

𝑦 𝑡0 + ℎ − 𝑦 𝑡0

ℎ

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗
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Isotropic Non-isothermal Linear Elasticity

Index Notation

Voigt Notation

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=

2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

𝜎11

𝜎22

𝜎33

𝜎12

𝜎13

𝜎23

=
𝐸

1 + 𝜈 1 − 2𝜈

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 /2 0 0

0 0 0 0 1 − 2𝜈 /2 0

0 0 0 0 0 1 − 2𝜈 /2

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀13

2𝜀23

Δ𝜎𝑖𝑗
𝐽

= 𝜆𝛿𝑖𝑗Δ𝜀𝑘𝑘
𝑒𝑙 + 2𝜇Δ𝜀𝑖𝑗

𝑒𝑙 + Δ𝜆𝛿𝑖𝑗𝜀𝑘𝑘
𝑒𝑙 + 2Δ𝜇𝜀𝑖𝑗

𝑒𝑙 Δ𝜀𝑖𝑗
𝑒𝑙 = Δ𝜀𝑖𝑗 − 𝛼Δ𝑇𝛿𝑖𝑗
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Linear Interpolation

𝐸 𝑇 = 𝑁1𝐸 𝑇1 + 𝑁2𝐸 𝑇2

𝜈 𝑇 = 𝑁1𝜈 𝑇1 + 𝑁2𝜈 𝑇2

𝑁2 =
𝑇 − 𝑇1

𝑇2 − 𝑇1

𝑁1 =
𝑇2 − 𝑇

𝑇2 − 𝑇1

𝑁1 + 𝑁2 = 1

𝐸 𝑇 − 𝐸 𝑇1 =
𝐸 𝑇2 − 𝐸 𝑇1

𝑇2 − 𝑇1 
𝑇 − 𝑇1 𝐸 𝑇 =

𝑇 − 𝑇1

𝑇2 − 𝑇1 
𝐸 𝑇2 −

𝑇 − 𝑇1

𝑇2 − 𝑇1 
𝐸 𝑇1 + 𝐸 𝑇1

𝐸 𝑇 =
𝑇2 − 𝑇

𝑇2 − 𝑇1 
𝐸 𝑇1 +  

𝑇 − 𝑇1

𝑇2 − 𝑇1 
𝐸 𝑇2

𝑁1 𝑁2
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Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE
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Green Elastic Material (Hyperelastic Material)

Definition Of 
The Constitutive 

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only 
(In Corotational Framework)

Transformation of the 
constitutive rate equation 

into an incremental 
equation

Forward Euler 
(explicit integration)

Backward Euler
(implicit integration)

Midpoint MethodJaumann 
(corotational) 

rate form



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 201

Green Elastic Material (Hyperelastic Material)

𝑈 ҧ𝐼1, ҧ𝐼2, 𝐼3 = 𝐽𝑒𝑙  = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1
𝐽𝑒𝑙 − 1

2

ҧ𝐼1 = ҧ𝜆1
2

+ ҧ𝜆2
2

+ ҧ𝜆3
2

= 𝑡𝑟 ത𝐵 = 𝑡𝑟( ҧ𝐶)

ҧ𝐼2 = ҧ𝜆1
−2

+ ҧ𝜆2
−2

+ ҧ𝜆3
−2

=
1

2
𝑡𝑟 ത𝐵 2 − 𝑡𝑟  ത𝐵. ത𝐵 =

1

2
𝑡𝑟 ҧ𝐶 2 − 𝑡𝑟  ҧ𝐶. ҧ𝐶

𝐼3 = 𝐽𝑒𝑙

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗

Deformation Gradient Distortion Gradient

ത𝐅 = 𝐽−
1
3 𝐅

Volume-preserving, Or Isochoric Part of F

Jacobian Determinant

Deviatoric Right Cauchy-
green Deformation Tensor

Deviatoric Left Cauchy-
green Deformation Tensor

ത𝐂 = ത𝐅𝑇 . ത𝐅

ഥ𝐁 = ത𝐅 . ത𝐅𝑇

Compressible Mooney–Rivlin Hyperelasticity

ҧ𝜆𝑖: Deviatoric Stretches

ҧ𝐼𝑖 ∶Deviatoric Invariants

𝐽𝑒𝑙: Elastic Volume Ratio

𝐽: Total Volume Ratio

𝐽𝑒𝑙 =
𝐽

𝐽𝑡ℎ
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Compressible Mooney–Rivlin Hyperelasticity

𝑈 ҧ𝐼1, ҧ𝐼2, 𝐼3 = 𝐽𝑒𝑙  = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1
𝐽𝑒𝑙 − 1

2

ҧ𝐼1 = ҧ𝜆1
2

+ ҧ𝜆2
2

+ ҧ𝜆3
2

= 𝑡𝑟 ത𝐵 = 𝑡𝑟( ҧ𝐶)

ҧ𝐼2 = ҧ𝜆1
−2

+ ҧ𝜆2
−2

+ ҧ𝜆3
−2

=
1

2
𝑡𝑟 ത𝐵 2 − 𝑡𝑟  ത𝐵. ത𝐵 =

1

2
𝑡𝑟 ҧ𝐶 2 − 𝑡𝑟  ҧ𝐶. ҧ𝐶

𝐼3 = 𝐽𝑒𝑙

ҧ𝜆𝑖: Deviatoric Stretches

ҧ𝐼𝑖 ∶Deviatoric Invariants

𝐽𝑒𝑙: Elastic Volume Ratio

𝐽: Total Volume Ratio

𝐒 = 2
𝜕𝑈

𝜕𝐂
= 2

𝜕𝑈

𝜕 ҧ𝐼1

𝜕 ҧ𝐼1

𝜕𝐂
+

𝜕𝑈

𝜕 ҧ𝐼𝟐

𝜕 ҧ𝐼𝟐

𝜕𝐂
+

𝜕𝑈

𝜕𝐽𝑒𝑙

𝜕𝐽𝑒𝑙

𝜕𝐂
𝛔 =

1

𝐽
𝐅. 𝐒. 𝐅𝑇

𝐽𝑒𝑙 =
𝐽

𝐽𝑡ℎ

𝜎𝑖𝑗 =
2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1
𝐽𝑒𝑙 − 1 𝛿𝑖𝑗
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Compressible Mooney–Rivlin Hyperelasticity
𝜎𝑖𝑗 =

2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1
𝐽𝑒𝑙 − 1 𝛿𝑖𝑗

𝛿 𝐽𝜎𝑖𝑗 − 𝐽 𝛿𝑊𝑖𝑘𝜎𝑘𝑗 + 𝜎𝑖𝑗𝛿𝑊𝑘𝑗 = 𝐽𝐶𝑖𝑗𝑘𝑙𝛿𝐷𝑘𝑙

𝛿𝐷𝑖𝑗 =
1

2
𝛿𝐹𝑖𝑚𝐹𝑚𝑗

−1 + 𝐹𝑚𝑖
−1𝛿𝐹𝑗𝑚

𝛿𝑊𝑖𝑗 =
1

2
𝛿𝐹𝑖𝑚𝐹𝑚𝑗

−1 − 𝐹𝑚𝑖
−1𝛿𝐹𝑗𝑚

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝐶10

1

2
𝛿𝑖𝑘

ത𝐵𝑗𝑙 + ത𝐵𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙
ത𝐵𝑗𝑘 + ത𝐵𝑖𝑙𝛿𝑗𝑘 −

2

3
𝛿𝑖𝑗

ത𝐵𝑘𝑙 −
2

3
ത𝐵𝑖𝑗𝛿𝑘𝑙 +

2

9
𝛿𝑖𝑗𝛿𝑘𝑙

ത𝐵𝑚𝑚 +
2

𝐷1
2𝐽 − 1 𝛿𝑖𝑗𝛿𝑘𝑙

𝐂𝑒 = 4𝐁 .
𝜕2𝑈

𝜕𝐁 ⨂ 𝜕𝐁
 . 𝐁

𝐂 =
1

𝐽
𝐂𝑒 +

1

2
𝝈 ഥ⨂ 𝐈 + 𝐈 ഥ⨂ 𝝈 + 𝝈 ⨂ 𝐈 + 𝐈 ⨂ 𝝈

𝐶𝑖𝑗𝑘𝑙
𝑒 = 4𝐵𝑖𝑚

𝜕2𝑈

𝜕𝐵𝑚𝑗  𝜕𝐵𝑘𝑛
 𝐵𝑛𝑙
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Compressible Mooney–Rivlin Hyperelasticity

