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Motivation

There is not any limitation
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Commercial FEM software is garbage in garbage out 

Deep understanding of Finite Element Method

FEM software

Programming FEA

Industrial purpose

Academic purpose
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Introduction to MATLAB: MATLAB
MATLAB is an abbreviation for "MATrix LABoratory.“
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MATLAB is a programming platform designed specifically for engineers and
scientists. The heart of MATLAB is the MATLAB language, a matrix-based language
allowing the most natural expression of computational mathematics. While other
programming languages mostly work with numbers one at a time, MATLAB is
designed to operate primarily on whole matrices and arrays.



Introduction to MATLAB: MATLAB Reference
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How to write code

MATLAB Documentation

doc + function/command

help + function/command



Introduction to MATLAB: Command vs. Function Syntax
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If you do not require any outputs from the function, and all of the inputs are character vectors (that is, text enclosed in 
single quotation marks), you can use this simpler command syntax:        functionName input1 ... inputN

load Workspace.mat
load(' Workspace.mat’)

In MATLAB, these statements are equivalent:
Command syntax:

Function syntax:

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax: [output1, ..., outputM] = functionName(input1, ..., inputN)

With command syntax, you separate inputs with spaces rather than commas, and do not enclose input arguments 
in parentheses. Command syntax always passes inputs as character vectors. 

To use strings as inputs, use the function syntax. 
If a character vector contains a space, use the function syntax.

When a function input is a variable, you must use function syntax to pass the value to the function. Command 
syntax always passes inputs as character vectors and cannot pass variable values. 



Introduction to MATLAB: Data types 
By default, MATLAB stores all numeric variables as double-precision floating-point values.
Additional data types store text, integer or single-precision values, or a combination of related data in a single variable

Numeric Types: Integer and floating-point data

Characters and Strings: Text in character arrays (‘ ’) and string arrays (“ ”)

Dates and Time: Arrays of date and time values that can be displayed in different formats

Categorical Arrays: Arrays of qualitative data with values from a finite set of discrete, nonnumeric data

Tables: Arrays in tabular form whose named columns can have different types

Timetables: Time-stamped data in tabular form

Structures: Arrays with named fields that can contain data of varying types and sizes

Cell Arrays: Arrays that can contain data of varying types and sizes

Function Handles: Variables that allow you to invoke a function indirectly

Map Containers: Objects with keys that index to values, where keys need not be integers

Time Series: Data vectors sampled over time

Data Type Identification: Determining data type of a variable

Data Type Conversion: Converting between numeric arrays, character arrays, cell arrays, structures, or tables
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ans Most recent answer

clc Clear Command Window

clear Clear Workspace

global Declare variables as global

plot 2-D line plot

format Set Command Window output display format

iskeyword Determine whether input is MATLAB keyword

fpritf/sprintf Write data to text file/Format data into string or character vector

zeros Create array of all zeros

ones Create array of all ones

eye/diag Identity matrix/Creates or extract diagonals

fopen Open file, or obtain information about open files

fcolse Close one or all open files

patch Plot one or more filled polygonal regions

Most Common
MATLAB code

Introduction to MATLAB: Common Functions and Commands



Introduction to MATLAB: Common Functions and Commands
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1-Matrices can be created in MATLAB by the command

Note the semi-colon at the end of each matrix line.

2-Operating with matrices

3-Statements: are operators, functions and variables, always producing a matrix which can be used later.

4-Matrix functions

5-Conditionals, if and switch

6-Loops: for and while

7- Relations

8-Submatrix

9-Logical indexing



Introduction to MATLAB: M-file vs. Mlx-file
M-file:

Plain Code Scripts and Functions

In new Versions: Functions could be saved as separate m-files (function) as well as in the end off main script

Mlx-file:

MATLAB live scripts and live functions are interactive documents that combine MATLAB code with 
formatted text, equations, and images in a single environment called the Live Editor. In addition, live scripts 
store and display output alongside the code that creates it.

Functions could be saved as separate mlx-files (function) as well as in the end off main script
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Preprocessing Simulation Postprocessing

Introduction to MATLAB: Simulation Strategy

Input File

11

Solver File Output File

M-file or Mlx-file M-file or Mlx-file + Function files Text file and figures
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Physical Problem Mathematical Model Solution

Introduction to FEA: Basic Concepts

(governed by differential equations)



Introduction to FEA: Basic Concepts
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Methods of Analysis

Numerical MethodsSemi-analytical (Approximate) MethodsAnalytical Methods

Finite Difference Method

Finite Element Method

Finite Volume Method

Boundary Element Method

Numerical IntegrationLumped-parameter Methods

Series Discretization Methods

ODE

PDE Separation of variables

The existing mathematical tools will not be sufficient to find the 
exact solution (and sometimes, even an approximate solution) 

of most of the practical problems.



Introduction to FEA: Basic Concepts
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Numerical Methods

Semi-analytical (Approximate) Methods

Analytical Methods

Finite Element Method

Series Discretization Methods

Variational Approach

Weighted Residual Approach

Assumed Solution 

Must be satisfied 
Essential (geometry)
Boundary conditions

Must be satisfied
Essential (geometry) 

as well as
Natural (force)

Boundary conditions

Weak Form 

Strang Form 

Weak Form 

Strang Form 



Introduction to FEA: Basic Concepts
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The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the 
numerical technique called Finite Element Method (FEM).

15

Space Discretization

FEM subdivides a large system into smaller, simpler parts that are called finite elements

construction of a mesh of the object

The basic idea behind the finite element method is to divide the structure, body, or region being analyzed into a 
large number of finite elements, or simply elements.

The solution region is considered to be built of many small, interconnected 
subregions called elements. 

What is Finite Element Analysis ?



Introduction to FEA: Applications

Structural Analysis

Thermal Analysis

Fluid Structure Analysis

Electromagnetic Analysis

Multiphysics Analysis

Optimization Analysis
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Structural 
Analysis

time-
independent

Static Displacement/Stress Analysis
Sandwich panel        

Composite Material

Eigenvalue 
problem

Buckling and post-buckling analysis

Frequency and mode shape analysis

time-
dependent

Quasi-static

Time-depend material response Creep and Viscoelasticity

Low-velocity forming

Unstable problems
local instabilities (e.g. surface 
wrinkling) and local buckling

Dynamic

Explicit dynamic analysis Impact of Composite Material

Implicit dynamic analysis

Response spectrum analysis

Introduction to FEA: Applications
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Analysis

Multiphysics

Thermal structural analysis

Fluid structural analysis

Optimization

Topology optimization

Shape optimization

Introduction to FEA: Applications
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Introduction to FEA: Analysis Procedures
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1-Discretization

Procedures

2-Interpolation (Shape Function)

3-Derivation of characteristic matrices (element stiffness matrices and load vectors)

4-Assembly

5-Applying Boundary Conditions 

6-Solving unknown 



Introduction to FEA: Analysis Procedures
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1- Discretization

The first step in the finite element method involves dividing the body into an equivalent system of finite elements
with associated nodes and choosing the most appropriate element type to model most closely the actual physical
behavior.

Small elements (and possibly higher-order elements) are generally desirable where the results are changing
rapidly, such as where changes in geometry occur

Spatial Discretization (Mesh)



Introduction to FEA: Analysis Procedures
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Introduction to FEA: Analysis Procedures
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2-Interpolation (Select a Displacement Function)

Since the displacement solution of a complex structure under any specified load conditions cannot be predicted
exactly, we assume some suitable solution within an element to approximate the unknown solution. The assumed
solution must be simple from a computational standpoint, but it should satisfy certain convergence
requirements. In general, the solution or the interpolation model is taken in the form of a polynomial.

𝑢 𝑥, 𝑦, 𝑧 = ෍

𝑖=1

𝑎𝑖𝑁𝑖 𝑥, 𝑦, 𝑧 = 𝑎1𝑁1 𝑥, 𝑦, 𝑧 + 𝑎2𝑁2 𝑥, 𝑦, 𝑧 + ⋯Approximate Solution
satisfy the Essential
boundary conditions exactly

𝑢 𝑥, 𝑦, 𝑧 = 𝑁 𝑥, 𝑦, 𝑧 𝑎

Interpolation
(Geometric Order of Element)

Linear Quadratic



Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior: 

Family 

Degrees of freedom Number of nodes 

Number of nodes and order of interpolation

Formulation 

Integration 
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior: 

Family

Degrees of freedom Number of nodes: the translations and, for shell, pipe, and beam elements, the 

rotations at each node.

Number of nodes and order of interpolation

Formulation 

Integration 
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior: 

Family 

Degrees of freedom Number of nodes 

Number of nodes and order of interpolation

Formulation 

Integration 
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior: 

Family 

Degrees of freedom Number of nodes 

Number of nodes and order of interpolation

Formulation: mathematical theory used to define the element's behavior (Lagrangian or Eulerian/shell 

element: 1-general-purpose shell analysis, 2-thin shells, 3-for thick shells.)

Integration 
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior: 

Family 

Degrees of freedom Number of nodes 

Number of nodes and order of interpolation

Formulation 

Integration: Using Gaussian quadrature for most elements (full or reduced integration)
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Introduction to FEA: Analysis Procedures
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3-Derive element stiffness matrices and load vectors

FE Formulation

Direct Approach: Equilibrium

Variational Approach: Minimizing Functional

Weighted Residual Approach: Minimizing Error in domain

From the assumed displacement model, the stiffness matrix [𝐾𝑒] and the load vector 𝑃𝑒 of element e are to be 
derived by using a suitable variational principle, a weighted residual approach (such as the Galerkin method), or 
equilibrium (direct method) conditions.



Introduction to FEA: Analysis Procedures
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According to this method, the stiffness matrix and element equations relating nodal forces to nodal 
displacements are obtained using force equilibrium conditions for a basic element, along with 
force/deformation relationships.

Direct Approach

Variational Approach

Weighted Residual Approach

The weighted residual methods allow the finite element method to be applied directly to any differential 
equation.

The variational approach is based on the application of variational calculus, which deals with the 
extremization of functionals in the form of integrals.

𝐼 = 𝑈 𝑢, 𝑣, 𝑤, … − 𝑊𝑒𝑥𝑡 𝑢, 𝑣, 𝑤, … =⇒ 𝐼 = 𝑈 𝑎 − 𝑊𝑒𝑥𝑡 𝑎 =⇒ 𝛿𝐼 = 0 =⇒
𝜕𝐼

𝜕𝑎𝑖
= 0

𝐿 𝑢 + 𝐹 𝑥, 𝑦, 𝑧 = 0 =⇒ 𝑅 = 𝐿 𝑢 = 𝑁 𝑎 + 𝐹 𝑥, 𝑦, 𝑧 =⇒ න
𝑉

𝑤𝑖𝑅 𝑑𝑉 = 0



Direct Approach
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According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements 
are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

As an example



Variational Approach
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𝛿𝑈 = 𝛿𝑊𝑒𝑥𝑡 =⇒ ම

𝑉

𝜹𝜺 𝑻 𝝈 𝒅𝑽 = ම

𝑉

𝜹𝑼 𝑻 𝑭𝒃 𝒅𝑽 + ඵ

𝑆

𝜹𝑼 𝑻 𝑻 𝒅𝑺 + ෍

𝑖=1

𝑛

𝜹𝑼 𝑻 𝑭𝒑

ම

𝑉

𝜹𝜺 𝑻 𝑫 𝜺 𝒅𝑽 − ම

𝑉

𝜹𝜺 𝑻 𝑫 𝜺𝟎 𝒅𝑽 + ම

𝑉

𝜹𝜺 𝑻 𝝈𝟎 𝒅𝑽 − ම

𝑉

𝜹𝑼 𝑻 𝑭𝒃 𝒅𝑽 − ඵ

𝑆

𝜹𝑼 𝑻 𝑻 𝒅𝑺 − ෍

𝑖=1

𝑛

𝜹𝑼 𝑻 𝑭𝒑 = 0

Elastic strain energy

Self strain energy

Prestress energy

Point Load workBody force work

Surface Traction work

𝝈 = 𝑫 𝜺 − 𝜺𝟎 + 𝝈𝟎Stress Vector

Stiffness matrix

Total Strain

Self Strain

Prestress Vector

ම

𝑽

𝑩 𝑻 𝑫 𝑩 𝒅𝑽 𝒂 = ම

𝑉

𝑩 𝑻 𝑫 𝜺𝟎 𝒅𝑽 − ම

𝑉

𝑩 𝑻 𝝈𝟎 𝒅𝑽 + ම

𝑉

𝑵 𝑻 𝑭𝒃 𝒅𝑽 + ඵ

𝑆

𝑵 𝑻 𝑻 𝒅𝑺 + ෍
𝑖=1

𝑛

𝑵 𝑻 𝑭𝒑

31

𝑢 =

𝑢(𝑥, 𝑦, 𝑧)
𝑣(𝑥, 𝑦, 𝑧)
𝑤(𝑥, 𝑦, 𝑧)

= 𝑁(𝑥, 𝑦, 𝑧) 𝑎 𝜀 = 𝐿 𝑢 = 𝐿 𝑁(𝑥, 𝑦, 𝑧) 𝑎 = 𝐵 𝑎



Weighted Residual Approach
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The weighted residual method is a technique that can be used to obtain approximate solutions to linear and
nonlinear differential equations. If we use this method the finite element equations can be derived directly from
the governing differential equations of the problem without any need of knowing the functional. We first consider
the solution of equilibrium, eigenvalue, and propagation problems using the weighted residual method and then
derive the finite element equations using the weighted residual approach.

