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Introduction to MATLAB: MATLAB

MATLAB is an abbreviation for "MATrix LABoratory.”

MATLAB is a programming platform designed specifically for engineers and
scientists. The heart of MATLAB is the MATLAB language, a matrix-based language
allowing the most natural expression of computational mathematics. While other
programming languages mostly work with numbers one at a time, MATLAB is
designed to operate primarily on whole matrices and arrays.

ARRAY
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Introduction to MATLAB: MATLAB Reference

" MATLAB Documentation

How to write code < doc + function/command

. help + function/command
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Introduction to MATLAB: Command vs. Function Syntax

Command syntax: ]oad Workspace.mat

In MATLAB, these statements are equivalent:
auv {Function syntax: load(" Workspace.mat’)

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:  [output], .., outputM] = functionName(inputl, ..., inputN)

If you do not require any outputs from the function, and all of the inputs are character vectors (that is, text enclosed in
single quotation marks), you can use this simpler command syntax: functionName inputl ... inputN

With command syntax, you separate inputs with spaces rather than commas, and do not enclose input arguments
in parentheses. Command syntax always passes inputs as character vectors.

To use strings as inputs, use the function syntax.
If a character vector contains a space, use the function syntax.

When a function input is a variable, you must use function syntax to pass the value to the function. Command
syntax always passes inputs as character vectors and cannot pass variable values.
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Introduction to MATLAB: Data types

By default, MATLAB stores all numeric variables as double-precision floating-point values.
Additional data types store text, integer or single-precision values, or a combination of related data in a single variable

Numeric Types: Integer and floating-point data

Characters and Strings: Text in character arrays (* ’) and string arrays (“ ")

Dates and Time: Arrays of date and time values that can be displayed in different formats
Categorical Arrays: Arrays of qualitative data with values from a finite set of discrete, nonnumeric data
Tables: Arrays in tabular form whose named columns can have different types
Timetables: Time-stamped data in tabular form

Structures: Arrays with named fields that can contain data of varying types and sizes
Cell Arrays: Arrays that can contain data of varying types and sizes

Function Handles: Variables that allow you to invoke a function indirectly

Map Containers: Objects with keys that index to values, where keys need not be integers
Time Series: Data vectors sampled over time

Data Type Identification: Determining data type of a variable

Data Type Conversion: Converting between numeric arrays, character arrays, cell arrays, structures, or tables
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Introduction to MATLAB: Common Functions and Commands

Most Common
MATLAB code

r

ans
clc
clear
global
plot
format

iskeyword

4 fpritf/sprintf

Z€eros
ones
eye/diag
fopen
fcolse
patch

Most recent answer

Clear Command Window

Clear Workspace

Declare variables as global

2-D line plot

Set Command Window output display format
Determine whether input is MATLAB keyword
Write data to text file/Format data into string or character vector
Create array of all zeros

Create array of all ones

Identity matrix/Creates or extract diagonals
Open file, or obtain information about open files
Close one or all open files

Plot one or more filled polygonal regions
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Introduction to MATLAB: Common Functions and Commands

1-Matrices can be created in MATLAB by the command

>> A=[1 2 3;4 5 6;7 8 9]

A =
1 2 3
4 5 6
7 8 9

Note the semi-colon at the end of each matrix line.

2-Operating with matrices

5-Conditionals, if and switch

switch units

x=-1 case ’length’

if x== disp(’meters’)
disp(’Bad input!’) case ’volume’

elseif max(x) > 0 disp(’cubic meters’)
y = x+1; case ’time’

else disp(’hours’)
y = x°2; otherwise

end disp(’not interested’)

end

3-Statements: are operators, functions and variables, always producing a matrix which can be used later.

4-Matrix functions

eye Identity matrix

ZEeros A matrix of zeros

ones A matrix of ones

diag Creates or extract diagonals
rand Random matrix

6-Loops: for and while
7- Relations

8-Submatrix

9-Logical indexing
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Introduction to MATLAB: M-file vs. MIx-file

M-file:

Plain Code Scripts and Functions

In new Versions: Functions could be saved as separate m-files (function) as well as in the end off main script

MIx-file:

MATLAB live scripts and live functions are interactive documents that combine MATLAB code with
formatted text, equations, and images in a single environment called the Live Editor. In addition, live scripts
store and display output alongside the code that creates it.

Functions could be saved as separate mix-files (function) as well as in the end off main script
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Introduction to MATLAB: Simulation Strategy

Preprocessing - ) _':) Postprocessing
Input File Solver File Output File
M-file or MlIx-file M-file or Mlx-file + Function files Text file and figures

Milad Vahidian, Ph.D. Student of Mechanical Engineering 11



Introduction to FEA: Basic Concepts

soverned by differential equations J
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Introduction to FEA: Basic Concepts

Methods of Analysis

R $ Ty T . A “
Analytlcal Methods Seml-analytlcal (Approximate) Methods : : Numerlcal Methods
ODE Lumped-parameter Methods Numerical Integration
PDE =) Separation of variables Series Discretization Methods Finite Volume Method

Finite Element Method

Finite Difference Method

- The existing mathematical tools will not be sufficient to find the |
| exact solution (and sometimes, even an approximate solution) -
of most of the pract1ca1 problems

Boundary Element Method
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Introduction to FEA: Basic Concepts

Analytical Methods
Must be satisfied
_..—--—» Essential (geometry)
Semi-analytical (Approximate) Methods 7 B Boundary conditions
@ 7 ,----+ Weak Form
[ Variational Approach --—~~
Series Discretization Methods Assumed Solution
! Weighted Residual Approach -~
\ '.\
N * Strang Form
o Must be satisfied
I~ Essential (geometry)
""" > as well as
Numerical Methods Natural (force)

Boundary conditions
Weak Form

Finite Element Method
Strang Form
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Introduction to FEA: Basic Concepts

What is Finite Element Analysis ?

The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the
numerical technique called Finite Element Method (FEM).

large number of finite elements, or simply elements.

The solution region is considered to be built of many small, interconnected
subregions called elements.

Space Discretization

4

FEM subdivides a large system into smaller, simpler parts that are called finite elements

3

construction of a mesh of the object

Milad Vahidian, Ph.D. Student of Mechanical Engineering 15



Introduction to FEA: Applications

Structural Analysis
Thermal Analysis
Fluid Structure Analysis
Electromagnetic Analysis

Multiphysics Analysis

Optimization Analysis
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Introduction to FEA: Applications

Sandwich panel

(Static —— Displacement/Stress Analysis E——
Composite Material
time- -
independent Buckling and post-buckling analysis
Eigenvalue
problem
- Frequency and mode shape analysis
.
c[‘ime-depend material response ‘ Creep and Viscoelasticity
Structural _
: Quasi-static <
Ana]ySlS Low-velocity forming
_ ' local instabilities (e.g. surface
time- Unstable problems wrinkling) and local buckling
dependent ~
- Explicit dynamic analysis _ Impact of Composite Material

\Dynamic < Implicit dynamic analysis
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Introduction to FEA: Applications

Analysis <

f
Multiphysics <

f
Thermal structural analysis ! ! g

Start After 3 cycles After 7 cycles
100% volume 77% volume 66% volume

Optimization <
-

Fluid structural analysis r- r
.

After 10 cycles After 14 cycles
61% volume 57% volume

f
Topology optimization

éhape optimization

After shape
optimization

Original model
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Introduction to FEA: Analysis Procedures

1-Discretization

2-Interpolation (Shape Function)

3-Derivation of characteristic matrices (element stiffness matrices and load vectors)
4-Assembly

5-Applying Boundary Conditions

6-Solving unknown
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Introduction to FEA: Analysis Procedures

1- Discretization

The first step in the finite element method involves dividing the body into an equivalent system of finite elements
with associated nodes and choosing the most appropriate element type to model most closely the actual physical
behavior.