The convention used for stress and strain components in Abaqus is that they are ordered:
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Compressible Neo-Hookean Hyperelasticity

𝐂 =
1

𝐽
𝜆 𝐈 ⊗ 𝐈 + 𝜇 − 𝜆 𝑙𝑛 𝐽𝑒 𝐈 ഥ⨂ 𝐈 + 𝐈 ⨂ 𝐈 +

1

2
𝝉 ഥ⨂ 𝐈 + 𝐈 ഥ⨂ 𝝉 + 𝝉 ⨂ 𝐈 + 𝐈 ⨂ 𝝉

𝜓 =
1

2
𝜆 𝑙𝑛 𝐽𝑒

2
+

1

2
𝜇 𝐼1 − 3 − 2𝑙𝑛 𝐽𝑒

𝛕 = 2
𝜕𝜓

𝜕𝐁
. 𝐁 = 𝐅. 𝐒. 𝐅𝑇 = 𝜆 𝑙𝑛 𝐽𝑒 − 𝜇  𝐈 + 𝜇 𝐁

𝜆 =
𝐸𝜈

1 + 𝜈 1 − 2𝜈
𝜇 =

𝐸

2 1 + 𝜈



206

UMAT

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutines To Define a Material's Mechanical Behavior

For Total-form Constitutive Laws

For Rate-form Constitutive Laws

DDSDDE
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Green Elastic Material (Hyperelastic Material)

Definition Of 
The Constitutive 

Equation

Explicit Definition Of Cauchy Stress

Definition Of The Stress Rate Only 
(In Corotational Framework)

Transformation of the 
constitutive rate equation 

into an incremental 
equation

Forward Euler 
(explicit integration)

Backward Euler
(implicit integration)

Midpoint MethodJaumann 
(corotational) 

rate form

Total-form constitutive laws

Rate-form constitutive laws
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Almost Incompressible or Fully Incompressible Elastic Materials

In user subroutine UMAT incompressible materials can be modeled via a 
penalty method; that is, you ensure that a finite bulk modulus is used.

The bulk modulus should be large enough 
to model incompressibility sufficiently but 

small enough to avoid loss of precision

As a general guideline, the bulk modulus should 
be about 104 − 106 times the shear modulus

Almost Incompressible 

The tangent bulk modulus

Option 1

Option 2

For all cases the first option should be to use user subroutine 
UHYPER instead of user subroutine UMAT when it is possible to do so

few different options are 
available depending on 

whether hybrid or nonhybrid 
elements are used
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Almost Incompressible or Fully Incompressible Elastic Materials

In user subroutine UMAT incompressible materials can be modeled via a 
penalty method; that is, you ensure that a finite bulk modulus is used.

Option 1

Option 2

For all cases the first option should be to use user subroutine 
UHYPER instead of user subroutine UMAT when it is possible to do so

few different options are 
available depending on 

whether hybrid or nonhybrid 
elements are used

Hybrid Element Nonhybrid Element 

Abaqus/Standard, by default, replaces the pressure stress calculated 
from your definition of STRESS with that derived from the Lagrange 

multiplier and modifies the Jacobian appropriately

Suitable for material models that 
use an incremental formulation 

(metal plasticity)

but is not consistent with a total 
formulation that is commonly used 

for hyperelastic materials

lead to convergence problems
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Hybrid Elements
Hybrid Elements are used to Modeling Near-Incompressible and Fully incompressible Materials

For a fully incompressible material 
the bulk elastic modulus is infinite

Infinite Stiffness Matrix

For a nearly incompressible material 
the stiffness matrix become ill 

conditioned, so that small rounding 
errors during the computation result 

in large errors in the solution

Hydrostatic Stress distribution as an 
additional unknown variable, which 

must be computed at the same time as 
the displacement field
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Almost Incompressible or Fully Incompressible Elastic Materials
Hybrid Elements

Abaqus/Standard, by default, replaces the pressure 
stress calculated from your definition of STRESS 

with that derived from the Lagrange multiplier and 
modifies the Jacobian appropriately

Hybrid 
Formulation

Total 

Incremental (default)

(e.g., metal plasticity) 

Assumes that the response of the material can be 
written as the sum of its deviatoric and volumetric parts 

and that these parts are decoupled from each other

(e.g., hyperelastic materials) 

Almost 
Incompressible

Fully 
Incompressible

Only the deviatoric stress and Jacobian need to be 
defined for a fully incompressible material response 

through user subroutine UMAT

Total Lagrange Multiplier–based Formulation

Incremental Lagrange Multiplier–based Formulation

Alternate Total Formulation
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Total Hybrid Formulation

𝑈 ҧ𝐼1, ҧ𝐼2, መ𝐽 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1

መ𝐽 − 1
2

𝐒 =
2

𝐽
DEV

𝜕𝑈

𝜕 ҧ𝐼1
+ ҧ𝐼1

𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 −
𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 . ഥ𝐁

Ƹ𝑝 = −
𝜕𝑈𝑣𝑜𝑙

𝜕 መ𝐽

STRESS (NTENS+2):

STRESS (NTENS+3):

෡𝐾 = −𝐽
𝜕 Ƹ𝑝

𝜕 መ𝐽
= 𝐽

𝜕2𝑈𝑣𝑜𝑙

𝜕 መ𝐽 2

𝜕 ෡𝐾

𝜕 መ𝐽
= 𝐽

𝜕3𝑈𝑣𝑜𝑙

𝜕 መ𝐽 3

STRESS (NTENS+1): መ𝐽Read only:

Write only:

The volumetric part of the 
strain energy density potential

Hydrostatic/Volumetric Part Of The Stress Tensor

Deviatoric Part Of The Stress Tensor

The Total Hybrid Formulation assumes that the response of the material can be written as the sum of its deviatoric 
and volumetric parts and that these parts are decoupled from each other

෡𝐾 = 𝐽
2

𝐷1

𝜕 ෡𝐾

𝜕 መ𝐽
= 0

Alternate Variable

Stress
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Total Hybrid Formulation 

𝑈 ҧ𝐼1, ҧ𝐼2, መ𝐽 = 𝐶10
ҧ𝐼1 − 3 + 𝐶01

ҧ𝐼2 − 3 +
1

𝐷1

መ𝐽 − 1
2

The volumetric part of the 
strain energy density potential

The Total Hybrid Formulation assumes that the response of the material can be written as the sum of its deviatoric 
and volumetric parts and that these parts are decoupled from each other

𝜎𝑖𝑗 =
2

𝐽
𝐶10

ത𝐵𝑖𝑗 −
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘 +
2

𝐽
𝐶01

ത𝐵𝑘𝑘
ത𝐵𝑖𝑗 −

1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑘
2 − ത𝐵𝑖𝑘

ത𝐵𝑘𝑗 +
1

3
𝛿𝑖𝑗

ത𝐵𝑘𝑛
ത𝐵𝑛𝑘 +

2

𝐷1

መ𝐽 − 1 𝛿𝑖𝑗

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝐶10

1

2
𝛿𝑖𝑘

ത𝐵𝑗𝑙 + ത𝐵𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙
ത𝐵𝑗𝑘 + ത𝐵𝑖𝑙𝛿𝑗𝑘 −

2

3
𝛿𝑖𝑗

ത𝐵𝑘𝑙 −
2

3
ത𝐵𝑖𝑗𝛿𝑘𝑙 +

2

9
𝛿𝑖𝑗𝛿𝑘𝑙

ത𝐵𝑚𝑚 + 𝐽
2

𝐷1
𝛿𝑖𝑗𝛿𝑘𝑙

𝐒 =
2

𝐽
DEV

𝜕𝑈

𝜕 ҧ𝐼1
+ ҧ𝐼1

𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 −
𝜕𝑈

𝜕 ҧ𝐼2

ഥ𝐁 . ഥ𝐁

Ƹ𝑝 = −
𝜕𝑈𝑣𝑜𝑙

𝜕 መ𝐽

Stress

Hydrostatic/Volumetric Part Of The Stress Tensor

Deviatoric Part Of The Stress Tensor

Alternate Variable

෡𝐾𝛿𝑖𝑘
ത𝐵𝑗𝑙 + ത𝐵𝑖𝑙𝛿𝑗𝑘



Objectivity and Material Symmetry
The principle of objectivity or material-frame indifference states that material properties are independent of 

superimposed rigid-body motions. 