Point Collocation Method

Subdomain Collocation Method

Galerkin Method

Least Squares Method

𝐿 𝑢 + 𝐹 𝑥, 𝑦, 𝑧 = 0 =⇒ 𝑅 = 𝐿 𝑢 = 𝑁 𝑎 + 𝐹 𝑥, 𝑦, 𝑧 =⇒ න
𝑉

𝑁𝑖 𝑅 𝑑𝑉 = 0 𝑖 = 1, . . , 𝑁

Galerkin Method

Weighted Residual



Introduction to FEA: Analysis Procedures
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4-Assemble element equations to obtain the overall equilibrium equations

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

𝐴𝐸

𝐿
0 −

𝐴𝐸

𝐿
0

0 0 0 0

−
𝐴𝐸

𝐿
0

𝐴𝐸

𝐿
0

0 0 0 0

𝑢1
𝑣1
𝑢2

𝑣2

=

𝑓𝑥1

𝑓𝑦1

𝑓𝑥2

𝑓𝑦2



Introduction to FEA: Analysis Procedures
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𝐾2 𝐺 =

𝑈2/𝑢2

𝑉2/𝑣2

𝑈3/𝑢3

𝑉3/𝑣3

0 0 0 0
0 76666.67 0 −76666.67
0 0 0 0
0 −76666.67 0 76666.67



Introduction to FEA: Analysis Procedures
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𝐾2 𝐺 =

𝑈2/𝑢2

𝑉2/𝑣2

𝑈3/𝑢3

𝑉3/𝑣3

0 0 0 0
0 76666.67 0 −76666.67
0 0 0 0
0 −76666.67 0 76666.67



Introduction to FEA: Analysis Procedures
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5- Apply Boundary Conditions

Governing equation, must be modified to account for the boundary conditions, is a set of 
simultaneous algebraic/ordinary differential/partial differential equations that can be written in 

expanded matrix form.

The subscripts P and F refer respectively to the 
prescribed and free degrees of freedom



Introduction to FEA: Analysis Procedures
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It should be mentioned that K will always have an inverse for well-posed problems solved by the finite element method.

6- Solve for the unknown nodal displacements



Introduction to FEA: Analysis Procedures
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6-Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained



Introduction to FEA: Analysis Procedures

Static Problem 
(ODEs or PDEs)

System of Algebraic Equations 
(Linear or Non-linear)

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Dynamic Problem 
(PDEs)

System of ODEs
(Linear or Non-linear)

FEM

FEM

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢 𝑥

𝑑𝑥
= 𝑤(𝑥)

𝑑

𝑑𝑥
𝐴𝐸

𝜕𝑢 𝑥, 𝑡

𝜕𝑥
− 𝑤 𝑥, 𝑡 = 𝜌

𝜕2𝑢 𝑥, 𝑡

𝜕𝑡2

𝐾 𝑎 = 𝑓

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝑓 𝑡

𝑎

𝑎
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Introduction to FEA: Analysis Procedures

Material Nonlinearity: Due to non-linear constitutive law (e.g., polymer materials)

Geometric Nonlinearity: Due to Large displacements or large rotations

Boundary Nonlinearity: Due to non-linearity of boundary conditions (i.e., contact problems)

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Non-linear 
Structural
Problems

40



Introduction to FEA: Analysis Procedures
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FEM

Linear Problems:     𝐾 𝑎 = 𝑓

Explicit Method

Static Problems

Non-Linear Problems:  𝐾 𝑎 𝑎 = 𝑓 𝑎
Implicit Method

Dynamic Problems
(Dynamic Implicit)

Linear Problems:  𝑀(𝑡) ሷ𝑎 𝑡 + 𝐾(𝑡) 𝑎 𝑡 = 𝑓 𝑡

Non-Linear Problems:
𝑀 𝑡, 𝑎 ሷ𝑎 𝑡 + 𝐾 𝑡, 𝑎 𝑎 𝑡 = 𝑓 𝑡, 𝑎

Dynamic Problems

𝑀 𝑡, 𝑎 ሷ𝑎 𝑡 + 𝐾 𝑡, 𝑎 𝑎 𝑡 = 𝑓 𝑡, 𝑎

Linear system of algebraic equations

Non-linear sys. of algebraic equations

Linear sys. of ODEs

Non-linear sys. of ODEs

Non-linear or Linear sys. of ODEs

41

Quasi-Static Problems



Problem 1: Truss Problem
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Problem Discerption 



Problem 1: Truss Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering

All input and output data must be specified in consistent units

43



Problem 1: Truss Problem
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Data Preparation (Create Input file)

44

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading



Problem 1: Truss Problem
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Discretization and Interpolation 

𝑢 𝑥
𝑣(𝑥)

= 𝑁 𝑑𝑒

𝑢 𝑥 = 𝑐0 + 𝑐1𝑥

𝑢 𝑥 = 0 = 𝑢1 = 𝑐0

𝑢 𝑥 = 𝐿 = 𝑢2 = 𝑐0 + 𝑐1𝐿
𝑢 𝑥 =

𝑢2 − 𝑢1

𝐿
𝑥 + 𝑢1

𝑁 =
𝑁1 0 𝑁2 0
0 𝑁1 0 𝑁2

𝑣 𝑥 =
𝑣2 − 𝑣1

𝐿
𝑥 + 𝑣1

𝑁1 = 1 −
𝑥

𝐿
𝑁2 =

𝑥

𝐿

𝑣 𝑥 = 𝑐′0 + 𝑐′1𝑥

𝑣 𝑥 = 0 = 𝑣1 = 𝑐′0

𝑣 𝑥 = 𝐿 = 𝑣2 = 𝑐′0 + 𝑐′1𝐿



Problem 1: Truss Problem
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Direct Approach

𝑢 𝑥
𝑣(𝑥)

= 𝑁 𝑑𝑒

𝑁 =
𝑁1 0 𝑁2 0
0 𝑁1 0 𝑁2

𝑁1 = 1 −
𝑥

𝐿
𝑁2 =

𝑥

𝐿

ҧ𝑑𝑒 = 𝑈1, 𝑉1, 𝑈2, 𝑉2
𝑇

𝜀 = 𝐿 𝑁 𝑑𝑒

𝜎 = 𝐷 𝜀 𝜎 = 𝐷 𝐿 𝑁 𝑑𝑒

𝐿 =
𝜕

𝜕𝑥
0

𝜎𝑥 = 𝐸𝜀𝑥

𝑓𝑥1 = 𝐸𝐴
𝑢1 − 𝑢2

𝐿

𝑓𝑥2 = 𝐸𝐴
𝑢2 − 𝑢1

𝐿

𝐷 = 𝐸



Problem 1: Truss Problem
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𝐴𝐸

𝐿
0 −

𝐴𝐸

𝐿
0

0 0 0 0

−
𝐴𝐸

𝐿
0

𝐴𝐸

𝐿
0

0 0 0 0

𝑢1
𝑣1
𝑢2

𝑣2

=

𝑓𝑥1

𝑓𝑦1

𝑓𝑥2

𝑓𝑦2

ҧ𝑑𝑒 = 𝑈1, 𝑉1, 𝑈2, 𝑉2
𝑇

Local Stiffness Matrix

𝐶 =

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0

0 0 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
0 0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
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Element stiffness matrix in the global coordinate system

𝐶 =

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0

0 0 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
0 0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

ҧ𝑑𝑒 = 𝑈1, 𝑉1, 𝑈2, 𝑉2
𝑇

Global Stiffness Matrix
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Assemblage

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.
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Assemblage

𝐾2 𝐺 =

𝑈2/𝑢2

𝑉2/𝑣2

𝑈3/𝑢3

𝑉3/𝑣3

0 0 0 0
0 76666.67 0 −76666.67
0 0 0 0
0 −76666.67 0 76666.67
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Assemblage

𝐾2 𝐺 =

𝑈2/𝑢2

𝑉2/𝑣2

𝑈3/𝑢3

𝑉3/𝑣3

0 0 0 0
0 76666.67 0 −76666.67
0 0 0 0
0 −76666.67 0 76666.67
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Assemblage

Element 1 Element 2 Element 3
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained
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Different types of modeling and associated assumptions 
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Problem Discerption 
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Data Preparation (Create Input file)
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Nodes Coordinates Element Connectivity

Material and 
Geometrical Properties

Boundary Conditions

Loading

Element 𝐹𝑦1 𝑀1 𝐹𝑦2 𝑀2

1 −104 −107 −104 107

2 −104 −8.33 × 106 −104 −8.33 × 106

3 0 0 0 0
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Euler–Bernoulli theory of bending

Problem 2: Beam Problem

𝐹𝑒 =

−
𝑞𝐿

2

−
𝑞𝐿2

12

−
𝑞𝐿

2

+
𝑞𝐿2

12

𝑞
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Interpolation (Shape Function)

Problem 2: Beam Problem

𝑤 𝑥 = 𝑁 𝑑𝑒

𝑤 𝑥 = 𝑐1𝑥3 + 𝑐2𝑥2 + 𝑐3𝑥 + 𝑐4

𝑤 𝑥 = 0 = 𝑤1 = 𝑐4

𝑑𝑤

𝑑𝑥
ቚ
𝑥=0

= 𝜃1 = 𝑐3

𝑤 𝑥 = 𝐿 = 𝑤2 = 𝑐1𝐿3 + 𝑐2𝐿2 + 𝑐3𝐿 + 𝑐4

𝑑𝑤

𝑑𝑥
ቚ

𝑥=𝐿
= 𝜃2 = 3𝑐1𝐿2 + 2𝑐2𝐿 + 𝑐3

𝑤 𝑥 =
2

𝐿3 𝑤1 − 𝑤2 +
1

𝐿2 𝜃1 + 𝜃2 𝑥3

+ −
3

𝐿2 𝑤1 − 𝑤2 −
1

𝐿
2𝜃1 + 𝜃2 𝑥2 + 𝜃1𝑥 + 𝑤1
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Direct Equilibrium Approach

Problem 2: Beam Problem

𝐹1 = 𝐸𝐼
𝑑3𝑤 𝑥

𝑑𝑥3 ቚ
𝑥=0

=
𝐸𝐼

L3 12𝑤1 + 6𝐿𝜃1 − 12𝑤2 + 6𝐿𝜃2

𝑀1 = −𝐸𝐼
𝑑2𝑤 𝑥

𝑑𝑥2 ቚ
𝑥=0

=
𝐸𝐼

L3 6𝐿𝑤1 + 4𝐿2𝜃1 − 6𝐿𝑤2 + 2𝐿2𝜃2

𝐹2 = −𝐸𝐼
𝑑3𝑤 𝑥

𝑑𝑥3 ቚ
𝑥=𝐿

=
𝐸𝐼

L3 −12𝑤1 − 6𝐿𝜃1 + 12𝑤2 − 6𝐿𝜃2

𝑀2 = 𝐸𝐼
𝑑2𝑤 𝑥

𝑑𝑥2
ቚ
𝑥=𝐿

=
𝐸𝐼

L3
6𝐿𝑤1 + 2𝐿2𝜃1 − 6𝐿𝑤2 + 4𝐿2𝜃2
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Local Stiffness Matrix

Problem 2: Beam Problem
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Local Stiffness Matrix: Internal Hinge

Problem 2: Beam Problem

Internal Hinge
Discontinuity in the slope of the deflection curve

Zero value of the bending moment

Discretize the beam using two elements

The hinge should be accounted for only once; either associated with element 1 or with element 2

If the beam is discretized with two elements, one with a hinge at its right end and the other with a hinge at its 
left, the result will be a singular stiffness matrix.

Procedure
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Problem 2: Beam Problem
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained

Problem 2: Beam Problem

If 𝛿𝑝 = 0

:  The vector of equivalent nodal forces at element level
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Problem Discerption 

𝐸 = 200 𝐺𝑃𝑎 𝐴 = 0.02 𝑚2

1

2
3

4

6

7
8

10
11

12

5

9
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All input and output data must be specified in consistent units

66

3D Truss Problem
Consistent Units
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Data Preparation (Create Input file)

67

3D Truss Problem

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

geom (nnd, dim=3)

connec (nel, nne=2)

𝐸 = 200 𝐺𝑃𝑎
𝐴 = 0.02 𝑚2

nf (nnd, nodof=3)

load (nnd, dim=3)
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Discretization and Interpolation 

𝑢 𝑥
𝑣(𝑥)
𝑤(𝑥)

= 𝑁 𝑑𝑒

𝑢 𝑥 = 𝑐0 + 𝑐1𝑥

𝑢 𝑥 = 0 = 𝑢1 = 𝑐0

𝑢 𝑥 = 𝐿 = 𝑢2 = 𝑐0 + 𝑐1𝐿
𝑢 𝑥 =

𝑢2 − 𝑢1

𝐿
𝑥 + 𝑢1

𝑁 =
𝑁1 0 0 𝑁2 0 0
0 𝑁1 0 0 𝑁2 0
0 0 𝑁1 0 0 𝑁2

𝑣 𝑥 =
𝑣2 − 𝑣1

𝐿
𝑥 + 𝑣1

𝑁1 = 1 −
𝑥

𝐿
𝑁2 =

𝑥

𝐿

𝑣 𝑥 = 𝑐0
′ + 𝑐1

′ 𝑥

𝑣 𝑥 = 0 = 𝑣1 = 𝑐0
′

𝑣 𝑥 = 𝐿 = 𝑣2 = 𝑐0
′ + 𝑐1

′ 𝐿

𝑤 𝑥 =
𝑤2 − 𝑤1

𝐿
𝑥 + 𝑤1

𝑤 𝑥 = 𝑐0
″ + 𝑐1

″𝑥

𝑤 𝑥 = 0 = 𝑤1 = 𝑐0
″

𝑤 𝑥 = 𝐿 = 𝑤2 = 𝑐0
″ + 𝑐1

″𝐿 𝑑𝑒 = 𝑢1 𝑣1 𝑤1 𝑢2 𝑣2 𝑤2
𝑇
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𝑓1𝑥 = 𝐸𝐴
𝑢1 − 𝑢2