Small elements (and possibly higher-order elements) are generally desirable where the results are changing
rapidly, such as where changes in geometry occur

\

Spatial Discretization (Mesh)
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Introduction to FEA: Analysis Procedures

y y

3

1 2 1
«

&=

® |2

&=

(a) Simple two-noded line element (typically used to represent a bar or beam element) and the
higher-order line element

AN

= X

VA 3

Triangulars Quadrilaterals

(b) Simple two-dimensional elements with corner nodes (typically used to represent plane stress/strain)
and higher-order two-dimensional elements with intermediate nodes along the sides

AN RSN

3
Tetrahedrals Regular hexahedral Irregular hexahedral

]

(c) Simple three-dimensional elements (typically used to represent three-dimensional stress state) and
higher-order three-dimensional elements with intermediate nodes along edges
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Introduction to FEA: Analysis Procedures

2-Interpolation (Select a Displacement Function)

Since the displacement solution of a complex structure under any specified load conditions cannot be predicted
exactly, we assume some suitable solution within an element to approximate the unknown solution. The assumed
solution must be simple from a computational standpoint, but it should satisfy certain convergence
requirements. In general, the solution or the interpolation model is taken in the form of a polynomial.

satisfy the Essential

Approximate Solution u(x,y,z) = 2 a;N;(x,y,z) =a;N,(x,y,z) + a,N,(x,y,z) + - boundary conditions exactly

i=1

u(x,y,z) = [N(x,y,2)[{a}

Interpolation
(Geometric Order of Element)

A
4 \

Linear Quadratic
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family
Degrees of freedom Number of nodes ‘ - % Q
Continuum Shell Rigid

(solid and fluid) elements elements elements
Number of nodes and order of interpolation slements [_\
Formulation Membrane " Infinite Connector elements Truss

elements elements such as springs elements
and dashpots

Integration
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:
Family

Degrees of freedom Number of nodes: the translations and, for shell, pipe, and beam elements, the

rotations at each node.
Number of nodes and order of interpolation
Formulation

Integration

Milad Vahidian, Ph.D. Student of Mechanical Engineering 24



Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family
Degrees of freedom Number of nodes

Number of nodes and order of interpolation

Formulation
o ‘ ‘ .
(a) Linear element (b) Quadratic element Modtﬁed second-order element
(8-node brick, C3D8) (20-node brick, C3D20) 10node tetrahedron, C3D10M)
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:
Family
Degrees of freedom Number of nodes
Number of nodes and order of interpolation

Formulation: mathematical theory used to define the element's behavior (Lagrangian or Eulerian/shell

element: 1-general-purpose shell analysis, 2-thin shells, 3-for thick shells.)

Integration Plane strain Small-strain shells
Plane stress Finite-strain shells
Hybrid elements Thick shells
Incompatible-mode elements Thin shells
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Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Full Reduced
integration integration
Family
First- % .
order -
Degrees of freedom Number of nodes interpolation| | x x

Number of nodes and order of interpolation
Second-
order
Formulation interpolation

Integration: Using Gaussian quadrature for most elements (full or reduced integration)

Milad Vahidian, Ph.D. Student of Mechanical Engineering 27



Introduction to FEA: Analysis Procedures

3-

Derive element stiffness matrices and load vectors

From the assumed displacement model, the stiffness matrix [K¢] and the load vector {P¢} of element e are to be
derived by using a suitable variational principle, a weighted residual approach (such as the Galerkin method), or
equilibrium (direct method) conditions.

FE Formulation <

Direct Approach: ~ mssss====)  Equilibrium

Variational Approach: pwsssssssssss) Minimizing Functional

\Weighted Residual Approach: msssssss) Minimizing Error in domain
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Introduction to FEA: Analysis Procedures
Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal
displacements are obtained using force equilibrium conditions for a basic element, along with
force /deformation relationships.

Variational Approach

The variational approach is based on the application of variational calculus, which deals with the
extremization of functionals in the form of integrals.

dl
I=U,vw,..) =W, (uv,w,.)==>I=U{a}) = W,({a}) == 61 =0=> Frie 0
i

Weighted Residual Approach

The weighted residual methods allow the finite element method to be applied directly to any differential
equation.

L) + F(x,y,2) = 0 == R = L(u = [N[{a}) + F(x,y,2) == j WiR dV = 0
%4
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Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements
are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

Force = Spring stiffness X Net deformation of the spring

=) ke[ 1 _1]{”"} ) {F} E r— |—~

Fi —
F; = k.(uj — w;) 4

As an example

[K(E)] — |:k1] k12 ‘ . |: (AEEE/IB) _ (AeEe/le) ‘ o AgEe |: l - l ‘ — -’:11_.,_, - 4 _Ez,_AQ_ B Es A — P,
- o — X F——-1
ky ko —(A.E,/l,) (A.E,/L) I, |-1 1
|a— I s Ly >l ly —=]
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Variational Approach

SU = W,y == f j f (5¢)T(a} AV = f j f (BUYT{F,}dV + f j (BUY{T)dS + i{w}T{Fp}
|74 |74 S =1

Stiffness matrix Self Strain

T !

Stress Vector —— {0} = [D]({e} — {gp}) + {69} — Prestress Vector

‘\‘ Total Strain

Elastic strain energy Prestress energy Surface Traction work
f j (65)7[D1{e} AV — J j (65} [D]{eg)dV + j j (65} {ag)dV — j j (SUYT(F,)dV — j j (6UYT T ds — ) (8UY(F,} = 0
Y VSelf strain energy ’ I]/30dy force work ’ lljcl)int Load work
u(x,y,7)
w}=v(xy,2) ¢ = [N(x,y,2)]{a} te} = [Lltu} = [L][N(x, y, 2){a} = [B]{a}
w(x,y,2)

( || @yrioie) dv> (@ = [|[ By wienay - ||| mreoav + [[[ wrirav + || wyras + i{N}T{F,,}
|4 |74 |74 |74 S =1
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Weighted Residual Approach

The weighted residual method is a technique that can be used to obtain approximate solutions to linear and
nonlinear differential equations. If we use this method the finite element equations can be derived directly from
the governing differential equations of the problem without any need of knowing the functional. We first consider
the solution of equilibrium, eigenvalue, and propagation problems using the weighted residual method and then
derive the finite element equations using the weighted residual approach.

Point Collocation Method

Weighted Residual < Subdomain Collocation Method

Least Squares Method
Galerkin Method

-
Aalerkin Method

L) + F(x,y,2) = 0 == R = L({u} = [N]{a}) + F(x,y,2) == j N.RAV=0i=1,.N
74
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Introduction to FEA: Analysis Procedures
4-Assemble element equations to obtain the overall equilibrium equations

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

- AE AE ]
7 07T Yy (B
0 0 0 of)u(_J[hl
AE - AE ) fir
L L V2 Sfy2
0 0 0 0
115000 0 —115000 0
0 0 0 0
Kide=1_115000 0 115000 0
0 0 0 0
76666.67 0 —76666.67 0 6379143 0 —63791.43 0 VIT
o 0 0 0 Jr 0 0 0 0 IS
Kol =1 7666667 0 76666.67 0 M= 6379143 0 6379143 0 u
0 0 0 0 0 0 0 0
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Introduction to FEA: Analysis Procedures