For Hyperelastic materials, the principle of objectivity implies that 𝑊 only depends on 𝐅 through 𝐂, so 
that we can write 𝑊 𝐅 = −𝑊(𝐂). 

Hyperelastic Materials

𝑊 𝐗, 𝑡 = 𝑊 𝐹 𝐗, 𝑡 , 𝐗 = −𝑊 𝐂 𝐗, 𝑡 , 𝐗

A material is said to be symmetric with respect to a linear transformation if the reference configuration is mapped 
by this transformation to another configuration which is mechanically indistinguishable from it



Hyperelastic Materials

𝐓 = 2𝐽
𝜕𝑊

𝜕𝐈3
− 𝑝 𝐈 +

2

𝐽

𝜕𝑊

𝜕𝐈1
+

2

𝐽

𝜕𝑊

𝜕𝐈2
𝐈1 𝐁 + −

2

𝐽

𝜕𝑊

𝜕𝐈2
𝑩𝟐

𝑝 = 0 for compressible materials and 𝐽 = 𝐼3 = 1 for incompressible materials.

Alternative Representation

𝐓 = 2𝐽
𝜕𝑊

𝜕𝐈3
−

2𝐈2

𝐽

𝜕𝑊

𝜕𝐈2
− 𝑝 𝐈 +

2

𝐽

𝜕𝑊

𝜕𝐈1
𝐁 + −2

𝜕𝑊

𝜕𝐈2
𝑩−𝟏

Cayley–Hamilton theorem

𝑝 = 0 for compressible materials and 𝐽 = 𝐼3 = 1 for incompressible materials.



Choice of Strain-Energy Functions

Neo-Hookean Materials

Incompressible

Incompressible
Mooney–Rivlin 

Materials

Incompressible
Ogden Materials

Incompressible
Fung–Demiray Materials
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UHYPER
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Abaqus User Subroutines To Define a Hyperelastic Material



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 218

Hyperelastic Material

𝑈 = 𝑓 𝐼1, 𝐼2, 𝐼3 𝑈 = ഥ𝑈𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐 + 𝑈ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝑓 ҧ𝐼1, ҧ𝐼2 𝑓 𝐽 = 𝐼3 

𝐅 = 𝛻0𝐱 =
𝜕𝐱 𝐗, 𝑡

𝜕𝐗

Deformation Gradient Distortion Gradient

ത𝐅 = 𝐽−
1
3 𝐅

Volume-preserving, Or Isochoric Part of F

Jacobian Determinant

Deviatoric Right Cauchy-
green Deformation Tensor

Deviatoric Left Cauchy-
green Deformation Tensor

ത𝐂 = ത𝐅𝑇 . ത𝐅

ഥ𝐁 = ത𝐅 . ത𝐅𝑇
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Variables to Be Defined

U(1)

U(2)

Strain Energy Density Function
Compressible

Incompressible

At least one derivative involving 𝐽 should be nonzero

All derivatives involving 𝐽 will be ignored

The deviatoric part of the strain energy density of the primary material response

This quantity is needed only if the current material definition also includes Mullins effect
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Mullins Effect
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Variables Passed in for Information

UI1

UI2

UI3

𝜕 ഥ𝑈

𝜕 ҧ𝐼2

𝜕 ഥ𝑈

𝜕 ҧ𝐼1

UI1(1)

UI1(2)

UI1(3)
𝜕 ഥ𝑈

𝜕𝐽

UI2(1) UI2(3)UI2(2)

UI2(4) UI2(5) UI2(6)

𝜕2 ഥ𝑈

𝜕 ҧ𝐼 1
 2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕𝐽

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕 ҧ𝐼2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼 2
 2

𝜕2 ഥ𝑈

𝜕𝐽2

𝜕2 ഥ𝑈

𝜕 ҧ𝐼2𝜕𝐽

UI3(1) UI3(3)UI3(2)

UI3(4) UI3(5) UI3(6)

𝜕3 ഥ𝑈

𝜕 ҧ𝐼 1
 2𝜕𝐽

𝜕3 ഥ𝑈

𝜕 ҧ𝐼2𝜕𝐽2

𝜕3 ഥ𝑈

𝜕 ҧ𝐼1𝜕𝐽2

𝜕3 ഥ𝑈

𝜕 ҧ𝐼 2
 2𝜕𝐽

𝜕2 ഥ𝑈

𝜕 ҧ𝐼1𝜕 ҧ𝐼2𝜕𝐽

𝜕3 ഥ𝑈

𝜕𝐽3
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Variables Passed in for Information

STATEV
Array containing the user-defined solution-dependent state variables at this point. These are 
supplied as values at the start of the increment or as values updated by other user subroutines and 
must be returned as values at the end of the increment.



223

UHYPER_STRETCH
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Abaqus User Subroutines To Define a Hyperelastic Material in Term of Principal Stretches
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Variables to Be Defined
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Variables Passed in for Information
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User-defined Element
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Abaqus User Subroutines To Define An 
Element With Access to Abaqus Materials

UELMAT is available for a subset of the procedures supported for 
user subroutine UEL

UEL

UELMAT

UELMAT can access some of the Abaqus 
materials through utility routines

MATERIAL_LIB_HT

MATERIAL_LIB_MECH 

Abaqus User Subroutines To Define An Element
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UELMAT
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Abaqus User Subroutines To Define An (Nonlinear) Element With Access to Abaqus Materials

... 

*USER ELEMENT, TYPE=U1, NODES=#, COORDINATES=#, PROPERTIES=#, I PROPERTIES=#, 

VARIABLES=#, UNSYMM, INTEGRATION=#, TENSOR=.. .

*ELEMENT, TYPE=U1, ELSET=SOLID

 

*UEL PROPERTY, ELSET=SOLID, MATERIAL=MAT 

*MATERIAL, NAME=MAT 

Number of element integration points

THREED (3D stress/displacement or heat transfer)
TWOD (2D heat transfer)
PSTRAIN (plane strain)
PSTRESS (plane stress)

Specifies the 
element type

Data line(s)

Data line(s)

Data line(s)
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UELMAT
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Abaqus User Subroutines To Define An (Nonlinear) Element With Access to Abaqus Materials
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Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of 
load vectors

NRHS=1 in most nonlinear problems

NRHS=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*) 
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Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element 

The maximum of 
Maximum number of coordinates required at any node point 

Value of the largest active degree of freedom
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Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 10000

𝑛 ≤ 9000
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Variables Passed in for Information
MATERIALLIB A variable that must be passed to the utility 

routines performing material point computations

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

*  DEFGRAD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

     ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

*       NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

     ...

MATERIAL_LIB_MECH

MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

*       RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

*       COORDS(3)

     ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

*       FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

*       DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

     ...

Accessing 
Abaqus Materials
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Variables Passed in for Information
PROPS(*)

A floating point array containing the NPROPS real property values defined for use 
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use 
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element 
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to 
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value 
n in JDLTYP

Loads of type U𝑛NU are identified by the negative 
integer value −n in JDLTYP
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Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(1) Procedure Type

General Nonlinear 
Procedures

Linear Perturbation 
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1
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Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation
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Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 237

Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual 
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀 ) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only. 

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation 
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures
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Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined
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𝑈 (𝐾1 ) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement 
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1 )
Time rate of change of the variables (velocities, rates of rotation). 
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1 ) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements, 
rotations, temperatures, depending on the degree of freedom) at the nodes of the 
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)
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Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ 
distributed load of  in the base state. 

DDLMAG

General Nonlinear Steps 

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ  
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the 
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL. 

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps 
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the 
distributed load for the current time increment

The load magnitude is defined in UEL; therefore, 
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the 
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL
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Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature 
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the 
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of 
The Array

First (K1)
1

2

The value of the field variable at the end of the increment 

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element
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Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array 
depend on the solution procedure currently being used when UEL is called, as indicated by the 
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the right-hand-

side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations 

Jacobian Matrix 

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX RHS

NDOFEL× NDOFEL DU(MLVARX,*) 
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the 
right-hand-side vectors of the overall system of equations. 