𝐿

𝑓2𝑥 = 𝐸𝐴
𝑢2 − 𝑢1

𝐿

𝐴𝐸

𝐿

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑢1
𝑣1

𝑤1
𝑢2

𝑣2

𝑤2

=

𝑓𝑥1

𝑓𝑦1

𝑓𝑧1

𝑓𝑥2

𝑓𝑦2

𝑓𝑧2

Local Stiffness Matrix

𝑢 𝑥
𝑣 𝑥
𝑤 𝑥

=
𝑁1 0 0 𝑁2 0 0
0 𝑁1 0 0 𝑁2 0
0 0 𝑁1 0 0 𝑁2

𝑢1
𝑣1

𝑤1
𝑢2

𝑣2

𝑤2

𝜀𝑥𝑥 =
𝜕𝑢(𝑥)

𝜕𝑥

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥

𝑁1 = 1 −
𝑥

𝐿

𝐿 =

𝜕

𝜕𝑥
0 0

0 0 0
0 0 0

𝐷 =
𝐸 0 0
0 𝐸 0
0 0 𝐸

𝐾𝑒 = න

0

𝐿

𝐵𝑇𝐷𝐵 𝐴𝑑𝑥 =
𝐴𝐸

𝐿

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑁2 =
𝑥

𝐿
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Transformation Matrix

𝑟 = 𝑟𝑥𝑖 + 𝑟𝑦𝑗 + 𝑟𝑧𝑘 = 𝑟𝑥
′𝑖′ + 𝑟𝑦

′𝑗′ + 𝑟𝑧
′𝑘′

𝑟𝑥𝑖. 𝑖′ + 𝑟𝑦𝑗. 𝑖′ + 𝑟𝑧𝑘. 𝑖′ = 𝑟𝑥
′

𝑟𝑥𝑖. 𝑗′ + 𝑟𝑦𝑗. 𝑗′ + 𝑟𝑧𝑘. 𝑗′ = 𝑟𝑦
′

𝑟𝑥𝑖. 𝑘′ + 𝑟𝑦𝑗. 𝑘′ + 𝑟𝑧𝑘. 𝑘′ = 𝑟𝑧
′𝑘′

𝑟𝑥
′

𝑟𝑦
′

𝑟𝑧
′

=

𝑖. 𝑖′ 𝑗. 𝑖′ 𝑘. 𝑖′

𝑖. 𝑗′ 𝑗. 𝑗′ 𝑘. 𝑗′

𝑖. 𝑘′ 𝑗. 𝑘′ 𝑘. 𝑘′

𝑟𝑥

𝑟𝑦

𝑟𝑧

𝑟𝑥
′

𝑟𝑦
′

𝑟𝑧
′

=

cos(𝑥, 𝑥′) cos(𝑦, 𝑥′) cos(𝑧, 𝑥′)

cos(𝑥, 𝑦′) cos(𝑦, 𝑦′) cos(𝑧, 𝑦′)

cos(𝑥, 𝑧′) cos(𝑦, 𝑧′) cos(𝑧, 𝑧′)

𝑟𝑥

𝑟𝑦

𝑟𝑧

𝑇 𝑅 =
𝑇 0

0 𝑇cos 𝑥, 𝑥′ =
𝑥𝑗 − 𝑥𝑖

𝐿
cos 𝑦, 𝑥′ =

𝑦𝑗 − 𝑦𝑖

𝐿
cos 𝑧, 𝑥′ =

𝑧𝑗 − 𝑧𝑖

𝐿

𝐷 = cos2 𝑥, 𝑥′ + cos2 𝑦, 𝑥′

cos 𝑥, 𝑦′ =
cos 𝑦, 𝑥′

𝐷
cos 𝑦, 𝑦′ = −

cos 𝑥, 𝑥′

𝐷
cos 𝑧, 𝑦′ = −

cos 𝑥, 𝑥′

𝐷

cos 𝑥, 𝑧′ = −
cos 𝑥, 𝑥′ cos 𝑧, 𝑥′

𝐷
cos 𝑦, 𝑧′ = −

cos 𝑦, 𝑥′ cos 𝑧, 𝑥′

𝐷
cos 𝑧, 𝑧′ = 𝐷
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Transformation Matrix

𝑒1
′

𝑒2
′

𝑒3
′

=

𝑒1
′ . 𝑒1 𝑒1

′ . 𝑒2 𝑒1
′ . 𝑒3

𝑒2
′ . 𝑒1 𝑒2

′ . 𝑒2 𝑒2
′ . 𝑒3

𝑒3
′ . 𝑒1 𝑒3

′ . 𝑒2 𝑒3
′ . 𝑒3

𝑒1

𝑒2

𝑒3

𝑇

𝑅 =
𝑇 0

0 𝑇

𝑒𝑖
′ = 𝑇𝑖𝑗 𝑒𝑗
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Element stiffness matrix in the global coordinate system

Transformation Matrix

𝑘 = 𝑘𝑖𝑗𝑒𝑖𝑒𝑗 𝑒𝑚
′ = 𝑟𝑚𝑖𝑒𝑖

𝑒𝑛
′ = 𝑟𝑛𝑗𝑒𝑗𝑘′ = 𝑘′𝑚𝑛𝑒𝑚

′ 𝑒𝑛
′

𝑘𝑖𝑗 = 𝑘′𝑚𝑛 𝑟𝑚𝑖𝑟𝑛𝑗Index Form

Matrix Form
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𝑓1𝑥 = 𝐸𝐴
𝑢1 − 𝑢2

𝐿

𝑓2𝑥 = 𝐸𝐴
𝑢2 − 𝑢1

𝐿

More Efficient Procedure

𝑘𝑒 =
𝐴𝐸

𝐿
1 −1

−1 1

𝑟𝑥
′ = cos 𝑥, 𝑦′ cos 𝑦, 𝑦′ cos 𝑧, 𝑦′ 𝑟𝑥

𝑅 =
𝑇 0

0 𝑇
=

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿

cos 𝑥, 𝑥′ =
𝑥𝑗 − 𝑥𝑖

𝐿
cos 𝑦, 𝑥′ =

𝑦𝑗 − 𝑦𝑖

𝐿
cos 𝑧, 𝑥′ =

𝑧𝑗 − 𝑧𝑖

𝐿

𝐾𝑒 = 𝑅 𝑇 𝑘𝑒 𝑅

Global 
Coordinate

Local 
Coordinate

𝑅
Global 

Coordinate

Local 
Coordinate

𝑅 𝑇
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

If 𝛿𝑝 = 0

Apply B.C’s and Solve (free) Nodal Displacement



3D Truss Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering 75

Calculation of the Element Resultants

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained

Element 
Displacement 

in Global 
Coordinate

Element 
Displacement 

in Local 
Coordinate

Member 
Force

𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
0 0 0

0 0 0
𝑥𝑗 − 𝑥𝑖

𝐿

𝑦𝑗 − 𝑦𝑖

𝐿

𝑧𝑗 − 𝑧𝑖

𝐿
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Problem Description
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All input and output data must be specified in consistent units
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Problem 4: 2D Frames 
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Discretization



Problem 4: 2D Frames 

Milad Vahidian, Ph.D. Student of Mechanical Engineering 79

Statically Equivalent Nodal Loads
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Data Preparation (Create Input file)

80

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

geom (nnd, dim=2)

connec (nel, nne=2)

𝐸
𝐴
𝐼

nf (nnd, nodof=3)

load (nnd, nodof=3)



Problem 4: 2D Frames 

Milad Vahidian, Ph.D. Student of Mechanical Engineering 81

Interpolation (Shape Function)
𝑣 𝑥 = 𝑐3𝑥3 + 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0

𝑣 𝑥 = 0 = 𝑣1 = 𝑐0

𝑑𝑣

𝑑𝑥
ቚ

𝑥=0
= 𝜃1 = 𝑐1

𝑣 𝑥 = 𝐿 = 𝑣2 = 𝑐3𝐿3 + 𝑐2𝐿2 + 𝑐1𝐿 + 𝑐0

𝑑𝑣

𝑑𝑥
ቚ

𝑥=𝐿
= 𝜃2 = 3𝑐3𝐿2 + 2𝑐2𝐿 + 𝑐1

𝑣 𝑥 =
2

𝐿3
𝑣1 − 𝑣2 +

1

𝐿2
𝜃1 + 𝜃2 𝑥3 + −

3

𝐿2
𝑣1 − 𝑣2 −

1

𝐿
2𝜃1 + 𝜃2 𝑥2 + 𝜃1𝑥 + 𝑣1

𝑢 𝑥 = 𝑐1𝑥 +𝑐0

𝑢 𝑥 = 0 = 𝑢1 = 𝑐0

𝑢 𝑥 = 𝐿 = 𝑢2 = 𝑐0 + 𝑐1𝐿
𝑢 𝑥 =

𝑢2 − 𝑢1

𝐿
𝑥 + 𝑢1

𝑣 𝑥 =
1

𝐿3
2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑣1 +

1

𝐿3
𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝜃1 +

1

𝐿3
−2𝑥3 + 3𝑥2𝐿 𝑣2 +

1

𝐿3
𝑥3𝐿 − 𝑥2𝐿2 𝜃2

𝑢 𝑥 = 1 −
𝑥

𝐿
𝑢1 +

𝑥

𝐿
𝑢2
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Interpolation (Shape Function)

𝑢(𝑥)

𝑣 𝑥
= 𝑁 𝑑𝑒

𝑣 𝑥 =
1

𝐿3 2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑣1 +
1

𝐿3 𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝜃1 +
1

𝐿3 −2𝑥3 + 3𝑥2𝐿 𝑣2 +
1

𝐿3 𝑥3𝐿 − 𝑥2𝐿2 𝜃2

𝑢 𝑥 = 1 −
𝑥

𝐿
𝑢1 +

𝑥

𝐿
𝑢2

𝑁3 =
1

𝐿3 2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑁4 =
1

𝐿3 𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝑁5 =
1

𝐿3 −2𝑥3 + 3𝑥2𝐿 𝑁6 =
1

𝐿3 𝑥3𝐿 − 𝑥2𝐿2

𝑁1 = 1 −
𝑥

𝐿
𝑁2 =

𝑥

𝐿

𝑢(𝑥)

𝑣 𝑥
=

𝑁1 0 0 𝑁2 0 0
0 𝑁3 𝑁4 0 𝑁5 𝑁6

𝑢1

𝑣1

𝜃1

𝑢2
𝑣2

𝜃2
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Direct Equilibrium Approach

Problem 4: 2D Frames 

𝐹𝑦1 = 𝐸𝐼
𝑑3𝑣 𝑥

𝑑𝑥3 ቚ
𝑥=0

=
𝐸𝐼

L3 12𝑣1 + 6𝐿𝜃1 − 12𝑣2 + 6𝐿𝜃2

𝑀1 = −𝐸𝐼
𝑑2𝑣 𝑥

𝑑𝑥2 ቚ
𝑥=0

=
𝐸𝐼

L3 6𝐿𝑣1 + 4𝐿2𝜃1 − 6𝐿𝑣2 + 2𝐿2𝜃2

𝐹𝑦2 = −𝐸𝐼
𝑑3𝑣 𝑥

𝑑𝑥3 ቚ
𝑥=𝐿

=
𝐸𝐼

L3 −12𝑣1 − 6𝐿𝜃1 + 12𝑣2 − 6𝐿𝜃2

𝑀2 = 𝐸𝐼
𝑑2𝑣 𝑥

𝑑𝑥2 ቚ
𝑥=𝐿

=
𝐸𝐼

L3 6𝐿𝑣1 + 2𝐿2𝜃1 − 6𝐿𝑣2 + 4𝐿2𝜃2

𝑓𝑥1 = 𝐸𝐴
𝑢1 − 𝑢2

𝐿

𝑓𝑥2 = 𝐸𝐴
𝑢2 − 𝑢1

𝐿

𝑣1 𝑣2
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hinge at its left end:hinge at its right end:

Local Stiffness Matrix

𝐾𝑒 = න

0

𝐿

𝐵 𝑇 𝐷 𝐵 𝐴𝑑𝑥
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𝐶 =

Element stiffness matrix in the global coordinate system

Global Stiffness Matrix

Assemblage
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Problem 4: 2D Frames 
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained
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Problem Description
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Discretization
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Statically Equivalent Nodal Loads
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Data Preparation (Create Input file)

91

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

geom (nnd, dim = 3)

connec (nel, nne = 2)

𝐸 = 200 𝐺𝑃𝑎
𝐴 = 0.02 𝑚2

𝐼 = 𝑚4

nf (nnd, nodof = 6)

load (nnd, nodof = 6)
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Interpolation (Shape Function)
𝑣 𝑥 = 𝑐3𝑥3 + 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0

𝑣 𝑥 = 0 = 𝑣1 = 𝑐0

𝑑𝑣

𝑑𝑥
ቚ

𝑥=0
= 𝜃1 = 𝑐1

𝑣 𝑥 = 𝐿 = 𝑣2 = 𝑐3𝐿3 + 𝑐2𝐿2 + 𝑐1𝐿 + 𝑐0

𝑑𝑣

𝑑𝑥
ቚ

𝑥=𝐿
= 𝜃2 = 3𝑐3𝐿2 + 2𝑐2𝐿 + 𝑐1

𝑣 𝑥 =
2

𝐿3
𝑣1 − 𝑣2 +

1

𝐿2
𝜃1 + 𝜃2 𝑥3 + −

3

𝐿2
𝑣1 − 𝑣2 −

1

𝐿
2𝜃1 + 𝜃2 𝑥2 + 𝜃1𝑥 + 𝑣1

𝑢 𝑥 = 𝑐1𝑥 +𝑐0

𝑢 𝑥 = 0 = 𝑢1 = 𝑐0

𝑢 𝑥 = 𝐿 = 𝑢2 = 𝑐0 + 𝑐1𝐿
𝑢 𝑥 =

𝑢2 − 𝑢1

𝐿
𝑥 + 𝑢1

𝑣 𝑥 =
1

𝐿3
2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑣1 +

1

𝐿3
𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝜃1 +

1

𝐿3
−2𝑥3 + 3𝑥2𝐿 𝑣2 +

1

𝐿3
𝑥3𝐿 − 𝑥2𝐿2 𝜃2

𝑢 𝑥 = 1 −
𝑥

𝐿
𝑢1 +

𝑥

𝐿
𝑢2

𝑤 𝑥 =
1

𝐿3
2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑤1 +

1

𝐿3
𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝜃1 +

1

𝐿3
−2𝑥3 + 3𝑥2𝐿 𝑤2 +

1

𝐿3
𝑥3𝐿 − 𝑥2𝐿2 𝜃2



3D Frame Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering 93

Interpolation (Shape Function)