Ul/ul Vl/vl Us/u, Va/vs

115000 0 -115000 0O cos(0) —sin(0) 0 0 1000 Uju, | 115000 0 —115000 0
K1 — 0 0 0 0 C— sin(0)  cos(0) 0 0 |01 00
Kilb=1 115000 0 115000 0] “1={ 0 0 cos@ —sin0)|fo 0 1 0| gg="M| © 0 0 0
0 0 0 0 0 0 sin(0)  cos(0) 0 0 0 1 U/u, | —115000 0 115000 0
oy |0 0 0 0 _
Uy /uy 0 0 0 0
_ 0 -1 0 0 2/ %2
766?36'67 g 766066'67 g ()] 1 0 0 O (K,]; = /v, |10 76666.67 0 —76666.67
_ = 2l =
Kol =| _76666.67 0 7666667 0 710 0 0 -1 Us/uz |0 0 0 0
0 0 0 0 0O 0 1 0 V;/vs L0 —76666.67 0 76666.67
U, /u Vi/v Us/u; Vi /v,
791.4 —63791.4 0. _ _
G143 0 6379143 0 036 —0SL 00 o [ 1968 e 168 2sa
0 0 0 0 0 0 0.832051  0.554699 Us/u, 19628 20442 19628 29442
Vi/vy | —29442 —44163 29442 44163
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Introduction to FEA: Analvsis Procedures

Ul/ul Vl/vl Uz/uz VZ/V2

3 3 U | 115000 0 115000 0 0 0
U/u, | 115000 0  —115000 0 v, 0 0 0 0o 0 o0
k1 = Vi 0 0 0 0 ‘ Ki— Uz | —115000 0 115000 0 0 0
Usfu, | —115000 0 115000 0 (K] = » 0 0 0 0 0 o
Va/va L 0 0 0 0
i, 0 0 0 0 0 0
i o 0 0 0 0 0|
U, v, U v, Us Vs
o o R
[K,]e = Vo/v, |0 76666.67 0 —76666. 67] 0 o0 o . . 0
Ufs [0 0o ) -
V3/173 0 —76666.67 0 76666 67 0O 0 0 76666.67 0 —76666.67
0 0 O 0 0 0
V, [0 0 0 -7666667 0 76666.67
U, Vi U, V,» U v,
U, | 19628 20442 0 0 —19628 —29442 |
U, /u Vi/vi Us/u, Vi /v Vv, 20442 44163 0 0 —=20442 44163
Uju | 19628 29442 —19628 —29442 | KU 0 o 0 0 0 0
K, V| 29442 44163 29442 44163 ‘ v, 0 0 0 0 0 0
Usjup | 19628 29442 19628 29442 U, | —19628 —20442 0 0 19628 29442
Vi/v, | —29442 —44163 29442 44163 vo | —20442 _44163 0 0 29442 44163
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Introduction to FEA: Analysis Procedures

5- Apply Boundary Conditions

Governing equation, must be modified to account for the boundary conditions, is a set of
simultaneous algebraic/ordinary differential /partial differential equations that can be written in

[Krr]

| [Krp]

134628
29442
0

—115000
— 19628
| —29442

expanded matrix form.

(Kere] | | {8¢) () The subscripts P and F refer respectively to the
o N i prescribed and free degrees of freedom
k| L0 L
29442 0 © 115000 —19628 20442 | (UL =0 [ Ry
44163 0 : 0 —20442  —44163 Vi=0 Ry,
0 76666.67 0 o _weeesst] | V2=0 Ry
. e e - . e 4 v o , — & ... %
0 0 L1500 0 0 U, 0
—29442 0 : 0 19628 29442 Us 12000
—44163 —76666.67 0 20442 120829.67| U Vs ) . 0
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Introduction to FEA: Analysis Procedures

6- Solve for the unknown nodal displacements

[Kp]

| [Kep]

[Kpr]

[Krr]

|

{.SF}} l{FP}} [Kppl {0p} | [Kpr] {OF) = {Fp}

{85} {Fr) [Kep] {00} + [Ker] {06} = {FF)

4

{5F} — [KFF]_l {{FF} — [Krp] {613}}

It should be mentioned that K will always have an inverse for well-posed problems solved by the finite element method.
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Introduction to FEA: Analysis Procedures

6-Calculation of the Element Resultants

SUPPORT REACTIONS
RXI
{FP} — [KPF] {5F} Ry,
Ry

MEMBERS' FORCES

[ — 115000
0
0

—19628
—29442
0

—29442 7]
—44163
~76666.67

0.9635

W

—0.2348

Once all the displacements are known, the member forces can be easily obtained

(dy}  — {d3}=[C3]T{£}/

(O} —)

T 6379143 0 —63791.43 O] [ O
B 0 0 0 0 0 B
Vb =1 _6379143 0 6379143 0]) 03391 [ =
0 0 0 0| |-09319
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Introduction to FEA: Analysis Procedures

Static Problem FEM System of Algebraic Equations
(ODEs or PDEs) (Linear or Non-linear)
d du(x) _ R
E<AE - ) = w(x) [Kl{a} = f la}
Dynamic Problem FEM System of ODEs
(PDEs) (Linear or Non-linear)
4 & 4
p U t)) (e = p A M) + [KHa(0} = (O - @)
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Introduction to FEA: Analysis Procedures

Non-linear
Structural <
Problems

‘Material Nonlinearity: Due to non-linear constitutive law (e.g., polymer materials)

Geometric Nonlinearity: Due to Large displacements or large rotations

\Boundary Nonlinearity: Due to non-linearity of boundary conditions (i.e., contact problems)
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FEM <

rlmplicit Method <

Introduction to FEA: Analysis Procedures

L Explicit Method mmms) <

4 Static Problems {

Dynamic Problems )
\_ (Dynamic Implicit)

Linear Problems: [K ] {Cl} — f Linear system of algebraic equations
Non-Linear Problems: [K ({a})] {a} = f ({a}) Non-linear sys. of algebraic equations

[ Linear Problems: [M(£)]{d(6)} + [K(£)[{a(t)} = f(t) Linearsys. of ODEs

Non-Linear Problems:

) [M(t, {aD]{a(t)} + [K(t,{aD]{a(t)} = f(t, {a}) Non-linearsys.of ODEs

rQuasi-Static Problems
m) [M(¢ {ah){a(O)} + [K(E {ahHa(®)} = f(t,{a})

Non-linear or Linear sys. of ODEs

Eynamic Problems
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Problem 1: Truss Problem

Problem Discerption

Horizontal members
E =30 x 10° kN/m?
A =0.045 m?

4x2m

Diagonal members
E =30 x 10° kN/m?
A=0.02 m’

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Problem 1: Truss Problem

All input and output data must be specified in consistent units

Quantity SI SI (mm) US Unit (ft) US Unit (inch)
Length m mm ft in
Force N N |bf Ibf
Mass Kg tonne (103 kg) slug Ibf s2/in
Time s s S S
Stress [ pa (N/m2) | MPa (N/mm?2) |bf/ft2 psi (Ibf/in?)
Energy ] mJ (1073 J) ft Ibf in Ibf
Density | kg/m?3 tonne/mm? slug/ft> Ibf s2/in%
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Problem 1: Truss Problem
Data Preparation (Create Input file)

Nodes Coordinates

-+ geom =

0 0
4000 O
4000 6000

Element Connectivity

Material and Geometrical Properties

0
Boundary Conditions —— nf = |:1
1

Loading

0 0
. load = 0O O
1200 0O

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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1
A connec — |:2
1

W W N

|

200000
200000

200000

_—o O
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Problem 1: Truss Problem

Discretization and Interpolation

u(x) =cy + c1x
u(x=0)=u; =¢
u(x=_L)=u, =cy +c{L

v(x) =c'y+c'ix

{v(x =0)=v, =/, ‘ v(x) = [(vz ;vl) X+ vy

vix=L)=v,=cy+ 4L

5 e e
b X ) )
M= (1-7) Na=1 - x

d,} = {u, v, us, vo}"
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Problem 1: Truss Problem
Direct Approach

{383} = [N]{dc} ‘ (e} = [L1IN]{dc}

A A

(o} = [Dl(e} ‘ {} = [DIILIIN]{d,}
1 )= oy = Ui Sl
{do} = {Uy, vy, Uy, V53T .} = (Fu.Fy1, Fo, Fy)T
fu = EA(22)
S my WMo o (1Y) =T
1= [ o] (D] = [£]
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Problem 1: Truss Problem