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom 
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most 
Nonlinear 
Analysis

RHS should contain the residual vector
(external forces minus internal forces) 

Modified Riks 
Static Procedure 

Increments of external load on the element

NRHS=1 

NRHS=2 

Direct Steady-state 
Analyses

Mode-based Procedures

NRHS=2 

The first column in RHS 

The second column in RHS 

Residual Vector (external forces minus internal forces) 

The first column in RHS 

The second column in RHS 

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array 

All nonzero entries in AMATRX should be 
defined, even if the matrix is symmetric

The matrix is unsymmetric 

The matrix is symmetric 

AMATRX

AMATRX
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the 
current increment. They should be updated to be the values at the end of the increment, 
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They 
should be returned containing perturbation values if you want to output such quantities.

General 
Nonlinear Steps

Linear 
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 247

Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General 

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the 
current increment. They should be updated to the values at the end of the current increment

Linear 
Perturbation Steps 

Mode-based 
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy” 

Electrostatic energy

Associated with such effects as artificial stiffness introduced to 
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero 
increment output. In this case the energy values returned will be 
used only for output purposes and are not updated permanently.
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Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time 
incrementation is chosen

This variable allows you to provide input to the automatic 
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
( LFLAGS(3)=1 ) 

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored 
unless CONVERT SDI=YES is specified for this step

If automatic time 
incrementation is not selected 

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration
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Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again 
with a smaller time increment. The suggested new time increment provided 

to the automatic time integration algorithms is PNEWDT × DTIME, where 
the PNEWDT used is the minimum value for all calls to user subroutines 

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration 
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested 
new time increment provided to the automatic time integration 

algorithms is PNEWDT × DTIME, where the PNEWDT used is the 
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:
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Accessing Abaqus Materials

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

*  DFGRD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

     ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

*       NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

     ...

MATERIAL_LIB_MECH

MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

*       RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

*       COORDS(3)

     ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

*       FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

*       DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

     ...
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MATERIAL_LIB_MECH

DIMENSION STRESS(*),DDSDDE(NTENS,*),STRAN(*),DSTRAN(*),

*  DFGRD(3,3),PREDEF(NPREDF),DPREDEF(NPREDF),COORDS(3)

     ...

 CALL MATERIAL_LIB_MECH(MATERIALLIB,STRESS,DDSDDE,STRAN,DSTRAN,

*      NPT,DVDV0,DVMAT,DFGRD,PREDEF,DPREDEF,NPREDF,CELENT,COORDS)

     ...

Returns the stress and the material Jacobian at the element material point
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MATERIAL_LIB_MECH

MATERIALLIB Variable containing information about the Abaqus material. This variable is passed into user subroutine UELMAT

STRAN

DSTRAN

NPT

DVDV0

Strain at the beginning of the increment

Strain increment

Integration point number

Ratio of the current volume to the reference volume at the integration point

Variables to Be Provided to the Utility Routine

DVMAT Volume at the integration point
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MATERIAL_LIB_MECH

DPREDEF

NPREDF

CELENT

COORDS

Variables to Be Provided to the Utility Routine

PREDEF

DFGRD Array containing the deformation gradient at the end of the increment

Array of interpolated values of predefined field variables at the integration point at the start of the increment

Array of increments of predefined field variables

Number of predefined field variables, including temperature

Characteristic element length

An array containing the coordinates of this point



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 255

MATERIAL_LIB_MECH

DDSDDE

Variables Returned from the Utility Routine

STRESS Stress tensor at the end of the increment

Jacobian matrix of the constitutive model

DDSDDE(i, j) defines the change in the 𝑖𝑡ℎ stress component at the end of the time increment caused by an infinitesimal perturbation 
of the 𝑗𝑡ℎ component of the strain increment array
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MATERIAL_LIB_HT

DIMENSION PREDEF(NPREDEF),DPREDEF(NPREDEF),DTEMDX(*),

*       RHODUDG(*),FLUX(*),DFDT(*),DFDG(NDIM,*),DRPLDT(*),

*       COORDS(3)

     ...

 CALL MATERIAL_LIB_HT(MATERIALLIB,RHOUDOT,RHODUDT,RHODUDG,

*       FLUX,DFDT,DFDG,RPL,DRPLDT,NPT,DVMAT,PREDEF,

*       DPREDEF,NPREDF,TEMP,DTEMP,DTEMDX,CELENT,COORDS)

     ...

Returns heat fluxes, internal energy time derivative, volumetric heat generation rate, and their derivatives at the element material point
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MATERIAL_LIB_HT

MATERIALLIB Variable containing information about the Abaqus material. This variable is passed into user subroutine UELMAT

NPT Integration point number

Variables to Be Provided to the Utility Routine

DPREDEF

NPREDF

PREDEF Array of interpolated values of predefined field variables at the integration point at the start of the increment

Array of increments of predefined field variables

Number of predefined field variables, including temperature

DVMAT Volume at the integration point
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MATERIAL_LIB_HT

CELENT

COORDS

Variables to Be Provided to the Utility Routine

DTEMDX

Temperature at the integration point at the start of the increment, 𝜃

Characteristic element length

An array containing the coordinates of this point

TEMP

Spatial gradients of temperature, 𝜕𝜃/𝜕𝑥 the end of the increment
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MATERIAL_LIB_HT

RHODUDT

Variables Returned from the Utility Routine

RHOUDOT Time derivative of the internal thermal energy per unit mass, U, multiplied by density at the end of increment

Variation of internal thermal energy per unit mass with respect to temperature multiplied by density 
evaluated at the end of the increment

RHODUDG

FLUX

𝜌
𝑑𝑈

𝑑𝑡

𝜌
𝜕𝑈

𝜕𝜃

Variation of internal thermal energy per unit mass with respect to the spatial gradients of temperature 
multiplied by density at the end of the increment

𝜌
𝜕𝑈

𝜕
𝜕𝜃
𝜕𝑥

Heat flux vector, 𝒇, at the end of the increment
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MATERIAL_LIB_HT

DFDG

Variables Returned from the Utility Routine

DFDT Variation of the heat flux vector with respect to temperature evaluated at the end of the increment

Variation of the heat flux vector with respect to the spatial gradients of temperature at the end of the 
increment

RPL

DRPLDT

𝜕𝒇

𝜕𝜃

𝜕𝒇

𝜕
𝜕𝜃
𝜕𝑥

Volumetric heat generation per unit time at the end of the increment

Variation of RPL with respect to temperature
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User-defined Element
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Modeling nonstructural physical processes that are coupled to structural behavior

Applying solution-dependent loads

Modeling active control mechanisms 

When user-defined 
elements is useful ?

Advantages of the User-defined 
element Subroutine instead of 
writing a complete FEA code

ABAQUS offers a large selection of structural 
elements, analysis procedures, and modeling tools

ABAQUS offers pre- and postprocessing

Maintaining and porting subroutines is much easier than 
maintaining and porting a complete finite element program
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User-defined Element
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A linear user element can be created in Abaqus/Standard by defining the stiffness and mass matrices directly using 
the *MATRIX option

A nonlinear finite element is implemented in user subroutine UEL (Abaqus/Standard), UELMAT (Abaqus/Standard), 
or VUEL (Abaqus/Explicit)

Multiple user elements can be implemented in a single UEL/UELMAT/VUEL routine and can be utilized together

Abaqus/Standard provides 
two user subroutines for 
defining a user element

UEL

UELMAT
Provides access to a 

subset of material models 
available in Abaqus

Need not code the constitutive 
law in the user element routine

Available for a subset of the 
procedures supported for a UEL
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User-defined Element
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The number of nodes on the element

The number of coordinates present at each node

The degrees of freedom active at each node

Characteristics of 
the User element

Element Properties 
must be determined

The number of element properties to be defined external to the UEL

The number of solution-dependent state variables (SDVs) to be stored per element

The number of (distributed) load types available for the element
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User-defined Element
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𝐹𝑁 = 𝐹𝑒𝑥𝑡
𝑁 − 𝐹𝑖𝑛𝑡

𝑁 = 0

𝐹𝑒𝑥𝑡
𝑁  is the external flux (due to applied distributed loads) and 𝐹𝑖𝑛𝑡

𝑁  is the internal flux (due to stresses, e.g.) at node N

In nonlinear user elements the fluxes/forces will often depend on the 
increments in the degrees of freedom Δ𝑢𝑁 and the internal state variables 𝐻𝛼