𝑢(𝑥)

𝑣 𝑥
= 𝑁 𝑑𝑒

𝑣 𝑥 =
1

𝐿3 2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑣1 +
1

𝐿3 𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝜃1 +
1

𝐿3 −2𝑥3 + 3𝑥2𝐿 𝑣2 +
1

𝐿3 𝑥3𝐿 − 𝑥2𝐿2 𝜃2

𝑢 𝑥 = 1 −
𝑥

𝐿
𝑢1 +

𝑥

𝐿
𝑢2

𝑁3 =
1

𝐿3 2𝑥3 − 3𝑥2𝐿 + 𝐿3 𝑁4 =
1

𝐿3 𝑥3𝐿 − 2𝑥2𝐿2 + 𝑥𝐿3 𝑁5 =
1

𝐿3 −2𝑥3 + 3𝑥2𝐿 𝑁6 =
1

𝐿3 𝑥3𝐿 − 𝑥2𝐿2

𝑁1 = 1 −
𝑥

𝐿
𝑁2 =

𝑥

𝐿

𝑢(𝑥)

𝑣 𝑥
=

𝑁1 0 0 𝑁2 0 0
0 𝑁3 𝑁4 0 𝑁4 𝑁6

𝑢1

𝑣1

𝜃1

𝑢2
𝑣2

𝜃2
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Local Stiffness Matrix

𝐾𝑒 = න

0

𝐿

𝐵 𝑇 𝐷 𝐵 𝐴𝑑𝑥

𝐾𝑒 =
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Transformation Matrix

𝑟 = 𝑟𝑥𝑖 + 𝑟𝑦𝑗 + 𝑟𝑧𝑘 = 𝑟𝑥
′𝑖′ + 𝑟𝑦

′𝑗′ + 𝑟𝑧
′𝑘′

𝑟𝑥𝑖. 𝑖′ + 𝑟𝑦𝑗. 𝑖′ + 𝑟𝑧𝑘. 𝑖′ = 𝑟𝑥
′

𝑟𝑥𝑖. 𝑗′ + 𝑟𝑦𝑗. 𝑗′ + 𝑟𝑧𝑘. 𝑗′ = 𝑟𝑦
′

𝑟𝑥𝑖. 𝑘′ + 𝑟𝑦𝑗. 𝑘′ + 𝑟𝑧𝑘. 𝑘′ = 𝑟𝑧
′𝑘′

𝑟𝑥
′

𝑟𝑦
′

𝑟𝑧
′

=

𝑖. 𝑖′ 𝑗. 𝑖′ 𝑘. 𝑖′

𝑖. 𝑗′ 𝑗. 𝑗′ 𝑘. 𝑗′

𝑖. 𝑘′ 𝑗. 𝑘′ 𝑘. 𝑘′

𝑟𝑥

𝑟𝑦

𝑟𝑧

𝑟𝑥
′

𝑟𝑦
′

𝑟𝑧
′

=

cos(𝑥, 𝑥′) cos(𝑦, 𝑥′) cos(𝑧, 𝑥′)

cos(𝑥, 𝑦′) cos(𝑦, 𝑦′) cos(𝑧, 𝑦′)

cos(𝑥, 𝑧′) cos(𝑦, 𝑧′) cos(𝑧, 𝑧′)

𝑟𝑥

𝑟𝑦

𝑟𝑧

𝑇 𝑅 =

𝑇 0 0 0
0 𝑇 0 0

0 0 𝑇 0
0 0 0 𝑇

cos 𝑥, 𝑥′ =
𝑥𝑗 − 𝑥𝑖

𝐿
cos 𝑦, 𝑥′ =

𝑦𝑗 − 𝑦𝑖

𝐿
cos 𝑧, 𝑥′ =

𝑧𝑗 − 𝑧𝑖

𝐿

𝐷 = cos2 𝑥, 𝑥′ + cos2 𝑦, 𝑥′

cos 𝑥, 𝑦′ =
cos 𝑦, 𝑥′

𝐷
cos 𝑦, 𝑦′ = −

cos 𝑥, 𝑥′

𝐷
cos 𝑧, 𝑦′ = 0

cos 𝑥, 𝑧′ = −
cos 𝑥, 𝑥′ cos 𝑧, 𝑥′

𝐷
cos 𝑦, 𝑧′ = −

cos 𝑦, 𝑥′ cos 𝑧, 𝑥′

𝐷
cos 𝑧, 𝑧′ = 𝐷
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Transformation Matrix

𝑒1
′

𝑒2
′

𝑒3
′

=

𝑒1
′ . 𝑒1 𝑒1

′ . 𝑒2 𝑒1
′ . 𝑒3

𝑒2
′ . 𝑒1 𝑒2

′ . 𝑒2 𝑒2
′ . 𝑒3

𝑒3
′ . 𝑒1 𝑒3

′ . 𝑒2 𝑒3
′ . 𝑒3

𝑒1

𝑒2

𝑒3

𝑇

𝑅 =

𝑇 0 0

0 𝑇 0

0 0 𝑇

𝑒𝑖
′ = 𝑇𝑖𝑗 𝑒𝑗
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Element stiffness matrix in the global coordinate system

Transformation Matrix

𝑘 = 𝑘𝑖𝑗𝑒𝑖𝑒𝑗 𝑒𝑚
′ = 𝑟𝑚𝑖𝑒𝑖

𝑒𝑛
′ = 𝑟𝑛𝑗𝑒𝑗𝑘′ = 𝑘′𝑚𝑛𝑒𝑚

′ 𝑒𝑛
′

𝑘𝑖𝑗 = 𝑘′𝑚𝑛 𝑟𝑚𝑖𝑟𝑛𝑗Index Form

Matrix Form
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Element stiffness matrix in the global coordinate system

Global Stiffness Matrix

Assemblage
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

3D Frame Problem



3D Frame Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering 100

Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained
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Problem Discerption 
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Space Discretization: Mesh Generation

For each interval i and j, four nodes n1, n2, n3, and n4 and two elements are created. The first element has nodes 
n1, n2, n3, while the second element has nodes n2, n4, n3.

nel = 2 × NXE × NYE
nnd = (NXE + 1) × (NYE + 1)
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Interpolation (Shape) Function
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Element Stiffness Matrix: Variational Approach

𝑈 =
1

2
ඵ

𝐴

𝑃
𝜕𝑤

𝜕𝑥

2

+
𝜕𝑤

𝜕𝑦

2

𝑑𝐴

𝑇 =
1

2
ඵ

𝐴

𝜌
𝜕𝑤

𝜕𝑡

2

𝑑𝐴

𝑊 = ඵ
𝐴

𝑓 𝑥, 𝑦, 𝑡 𝑤(𝑥, 𝑦, 𝑡)𝑑𝐴

𝛿𝐼 = 𝛿 න
𝑡1

𝑡2

ඵ
𝐴

𝑈 − 𝑊 − 𝑇 𝑑𝐴 𝑑𝑡 = 0

𝛿𝐼 = න
𝑡1

𝑡2

ඵ
𝐴

𝑃
𝜕𝑤

𝜕𝑥
𝛿

𝜕𝑤

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
𝛿

𝜕𝑤

𝜕𝑦
𝑑𝐴 − ඵ

𝐴

𝑓 𝑥, 𝑦, 𝑡 𝛿𝑤 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝜌
𝜕2𝑤

𝜕𝑡2 𝛿𝑤 𝑥, 𝑦, 𝑡 𝑑𝐴 𝑑𝑡 = 0

𝑤 = 𝑁 𝑎

𝛿𝐼 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝑎 − ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝑁 𝑇𝜌 𝑑𝐴 ሷ𝑎 𝛿 𝑎 = 0
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Element Stiffness Matrix: Variational Approach

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹(𝑡)

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 𝐾 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝐹 𝑡 = ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴

ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝑎 − ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝑁 𝑇𝜌 𝑑𝐴 ሷ𝑎 = 0
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Element Stiffness Matrix: Galerkin Approach

𝑃
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 + 𝑓 𝑥, 𝑦, 𝑡 = 𝜌
𝜕2𝑤

𝜕𝑡2 ඵ
𝐴

𝑁 𝑇 𝑃
𝜕2 𝑁

𝜕𝑥2 +
𝜕2 𝑁

𝜕𝑦2 𝑎 + 𝑓 𝑥, 𝑦, 𝑡 − 𝜌 𝑁 ሷ𝑎 𝑑𝐴 = 0

ඵ
𝐴

−𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑎 + 𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 − 𝑁 𝑇𝜌 𝑁 ሷ𝑎 𝑑𝐴 + ර

𝐶

𝑁 𝑇𝑃
𝜕 𝑁

𝜕𝑥
𝑛𝑥 +

𝜕 𝑁

𝜕𝑦
𝑛𝑦 𝑑𝐶 = 0

𝑤 = 𝑁 𝑎

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹(𝑡)

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 𝐾 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝐹 𝑡 = ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴
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Element Stiffness Matrix

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 = ඵ
𝐴𝑒

𝐿𝑖

𝐿𝑗

𝐿𝑘

𝜌 𝐿𝑖 𝐿𝑗 𝐿𝑘 𝑑𝑥𝑑𝑦 = 𝜌 ඵ
𝐴𝑒

𝐿𝑖
2 𝐿𝑖𝐿𝑗 𝐿𝑖𝐿𝑘

𝐿𝑗𝐿𝑖 𝐿𝑗
2 𝐿𝑗𝐿𝑘

𝐿𝑘𝐿𝑖 𝐿𝑘𝐿𝑗 𝐿𝑘
2

=
𝜌

12

2 1 1
1 2 1
1 1 2

𝐾 = ඵ
𝐴

𝑇
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 = ඵ

𝐴𝑒

𝑚21

𝑚22

𝑚23

𝑇 𝑚21 𝑚22 𝑚23 𝑑𝑥𝑑𝑦 + ඵ
𝐴𝑒

𝑚31

𝑚32

𝑚33

𝑇 𝑚31 𝑚32 𝑚33 𝑑𝑥𝑑𝑦

= 𝑇𝐴

𝑚21
2 𝑚21𝑚22 𝑚21𝑚23

𝑚22𝑚21 𝑚22
2 𝑚22𝑚23

𝑚23𝑚21 𝑚23𝑚22 𝑚23
2

+ 𝑇𝐴

𝑚31
2 𝑚31𝑚32 𝑚31𝑚33

𝑚32𝑚31 𝑚32
2 𝑚32𝑚33

𝑚33𝑚31 𝑚33𝑚32 𝑚33
2

𝐹 𝑡 = ඵ
𝐴

𝑁 𝑇𝑃 𝑑𝐴
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Assemblage
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Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

If 𝛿𝑝 = 0
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Solve (free) Nodal Displacement

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

If 𝛿𝑝 = 0

To obtain the element stresses and strains, a loop is carried over all the elements:
1. Form element strain matrix bee and “steering” vector g
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee × edg
3. Obtain element stress vector sigma = dee × bee × edg

4. Store the strains for all the elements EPS(i, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file
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Problem Discerption 
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Space Discretization: Mesh Generation
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Interpolation (Shape) Function

𝑤 𝜉, 𝜂 = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜂 + 𝑐3𝜉𝜂

𝑤 𝜉, 𝜂 = 𝑁1𝑤1 + 𝑁2𝑤2 + 𝑁3𝑤3 + 𝑁4𝑤4

𝑤 𝜉, 𝜂, 𝑡 = 𝑁1 𝜉, 𝜂 𝑁2 𝜉, 𝜂 𝑁3 𝜉, 𝜂 𝑁4 𝜉, 𝜂

𝑤1(𝑡)
𝑤2(𝑡)
𝑤3(𝑡)
𝑤4(𝑡)
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Element Stiffness Matrix: Variational Approach

𝑈 =
1

2
ඵ

𝐴

𝑃
𝜕𝑤

𝜕𝑥

2

+
𝜕𝑤

𝜕𝑦

2

𝑑𝐴

𝑇 =
1

2
ඵ

𝐴

𝜌
𝜕𝑤

𝜕𝑡

2

𝑑𝐴

𝑊 = ඵ
𝐴

𝑓 𝑥, 𝑦, 𝑡 𝑤(𝑥, 𝑦, 𝑡)𝑑𝐴

𝛿𝐼 = 𝛿 න
𝑡1

𝑡2

ඵ
𝐴

𝑈 − 𝑊 − 𝑇 𝑑𝐴 𝑑𝑡 = 0

𝛿𝐼 = න
𝑡1

𝑡2

ඵ
𝐴

𝑃
𝜕𝑤

𝜕𝑥
𝛿

𝜕𝑤

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
𝛿

𝜕𝑤

𝜕𝑦
𝑑𝐴 − ඵ

𝐴

𝑓 𝑥, 𝑦, 𝑡 𝛿𝑤 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝜌
𝜕2𝑤

𝜕𝑡2 𝛿𝑤 𝑥, 𝑦, 𝑡 𝑑𝐴 𝑑𝑡 = 0

𝑤 = 𝑁 𝑎

𝛿𝐼 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝑎 − ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝑁 𝑇𝜌 𝑑𝐴 ሷ𝑎 𝛿 𝑎 = 0
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Element Stiffness Matrix: Variational Approach

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹(𝑡)

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 𝐾 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝐹 𝑡 = ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴

ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝑎 − ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴 − ඵ
𝐴

𝑁 𝑇𝜌 𝑑𝐴 ሷ𝑎 = 0
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Element Stiffness Matrix: Galerkin Approach