Local Stiffness Matrix

¥
A
AE AE 7
T 0 _T 0 Uq (fx1)
0 0 0 of)u(_[hl|
AE 0 AE 0 Uz fr
L L V27 \fy2)
0 0 0 0-
K ] {d } — } > X > X
Keltd.h =1 (d.} = (v, 2, v:)" (e} = s fusfasfiol
{cie} - {Ul,Vl, Uz,Vz}T {fe} - {FxlaFylanZ:Fﬂ}T
-C(,)S(H) —SiTl(@) 0 0 U, (cos® —sinB 0 0 | [u
[C] = sin(6) cos(6) 0 0 Vil _|sin® cos® 0 0 Vi
0 0 cos(8) —sin(0) U, — | 0 0 cos® —sin®| |u,
0 0 sin(8) cos(0) . v 0 0  sin® cos® | |v
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Problem 1: Truss Problem

Global Stiffness Matrix
{d)}) =[CI"{d,}

(K){d) = {f) e \[C][’fe][cﬁ{‘z} = =y [Kld.} = {f)

V= [CI'{f} = T
(£} =ICI'{f} [K.] = [CIIK.]IC]

Element stiffness matrix in the global coordinate system

Y Y
A A i
‘cos(0) —sin(6) 0 0
(c] = sin(8) cos(0) 0 0
I 0 cos(8) —sin(0)
0 0 sin(8) cos(6) .
> X > X
{dt?} - {ulvvlaMZS VQ}T {f;} — {ﬁl’ﬁ’l’fﬁi‘f}’Z}T
{de} = (U, V1, Uy, V)T (.} = {Fu.Fyi. Fo. F}"
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Problem 1: Truss Problem

Assemblage

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

115000 0 —115000 0
0 0 0 0
Ko =1 _115000 0 115000 0
0 0 0 0
76666.67 0 —76666.67 0
K 0 0 0 0
e =1 7666667 0 76666.67 0
0 0 0 0
v,

6379143 0 —-6379143 0
Kl — 0 0 0 0

=1 _6379143 0 6379143 0 u,
0 0 0 0
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(K], =

(K] =

[K3]L =

115000

—115000

76666.67
0
—76666.67
0

63791.43
0
—63791.43
0

0

o oo

oo oo

oo oo

Problem 1: Truss Problem

—115000

115000

—76666.67
0
76666.67
0

—63791.43
0
63791.43
0

0

(= e Jen)

0

0
0
0

Assemblage
cos(0) —sin(0) 0 0 1 0 0
(C] = sin(0)  cos(0) 0 0 |0 1.0
B 0 0 cos(0) —sin(®) |~ [0 0 1
0 0 sin(0)  cos(0) 0 0 0
0O —1 0 0
1 0 0 O
Cl=|y o o -1 [Kz1g
0O 0 1 0
0.554699 —0.832051 0 0
(] — | 0832051 0.554699 0 0
W 0 0 0.554699 —0.832051
0 0 0.832051  0.554699
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-0 O O

Ul/ul VI/V1
U u, | 115000 0
K=" 00
U,/u, | —115000 0
Vz/V2 | 0 0
Uy/uy [0 0 0
_ /v, |0 76666.67 0
U3/U3 0 0 0
V3/vs L0 —76666.67 0
Ul/ul Vi/vi
U Jus | 19628 29442
2 Vi | 29442 44163
Us/u, | 19628 29442
V3 /Vz | —29442 —44163

U,/u, Va/va
115000 0 |
0 0
115000 0

0 0

0
—76666.67
0
76666.67

Us/uy Vi/va
—19628 —29442 |
—29442 —44163
19628 29442
20442 44163 |
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Problem 1: Truss Pro})lven;n

Vv, Us V;
U W Dfm W Assemblage v, [ 115000 0 115000 0 0 o0
Ufu, | 115000 0  —115000 0 v, 0 0 0 o 0 0
[Kils = ‘;/vl 112000 g 1150000 2 ‘ K= —115000 0 115000 0 0 0
Wl =
V;/v; L . . 0 v, 0 0 0 0 0 0
1, 0 0 0 0 0 0
Vi 0 0 0 0 0 0
u v, U V, Us Vi
v.lo o o 0 0 o
U,/u, [0 0 0 0 Vilo 0 0 0 0 0
K,], = /2/V2 |0 7666667 0 —76666.67] ‘ KU[0 00 0 0 0
Us/us |0 0 0 0 Vo 0 0 0 76666.67 0 —76666.67
V3/vs L0 —76666.67 0 76666.67 Uy 0 0 0 0 0 0
V, L0 0 0 -7666667 0 76666.67
U, Vi u v, U; Vi
U | 19628 20442 0 0 —19628 —29442
U/ Vi Usfuy  Vi/va Vi | 20442 44163 0 0 —29442 —44163
Uju | 19628 29442 —19628 —29442 | (K] = U, 0 0 0 0 0 0
ko, o Vv | 20442 44163 29442 —44163 ‘ v, 0 0 0o 0 0 0
Us/u, 19628 20442 19628 20442 Us | —19628 —29442 0 0 19628 20442
Vi/va | —29442 —44163 29442 44163 | Vi | —20442 —44163 0 0 20442 44163
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Problem 1: Truss Problem

Assemblage
U, v, U, Ve, Us Vs ) u Vi U, Vs Us Vi ) U, v u, Vv, Us Vs
i 115000 0 115000 0 0 0_ ur| 0 0 0 0 0 0 U, i 19628 29442 0 0 —19628 f29442_
0 0 0 0 0 0 vilo 0 0 0 0 0 V, | 29442 44163 0 0 —20442 —44163
—115000 0 115000 0 0 O (K] = U,1 0 0 0 0 0 0 K] = U, 0 0 0 0 0 0
0 0 0 0 0 0 Va0 0 0 7666667 0 —76666.67 Vv, 0 0 0 0 0 0
0 0 0 0 0 0 Us{ 0 0 0 0 0 0 Us | —19628 —29442 0 0 19628 29442
Y 0 0 0 0 0] Vs L0 0 0 -76666.67 0  76666.67 Vi | —20442 —44163 0 0 29442 44163 |
Element 1 Element 2 Element 3
U1 Vl U2 V2 U3 V3
U, _115000—|— 19628 29442 —115000 0 —19628 —29442
Vi 29442 44163 0 0 —29442 —44163
(K] = U, —115000 0 115000 0 0 0
V5 0 0 0 76666.67 0 —76666.67
U, —19628 —29442 0 0 19628 29442
Vi L —29442 —44163 0 —76666.67 29442 44163 + 76666.67 _
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[Kpr]

| [Krr]

Problem 1: Truss Problem
Apply B.C’s and Solve (free) Nodal Displacement

[KPF] {E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
e {'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

[Krr]

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Problem 1: Truss Problem
Calculation of the Element Resultants

SUPPORT REACTIONS
RXI
{FP} — [KPF] {5F} Ry,
Ry

MEMBERS' FORCES

115000 —19628 —29442 [ 0
=| 0 —20442 —44163 | ] 0.9635
0 0  —76666.67 | | —0.2348 |

W

Once all the displacements are known, the member forces can be easily obtained

(dy}  — {d3}=[C3]T{£}/

(O} —)

T 6379143 0 —63791.43 O] [ O
B 0 0 0 0 0 B
Vb =1 _6379143 0 6379143 0]) 03391 [ =
0 0 0 0| |-09319
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(—21.631
0

1631 [ KN
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Problem 2: Beam Problem

Different types of modeling and associated assumptions

LINE BODY SURFACE BODY

‘ SOLID BODY
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Problem 2: Beam Problem