State variables must be updated in the user subroutine

Degrees of Freedom

Displacements Nodal Forces

Rotations Moments

Temperatures Heat Fluxes

𝐴𝑀𝑇𝑅𝐼𝑋 = 𝑅𝐻𝑆

RHSLHS
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User-defined Element
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The solution of the (nonlinear) system of equations in general steps requires defining the element Jacobian (stiffness matrix):

The Jacobian should include all direct and indirect dependencies of 𝐹𝑁 on 𝑢𝑁, which includes terms of the form

A more accurately defined Jacobian improves convergence in general steps

The Jacobian (stiffness) determines the solution for linear perturbation steps, so it must be exact

The Jacobian can be symmetric or nonsymmetric

𝐾𝑁𝑀 = −
𝑑𝐹𝑁

𝑑𝑢𝑀

𝐾𝑁𝑀 = −
𝜕𝐹𝑁

𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝑢𝑀

Element Jacobian 

Element Jacobian / Stiffness Matrix
AMATRIX

Internal State Variables 
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User-defined Element
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Material Model 

Available in Abaqus UELMAT

NOT Available in Abaqus UEL UMAT
Material Model is Nonlinear
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User-defined Element
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A user element is defined with the *USER ELEMENT option

This option must appear in the input file before the user element is invoked with the *ELEMENT option

The syntax for interfacing to UEL is as follows:

Writing INP
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User-defined Element
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*USER ELEMENT, TYPE=U1, NODES=2, PROPERTIES=4, I PROPERTIES=2 

COORDINATES=3, VARIABLES=12, UNSYMM

1, 2, 3

*ELEMENT, TYPE=U1

101, 101, 102

*ELGEN, ELSET=UEL

101, 5

 

*UEL PROPERTY, ELSET=UEL 

0.002, 2.1E11, 0.3, 7200., 2,5

Data line(s)

Data line(s)

Data line(s)

Data line(s)

Enter the values of the element properties.
Enter all floating-point values first, followed immediately by the integer values
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UEL
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Abaqus User Subroutine To Define An (Nonlinear) Element
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Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of 
load vectors

NRHS=1 in most nonlinear problems

NRSH=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*) 
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Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element 

The maximum of 
Maximum number of coordinates required at any node point 

Value of the largest active degree of freedom

Number of 
Coordinate 

Components
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Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 1000

𝑛 ≤ 10000

User element type ID
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Variables Passed in for Information
PROPS(*)

A floating-point array containing the NPROPS real property values defined for use 
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use 
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element 
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to 
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value 
n in JDLTYP

Loads of type U𝑛NU are identified by the negative 
integer value −n in JDLTYP
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Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(1)
Defines The 

Procedure Type

General Nonlinear 
Procedures

Linear Perturbation 
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1
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Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation
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Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)
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Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual 
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀 ) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only. 

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation 
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures
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Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined
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𝑈 (𝐾1 ) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement 
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1 )
Time rate of change of the variables (velocities, rates of rotation). 
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1 ) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements, 
rotations, temperatures, depending on the degree of freedom) at the nodes of the 
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)
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Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ 
distributed load of  in the base state. 

DDLMAG

General Nonlinear Steps 

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ  
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the 
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL. 

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps 
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the 
distributed load for the current time increment

The load magnitude is defined in UEL; therefore, 
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the 
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL
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Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature 
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the 
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of 
The Array

First (K1)
1

2

The value of the field variable at the end of the increment 

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element
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Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array 
depend on the solution procedure currently being used when UEL is called, as indicated by the 
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*) An array containing the contributions of this element to the right-hand-
side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations 

Jacobian Matrix 

−
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX
RHS

NDOFEL× NDOFEL DU(MLVARX,*) 
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the 
right-hand-side vectors of the overall system of equations. 

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom 
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most 
Nonlinear 
Analysis

RHS should contain the residual vector
(external forces minus internal forces) 

Modified Riks 
Static Procedure 

Increments of external load on the element

NRHS=1 

NRHS=2 

Direct Steady-state 
Analyses

Mode-based Procedures

NRHS=2 

The first column in RHS 

The second column in RHS 

Residual Vector (external forces minus internal forces) 

The first column in RHS 

The second column in RHS 

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array 

All nonzero entries in AMATRX should be 
defined, even if the matrix is symmetric

The matrix is unsymmetric 

The matrix is symmetric 

AMATRX

AMATRX
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the 
current increment. They should be updated to be the values at the end of the increment, 
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They 
should be returned containing perturbation values if you want to output such quantities.

General 
Nonlinear Steps

Linear 
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General 

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the 
current increment. They should be updated to the values at the end of the current increment

Linear 
Perturbation Steps 

Mode-based 
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy” 

Electrostatic energy

Associated with such effects as artificial stiffness introduced to 
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero 
increment output. In this case the energy values returned will be 
used only for output purposes and are not updated permanently.
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Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time 
incrementation is chosen

This variable allows you to provide input to the automatic 
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
( LFLAGS(3)=1 ) 

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored 
unless CONVERT SDI=YES is specified for this step

If automatic time 
incrementation is not selected 

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration
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Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again 
with a smaller time increment. The suggested new time increment provided 

to the automatic time integration algorithms is PNEWDT × DTIME, where 
the PNEWDT used is the minimum value for all calls to user subroutines 

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration 
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested 
new time increment provided to the automatic time integration 

algorithms is PNEWDT × DTIME, where the PNEWDT used is the 
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:
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Hints to Write UEL
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UEL Variables

Available in UEL

Coordinates; displacements; incremental displacements; and, for dynamics, velocities and accelerations

SDVs at the start of the increment

Total and incremental values of time, temperature, and user-defined field variables

User element properties

Load types as well as total and incremental load magnitudes

Element type and user-defined element number

Procedure type flag and, for dynamics, integration operator values

Current step and increment numbers
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UEL Variables

Must be Defined

Right-hand-side vector (residual nodal fluxes or forces)

Jacobian (stiffness) matrix

Solution-dependent state variables

RHS(MLVARX,*)

ENERGY(8)

SVARS(*)

AMATRX(NDOFEL,NDOFEL)

May be Defined

Energies associated with the element (strain energy, plastic dissipation, 
kinetic energy, etc.)

Suggested new (reduced) time increment PNEWDT
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UEL Conventions

The solution variables (displacement, velocity, etc.) are arranged on a node/degree of freedom basis

The degrees of freedom of the first node are first, followed by the degrees of freedom of the second node, etc.

The flux vector and Jacobian matrix must be ordered in the same way
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UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of 
whether a local nodal transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system
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UEL Ex: 3D Truss
𝑘𝑒 =

𝐴𝐸

𝐿
1 −1

−1 1

𝑅 =
𝑇 0

0 𝑇  
=

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿

𝐾𝑒 = 𝑅 𝑇 𝑘𝑒 𝑅

Global 
Coordinate

Local 
Coordinate

𝑅
Global 

Coordinate

Local 
Coordinate

𝑅 𝑇

𝑘𝑒 𝑢𝑒 = 𝑓𝑒

𝑅 𝐹𝑒 = 𝑓𝑒

Local 
Coordinate

𝑅 𝑈𝑒 = 𝑢𝑒

𝐾𝑒 𝑈𝑒 = 𝐹𝑒

𝑘𝑒 𝑅 𝑈𝑒 = 𝑅 𝐹𝑒
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UEL Ex: 3D Truss

𝐾𝑒 = 𝑅 𝑇 𝑘𝑒 𝑅

𝐾𝑒 𝑈𝑒 = 𝐹𝑒

𝑅 𝑇 𝑓𝑒 = 𝐹𝑒

Residual Vector 
(external forces minus internal forces) 

AMATRX(NDOFEL,NDOFEL) RHS(MLVARX,*)

𝑅 =
𝑇 0

0 𝑇  
=

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿

Nodal Variables
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Hints to Write UEL
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UEL Variables

Available in UEL

Coordinates; displacements; incremental displacements; and, for dynamics, velocities and accelerations

SDVs at the start of the increment

Total and incremental values of time, temperature, and user-defined field variables

User element properties

Load types as well as total and incremental load magnitudes

Element type and user-defined element number

Procedure type flag and, for dynamics, integration operator values

Current step and increment numbers



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 304

UEL Variables

Must be Defined

Right-hand-side vector (residual nodal fluxes or forces)

Jacobian (stiffness) matrix

Solution-dependent state variables

RHS(MLVARX,*)

ENERGY(8)

SVARS(*)

AMATRX(NDOFEL,NDOFEL)

May be Defined

Energies associated with the element (strain energy, plastic dissipation, 
kinetic energy, etc.)