𝑃
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 + 𝑓 𝑥, 𝑦, 𝑡 = 𝜌
𝜕2𝑤

𝜕𝑡2 ඵ
𝐴

𝑁 𝑇 𝑃
𝜕2 𝑁

𝜕𝑥2 +
𝜕2 𝑁

𝜕𝑦2 𝑎 + 𝑓 𝑥, 𝑦, 𝑡 − 𝜌 𝑁 ሷ𝑎 𝑑𝐴 = 0

ඵ
𝐴

−𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑎 + 𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 − 𝑁 𝑇𝜌 𝑁 ሷ𝑎 𝑑𝐴 + ර

𝐶

𝑁 𝑇𝑃
𝜕 𝑁

𝜕𝑥
𝑛𝑥 +

𝜕 𝑁

𝜕𝑦
𝑛𝑦 𝑑𝐶 = 0

𝑤 = 𝑁 𝑎

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹(𝑡)

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 𝐾 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴 𝐹 𝑡 = ඵ

𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴
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Element Stiffness Matrix

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 =
𝜌

9

4 2 1 2
2 4 2 4
1 2 4 2
2 1 2 4

𝐾 = ඵ
𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴

𝐹 𝑡 = ඵ
𝐴

𝑁 𝑇𝑓 𝑥, 𝑦, 𝑡 𝑑𝐴
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Element Stiffness Matrix

𝑥 = 𝑁1𝑥1 + 𝑁2𝑥2 + 𝑁3𝑥3 + 𝑁4𝑥4

𝑦 = 𝑁1𝑦1 + 𝑁2𝑦2 + 𝑁3𝑦3 + 𝑁4𝑦4

𝐽 =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=

෍

𝑖=1

4
𝜕𝑁𝑖

𝜕𝜉
𝑥𝑖 ෍

𝑖=1

4
𝜕𝑁𝑖

𝜕𝜉
𝑦𝑖

෍

𝑖=1

4
𝜕𝑁𝑖

𝜕𝜂
𝑥𝑖 ෍

𝑖=1

4
𝜕𝑁𝑖

𝜕𝜂
𝑦𝑖

𝐽 =

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉
𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

𝑥1 𝑦1

𝑥2 𝑦2

𝑥3 𝑦3

𝑥4 𝑦4

Isoparametric Element
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Element Stiffness Matrix

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹(𝑡)

𝑀 = ඵ
𝐴

𝑁 𝑇𝜌 𝑁 𝑑𝐴 =
𝜌

9

4 2 1 2
2 4 2 4
1 2 4 2
2 1 2 4

𝐾 = 𝑃 න
−1

+1

න
−1

+1 𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
det 𝐽 𝜉, 𝜂 𝑑𝜉𝑑𝜂𝐾 = ඵ

𝐴

𝑃
𝜕 𝑁 𝑇

𝜕𝑥

𝜕 𝑁

𝜕𝑥
+

𝜕 𝑁 𝑇

𝜕𝑦

𝜕 𝑁

𝜕𝑦
𝑑𝐴
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Assemblage
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Assemblage
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Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

If 𝛿𝑝 = 0
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Solve (free) Nodal Displacement

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

If 𝛿𝑝 = 0

To obtain the element stresses and strains, a loop is carried over all the elements:
1. Form element strain matrix bee and “steering” vector g
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee × edg
3. Obtain element stress vector sigma = dee × bee × edg

4. Store the strains for all the elements EPS(i, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file



Plane Stress Problem: T3
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𝐸 = 70 𝐺𝑃𝑎 𝜈 = 0.33 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 2 𝑚𝑚
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Problem Discerption 



Plane Stress Problem: T3
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying 
assumptions can be made regarding the stress or strain distributions.
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Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0



Plane Stress Problem: T3
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The infinitesimal strain displacements relations for both theories
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By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂
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Variational Approach
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Data Preparation (Create Input file)
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Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Plane Stress Problem: T3

geom(nnd, 2)

connec(nel, 3)

𝐸 = 70 × 103 𝑀𝑃𝑎 𝜈 = 0.3

nf(nnd, nodof)

The force in the global force vector fg
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Interpolation

Plane Stress Problem: T3

Constant Strain Triangle (CST) 
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Stiffness Matrix

Plane Stress Problem: T3
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Stiffness Matrix

Plane Stress Problem: T3

Body Forces Traction Forces Concentrated Forces
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: T3
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Plane Stress Problem: T3

If 𝛿𝑝 = 0

To obtain the element stresses and strains, a loop is carried over all the elements:
1. Form element strain matrix bee and “steering” vector g
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee × edg
3. Obtain element stress vector sigma = dee × bee × edg

4. Store the strains for all the elements EPS(i, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file



Plane Stress Problem: T6
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𝐸 = 200 𝐺𝑃𝑎 𝜈 = 0.3 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 5 𝑚𝑚
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Problem Discerption 

𝐶 = 10 𝑚𝑚𝐿 = 60 𝑚𝑚

1000 𝑁 =



Plane Stress Problem: T6
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying 
assumptions can be made regarding the stress or strain distributions.

Milad Vahidian, Ph.D. Student of Mechanical Engineering 138

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0



Plane Stress Problem: T6
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The infinitesimal strain displacements relations for both theories
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By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂
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Variational Approach
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Data Preparation (Create Input file)
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Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Plane Stress Problem: T6

geom(nnd, 2)

connec(nel, nne)

𝐸 = 2 × 105 𝑀𝑃𝑎 𝜈 = 0.3

nf(nnd, nodof)

The force in the global force vector F
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Discretization

Plane Stress Problem: T6

nnd = 0;
k = 0;
for i=1:NXE

for j=1:NYE
k = k + 1;
n1 = j + (i-1)*(NYE + 1);
geom(n1,:) = [(i-1)*dhx-X_origin , (j-1)*dhy-Y_origin ];
n2 = j + i*(NYE+1);
geom(n2,:) = [i*dhx-X_origin , (j-1)*dhy-Y_origin ];
n3 = n1 + 1;
geom(n3,:) = [(i-1)*dhx-X_origin , j*dhy-Y_origin ];
n4 = n2 + 1;
geom(n4,:) = [i*dhx-X_origin , j*dhy-Y_origin ];
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3];
connec(nel,:) = [n2 n4 n3];
nnd = n4;

end
end
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Discretization
Plane Stress Problem: T6

nnd = 0; k = 0;
for  i=1:NXE

for  j=1:NYE
k = k + 1;
n1 = (2*j-1) + (2*i-2)*(2*NYE+1) ;         n2 = (2*j-1) + (2*i-1)*(2*NYE+1);
n3 = (2*j-1) + (2*i)*(2*NYE+1);
n4 = n1 + 1; n5 = n2 + 1; n6 = n3 + 1;    
n7 = n1 + 2;    n8 = n2 + 2;    n9 = n3 + 2;
%
geom(n1,:) = [(i-1)*dhx - X_origin , (j-1)*dhy - Y_origin];
geom(n2,:) = [((2*i-1)/2)*dhx - X_origin , (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin , (j-1)*dhy - Y_origin ];
geom(n4,:) = [(i-1)*dhx - X_origin , ((2*j-1)/2)*dhy - Y_origin ];
geom(n5,:) = [((2*i-1)/2)*dhx - X_origin , ((2*j-1)/2)*dhy - Y_origin ];
geom(n6,:) = [i*dhx - X_origin , ((2*j-1)/2)*dhy - Y_origin ];
geom(n7,:) = [(i-1)*dhx - X_origin , j*dhy - Y_origin];
geom(n8,:) = [((2*i-1)/2)*dhx - X_origin , j*dhy - Y_origin];
geom(n9,:) = [i*dhx - X_origin , j*dhy - Y_origin];
%
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3 n5 n7 n4];
connec(nel,:) = [n3 n6 n9 n8 n7 n5];
nnd= max([n1 n2 n3 n4 n5 n6 n7 n8 n9]);
% XIN and YIN are two vectors that holds the coordinates X and Y
% of the grid necessary for the function contourf (XIN,YIN, stress)
XIG(2*i-1) = geom(n1,1); XIG(2*i) = geom(n2,1); XIG(2*i+1) = geom(n3,1);
YIG(2*j-1) = geom(n1,2); YIG(2*j) = geom(n4,2); YIG(2*j+1) = geom(n7,2);

end
end
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Interpolation

Plane Stress Problem: T6

Linear Strain Triangle (LST) 
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Stiffness Matrix

Plane Stress Problem: T6
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Stiffness Matrix

Plane Stress Problem: T6

6

6

6 6
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Stiffness Matrix

Plane Stress Problem: T6

)

)



Milad Vahidian, Ph.D. Student of Mechanical Engineering 150

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: T6
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Deflection of the Neutral Line of Cantilever Beam

Plane Stress Problem: T6
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Calculation of the Element Resultants

SUPPORT REACTIONS

MEMBERS’ FORCES

Plane Stress Problem: T6

If 𝛿𝑝 = 0

To obtain the element stresses and strains, a loop is carried over all the elements:
1. Form element strain matrix bee and “steering” vector g
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee × edg
3. Obtain element stress vector sigma = dee × bee × edg

4. Store the strains for all the elements EPS(i, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file



Plane Stress Problem: Q4
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Problem Discerption 



Plane Stress Problem: Q4
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying 
assumptions can be made regarding the stress or strain distributions.
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Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0



Plane Stress Problem: Q4
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The infinitesimal strain displacements relations for both theories



Plane Stress Problem: Q4

Milad Vahidian, Ph.D. Student of Mechanical Engineering 156

By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂



Plane Stress Problem: Q4
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Variational Approach
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Data Preparation (Create Input file)

158

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Plane Stress Problem: Q4

geom(nnd, 2)

connec(nel, nne)

𝐸 = 4 × 104 𝑀𝑃𝑎 𝜈 = 0.17

nf(nnd, nodof)

The force in the global force vector fg
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Discretization: Mesh Generation

159

Plane Stress Problem: Q4

nnd =0;

k =0;

for i = 1:NXE

for j=1:NYE

k = k + 1;

n1 = j + (i-1)*(NYE + 1);

geom(n1,:) = [(i-1)*dhx-X_origin,  (j-1)*dhy-Y_origin ];

n2 = j + i*(NYE+1);

geom(n2,:) = [i*dhx-X_origin,  (j-1)*dhy-Y_origin ];

n3 = n1 + 1;

geom(n3,:) = [(i-1)*dhx-X_origin,  j*dhy-Y_origin ];

n4 = n2 + 1;

geom(n4,:) = [i*dhx-X_origin,  j*dhy-Y_origin ];

nel = k;

connec(nel,:) = [n1 n2 n4 n3];

nnd = n4;

end

end
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Plane Stress Problem: Q4
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Interpolation

Plane Stress Problem: Q4

Four node Iso-parametric Element
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Stiffness Matrix

Plane Stress Problem: Q4

4

4

4

4

𝐿 𝑁 =

𝜖 = 𝐿 𝑈
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Stiffness Matrix

Plane Stress Problem: Q4

4

4

44
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Stiffness Matrix

Plane Stress Problem: Q4

4

4

44



Milad Vahidian, Ph.D. Student of Mechanical Engineering 165

Stiffness Matrix
Plane Stress Problem: Q4

Next Slide
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Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel 
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2) 

i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2) 
iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local 
coordinates, ξ = samp(ig, 1) and η = samp(jg, 1). 
iv. Evaluate the Jacobian jac = der ∗ coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute 
the inverse of the Jacobian as jac1 = inv(jac) 
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ 
der 
viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d ∗ thick 
∗ wi ∗ wj ∗ B ∗ D ∗ B 

4. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q4
Numerical Integration of the Stiffness Matrix
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Force Vectors
Plane Stress Problem: Q4

Body Forces

Traction Forces 

Concentrated Forces

When the nodes of an element are numbered anticlockwise 
a tangential force, such as 𝑞𝑡 , is positive if it acts 

anticlockwise. A normal force, such as 𝑞𝑛 , is positive if it 
acts toward the interior of the element

In practice, when the loads are uniformly distributed they are 
replaced by equivalent nodal loads. The preceding development is 

to be used only if the shape of the loading is complicated.
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: Q4
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Calculation of the Element Resultants

SUPPORT REACTIONS

Plane Stress Problem: Q4

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

Plane Stress Problem: Q4

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this 
we set ngp = 1.
1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points jg = 1 to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local 
coordinates ξ = samp(ig, 1) and η = samp(jg, 1)
d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der

h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps = bee ∗ eld
j. Compute the stresses as sigma = dee ∗ eps

4. Store the stresses in the matrix SIGMA(nel, 3)



Plane Stress Problem: Q8
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Problem Discerption 



Plane Stress Problem: Q8
In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying 
assumptions can be made regarding the stress or strain distributions.
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Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain

𝜎𝑧𝑧 = 0 𝑎𝑛𝑑 𝜀𝑧𝑧 ≠ 0 𝜎𝑧𝑧 ≠ 0 𝑎𝑛𝑑 𝜀𝑧𝑧 = 0



Plane Stress Problem: Q8
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The infinitesimal strain displacements relations for both theories



Plane Stress Problem: Q8
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By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂



Plane Stress Problem: Q8
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Variational Approach
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Data Preparation (Create Input file)

176

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Plane Stress Problem: Q8

geom(nnd, 2)

connec(nel, nne)

𝐸 = 4 × 104 𝑀𝑃𝑎 𝜈 = 0.17

nf(nnd, nodof)

The force in the global force vector fg
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Discretization: Mesh Generation

177

Plane Stress Problem: Q8

nnd=0;
k=0;
for i=1:NXE

for j=1:NYE
k=k+1;
n1=(i-1)*(3*NYE+2)+2*j - 1;
n2=i*(3*NYE+2)+j - NYE - 1;
n3=i*(3*NYE+2)+2*j-1;
n4=n3 + 1; n5=n3 + 2; n6=n2 + 1;
n7=n1 + 2; n8=n1 + 1;
geom(n1,:)=[(i-1)*dhx-X_origin,    (j-1)*dhy-Y_origin];
geom(n3,:)=[i*dhx - X_origin,          (j-1)*dhy-Y_origin];
geom(n5,:)=[i*dhx-X_origin,             j*dhy - Y_origin];
geom(n7,:)=[(i-1)*dhx - X_origin,   j*dhy - Y_origin];
geom(n2,:)=[(geom(n1,1)+geom(n3,1))/2 , (geom(n1,2)+geom(n3,2))/2];

geom(n4,:)=[(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
geom(n6,:)=[(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:)=[(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];
nel = k;
nnd = n5;
connec(k,:)=[n1 n2 n3 n4 n5 n6 n7 n8];

end
end
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Discretization: Mesh Generation
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Plane Stress Problem: Q8
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Interpolation