Problem Discerption

E =200 000 MPa, I =200 x 10° mm*
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Problem 2: Beam Problem
Data Preparation (Create Input file)

[ 0 ] 1 2
Nodes Coordinates geom = gggg Element Connectivity connec = |2 3
4
| 16000_ :
_ - 0 07 0 0]
200000 200.e + 6 0 1 0 1
Materialand prop = | 200000 200.¢ + 6 Boundary Conditions nf=| = f=|
Geometrical Properties 200000 200.¢ +6 | 0 0 -
Element Fyl M1 Fyz M2
Loading 1 —10* —107 —10* 107
2 —10* —8.33 x 10° —10* —8.33 x 10°
3 0 0 0 0
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Problem 2: Beam Problem -

, q(x) +dq(x)
Euler-Bernoulli theory of bending qw,/«f/"‘r“
M) | - ‘ M(x) + dM(x)
2
d W — M Statically equivalent ‘ ] N
dxg E I Actual load p nodal loads ~ x
p $ 2
d*w 1 dM S j 1 E -PL 2 St i S(x) +dS(x)
d Eldx  El [ ¢ s
d'w 1dS g yT q
= = — gL ~4L
2
o TEaTH 4ot f P Y W iiiiiii iaiiii S\
f 12 12 ELL F ]
Z Z I )
(- qL) _34L —7qL
_7 2_g 20 {FE}:{FHMIEFZ&MZ}T
2 ?q/E -1 aqL?
qL “ 30 20 =
T 19 /]
qL )
-5 q 5qL 0, e s > X
2 £ %l lﬁ ¢ EIL I /
2 / 2 . w W
_|_£ ) 5 (b) !
' 12/ P g

Ll {dE} — {Wla elaw25 BZ}T
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Problem 2: Beam Problem

Interpolation (Shape Function)

" wx) = c1x3 + cx% + c3x + ¢y

wx =0) =w; =c, w(x) = [é (wy —wy) +L—12(91 + 92)] x®

dwy ‘ 3 1
Ex=0_91_c3 +[_E(W1_W2)_Z(201+82)]x2+81x+W1

wx=L)=w, =c;L3+ c,L? + 3L+ ¢,
dw )
E— = 02 = 3C1L + ZCZL + C3

\_ dx lx=L
= [N]{d,
[N]=[Ni N> N3 Nl w(x) = [N]{d}
1 ’
)

_ 1 2 3 — 3 272 3
Ni= Qe =302L+ D) Ny = (L =220 +al \Wm\ \H\\Aﬁ&
1 1 Ax9 14 u
_ 3 2 — (3 272
Ny = —5(-200 +302L)  Na = (L = 2L2)
59
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Problem 2: Beam Problem
Direct Equilibrium Approach

|
El [ YY) [ 3
= 75 (12wy + 610, — 12w, + 6L6) & <1 : A >

ELL /
F, 12

EIl 2 2

{Fe} — {Fl:er&anMz}T
El
| | =13 (~12wy — 66, + 12w, — 6L6,) A
x=
El ) 2 0, < o \_,.\ ) > x
| . = §(6LW1 + 2L 91 — 6LW2 + 4], 92) 4 E,LL I/
x=

{de} — {Wh el:r Wa, eZ}T
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Problem 2: Beam Problem

Local Stiffness Matrix

|
F,\ [ 12EI)L>  6EI/L> —12EI/L*  6EI/L* 7 (wi) . <1 TTTITT I\MQ .
E,L.L
M, 6EI/L>  4EI/L  —6EI/L> 2EI/L | |6, IFI le
1 r — 1 3
_ 3 > s >
F, 12EI/I —6EI/L> 12EI/I} —6EI/L* | | wy (F.) — (F\. M, Fy. M)
M) | eErrz 2L —6EI/L: 4EIL | |6,
YA
{fe} = [K]{b.} el<°’ \_«0'\92 -
4 Bl I/

{dE} — {Wh el:r Wa, eZ}T
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Problem 2: Beam Problem

Local Stiffness Matrix: Internal Hinge

<
N
_ Discontinuity in the slope of the deflection curve N\
Internal Hinge Y o
Zero value of the bending moment Internal hinge N
| L
Procedure |

Discretize the beam using two elements

The hinge should be accounted for only once; either associated with element 1 or with element 2

If the beam is discretized with two elements, one with a hinge at its right end and the other with a hinge at its
left, the result will be a singular stiffness matrix.

C 3EI/L*  3EI/I*  —3EI/L* 0] (wn) [Fu C3EI/LF 0 —3EI/L* 3EI/L* ] (wn)] [Fa)
3EI/L>  3EI/L  —3EI/L> 0] |6, M, 0 0 0 0 0., M,,
3EL —3E2 3ELL O |wol| | 7o | 3EL 0 3EL —3EL | Vwa [ | Fa *

0 0 0 ol l6,]) |M, | 3EI/L> 0 -3EI/L> 3EI/L | |6,) My
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[Kpr]

| [Krr]

Problem 2: Beam Problem
Apply B.C’s and Solve (free) Nodal Displacement

[KPF] {E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
e {'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

[Krr]

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Problem 2: Beam Problem
Calculation of the Element Resultants

SUPPORT REACTIONS
If{6,} =0

[Kpp] {0p} + [Kprl {05} = {Fp) — {FP} = [KpF] {‘SF}

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

{6} — {de} — {Fe} — [Ke]{de} — {FU}

{F e} : The vector of equivalent nodal forces at element level
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3D Truss Problem

Problem Discerption

4 kN

E =200GPa A= 0.02m?
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3D Truss Problem

Consistent Units

All input and output data must be specified in consistent units

Quantity i SI i SI (mm) US Unit (ft) US Unit (inch)
Length i m i mm ft in
Force | N | N Ibf Ibf
Mass : Kg : tonne (103 kg) slug Ibf s2/in
Time E s i s S S
Stress iPa (Nfrnz)i MPa (N/mm?2) |bf/ft2 psi (Ibf/in?)
Energy i ] i mJ (1073 J) ft Ibf in Ibf
Density i___k_g_,a_’m:"_’__i tonne/mm?3 slug/ft> Ibf s2/in%
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3D Truss Problem

Data Preparation (Create Input file)

Nodes Coordinates geom (nnd, dim=3)

Element Connectivity connec (nel, nne=2)

. . : E =200 GPa
Material and Geometrical Properties A = 0.02 m?2
Boundary Conditions nf (nnd, nodof=3)
Loading load (nnd, dlm=3)
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3D Truss Problem

Discretization and Interpolation

u(x) =co + c1x -
u(x=0)=u; =¢
u(x=_L)=u, =cy +c{L o
u(x
v(x) =co+c1x . - {5}((3;))} = [N]{d.}
{v(x =0) =v; = ¢ ‘ () = [(Uz - v1)] + o,

vix =L)=v, =cy+¢;L Ny O O N, 0 O
0 0 N, 0 0 N,
w(x) =cg +cix _(1_% _x
N =(1-7) Ny =7

{W(X =0) =w; =¢qg ‘ w(x) = [(WZ ;Wl)] X +wy

wkx=L)=w, =cy +c{L {de} = {ug vy wy up v Wy}’
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3D Truss Problem

Local Stiffness Matrix

(U1 x
X
u@)) M, 0 0 N, 0 07|} Ny=1-7 Ny=7
v(x) ;=0 N O 0 N, 0<uzl> 1 0 0. —=1 0 O
O 0 N, 0 0 N |~
w(x) 1 ZL\:]VZJ L 0 0 0:0 00
9 - 2 _ | pr _A4Elo 0. 0:0 0 0
L CO R P Ke‘jBDBAdx_L—100;1 0 0
¥ ox 0 0 0 0 0 00:0 00
0 0 O E 0 0 L0 0 0!'0 O o
Oxx = E€xy » D=0 E 0
0 0 E
1 0 0:=1 0 0],uy (f)
| f \
oo = £ (22) 0 0 0:0 0 Of|n| [|/n
1x L AEl o0 0 0:0 0 O|lJwil _)fa (K.]1{d.} = {.}
- — - mommmo - S Uy =3 > e € €
Uy — Uy L|-1 0 0.1 0 0f|% fro
Nf2x=EA( I ) 0 0 0,0 0 0f|" fy2
Lo 0 00 o olW (g
Z2
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3D Truss Problem

Transformation Matrix .,
Tl il 1y ki =1 \ |
r=nd+nj+nk=ri'tr +nk < nij +njj +rnkj =n \\\ P”’_
nd. k' + 1 k" + k. k" =1k’ \ '
- i i’

‘\

I, .