Suggested new (reduced) time increment PNEWDT
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UEL Conventions

The solution variables (displacement, velocity, etc.) are arranged on a node/degree of freedom basis

The degrees of freedom of the first node are first, followed by the degrees of freedom of the second node, etc.

The flux vector and Jacobian matrix must be ordered in the same way
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UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of 
whether a local nodal transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system
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UEL formulation aspects and usage hints

The displacement, velocities, etc. passed into the UEL are in the global system, regardless of whether a local nodal 
transformation is used at any of the nodes.

The flux vector and Jacobian matrix must also be formulated in the global system

The Jacobian must be formulated as a full matrix, even if it is symmetric

If the UNSYMM parameter is not used, Abaqus will symmetrize the Jacobian defined by the user

For transient heat transfer and dynamic analysis, heat capacity and inertia contributions must be included in the flux 
vector
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UEL formulation aspects and usage hints
At the start of a new increment, the increment in solution variable(s) is extrapolated from the previous increment.

The flux vector and the Jacobian must be based on these extrapolated 
values

If extrapolation is not desired, it can be switched off with
 *STEP, EXTRAPOLATION=NO

If the increment in solution variable(s) is too large, the variable 
PNEWDT can be used to suggest a new time increment.

Abaqus will abandon the current time Ramp linearly over step 
increment and will attempt the increment again with one that is a 
factor PNEWDT smaller
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Testing the UEL
Complex UELs may have many potential problem areas. Do not use a large model when trying to debug a UEL

Verify the UEL with
a one-element model

Run tests using general steps in which all solution variables are prescribed to verify the 
resultant fluxes

Run tests using linear perturbation steps in which all loads are prescribed to verify the element 
Jacobian (stiffness)

Run tests using general steps in which all loads are prescribed to verify the consistency of the 
Jacobian and the flux vector

Gradually increase the complexity of the test problems. Compare the results with standard Abaqus elements, if possible
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UEL Ex: 3D Linear Elastic
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Interpolation
𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2 + ⋯ + 𝑁8𝑢8

𝑣 = 𝑁1𝑣1 + 𝑁2𝑣2 + ⋯ + 𝑁8𝑣8

𝑤 = 𝑁1𝑤1 + 𝑁2𝑤2 + ⋯ + 𝑁8𝑤8

𝑢
𝑣
𝑤

=

𝑁1 0 0 𝑁2 0 0 … 𝑁8 0 0
0 𝑁1 0 0 𝑁2 0 … 0 𝑁8 0
0 0 𝑁1 0 0 𝑁2 … 0 0 𝑁8

𝑢1

𝑣1
𝑤1

𝑢2

𝑣2

𝑤2

.

.

.
𝑢8

𝑣8

𝑤8

3 × 1

24 × 1

3 × 24

𝑈 = 𝑁 𝜉, 𝜂, 𝜁 𝑎
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3D Linear Elastic
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝜀𝑥𝑦

𝜀𝑥𝑧

𝜀𝑦𝑧

=

𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝑢
𝑣
𝑤

𝐵 = 𝐿 𝑁

𝜀 = 𝐿 𝑈

𝑈 = 𝑁 𝑎

𝐿

𝜕𝑁1

𝜕𝑥
0 0

𝜕𝑁2

𝜕𝑥
0 0 …

𝜕𝑁8

𝜕𝑥
0 0

0
𝜕𝑁1

𝜕𝑦
0 0

𝜕𝑁2

𝜕𝑦
0 … 0

𝜕𝑁8

𝜕𝑦
0

0 0
𝜕𝑁1

𝜕𝑧
0 0

𝜕𝑁2

𝜕𝑧
… 0 0

𝜕𝑁8

𝜕𝑧
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑥
0 …

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥
0

𝜕𝑁1

𝜕𝑧
0

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑧
0

𝜕𝑁2

𝜕𝑥
…

𝜕𝑁8

𝜕𝑧
0

𝜕𝑁8

𝜕𝑥

0
𝜕𝑁1

𝜕𝑧

𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑧

𝜕𝑁2

𝜕𝑦
… 0

𝜕𝑁8

𝜕𝑧

𝜕𝑁8

𝜕𝑦

6 × 1

3 × 1

6 × 3

6 × 24

6 × 3 3 × 24
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Jacobian
𝐵 = 𝐿 𝑁

𝐵 =

𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝑖 = 1 𝑡𝑜 8

Introduction to Nonlinear Finite Element Analysis by N. H. Kim
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Element Stiffness Matrix
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𝑢𝑖+1 = 𝑢𝑖 + Δ𝑢

𝐏 𝑢 = Ԧ𝑓
System of Nonlinear 
Algebraic Equations

Increment 

𝐏 𝑢𝑖+1 ≈ 𝐏 𝑢𝑖 +
𝜕𝐏 𝑢𝑖

𝜕𝑢𝑖
 Δ𝑢 = Ԧ𝑓

𝐏 𝑢𝑖+1 ≈ 𝐏 𝑢𝑖 + 𝐊𝑇
𝑖 𝑢𝑖  Δ𝑢 = Ԧ𝑓

𝐊𝑇
𝑖 𝑢𝑖  Δ𝑢 = Ԧ𝑓 − 𝐏 𝑢𝑖

𝑢𝑖+1 = 𝑢𝑖 + Δ𝑢
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Steps to Write Linear UEL
The header is usually followed by dimensioning of local arrays. It is good practice to define constants via parameters and to include comments1

2 Shape Functions and Derivative of shape functions in local coordinates

4

Computing a Jacobian matrix and a determinant of Jacobian matrix3

Derivative of shape functions in global coordinates

Form [B] matrix

Computing a stiffness matrix

5

6

DO I_INPT=1,  NINPT

END DO



3D Linear Elastic
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can 
be made regarding the stress or strain distributions.

Milad Vahidian, Ph.D. Student of Mechanical Engineering 317

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane Stress Plane Strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0
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By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂

3D Linear Elastic
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Variational Approach

3D Linear Elastic
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Interpolation
Four node Iso-parametric Element

3D Linear Elastic
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Stiffness Matrix

4

4

4

4

𝐿 𝑁 =

𝜖 = 𝐿 𝑈

3D Linear Elastic
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Stiffness Matrix

4

4

44

3D Linear Elastic
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Stiffness Matrix

4

4

44

3D Linear Elastic
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Stiffness Matrix

Next Slide

3D Linear Elastic
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DO iIntPt = 1, nIntPt
wi =

DO jIntPt = 1, nIntPt
wj =

DO kIntPt = 1, nIntPt
wk =

                  
END 

END
END
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a. Loop over the Integration points i = 1 to nIntPt

b. Retrieve the weight wi as samp(ig, 2) 

c. Loop over the Integration points jg = 1 to nIntPt 
d. Retrieve the weight wj as samp(jg, 2) 
e. Loop over the Integration points jg = 1 to nIntPt 
f. Retrieve the weight wk as samp(jg, 2) 
g. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local
h. coordinates, ξ = samp(ig, 1) and η = samp(jg, 1). 
i. Evaluate the Jacobian jac = der ∗ coord v. Evaluate the determinant of the Jacobian as d = det(jac)
j. Compute the inverse of the Jacobian as jac1 = inv(jac) 
k. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der 
l. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as 

ke = ke + d ∗ thick ∗ wi ∗ wj ∗ B ∗ D ∗ B 

4. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q4
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Body Forces

Traction Forces 

Concentrated Forces

When the nodes of an element are numbered anticlockwise 
a tangential force, such as 𝑞𝑡 , is positive if it acts 

anticlockwise. A normal force, such as 𝑞𝑛 , is positive if it 
acts toward the interior of the element

In practice, when the loads are uniformly distributed they are 
replaced by equivalent nodal loads. The preceding development is 

to be used only if the shape of the loading is complicated.