Plane Stress Problem: Q8

Eight-noded Iso-parametric Element
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Stiffness Matrix

Plane Stress Problem: Q8
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Stiffness Matrix

Plane Stress Problem: Q8
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Stiffness Matrix
Plane Stress Problem: Q8

Next Slide
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Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel 
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2) 

i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2) 
iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local 
coordinates, ξ = samp(ig, 1) and η = samp(jg, 1). 
iv. Evaluate the Jacobian jac = der ∗ coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute 
the inverse of the Jacobian as jac1 = inv(jac) 
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ 
der 
viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d ∗ thick 
∗ wi ∗ wj ∗ B ∗ D ∗ B 

4. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q8
Numerical Integration of the Stiffness Matrix
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Force Vectors
Plane Stress Problem: Q8

Body Forces

Traction Forces 

Concentrated Forces

When the nodes of an element are numbered anticlockwise 
a tangential force, such as 𝑞𝑡 , is positive if it acts 

anticlockwise. A normal force, such as 𝑞𝑛 , is positive if it 
acts toward the interior of the element

In practice, when the loads are uniformly distributed they are 
replaced by equivalent nodal loads. The preceding development is 

to be used only if the shape of the loading is complicated.
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Plane Stress Problem: Q8
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Calculation of the Element Resultants

SUPPORT REACTIONS

Plane Stress Problem: Q8

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

Plane Stress Problem: Q8

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this 
we set ngp = 1.
1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points jg = 1 to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local 
coordinates ξ = samp(ig, 1) and η = samp(jg, 1)
d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der

h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps = B ∗ eld
j. Compute the stresses as sigma = D ∗ eps

4. Store the stresses in the matrix SIGMA(nel, 3)
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Problem Discerption 



Axisymmetric Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering 190

LENGTH MASS TIME FORCE STRESS ENERGY VELOCITY ACCELERATION

mm ton S N MPa mJ 1e-03 m/s 1e-03 m/s²

mm kg ms kN GPa 1e+03 mJ m/s 1e+03 m/s²

mm g ms N MPa mJ m/s 1e+03 m/s²

mm kg S mN kPa 1e-03 mJ 1e-03 m/s 1e-03 m/s²

mm g S 1e-06 N Pa 1e-06 mJ 1e-03 m/s 1e-03 m/s²

mm kgf-s²/mm S kgf kgf/mm² kgf-mm 1e-03 m/s 1e-03 m/s²

m kg S N Pa J m/s m/s²

cm kg S 1e-02 N 1e+02 Pa 1e-04. J 1e-02 m/s 1e-02 m/s²

cm kg ms 1e+04 N 1e+08 Pa 1e+02 J 1e+01 m/s 1e+04 m/s²

cm kg us 1e+10 N 1e+14 Pa 1e+08 J 1e+04 m/s 1e+10 m/s²

cm g S dyne dyne/cm² erg 1e-02 m/s 1e-02 m/s²

cm g ms 1e+01 N bar 1e-01 J 1e+01 m/s 1e+04 m/s²

cm g us 1e+07 N Mbar 1e+05 J 1e+04 m/s 1e+10 m/s²

in lbf-s²/in S lbf psi lbf-in in/s in/s²

ft slug S lbf psf lbf-ft ft/s ft/s²



Axisymmetric Problem
An axisymmetric problem is a three-dimensional problem that can be solved using a two-dimensional model
provided that it posses a symmetry of revolution in both geometry, material properties and loading, and it can 
lend itself to a cylindrical coordinate.
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The only displacements required to define its behavior are the ones in the 𝑟 and 𝑧 directions, denoted by 𝑢 and 
𝑣, respectively. They are not a function of 𝜃.
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Data Preparation (Create Input file)

192

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Axisymmetric Problem

geom(nnd, dim=2)

connec(nel, nne=8)

𝐸 = 105 𝑘𝑃𝑎 𝜈 = 0.35

nf(nnd, nodof)

The force in the global force vector F
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Discretization: Mesh Generation

193

Axisymmetric Problem

nnd=0;
k=0;
for i=1:NXE

for j=1:NYE
k=k+1;
n1=(i-1)*(3*NYE+2)+2*j - 1;
n2=i*(3*NYE+2)+j - NYE - 1;
n3=i*(3*NYE+2)+2*j-1;
n4=n3 + 1; n5=n3 + 2; n6=n2 + 1;
n7=n1 + 2; n8=n1 + 1;
geom(n1,:)=[(i-1)*dhx-X_origin,    (j-1)*dhy-Y_origin];
geom(n3,:)=[i*dhx - X_origin,          (j-1)*dhy-Y_origin];
geom(n5,:)=[i*dhx-X_origin,             j*dhy - Y_origin];
geom(n7,:)=[(i-1)*dhx - X_origin,   j*dhy - Y_origin];
geom(n2,:)=[(geom(n1,1)+geom(n3,1))/2 , (geom(n1,2)+geom(n3,2))/2];

geom(n4,:)=[(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
geom(n6,:)=[(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:)=[(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];
nel = k;
nnd = n5;
connec(k,:)=[n1 n2 n3 n4 n5 n6 n7 n8];

end
end



Milad Vahidian, Ph.D. Student of Mechanical Engineering

Discretization: Mesh Generation
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Axisymmetric Problem



Axisymmetric Problem
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Interpolation
For an element having n nodes, the components of the displacement vector are interpolated using nodal approximations
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Interpolation

Axisymmetric Problem

Eight-nodded Iso-parametric Element



Axisymmetric Problem
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The infinitesimal strain displacements relations for axisymmetric problems

Strain-Displacement Relations



Axisymmetric Problem
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By substitution 

𝜺 = 𝑳 𝑼

𝑼 = 𝑵 𝒂

𝜺 = 𝑳 𝑵 𝒂 = 𝑩 𝒂

Strain-Displacement Relations
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Stress–Strain Relations

In an axisymmetric problem, the shear strains 𝛾𝑟𝜃 and 𝛾𝑧𝜃 and the shear stresses 𝜏𝑟𝜃 and 𝜏𝑧𝜃 all vanish because of 
the radial symmetry.
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Stiffness Matrix + Force Vectors

ම

𝑽

𝑩 𝑻 𝑫 𝑩 𝒅𝑽 𝒂 = ම

𝑉

𝑩 𝑻 𝑫 𝜺𝟎 𝒅𝑽 − ම

𝑉

𝑩 𝑻 𝝈𝟎 𝒅𝑽 + ම

𝑉

𝑵 𝑻 𝑭𝒃 𝒅𝑽 + ඵ

𝑆

𝑵 𝑻 𝑻 𝒅𝑺 + ෍
𝑖=1

𝑛

𝑵 𝑻 𝑭𝒑
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Stiffness Matrix

Axisymmetric Problem
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Stiffness Matrix

Axisymmetric Problem

𝑟 = 𝑁1𝑥1 + 𝑁2𝑥2 + ⋯ + 𝑁8𝑥8



Axisymmetric Problem
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Numerical Integration of the Stiffness Matrix

For each element, it is evaluated as follows:
1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q8.m
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)
i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2)
iii. Use the function fmquad.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates,
ξ = samp(ig, 1) and η =samp(jg, 1).
iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)
vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 ∗ der
viii. Use the function formbee_axi to form the strain matrix bee and calculate the radius r at the integration point as  r = σ𝑗

𝑛𝑛𝑒 𝑁𝑗𝑥𝑗

ix. Compute the stiffness matrix as             𝑘𝑒 = 𝑘𝑒 + 𝑑 ∗ 𝑤𝑖 ∗ 𝑤𝑗 ∗ 𝐵𝑇 ∗ 𝐷 ∗ 𝐵 ∗ 𝑟
4. Assemble the stiffness matrix ke into the global matrix kk
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Force Vectors
Axisymmetric Problem

Body Forces

Traction Forces 

Concentrated Forces
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Axisymmetric Problem
Discretization: Mesh Generation

𝑓𝑠 = න

𝐿

𝑁1 0
0 𝑁1

. .

. .

. .
𝑁8 0
0 𝑁8

0
63662 (𝑁/𝑚2)

𝑟 𝑑𝑙
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Axisymmetric Problem
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Calculation of the Element Resultants

SUPPORT REACTIONS

Axisymmetric Problem

If 𝛿𝑝 = 0
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Calculation of the Element Resultants

Axisymmetric Problem

Element Displacement

B Matrix

Strain

Stress



Problem: Transient Thermal Analysis
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𝐸: 0,0 𝐷: 80,0 𝐴: 70,90 𝐹: 0,90 𝑚𝑚



Problem: Transient Thermal Analysis
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Dynamic Problem 
(PDEs)

System of ODEs
(Linear or Non-linear)FEM

Finite Element Method = Space Discretization + Interpolation

𝑤 𝑥, 𝑡 +
𝜕

𝜕𝑥
𝐴𝐸

𝜕𝑢 𝑥, 𝑡

𝜕𝑥
= 𝜌

𝜕2𝑢 𝑥, 𝑡

𝜕𝑡2

𝑀 ሷ𝑎 𝑡 + 𝐾 𝑎 𝑡 = 𝐹 𝑡 𝑎
Time Discretization 

𝑎 𝑡𝑖 = 𝑎𝑖

𝑎 𝑡𝑖 + Δ𝑡 = 𝑎𝑖+1

210
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Time Integration

Explicit

Implicit

Time Discretization

Central Difference Method

Newmark-Beta Method

Wilson-Theta Method

Runge-Kutta Method
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Explicit Implicit

Time Discretization

Central Difference Method Newmark-Beta Method

Wilson-Theta MethodRunge-Kutta Method

Solution at 𝑡 + Δ𝑡 is obtained by quantities at 𝑡
Equilibrium eq.s are not satisfied precisely 

Shorter time increments are needed to reach convergence 

Solution at 𝑡 + Δ𝑡 is obtained by quantities at 𝑡 + Δ𝑡
Equilibrium eq.s are satisfied precisely 
The solution is unconditionally stable 
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Problem: Transient Thermal Analysis
Implicit Integration                   vs.                      Explicit Integration
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Explicit Method: Central Difference Method

𝑀 ሷ𝑑𝑖 + 𝐾 𝑑𝑖 = 𝐹𝑖
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Step 1

Given: {𝑑0} , { ሶ𝑑0} , and {𝐹(𝑡)}.

Step 2 

If { ሷ𝑑0} is not initially given, solve ሷ𝑑0 = 𝑀 −1 𝐹0 − 𝐾 𝑑0 at 𝑡 = 0 for { ሷ𝑑0}

Step 3 
By using Taylor expansion, obtain is {𝑑−1}; that is,

Step 4
now solve equation for {𝑑1}

Step 5

solve for { ሷ𝑑1} as
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Step 7
Using the result of step 5 and initial condition 𝑑0 given in step 1, determine the velocity at the first time step by 
Eq below

Step 8
Use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and velocity for all other time steps.

Step 6
With {𝑑0} initially given, and {𝑑1} determined from step 4, use Eq. below to obtain {𝑑2}
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Implicit Method: Newmark’s Method 

𝑀 ሷ𝑑𝑖 + 𝐾 𝑑𝑖 = 𝐹𝑖

𝑀

𝛽 Δ𝑡 2 + 𝐾 𝑑𝑖+1 = 𝐹𝑖+1 +
𝑀

𝛽 Δ𝑡 2 𝑑𝑖 +
𝑀

𝛽 Δ𝑡
ሶ𝑑𝑖 +

𝑀

𝛽

1

2
− 𝛽 ሷ𝑑𝑖

𝐾′

The parameter 𝛽 is generally chosen between 0 and 
1

4
, and 𝛾 is often taken to be 

1

2
.

𝑀 ሷ𝑑𝑖+1 = 𝐹𝑖+1 − 𝐾 𝑑𝑖+1
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Step 1

Starting at time 𝑡 = 0, {𝑑0} and { ሶ𝑑0} is known from the given initial conditions.

Step 2

Solve Eq. below at 𝑡 = 0 for { ሷ𝑑0}; that is,

Step 3

Solve Eq. below for {𝑑1}, because {𝐹𝑖+1
′ } is known for all time steps and {𝑑0} , { ሶ𝑑0} , and { ሷ𝑑0} are now known 

from steps 1 and 2.