Ty i j.il k. {rx Ty cos(x,x") cos(y,x") cos(z,x") {rx} /’k
/
x ¢

rye=|i.j j.j k.j ry} » ry ¢ = |cos(x,y") cos(y,y') cos(z,y")|{Ty
T, i.k' jk' kKE|\TZ T, . cos(x,z') cos(y,z') cos(zz") 1 Tz
Y
[T] [0]
| — X N _ YT Y | — 7 I = [ ]
cos(x,x") = 5% cos(y,x') = Y L 4 cos(z,x") = 3 L - [T] [R] [0] [T]
D = /cos2(x,x") + cos2(y, x")
cos(x,y') _ COS(I})’; x’) cos(y,y') — COS(;C,.X") COS(Z; y,) = - COS(;’x )
cos(x,x") cos(z,x") N cos(y,x") cos(z,x") N
cos(x,z') = — 5 cos(y,z') = — D cos(z,z') =D
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3D Truss Problem

Transformation Matrix

ej.e; e;.e, e;.eg
=ley.e; ej.e, ey.e3

e;.e; ej.e, e3.e3
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3D Truss Problem

Transformation Matrix

Element stiffness matrix in the global coordinate system

wewrorm k] = [R]T[k/][R]

{k} = kijee; efn = Tmi€i o
Index Form ' > ki j — k mn "mi"nj
{k'} = k' ,,emen en = Tnj€j
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3D Truss Problem

More Efficient Procedure

- U — Uy
fue = BA(ZT) k=14
= = - “ Ll-1 1
Nf'ZJC =EA ( L )
{r;} = [cos(x,y") cos(y,y") cos(z,y")|{r} [K.] = [R]"[k,][R]
cos(x,x") = =% cos(y,x) = Y ;yi cos(z,x") = £l ; d
(X —Xi Yi—Yi Zj—Z
0 0 0
R] = [[T] 0] ] _| L L L
[0] [T] 0 0 0 Xjp—Xi Yi—Yi Zj—Z
L L L
Global ~ __,  Local T Local ==  Global
[R] X Coordinate == (oordinate [R] Coordinate Coordinate
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[Kpr]

| [Krr]

3D Truss Problem

Apply B.C’s and Solve (free) Nodal Displacement

) (8:) = [Ker] ™ {{Fr} — [Kep] {85))

[Kpr] l {E'P} l l {FP}I [Kpp] {6:1} + [Kpr] {5F} — {FP}
{0} {Fr)

[KFF]_ [Krp] {0p} + [Krr] {0} = {FF)

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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3D Truss Problem

Calculation of the Element Resultants
MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained

Element (Xj —Xi Vi —YVi Zj— Zj l Element
. 0 0 0 .
{ 5} — Displacement X L L L Displacement
in Global 0 0 0 Xj—Xi Yi—Yi Z —Zij| =—  inLocal
Coordinate I L L L | Coordinate
Member
Force

Milad Vahidian, Ph.D. Student of Mechanical Engineering 75



Problem 4: 2D Frames

Problem Description

20 kN/m

YY Y YV YYVYOYVYVYYVYVYVYVY

ﬁl
g E=70.e+6 N/m2 A=0.1m>/=1.333¢—3 m* g
«™ on
|
|
w
A A
(an] o
— on
o i 5m
1l
~ 20 kN 20 kN J
I~ -
E E
= o
3 . N
< S e
= E=70e+6N/m% A=0.1m2 I=1.333¢-3 m* <
NE“ R
Z £
Z,
“_E o 5m
w +
" -
i i
M N

EALALS S/

\
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Problem 4: 2D Frames

All input and output data must be specified in consistent units

Quantity SI SI (mm) US Unit (ft) US Unit (inch)
Length m mm ft in
Force N N |bf Ibf
Mass Kg tonne (103 kg) slug Ibf s2/in
Time s s S S
Stress [ pa (N/m2) | MPa (N/mm?2) |bf/ft2 psi (Ibf/in?)
Energy ] mJ (1073 J) ft Ibf in Ibf
Density | kg/m?3 tonne/mm? slug/ft> Ibf s2/in%
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Problem 4: 2D Frames

Discretization

1
AL LA AL
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Problem 4: 2D Frames

20 kN/m
e - 7 Statically Equivalent Nodal Loads
! .
% 3 Element 4 Element 6
o = 5m
~ 20kN 20 kN A 72 q q AN
g E | Y v Y vy vy ey EEEREEEEE
d g A ,"’ \_\ v’/‘/ .
‘Ié_ E=70e+6N/m%A=01m? [=1333e—3m* | < ._-.i i EZzZ2 ©ezza . N
Z
: ¢ |5 | |
E: s \/ \/
1 i V V
N g qLZ qL2
7 «° s
1 1 f 1
3m | 3m | 3m
| | sql 3al 3qL sal
4 ) 8 8 8 8
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Problem 4: 2D Frames

Data Preparation (Create Input file)

Nodes Coordinates geom (nnd, dim=2)

Element Connectivity connec (nel, nne=2)

E
Material and Geometrical Properties A

I
Boundary Conditions nf (nnd, nodof=3)
Loading load (nnd, n0d0f=3)

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Problem 4: 2D Frames

Interpolation (Shape Function)
v(x) = c3x3 + cyx% + cx + ¢

(

v(x =0) =v; = ¢ 2 1 3 1

dv| 8 -U(X) = lﬁ(vl_v2)+ﬁ(91+92)] x3+ [—ﬁ(vl—vz)—z(291+92)] x2+91x+v1
—_ = =

dx lx=0 1 1

v(x =L) = v, = 313 + ¢, L? + ¢, L + ¢
dv

\E |x=L = 62 = 3C3L2 + 2C2L + C1

1 1 1 1
v(x) = 3 [2x3 — 3x%L + L3]v, + 3 [x3L — 2x2%L? + xL3]0, + 3 [—2x3 + 3x2L]v, + 3 [x3L — x%L?]6,

u(x) = c1x +¢

=0 =wu = (uz = u)
Z(Jt=L)=Z:=::+C1L - u(x):[uzLu1 X+ U ‘ u(x)=l1—%]u1+[%]u2
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Problem 4: 2D Frames

Interpolation (Shape Function)

w=[1-Tu+ e, ) M=[1-7] m=[f

1 1 1
v(x) = [ x3 —3x%L + L3]v, + +73 [x3L — 2x2L% + xL3]6, + 73 [—2x3 + 3x%L]v, + — [x3L — x2L?]6,

L3
1 3 2 3 Lo s 272 3 1 3 2 1.3 x2]2
N3=§[2x —3x“L+L°’] N,= L3[ L —2x“L* + xL°] N5=ﬁ[—2x + 3x°L] Ng = L3[ L — x“L]
(U1
U1
u(x) {u(x)}z N, O O N, O 0] 0,
{v(x)}z[N]{de} » v(x) 0 N3 N, 0 N5 Ng <u2>
U3
6,