Plane Stress Problem: Q4
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: Q4
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Calculation of the Element Resultants

SUPPORT REACTIONS

If 𝛿𝑝 = 0

Plane Stress Problem: Q4



Milad Vahidian, Ph.D. Student of Mechanical Engineering 331

Calculation of the Element Resultants
Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this 
we set ngp = 1.
1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points jg = 1 to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local 
coordinates ξ = samp(ig, 1) and η = samp(jg, 1)
d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der

h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps = bee ∗ eld
j. Compute the stresses as sigma = dee ∗ eps

4. Store the stresses in the matrix SIGMA(nel, 3)

Plane Stress Problem: Q4
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VUEL

Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran

Abaqus User Subroutine To Define An (Nonlinear) Element



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 333

Variables Passed in for Information
DTIME

PERIOD

NDOFEL

MLVARX

NRHS

Time increment

Time period of the current step

Number of degrees of freedom in the element

Dimensioning parameter used when several displacement or right-hand-side vectors are used

For example, in the recovery path for the direct steady-state procedure, it is 2 to accommodate the real and imaginary parts of the vectors

Number of 
load vectors

NRHS=1 in most nonlinear problems

NRSH=2 for the modified Riks static procedure

Greater than 1 in some linear analysis procedures and during substructure generation

RHS(MLVARX,*), DU(MLVARX,*) 
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Variables Passed in for Information

NSVARS

NPROPS

NJPROP

MCRD <= 3

NNODE User-defined number of nodes on the element

User-defined number of integer property values associated with the element

User-defined number of real property values associated with the element

User-defined number of solution-dependent state variables associated with the element 

The maximum of 
Maximum number of coordinates required at any node point 

Value of the largest active degree of freedom
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Variables Passed in for Information

JTYPE

KSTEP

KINC

JELEM

NDLOAD

MDLOAD

NPREDF
Number of predefined field variables, including temperature
For user elements Abaqus/Standard uses one value for each field variable per node

Total number of distributed loads and/or fluxes defined on this element

Identification number of the distributed load or flux currently active on this element

User-assigned element number

Current increment number

Current step number

Integer defining the element type 𝑛
Abaqus/Standard

Abaqus/Explicit VU𝑛

U𝑛 𝑛 ≤ 10000

𝑛 ≤ 9000
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Variables Passed in for Information
PROPS(*)

A floating point array containing the NPROPS real property values defined for use 
with this element. NPROPS is the user-specified number of real property values

JPROPS(*)
An integer array containing the NJPROP integer property values defined for use 
with this element. NJPROP is the user-specified number of integer property values

COORDS(MCRD, NNODE)
An array containing the original coordinates of the nodes of the element 
COORDS(K1,K2) is the 𝐾1𝑡ℎ coordinate of the 𝐾2𝑡ℎ node of the element

JDLTYP(*)

JDLTYP(K1,K2) is the identifier of the 𝐾1𝑡ℎ distributed load in the 𝐾2𝑡ℎ load case
For general nonlinear steps: K2 =1

An array containing the integers used to 
define distributed load types for the element

Loads of type U𝑛 are identified by the integer value 
n in JDLTYP

Loads of type U𝑛NU are identified by the negative 
integer value −n in JDLTYP



Milad Vahidian, Ph.D. Candidate Of Mechanical Engineering At The University Of Tehran 337

Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(1)
Defines The 

Procedure Type

General Nonlinear 
Procedures

Linear Perturbation 
Procedures

1, 2

11, 12

13

Direct-Integration Dynamic Analysis

Subspace-Based Dynamic Analysis

Modified Riks Static Analysis (NRHS=2)1

21 Quasi-Static Analysis

Static

1, 2

95 Direct Steady-State Analysis

Eigenfrequency Extraction Analysis41

Static

LFLAGS(4)=0

LFLAGS(4)=1
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Variables Passed in for Information

LFLAGS (1) Procedure Comments

1, 2 Static Automatic/fixed time incrementation

11,12 Dynamic Automatic/fixed time incrementation

21,22 Visco Quasi-static; explicit/implicit time integration

31 Heat Transfer Steady-state

32, 33 Heat Transfer Transient; fixed/automatic time incrementation

41 Frequency extraction

61 Geostatic

62, 63 Soils Steady-state; fixed/automatic time incrementation

64, 65 Soils Transient; fixed/automatic time incrementation

71 Coupled thermal-stress Steady-state

72,73 Coupled thermal-stress Transient; fixed/automatic time incrementation

75 Coupled thermal-electrical Steady-state

76,77 Coupled thermal-electrical Transient; fixed/automatic time incrementation
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Variables Passed in for Information

LFLAGS(*)
An array containing the flags that define the current solution 

procedure and requirements for element calculations. 

LFLAGS(2)=

0

1

Small-displacement analysis

Large-displacement analysis (nonlinear geometric effects included in the step)
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Variables Passed in for Information

LFLAGS(3)=

1

2

3

4

5

6

100

Normal implicit time incrementation procedure. User subroutine UEL must define the residual 
vector in RHS and the Jacobian matrix in AMATRX.

Define the current stiffness matrix (AMATRX = 𝐾𝑁𝑀= −
𝜕𝐹𝑁

𝜕𝑢𝑀 or −
𝜕𝐺𝑁

𝜕𝑢𝑀 ) only

Define the current damping matrix (AMATRX = 𝐶𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሶ𝑢M or −
𝜕𝐺𝑁

𝜕 ሶ𝑢M) only

Define the current mass matrix (AMATRX = 𝑀𝑁𝑀 = −
𝜕𝐹𝑁

𝜕 ሷ𝑢𝑀) only. 

Abaqus/Standard always requests an initial mass matrix at the start of the analysis.

Define the current residual or load vector (RHS =𝐹𝑁) only

Define the current mass matrix and the residual vector for the initial acceleration calculation 
(or the calculation of accelerations after impact)

Define perturbation quantities for output.
Not available for direct steady-state dynamic and mode-based procedures
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Variables Passed in for Information

LFLAGS(4)=

1

0

LFLAGS(5)=

1

0

LFLAGS(7)=

2

1

The step is a general step

The step is a linear perturbation step

The current approximations to 𝑢𝑀, etc. were based on Newton corrections

The current approximations were found by extrapolation from the previous increment

When the damping matrix flag is set, the viscous damping matrix is defined

When the damping matrix flag is set, the structural damping matrix is defined
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𝑈 (𝐾1 ) Total values of the variables. If this is a linear perturbation step, it is the value in the base state.

𝐷𝑈 (𝐾1, 𝐾𝑅𝐻𝑆)

Incremental values of the variables for the current increment for right-hand-side KRHS.
For eigenvalue extraction step, this is the eigenvector magnitude for eigenvector KRHS.
For steady-state dynamics, KRHS = 1 denotes real components of perturbation displacement 
and KRHS = 2 denotes imaginary components of perturbation displacement.

𝑉 (𝐾1 )
Time rate of change of the variables (velocities, rates of rotation). 
Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

𝐴 (𝐾1 ) Accelerations of the variables. Defined for implicit dynamics only (LFLAGS (1) = 11 or 12).

U, V, A (NDOFEL) Arrays containing the current estimates of the basic solution variables (displacements, 
rotations, temperatures, depending on the degree of freedom) at the nodes of the 
element at the end of the current increment. Values are provided as follows:

Variables Passed in for Information

DU(MLVARX,*)
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Variables Passed in for Information

ADLMAG

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ 
distributed load of  in the base state. 

DDLMAG

General Nonlinear Steps 

ADLMAG(K1,1): Total load magnitude of the 𝐾1𝑡ℎ  
distributed load at the end of the current increment

Distributed Loads of type Un

Distributed Loads of type UnNU The load magnitude is defined in UEL; therefore, the 
corresponding entries in ADLMAG are zero

Linear Perturbation Steps
Distributed Loads of type Un

Distributed Loads of type UnNU
Base state loading must be dealt with inside UEL. 

ADLMAG(K1,2), ADLMAG(K1,3), etc. are currently not used.

(MDLOAD,*)

General Nonlinear Steps 
Distributed Loads of type Un

Distributed Loads of type UnNU

Linear Perturbation Steps

Distributed Loads of type Un

Distributed Loads of type UnNU

(MDLOAD,*)

DDLMAG(K1,1): Increment of magnitude of the 
distributed load for the current time increment

The load magnitude is defined in UEL; therefore, 
the corresponding entries in DDLMAG are zero

DDLMAG(K1,K2): Perturbation in the magnitudes of the 
distributed loads that are currently active on this element

K2 is always 1, except for steady-state dynamics, where K2=1 for real loads and K2=2 for imaginary loads

Must be dealt with inside UEL
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Variables Passed in for Information
PREDEF(2,NPREDF,NNODE)

An array containing the values of predefined field variables, such as temperature 
in an uncoupled stress/displacement analysis, at the nodes of the element

In cases where temperature is not defined, the 
predefined field variables begin with index 1

PREDEF (K1,1,K3) Temperature.