Step 4

Use Eq. below to solve for { ሷ𝑑1} as

Step 5

Solve Eq. below directly for { ሶ𝑑1}

Step 6
Using the results of steps 4 and 5, go back to step 3 to solve for {𝑑2} and then to steps 4 and 5 to solve for 

{ ሷ𝑑2} and { ሶ𝑑2}. Use steps 3–5 repeatedly to solve for {𝑑𝑖+1}, { ሶ𝑑𝑖+1}, and { ሷ𝑑𝑖+1}
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𝑀

𝛽 Δ𝑡 2
+ 𝐾 𝑑𝑖+1 = 𝐹𝑖+1 +

𝑀

𝛽 Δ𝑡 2
𝑑𝑖 +

𝑀

𝛽 Δ𝑡
ሶ𝑑𝑖 +

𝑀

𝛽

1

2
− 𝛽 ሷ𝑑𝑖

𝐾′
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𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
+ 𝑄 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
Governing Differential Equation

𝑇(𝑥, 𝑦, 𝑡) = 𝑐1(𝑡) + 𝑐2(𝑡)𝑥 + 𝑐3(𝑡)𝑦 𝑇 = 1 𝑥 𝑦
𝑐1(𝑡)
𝑐2(𝑡)
𝑐3(𝑡)

𝑇𝑖 = 𝑐1 + 𝑐2𝑥𝑖 + 𝑐3𝑦𝑖

𝑇𝑗 = 𝑐1 + 𝑐2𝑥𝑗 + 𝑐3𝑦𝑗

𝑇𝑘 = 𝑐1 + 𝑐2𝑥𝑘 + 𝑐3𝑦𝑘

)𝑇𝑖(𝑡

൯𝑇𝑗(𝑡

)𝑇𝑘(𝑡

=

1 𝑥𝑖 𝑦𝑖

1 𝑥𝑗 𝑦𝑗

1 𝑥𝑘 𝑦𝑘

)𝑐1(𝑡

)𝑐2(𝑡
)𝑐3(𝑡

𝑇(𝑥, 𝑦, 𝑡) = 1 𝑥 𝑦

1 𝑥𝑖 𝑦𝑖

1 𝑥𝑗 𝑦𝑗

1 𝑥𝑘 𝑦𝑘

−1 )𝑇𝑖(𝑡

൯𝑇𝑗(𝑡

)𝑇𝑘(𝑡

൯𝑇 𝑥, 𝑦, 𝑡 = 𝑁𝑖 𝑥, 𝑦 𝑇𝑖 𝑡 + 𝑁𝑗 𝑥, 𝑦 𝑇𝑗 𝑡 + 𝑁𝑘 𝑥, 𝑦 𝑇𝑘(𝑡

)𝑇(𝑡 = )𝑇1(𝑡 )𝑇2(𝑡 )𝑇3(𝑡 𝑇

𝑁 = 𝑁1 𝑁2 𝑁3

𝑁𝑖 𝑥, 𝑦 = 𝑚11 + 𝑚21𝑥 + 𝑚31𝑦

𝑁𝑗 𝑥, 𝑦 = 𝑚12 + 𝑚22𝑥 + 𝑚32𝑦

𝑁𝑘 𝑥, 𝑦 = 𝑚13 + 𝑚23𝑥 + 𝑚33𝑦
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൯𝑇 𝑥, 𝑦, 𝑡 = 𝑁𝑖 𝑥, 𝑦 𝑇𝑖 𝑡 + 𝑁𝑗 𝑥, 𝑦 𝑇𝑗 𝑡 + 𝑁𝑘 𝑥, 𝑦 𝑇𝑘(𝑡

)𝑇(𝑡 = )𝑇1(𝑡 )𝑇2(𝑡 )𝑇3(𝑡 𝑇 𝑁 = 𝑁1 𝑁2 𝑁3

𝑁𝑖 𝑥, 𝑦 = 𝑚11 + 𝑚21𝑥 + 𝑚31𝑦

𝑁𝑗 𝑥, 𝑦 = 𝑚12 + 𝑚22𝑥 + 𝑚32𝑦

𝑁𝑘 𝑥, 𝑦 = 𝑚13 + 𝑚23𝑥 + 𝑚33𝑦

𝑚11 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑖 /2𝐴 𝑚21 = 𝑦𝑗 − 𝑦𝑘 /2𝐴 𝑚31 = 𝑥𝑘 − 𝑥𝑗 /2𝐴

𝑚12 = 𝑥𝑘𝑦𝑖 − 𝑥𝑖𝑦𝑘 /2𝐴 𝑚22 = 𝑦𝑘 − 𝑦𝑖 /2𝐴 𝑚32 = 𝑥𝑖 − 𝑥𝑘 /2𝐴

𝑚13 = 𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖 /2𝐴 𝑚23 = 𝑦𝑖 − 𝑦𝑗 /2𝐴 𝑚31 = 𝑥𝑗 − 𝑥𝑖 /2𝐴

𝐴 =
1

2
𝑑𝑒𝑡

1 𝑥𝑖 𝑦𝑖

1 𝑥𝑗 𝑦𝑗

1 𝑥𝑘 𝑦𝑘
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Weighted Residual Approach

ඵ
𝐴𝑒

𝐍𝑇
𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
+ 𝑄 − 𝜌𝑐

𝜕𝑇

𝜕𝑡
𝑑𝑥𝑑𝑦 = 0

න
𝐶𝑒

𝐍𝑇𝑘
𝜕𝑇

𝜕𝑥
𝑛𝑥𝑑𝐶 − ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
𝑑𝑥𝑑𝑦 + න

𝐶𝑒
𝐍𝑇𝑘

𝜕𝑇

𝜕𝑦
𝑛𝑦𝑑𝐶 − ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒
𝐍𝑇𝑄𝑑𝑥𝑑𝑦 − ඵ

𝐴𝑒
𝐍𝑇𝜌𝑐

𝜕𝑇

𝜕𝑡
𝑑𝑥𝑑𝑦 = 0

ඵ
𝐴𝑒

𝐍𝑇𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
𝑑𝑥𝑑𝑦 = ඵ

𝐴𝑒
𝐍𝑇𝑄𝑑𝑥𝑑𝑦 − න

𝐶𝑒
𝐍𝑇𝑞𝑛𝑑𝐶

න
𝐶𝑒

𝐍𝑇𝑞𝑛𝑑𝐶 = න
𝐹𝐴

𝐍𝑇ℎ𝐹𝐴 𝑇 − 𝑇𝑎𝐹𝐴
𝑑𝐶 + න

𝐴𝐷

𝐍𝑇ℎ𝐴𝐷 𝑇 − 𝑇𝑎𝐴𝐷
𝑑𝐶

ඵ
𝐴𝑒

𝐍𝑇𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
𝑑𝑥𝑑𝑦 + න

𝐹𝐴

𝐍𝑇ℎ𝐹𝐴𝑇 ቚ
𝐹𝐴

𝑑𝐶 + න
𝐴𝐷

𝐍𝑇ℎ𝐴𝐷𝑇 ቚ
𝐴𝐷

𝑑𝐶

= ඵ
𝐴𝑒

𝐍𝑇𝑄𝑑𝑥𝑑𝑦 + න
𝐹𝐴

𝐍𝑇ℎ𝐹𝐴𝑇𝑎𝐹𝐴𝑑𝐶 + න
𝐴𝐷

𝐍𝑇ℎ𝐴𝐷𝑇𝑎𝐴𝐷𝑑𝐶
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𝐂𝒆 ሶ𝒂𝒆 + 𝐊𝒆𝒂𝒆 = 𝐟𝒆

ඵ
𝐴𝑒

𝐍𝑇𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
𝑑𝑥𝑑𝑦 + ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
𝑑𝑥𝑑𝑦 + න

𝐹𝐴

𝐍𝑇ℎ𝐹𝐴𝑇 ቚ
𝐹𝐴

𝑑𝐶 + න
𝐴𝐷

𝐍𝑇ℎ𝐴𝐷𝑇 ቚ
𝐴𝐷

𝑑𝐶

= ඵ
𝐴𝑒

𝐍𝑇𝑄𝑑𝑥𝑑𝑦 + න
𝐹𝐴

𝐍𝑇ℎ𝐹𝐴𝑇𝑎𝐹𝐴
𝑑𝐶 + න

𝐴𝐷

𝐍𝑇ℎ𝐴𝐷𝑇𝑎𝐴𝐷
𝑑𝐶

𝐊𝒆 = 𝐊𝑥𝑥
𝒆 + 𝐊𝑦𝑦

𝒆 + 𝐊𝑐𝑣𝐵
𝒆

𝐟𝒆 = 𝐟𝐐
𝒆 + 𝐟𝐪

𝒆 + 𝐟𝒄𝒗𝑩
𝒆

𝐊𝑥𝑥
𝒆 = ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝐍

𝜕𝑥
𝑑𝑥𝑑𝑦

𝐊𝑦𝑦
𝒆 = ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝐍

𝜕𝑦
𝑑𝑥𝑑𝑦

𝐊𝑐𝑣𝐵
𝒆 = න

𝐹

𝐴

𝐍𝑇ℎ𝐹𝐴𝐍 𝑑𝐶 + න
𝐷

𝐴

𝐍𝑇ℎ𝐴𝐷 𝐍 𝑑𝐶

𝐟𝐐
𝒆 = ඵ

𝐴𝑒
𝐍𝑇𝑄𝑑𝑥𝑑𝑦

𝐟𝒄𝒗𝑩
𝒆 = න

𝐹

𝐴

𝐍𝑇ℎ𝐹𝐴𝑇𝑎𝐹𝐴𝑑𝐶 + න
𝐴

𝐷

𝐍𝑇ℎ𝐴𝐷𝑇𝑎𝐴𝐷 𝑑𝐶

𝐂𝒆 = ඵ
𝐴𝑒

𝐍𝑇𝜌𝑐 𝐍 𝑑𝑥𝑑𝑦

𝐂𝒆

𝑇 = 𝐍𝐚𝐞



Problem: Transient Thermal Analysis

𝐊𝑥𝑥
𝒆 = ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑥
𝑘

𝜕𝐍

𝜕𝑥
𝑑𝑥𝑑𝑦 = ඵ

𝐴𝑒

𝑚21

𝑚22

𝑚23

𝑘 𝑚21 𝑚22 𝑚23 𝑑𝑥𝑑𝑦 = 𝑘𝐴𝑒

𝑚21
2 𝑚21𝑚22 𝑚21𝑚23

𝑚22𝑚21 𝑚22
2 𝑚22𝑚23

𝑚23𝑚21 𝑚23𝑚22 𝑚23
2

𝐊𝑦𝑦
𝒆 = ඵ

𝐴𝑒

𝜕𝐍𝑇

𝜕𝑦
𝑘

𝜕𝐍

𝜕𝑦
𝑑𝑥𝑑𝑦 = ඵ

𝐴𝑒

𝑚31

𝑚32

𝑚33

𝑘 𝑚31 𝑚32 𝑚33 𝑑𝑥𝑑𝑦 = 𝑘𝐴𝑒

𝑚31
2 𝑚31𝑚32 𝑚31𝑚33

𝑚32𝑚31 𝑚32
2 𝑚32𝑚33

𝑚33𝑚31 𝑚33𝑚32 𝑚33
2

𝐊𝑐𝑣𝐵
𝒆 = න

𝐹𝐴

𝐍𝑇ℎ𝐹𝐴𝐍 𝑑𝐶 + න
𝐴𝐷

𝐍𝑇ℎ𝐴𝐷𝐍 𝑑𝐶 = න
𝐶𝑒

𝐿𝑖

𝐿𝑗

𝐿𝑘

ℎ𝐵 𝐿𝑖 𝐿𝑗 𝐿𝑘 𝑑𝐶 = න

𝐶𝑒

ℎ𝐵

𝐿𝑖
2 𝐿𝑖𝐿𝑗 0

𝐿𝑗𝐿𝑖 𝐿𝑗
2 0

0 0 0

𝑑𝐶 =
ℎ𝐵𝑙𝑖𝑗

6

2 1 0
1 2 0
0 0 0

𝐟𝐐
𝒆 = ඵ

𝐴𝑒
𝐍𝑇𝑄 𝑑𝑥𝑑𝑦 =

𝑄𝐴𝑒

3

1
1
1

𝐟𝒄𝒗𝑩
𝒆 = න

𝐹

𝐴

𝐍𝑇ℎ𝐹𝐴𝑇𝑎𝐹𝐴
𝑑𝐶 + න

𝐴

𝐷

𝐍𝑇ℎ𝐴𝐷𝑇𝑎𝐴𝐷
𝑑𝐶 =

ℎ𝐵𝑙𝑖𝑗𝑇𝑎𝐵

2

1
1
0

𝐂𝒆 = ඵ
𝐴𝑒

𝐍𝑇𝜌𝑐 𝐍 𝑑𝑥𝑑𝑦 = ඵ
𝐴𝑒

𝐿𝑖

𝐿𝑗

𝐿𝑘

𝜌𝑐 𝐿𝑖 𝐿𝑗 𝐿𝑘 𝑑𝑥𝑑𝑦 = 𝜌𝑐 ඵ
𝐴𝑒

𝐿𝑖
2 𝐿𝑖𝐿𝑗 𝐿𝑖𝐿𝑘

𝐿𝑗𝐿𝑖 𝐿𝑗
2 𝐿𝑗𝐿𝑘

𝐿𝑘𝐿𝑖 𝐿𝑘𝐿𝑗 𝐿𝑘
2

𝑑𝑥𝑑𝑦 =
𝜌𝑐

12
𝐴𝑒

2 1 1
1 2 1
1 1 2
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ത𝑇 𝑥, 𝑦, 𝑡 = 𝑇 𝑥, 𝑦, 𝑡 − 350

ത𝑇 𝑥, 𝑦, 𝑡 = 0 @ 𝐹𝐸

−𝑘
𝜕 ത𝑇

𝜕𝑦
= ℎ𝑏2

ത𝑇 𝑥, 𝑦, 𝑡 + 350 − 80 = ℎ𝑏2
ത𝑇 𝑥, 𝑦, 𝑡 + 270 @ 𝐹𝐴

−𝑘
𝜕 ത𝑇

𝜕𝑛
= ℎ𝑏3

ത𝑇 𝑥, 𝑦, 𝑡 + 350 − 60 = ℎ𝑏2
ത𝑇 𝑥, 𝑦, 𝑡 + 290 @ 𝐴𝐷

−𝑘
𝜕 ത𝑇

𝜕𝑦
= 0 @ 𝐷𝐸
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Problem: Transient Thermal Analysis