Milad Vahidian, Ph.D. Student of Mechanical Engineering 82



o= ea(M ) |

Problem 4: 2D Frames

Direct Equilibrium Approach

Milad Vahidian, Ph.D. Student of Mechanical Engineering

< L
U — Uy
=FEA
\fxz ( L )
(g =g ) | L (120, + 618, — 120, + 616,) yT
1= =73 U1 1 — 14Vp 2
y dx3 x=0 13 M, <1; Yy I '\Mz
d’v(x) El A ELL /
_ _ 2 2 -
Ml = —F1I o2 =0 = §(6LU1 + 4L 91 — 6Lv2 + 2L 92) F, FZI
d3v(x) EI A
Fyp = —El——=| _ =73(~12v; — 6L + 12v; — 6L6) N
M, = EI = (6Lv; + 2120, — 6Lv, + 4120 o I
. 2 dx? |x=L L3 ( " ! V2 2) (b) 121 (%)
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(K] =

hinge at its right end:

[K.]=

- fo

" AE/L

0
0

—AE/L

0
0

- AE/L

0

0
—AE/L

0

0

Problem 4: 2D Frames

Local Stiffness Matrix

T[D][B]Adx
0 0 —AE/L 0 0
12EI/I}  6EI/L? 0  —I2EI/I* 6EI/L?
6EI/L*  4EI/L 0 —6EI/I>  2EI/L
0 0 AE/L 0 0
—12EI/L} —6EI/L* 0 12EI/I* —6EI/L?
6EI/L*  2EI/L 0 —6EI/L*>  4EI/L
n 6
A L
0 0 —AE/L 0 0]
3EI/L*  3EI/L? 0 —3EI/L* 0
3EI/L>  3EI/L 0 —3EI/L> 0
0 0 AE/L 0 0
—3EI/L} —3EI/IL* 0 3EI/L} 0
0 0 0 0 0|

.

Displacements

V)

{d } = {ul, Vi, el,uz,VZ, 92}T {F} - {Fxla ylaMlanbeZsMZ}T

hinge at its left end:

~ AE/L 0
0 3EI/L3
0 0

[K.] =

—AE/L 0
0 —3EI/L}

0 3EI/L?

Milad Vahidian, Ph.D. Student of Mechanical Engineering

0

o o o o O

—AE/L
0
0
AE/L
0
0

0
—3EI/L?
0
0

3EI/L}
—3EI/I?

3EI/L?

—3EI /L2
3EI/L
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Problem 4: 2D Frames

Global Stiffness Matrix

{d.} =[C1"{d,} - B . _
(K.1{d.} = {f.) T [CUKNCT de} = (e} mm)  [K.d.} = {/.}
o) = 1T [K.] = [CI[K.I[C)"
R be R‘ ~*R= \E-D ‘Y\X
[cos® —sin® 0 0 0 0]
sin © cos® 0 0 0 0 Element stiffness matrix in the global coordinate system
0 0 1 0 0 0 — -
0 0 0 cos® —sin® 0 [Kz] — [C] [Ke][C]
0 0 0 sinB cos@ 0
0 0 0 0 0 1
Assemblage

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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[Kpr]

| [Krr]

[Kpr]

[Krr]

|

Problem 4: 2D Frames

Apply B.C’s and Solve (free) Nodal Displacement

{6:3} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
{'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr} _
[Krpl {0p} + [Kir1 {0r} = {FFr}
w

ker O = b

/Q\j(\ SOlqg
% \Y— {0r) = [Kprl ™" {Fr)

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Problem 4: 2D Frames

Calculation of the Element Resultants

SUPPORT REACTIONS

{FP} = [KpF] {‘SF}

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

10} i (d) == (d)} = [C]'{d})

1 = ¥ 3

b

Geh R Rt

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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3D Frame Problem

Problem Description

Milad Vahidian, Ph.D. Student of Mechanical Engineering 88



3D Frame Problem

Discretization

Milad Vahidian, Ph.D. Student of Mechanical Engineering 89



3D Frame Problem
Statically Equivalent Nodal Loads

Milad Vahidian, Ph.D. Student of Mechanical Engineering 90



3D Frame Problem
Data Preparation (Create Input file)

Nodes Coordinates geom (nnd, dim = 3)

Element Connectivity connec (nel, nne = 2)

. . : E =200 GPa
Material and Geometrical Properties A = 0.02 m?2
I= m*
Boundary Conditions nf (nnd, nodof = 6)
Loading load (nnd, nodof = 6)

Milad Vahidian, Ph.D. Student of Mechanical Engineering

91




3D Frame Problem

Interpolation (Shape Function)

v(x) = c3x3 + cyx% + cx + ¢

(N — . —
v(x=0)=v; =¢ 7
dv v(x) = [—3 (v — vy) + (91 + 92)] x° + l — (1 —v3) — —(291 + 92)] x“+60,x+ vy
—| = 91 = L
dx lx=0
v(x =L) = v, = 313 + ¢, L? + ¢, L + ¢
dv 5
d_| = 62 = 3C3L + 2C2L + C1
\ X 'x=L

1 1 1
v(x) = — [2x — 3x2%L + L3|vy + — [x3L — 2x2L? + xL3]6; + —=[—2x3 + 3x?L]v, + — [x3L — x*L?]0,

I3 I3 I3
1 2 3 1 X3 272 3 1 2 1 X3 272
w(x)—L—[Zx — 3x“L + L°|w, +L3[ L—2x°L* + xL]6, + L3[ 2x3 + 3x%L]w, +L3[ L—x“L°]0,

u(x) = c1x +¢

e owTe Ly - [ ) w0 =1+

I
9]

o
_I_
%)

[
h
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3D Frame Problem

Interpolation (Shape Function)

w=[1-Tu+ e, ) M=[1-7] m=[f

1 1 1
v(x) = [2x —3x%L + L3]v, + +73 [x3L — 2x2L% + xL3]6, + 73 [—2x3 + 3x%L]v, + — [x3L — x2L?]6,

L3
1 3 2 3 Lo s 272 3 1 3 2 1.3 x2]2
N3=§[2x —3x“L+L°’] N,= L3[ L —2x“L* + xL°] N5=ﬁ[—2x + 3x°L] Ng = L3[ L — x“L]
(U1
U1
u(x) {u(x)}z N, O O N, O 0] 0,
{v(x)}z[N]{de} » v(x) 0 N3 Ny, O N, Ng <u2>
U3
6,

Milad Vahidian, Ph.D. Student of Mechanical Engineering 93



3D Frame Problem

Local Stiffness Matrix

- EA EA -
- 0 0 0 0 0 S 0 0 0 0 0
L L
12E1, 6EI, 12E1, 6EI,
5 0 0 0 — 0 = 0 0 0 —
12E71 6ET 12E] 6EI
0 0 y 0o - v 0 0 0 — Y _ Y 0
L3 L2 L3 L2
GJ GJ
0 0 0 - 0 0 0 0 0 _ 0 0
L L
6EI AET 6EI 2B
0 0 — Y 0 Y 0 0 0 Y 0 Y 0
L2 L L2 L
6EI, 4AEI, 6EI, 2EI,
0 0 0 0 0o - 0 0 0
K] = L L L2 L
e EA EA
S 0 0 0 0 0 i 0 0 0 0 0
I3 L
12E71, 6EI, 12E71, 6ET,
0o - 0 0 0 — 0 0 0 0 -
L3 L2 L3 L2
12E7T GET 12E7T 6ET
0 0 - Y o Y 0 0 0 Y 0 Y 0
L3 L2 L3 L2
GJ GJ
0 0 0 - 0 0 0 0 0 - 0 0
L I
6ET BT 6EI AET
0 0 — Y 0 Y 0 0 0 Y 0 Y 0
L2 L L2 L
6EI, 2ET, 6EI, AEI,
0 0 0 0 0o — 0 0 0
N L2 L L2 L _
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3D Frames