PREDEF (K1,2, ,K3) First predefined field variable.

PREDEF (K1,3, K3) Second predefined field variable.

Etc. Any other predefined field variable.

PREDEF (K1,K2, K3) Total or incremental value of the 𝐾2𝑡ℎ predefined field variable at the 𝐾3𝑡ℎ node of the element.

PREDEF (1,K2,K3) Values of the variables at the end of the current increment.

PREDEF (2,K2,K3) Incremental values corresponding to the current time increment.

Index Of 
The Array

First (K1)
1

2

The value of the field variable at the end of the increment 

The increment in the field variable

Second (K2)
1

2, …

The temperature

The predefined field variables

Third (K3) The local node number on the element
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Variables Passed in for Information

PARAMS(*)

An array containing the parameters associated with the solution procedure. The entries in this array 
depend on the solution procedure currently being used when UEL is called, as indicated by the 
entries in the LFLAGS array.
For implicit dynamics (LFLAGS(1) = 11 or 12) PARAMS contains the integration operator values, as:

PARAMS(3)

PARAMS(1)

PARAMS(2)

𝛼

𝛽

𝛾

PARAMS

TIME(1)

TIME(2)

Current value of step time or frequency

Current value of total time
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*) An array containing the contributions of this element to the right-hand-
side vectors of the overall system of equations

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

At time Increment n+1 𝐑 𝐝n+𝟏, 𝑡𝑛+1 = 𝐅𝑒𝑥𝑡 𝐝n+𝟏, 𝑡𝑛+1 − 𝐅𝑖𝑛𝑡 𝐝n+𝟏, 𝑡𝑛+1 = 0

Residual

At time Increment n+1
At Iteration m

𝐑 𝐝𝑚+1, 𝑡𝑛+1 = 𝐑 𝐝𝑚, 𝑡𝑛+1 +
𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
𝐝m+1 − 𝐝m = 0

∆𝐝

Linearized Model Of The Nonlinear Equations 

Jacobian Matrix 

𝜕𝐑 𝐝𝑚, 𝑡𝑛+1

𝜕𝐝
∆𝐝 = 𝐑 𝐝𝑚 , 𝑡𝑛+1

AMATRX RHS

NDOFEL× NDOFEL DU(MLVARX,*) 
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

RHS(MLVARX,*)
An array containing the contributions of this element to the 
right-hand-side vectors of the overall system of equations. 

𝑅𝐻𝑆(𝐾1, 𝐾2) is the entry for the 𝐾1𝑡ℎ degree of freedom 
of the element in the 𝐾2𝑡ℎ right-hand-side vector

Most 
Nonlinear 
Analysis

RHS should contain the residual vector
(external forces minus internal forces) 

Modified Riks 
Static Procedure 

Increments of external load on the element

NRHS=1 

NRHS=2 

Direct Steady-state 
Analyses

Mode-based Procedures

NRHS=2 

The first column in RHS 

The second column in RHS 

Residual Vector (external forces minus internal forces) 

The first column in RHS 

The second column in RHS 

Real Part of the Vector

Imaginary Part of the Vector

is called only to form the left-side matrices: Stiffness, Damping, and Mass
NRHS=0
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

AMATRX(NDOFEL,NDOFEL)
An array containing the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations

=
1

2
𝐴 + 𝐴 𝑇

The particular matrix required at any time depends on the entries in the LFLAGS array 

All nonzero entries in AMATRX should be 
defined, even if the matrix is symmetric

The matrix is unsymmetric 

The matrix is symmetric 

AMATRX

AMATRX
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

SVARS(*) An array containing the values of the solution-dependent state variables associated with this element

The number of such variables is NSVARS

This array is passed into UEL containing the values of these variables at the start of the 
current increment. They should be updated to be the values at the end of the increment, 
unless the procedure during which UEL is being called does not require such an update.

This array is passed into UEL containing the values of these variables in the base state. They 
should be returned containing perturbation values if you want to output such quantities.

General 
Nonlinear Steps

Linear 
Perturbation Steps

When KINC is equal to zero, the call to UEL is made for zero increment output.
 In this case the values returned will be used only for output purposes and are not updated permanently.
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(8)
General 

Nonlinear Steps
ENERGY contains the values of the energy quantities associated with the element

The values in this array when UEL is called are the element energy quantities at the start of the 
current increment. They should be updated to the values at the end of the current increment

Linear 
Perturbation Steps 

Mode-based 
Procedures

They are not available for updates

ENERGY contains the values of the energy in the base state

They should be returned containing perturbation values if you wish to output such quantities
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Variables to Be Defined
These arrays depend on the value of the LFLAGS array

ENERGY(1)

ENERGY(2)

ENERGY(3)

ENERGY(4)

ENERGY(5)

ENERGY(6)

ENERGY(7)

ENERGY(8)

Kinetic energy

Elastic strain energy

Creep dissipation

Plastic dissipation

Viscous dissipation

“Artificial strain energy” 

Electrostatic energy

Associated with such effects as artificial stiffness introduced to 
control hourglassing or other singular modes in the element.

Incremental work done by loads applied within the user element

When KINC is equal to zero, the call to UEL is made for zero 
increment output. In this case the energy values returned will be 
used only for output purposes and are not updated permanently.
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Variables That Can Be Updated
PNEWDT Ratio of suggested new time increment to the time increment currently being used (DTIME)

If automatic time 
incrementation is chosen

This variable allows you to provide input to the automatic 
time incrementation algorithms in Abaqus/Standard

It is useful only during equilibrium iterations with the normal time incrementation
( LFLAGS(3)=1 ) 

During a severe discontinuity iteration (such as contact changes), PNEWDT is ignored 
unless CONVERT SDI=YES is specified for this step

If automatic time 
incrementation is not selected 

in the analysis procedure

PNEWDT > 1.0 Will be ignored

PNEWDT < 1.0 Will cause the job to terminate

for all calls to user subroutines for this iteration and the increment converges in this iteration
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Variables That Can Be Updated

If PNEWDT is redefined to be less than 1.0

If PNEWDT is given a value that is greater than 1.0

Abaqus/Standard must abandon the time increment and attempt it again 
with a smaller time increment. The suggested new time increment provided 

to the automatic time integration algorithms is PNEWDT × DTIME, where 
the PNEWDT used is the minimum value for all calls to user subroutines 

that allow redefinition of PNEWDT for this iteration

(For all calls to user subroutines for this iteration 
and the increment converges in this iteration)

Abaqus/Standard may increase the time increment. The suggested 
new time increment provided to the automatic time integration 

algorithms is PNEWDT × DTIME, where the PNEWDT used is the 
minimum value for all calls to user subroutines for this iteration.

If Automatic Time Incrementation Is Chosen:
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Balance Equations: Balance of Mass

ම

Ω

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 𝑑𝑣

𝐷𝑚

𝐷𝑡
=

𝐷 𝜌𝑑𝑣

𝐷𝑡
= ම

Ω

𝛾(𝑥, 𝑡) 𝑑𝑣

Spatial Form:

𝐷

𝐷𝑡
ම

Ω

𝜌(𝑥, 𝑡) 𝑑𝑣 = ම

Ω

𝛾(𝑥, 𝑡) 𝑑𝑣

Material Form:

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 = 𝛾(𝑥, 𝑡)

𝜌0 = 𝐽𝜌

Rate Of the Mass Entrance Per Current Volume

𝑑 𝐽𝜌

𝑑𝑡
= 𝐽𝛾(𝑥, 𝑡)

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑣 = 0

𝛾 𝑥, 𝑡 = 0
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Balance Equations: Balance of Linear Momentum
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Continuum Mechanics
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Balance Equations: Balance of Angular Momentum
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Solution Procedures in Total Lagrangian Approach

𝐊𝑒 𝐮𝑒 𝐮𝑒 = 𝐅𝑒 R = 𝐊𝑒 𝐮𝑒 𝐮𝑒 − 𝐅𝑒
Iterative procedure

Where

Where
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Abaqus Consistent Jacobian

𝐊int = ම

Ω0

𝜕 𝐽𝝈 ∶ 𝛿𝐃

𝜕𝐃
𝑑𝑉

𝐊𝑖𝑗𝑘𝑙 = ම
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