ത𝑇 𝑥, 𝑦, 𝑡 = 𝑇 𝑥, 𝑦, 𝑡 − 350

ത𝑇 𝑥, 𝑦, 𝑡 = 0 @ 𝐹𝐸

−𝑘
𝜕 ത𝑇

𝜕𝑦
= ℎ𝑏2

ത𝑇 𝑥, 𝑦, 𝑡 + 350 − 80 = ℎ𝑏2
ത𝑇 𝑥, 𝑦, 𝑡 + 270 @ 𝐹𝐴

−𝑘
𝜕 ത𝑇

𝜕𝑛
= ℎ𝑏3

ത𝑇 𝑥, 𝑦, 𝑡 + 350 − 60 = ℎ𝑏2
ത𝑇 𝑥, 𝑦, 𝑡 + 290 @ 𝐴𝐷

−𝑘
𝜕 ത𝑇

𝜕𝑦
= 0 @ 𝐷𝐸

𝐂 ሶഥ𝑻 )(𝑡 + 𝐊 )ഥ𝐓(𝑡 = 𝐅
𝐂𝑷𝑷 𝐂𝐏𝐅

𝐂𝐅𝐏 𝐂𝐅𝐅

൯ሶ𝐓𝑃(𝑡

൯ሶ𝐓𝐹(𝑡
+

𝐊𝐏𝐏 𝐊𝐏𝐅

𝐊𝐅𝐏 𝐊𝐅𝐅

)𝐓𝐏(𝑡

)𝐓𝐅(𝑡
=

𝐅𝐏

𝐅𝐅

𝐂𝑷𝑷 ൯ሶ𝐓𝑃(𝑡 + 𝐂𝐏𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐏𝐏 )𝐓𝐏(𝑡 + 𝐊𝐏𝐅 )𝐓𝐅(𝑡 = 𝐅𝐏

𝐂𝐅𝐏 ൯ሶ𝐓𝑃(𝑡 + 𝐂𝐅𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐅𝐏 )𝐓𝐏(𝑡 + 𝐊𝐅𝐅 )𝐓𝐅(𝑡 = 𝐅𝐅

)𝐓𝐏(𝑡 = 0

𝐂𝐅𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐅𝐅 )𝐓𝐅(𝑡 = 𝐅𝐅
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Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Problem: Transient Thermal Analysis

geom(nnd, 2)

connec(nel, nne)

𝑄 = 105
𝑊

𝑚3
, 𝑐 = 400

𝐽

𝑘𝑔 𝐶
, 𝑘 = 40

𝑊

𝑚 𝐶

𝜌 = 7800
𝑘𝑔

𝑚3
, T 𝑥, 𝑦, 𝑡 = 0 = 50 𝐶

nf(nnd, nodof)

ത𝑇𝐴𝐷 = −290 𝐶 , ℎ𝐴𝐷 = 100
𝑊

𝑚2 𝐶

ത𝑇𝐴𝐹 = −270 𝐶 , ℎ𝐴𝐷 = 150
𝑊

𝑚2 𝐶
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

Problem: Transient Thermal Analysis

𝐂 ሶഥ𝑻 )(𝑡 + 𝐊 )ഥ𝐓(𝑡 = 𝐅
𝐂𝑷𝑷 𝐂𝐏𝐅

𝐂𝐅𝐏 𝐂𝐅𝐅

൯ሶ𝐓𝑃(𝑡

൯ሶ𝐓𝐹(𝑡
+

𝐊𝐏𝐏 𝐊𝐏𝐅

𝐊𝐅𝐏 𝐊𝐅𝐅

)𝐓𝐏(𝑡

)𝐓𝐅(𝑡
=

𝐅𝐏

𝐅𝐅

𝐂𝑷𝑷 ൯ሶ𝐓𝑃(𝑡 + 𝐂𝐏𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐏𝐏 )𝐓𝐏(𝑡 + 𝐊𝐏𝐅 )𝐓𝐅(𝑡 = 𝐅𝐏

𝐂𝐅𝐏 ൯ሶ𝐓𝑃(𝑡 + 𝐂𝐅𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐅𝐏 )𝐓𝐏(𝑡 + 𝐊𝐅𝐅 )𝐓𝐅(𝑡 = 𝐅𝐅

)𝐓𝐏(𝑡 = 0

𝐂𝐅𝐅 ൯ሶ𝐓𝐹(𝑡 + 𝐊𝐅𝐅 )𝐓𝐅(𝑡 = 𝐅𝐅

MATLAB ODE45

)𝐓𝐅(𝑡
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Problem Description

Plates are structural elements that are bound by two lateral surfaces .The dimensions of the lateral surfaces are 
very large compared to the thickness of the plate. A plate may be thought of as the two-dimensional equivalent of 

a beam. Plates are also generally subject to loads normal to their plane.



Thin Plate Problem
The small deflection theory of plates attributed to Kirchhoff is based on the following assumptions:

1. The x–y plane coincides with the middle plane of the plate in the undeformed geometry. 

2. The lateral dimension of the plate is at least 10 times its thickness. 

3. The vertical displacement of any point of the plate can be taken equal to that of the point (below or above it) in 
the middle plane. 

4. A vertical element of the plate before bending remains perpendicular to the middle surface of the plate after 
bending.

5. Strains are small: deflections are less than the order of (1/100) of the span length.

6. The strain of the middle surface is zero or negligible.
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𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0
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Considering the plate element shown in Figure, the in-plane displacements u and v, respectively in the 
directions x and y, can be expressed as

The vector {𝜒} = 𝜒𝑥 𝜒𝑦 𝜒𝑥𝑦
𝑇

is called the vector of curvature or generalized strain

𝛾𝑥𝑧 = 0

𝛾𝑦𝑧 = 0

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
= 0
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Internal stresses in a thin plate. Moments and shear forces due to internal stresses in a thin plate.

Moments and shear forces due to internal stresses in a thin plate.
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Internal stresses in plates produce bending moments and shear forces as illustrated in Figures. The 
moments and shear forces are the resultants of the stresses and are defined as acting
per unit length of plate. These internal actions are defined as

Assuming a state 
of plane stress 
conditions for 
plate bending
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Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling 
that 𝑄𝑥 represents force per unit length along the edge 𝑑𝑦 and requiring force equilibrium in z 
direction results in

Moment equilibrium about the y-axis leads to

GOVERNING EQUATION IN TERMS OF DISPLACEMENT VARIABLES
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𝑈 =
1

2
𝜒 𝑇 [𝐷]{𝜒} 𝑑𝐴
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Thin Plate Problem
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Rectangular Element: Interpolation

The element has four nodes and 12 DOF in total A trial function will contain 12 parameters

𝑤 𝑥, 𝑦 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥2 + 𝛼5𝑥𝑦 + 𝛼6𝑦2 + 𝛼7𝑥3 + 𝛼8𝑥2𝑦 + 𝛼9𝑥𝑦2 + 𝛼10𝑦3 + 𝛼11𝑥3𝑦 + 𝛼12𝑥𝑦3

𝜃𝑥(𝑥, 𝑦) =
𝜕𝑤

𝜕𝑥
= 𝛼2 + 2𝛼4𝑥 + 𝛼5𝑦 + 3𝛼7𝑥2 + 2𝛼8𝑥𝑦 + 𝛼9𝑦2 + 3𝛼11𝑥2𝑦 + 𝛼12𝑦3

𝜃𝑦(𝑥, 𝑦) =
𝜕𝑤

𝜕𝑦
= 𝛼3 + 𝛼5𝑥 + 2𝛼6𝑦 + 𝛼8𝑥2 + 2𝛼9𝑥𝑦 + 3𝛼10𝑦2 + 𝛼11𝑥3 + 3𝛼12𝑥𝑦2

𝑤 𝑥1, 𝑦1 = 𝑤1

𝑤 𝑥2, 𝑦2 = 𝑤2

𝑤 𝑥3, 𝑦3 = 𝑤3

𝑤 𝑥4, 𝑦4 = 𝑤4

𝜃𝑥(𝑥1, 𝑦1) = 𝜃𝑥1

𝜃𝑦(𝑥1, 𝑦1) = 𝜃𝑦1

𝜃𝑦(𝑥2, 𝑦2) = 𝜃𝑦2

𝜃𝑦(𝑥3, 𝑦3) = 𝜃𝑦3

𝜃𝑦(𝑥4, 𝑦4) = 𝜃𝑦4

𝜃𝑥(𝑥2, 𝑦2) = 𝜃𝑥2

𝜃𝑥(𝑥3, 𝑦3) = 𝜃𝑥3

𝜃𝑥(𝑥4, 𝑦4) = 𝜃𝑥4
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Problem Description



Thick Plate Problem 
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Consistent units



Milad Vahidian, Ph.D. Student of Mechanical Engineering

Data Preparation (Create Input file)

241

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

Thick Plate Problem

geom(nnd, 2)

connec(nel, nne)

𝐸 = 30 × 106 𝑝𝑠𝑖 𝜈 = 0.3

nf(nnd, nodof)

The force in the global force vector F_f
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Discretization: Mesh Generation

242

Thick Plate Problem

nnd = 0; k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
%
n1 = (i-1)*(3*NYE+2)+2*j - 1; n8 = n1 + 1; n7 = n1 + 2;
n2 = i*(3*NYE+2)+j - NYE - 1; n6 = n2 + 1;
n3 = i*(3*NYE+2)+2*j-1; n4 = n3 + 1; n5 = n3 + 2;
%
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n2,:) = [(geom(n1,1)+geom(n3,1))/2 (geom(n1,2)+geom(n3,2))/2];
geom(n5,:) = [i*dhx- X_origin j*dhy - Y_origin ];
geom(n4,:) = [(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
geom(n6,:) = [(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:) = [(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];
%
nel = k;
nnd = n5;
connec(k,:) = [n1 n2 n3 n4 n5 n6 n7 n8];
end

end



Thick Plate Problem
In thick plates, the assumption that a vertical element of the plate before bending remains perpendicular to the middle
surface of the plate after bending is relaxed. Transverse normal may rotate without remaining normal to the mid-plane.
A line originally normal to the middle plane will develop rotation components 𝜃𝑥 relative to the middle plane after
deformation as shown in Figure. A similar definition holds for 𝜃𝑦. Hence, the displacement field becomes
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These equations are the main equations of the Mindlin plate theory. The theory accounts for transverse shear 
deformations and is applicable for moderately thick plates. Unlike in thin plate theory, it is important to notice that the 
transverse displacement 𝑤(𝑥, 𝑦) and slopes 𝜃𝑥, 𝜃𝑦 are independent. Notice also that the thick plate theory reduces to 

thin plate theory if 𝜃𝑥 = −𝜕𝑤/𝜕𝑥 and 𝜃𝑦 = −𝜕𝑤/𝜕𝑦 .
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Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling 
that 𝑄𝑥 represents force per unit length along the edge 𝑑𝑦 and requiring force equilibrium in z 
direction results in

Moment equilibrium about the y-axis leads to
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STRESS–STRAIN RELATIONSHIP
Assuming the material is homogeneous and isotropic, the plane stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜏𝑥𝑦 are related to the

strains through the elasticity matrix [D].The shear strains 𝜏𝑦𝑧 and 𝜏𝑥𝑧 are related to the shear strains 𝛾𝑦𝑧 and 𝛾𝑥𝑧

through
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The Equation can be written more compactly as

The total strain energy of the plate is given as

𝜅 is the shear energy correction factor equal to 5/6
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Rectangular Element: Interpolation

The element has 8 nodes and 24 DOF in total A trial function will contain 24 parameters

𝐶0 iso-parametric shape functions can be used for the thick plate element formulation

Eight-nodded Iso-parametric Element

𝑤 𝑥, 𝑦 = 𝑁1 𝜉, 𝜂 𝑤1 + 𝑁3 𝜉, 𝜂 𝑤2 + 𝑁3 𝜉, 𝜂 𝑤3 + 𝑁4 𝜉, 𝜂 𝑤4 + 𝑁5 𝜉, 𝜂 𝑤5 + 𝑁6 𝜉, 𝜂 𝑤6 + 𝑁7 𝜉, 𝜂 𝑤7 + 𝑁8 𝜉, 𝜂 𝑤8

𝜃𝑥 𝑥, 𝑦 = 𝑁1 𝜉, 𝜂 𝜃𝑥1 + 𝑁3 𝜉, 𝜂 𝜃𝑥2 + 𝑁3 𝜉, 𝜂 𝜃𝑥3 + 𝑁4 𝜉, 𝜂 𝜃𝑥4 + 𝑁5 𝜉, 𝜂 𝜃𝑥5 + 𝑁6 𝜉, 𝜂 𝜃𝑥6 + 𝑁7 𝜉, 𝜂 𝜃𝑥7 + 𝑁8 𝜉, 𝜂 𝜃𝑥8

𝜃𝑦 𝑥, 𝑦 = 𝑁1 𝜉, 𝜂 𝜃𝑦1 + 𝑁3 𝜉, 𝜂 𝜃𝑦2 + 𝑁3 𝜉, 𝜂 𝜃𝑦3 + 𝑁4 𝜉, 𝜂 𝜃𝑦4 + 𝑁5 𝜉, 𝜂 𝜃𝑦5 + 𝑁6 𝜉, 𝜂 𝜃𝑦6 + 𝑁7 𝜉, 𝜂 𝜃𝑦7 + 𝑁8 𝜉, 𝜂 𝜃𝑦8
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𝜅 = 5/6Strain Energy:

𝜅 = 5/6
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Remark: It is important to note that the shear stiffness [𝐾𝑆] is a function of h since [𝐷𝑆] is a function of
ℎ, and the bending stiffness [𝐾𝐵] is a function of ℎ3 since [𝐷𝐵] is a function of ℎ3 . A consequence of
this is that the shear energy dominates as the thickness of the plate becomes very small compared to
its side length. This is called shear locking. One way of resolving this problem is to under integrate the
shear energy term. For example, if the 8 node quadrilateral is used, then the bending energy is to be
integrated with 3 × 3 Gauss points, while the shear energy is to be integrated only with a 2 × 2 rule.
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Stiffness Matrix

Thick Plate Problem
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Stiffness Matrix
Thick Plate Problem

Next Slide



252

Force vector
Thick Plate Problem

Body Forces

Traction Forces 

Concentrated Forces
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The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Apply B.C’s and Solve (free) Nodal Displacement

If 𝛿𝑝 = 0

Thick Plate Problem
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Calculation of the Element Resultants

SUPPORT REACTIONS

Thick Plate Problem

If 𝛿𝑝 = 0
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Milad Vahidian, Ph.D. Student
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