Transformation Matrix .,
Tl il 1y ki =1 \ |
r=nd+nj+nk=ri'tr +nk < nij +njj +rnkj =n \\\ P”’_
nd. k' + 1 k" + k. k" =1k’ \ '
- i i’

‘\

[

Ty i j.il k. {rx Ty cos(x,x") cos(y,x") cos(z,x") {rx} /'
/
x ¢

rye=|i.j j.j k.j ry} » ry ¢ = |cos(x,y") cos(y,y') cos(z,y")|{Ty
T, i.k' jk' kKE|\TZ T, ) cos(x,z') cos(y,z") cos(z,z")|\Tz 1
Y [T] O 0 0
0 [T] O 0
x; — N Zi—z — =
cos(x,x') = il T X cos(y,x') = 24 I 4 cos(z,x') = é 7 - 7] [R] 0 0 [T] O
0 O 0 |[T]
D= \/cosz(x,x’) + cos?(y, x')
cos(x,y") = Cos(l))/,x’) cos(y,y') = — COS(;’X ) cos(z,y’) =0

cos(x,x") cos(z,x") cos(y, z") = — cos(y,x") cos(z,x")

cos(z,z’) =D
D D

cos(x,z') = —
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3D Frames

Transformation Matrix

v
! ! ! \\
€1 €1.-64 €1.€ ¢€1.€3 €1 \\ .
/ r\ _ / / / -
e/ = Tl] e » e, =\|ez.e; ey.en ej.esliéx \

e;.e; ej.e, e3.e3

Milad Vahidian, Ph.D. Student of Mechanical Engineering 96



3D Truss Problem

Transformation Matrix

Element stiffness matrix in the global coordinate system

wewrorm k] = [R]T[k/][R]

{k} = kijee; efn = Tmi€i o
Index Form ' > ki j — k mn "mi"nj
{k'} = k' ,,emen en = Tnj€j
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3D Frame Problem
Global Stiffness Matrix

k] = [R]" [k/][R]

Element stiffness matrix in the global coordinate system

Assemblage
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[Kpr]

| [Krr]

3D Frame Problem
Apply B.C’s and Solve (free) Nodal Displacement

) (8:) = [Ker] ™ {{Fr} — [Kep] {85))

[Kpr] l {E'P} l l {FP}I [Kpp] {6:1} + [Kpr] {5F} — {FP}
{0} {Fr)

[KFF]_ [Krp] {0p} + [Krr] {0} = {FF)

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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3D Frame Problem
Calculation of the Element Resultants

SUPPORT REACTIONS

{FP} = [KpF] {‘SF}

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

(0} ey (4} m— {d;} = [C5]7{d;) /

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Problem 6: Membrane Problem

Problem Discerption

Milad Vahidian, Ph.D. Student of Mechanical Engineering 101



Problem 6: Membrane Problem

Space Discretization: Mesh Generation

For each interval i and j, four nodes n1, n2, n3, and n4 and two elements are created. The first element has nodes
nl, n2, n3, while the second element has nodes n2, n4, n3.

.
0
=
L
I

nel = 2 x NXE x NYE
nnd = (NXE + 1) « (NYE + 1)

dhy

—j=1

fo [ = ] e | = NXE —»
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Problem 6: Membrane Problem

Interpolation (Shape) Function

V3

A
Ni(x,y) = my; + mppx + my3y Uy
Ny(x,y) = My + mapx + myy
N;3(x,y) = m3 + mspx + ms3y v
XoYV3 — X3)2 Y2 — )3 X3 — X2 "1 2
my, = mp; = nmpz; = -
2A 2A 2A
— X3y1 — X1)3 — Y3 = - X1 — X3 U
21 = A 2 = A 23 A
X1Y2 — X2V Yi— WM Xy — X
ms; = A ms, = mMs3 = A >
X
1 x; oy
1
A= —det|1 X2 W2
2
1 x5 ys_
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Problem 6: Membrane Problem
Element Stiffness Matrix: Variational Approach

ow \° ow \°
&) )
T=%ﬂ p@_V:)sz 51=5Lt2UfA (U—W—T)dA]dt=0
A 1
W=HA fl,y,)w(x,y, t)dA l

51 = j:UJ [aw ( ) ihid (g;")]dA—JL f(x,y,t)6w(x,y,t)dA—ﬂA pa;TVZV6W(x,y,t)dA]dt=0

w = [N]{a}

d[N] a[N]Ta[N] )
((ﬂ [ax ox = Oy ay]dA){a}—(ﬂA [N]Tf(x,y,t)dA)—UjA [N]T,DdA){a}>5{a}=0
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Problem 6: Membrane Problem
Element Stiffness Matrix: Variational Approach

1" 9[N] a[N]Ta[N] "
(U [ ox Ox dy 0y ]dA> laj — (jA [N]Tf(x,y, t)dA)— <ﬂA [N]Tp dA) (i} =0

[MI{a(©)} + [Kta(®)} = F(©)

4

B ~ d[N]Ta[N] a[N]T 9[N] F(t) = N1T dA
—HA [N]"p[N]dA [K]—HA P( o ay)dA ) = ﬂ Ifloy, )
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Problem 6: Membrane Problem
Element Stiffness Matrix: Galerkin Approach

0?2 0?2 92w 62 320N
P (axvzv + a;;) + f(x,y,t) = p—= Ot2 j}j [N]T ax2 03[12] >{a} + f(x,y,t) —p[N]{d}] dA = 0

[N]TP (ag;,]n +%§]ny> dc =0

d[N]T 0[N] O[N]T [N
U[ ( x] (gx [ay] a[y]){}+[N]Tf(xyt)—[N] P[N{a}]dA+

[MI{a(©)} + [Kta(®)} = F(©)

!

C

=UA [N1Tp[N]dA [K] = U ( ™ a[al\;]Taa[l}Y])dA F(t)—jf NI"f(x,y,t)dA
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Problem 6: Membrane Problem

Element Stiffness Matrix
[ L7 L;L; LiLy]|

L 2 1 1
_ T — , . . — T 2 . :ﬁ
[M]—UA IN] p[N]dA—ﬂAe lﬁi]p[u L Lk]dxdy_pﬂAe Ll L Ll 12[1 : ;]

LiL; Lyl; Ly |

mayq msq

J0|N
jf < ] + [ Jj mzz T[le mzz m23] dXdy+ jf m32 T[m31 m32 m33] d.X'dy
dx Ox dy e |mys A¢ |mgsg

m31 msz1Mms; m31m33]

m21 Mmyp1Myy; Mp1My3

_ 2 2
=TA|my,my, ms, MyMas | + TA|mgyms, ms, ms3,M33

2 2
Mp3My1  Mp3Myy mjs Mm33M3q1 M33M3) mss3

(F (1)} = f [NT"P dA
A
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Problem 6: Membrane Problem

Assemblage
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[Kpr]

| [Krr]

Problem 6: Membrane Problem

[Kpr]

[Krr]

|

Apply Boundary Conditions

{E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
{'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Problem 6: Membrane Problem

Solve (free) Nodal Displacement

(87} = [Ker ]l {{Fr) — [Kpp] (85)) » (67} = [Krr] ™" {FFr)
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Problem 6: Membrane Problem

Calculation of the Element Resultants

SUPPORT REACTIONS
If{6,} =0

[Kpp] {10p} 4+ [Kpr] {05} = {Fp} — {Fp} = | Kpr] {OF)

MEMBERS’ FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and “steering” vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(G) =0

c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee x edg

3. Obtain element stress vector sigma = dee x bee x edg

4. Store the strains for all the elements EPS(j, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(], :) = sigma for printing to result file

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Problem 7: Membrane Problem

Problem Discerption

Milad Vahidian, Ph.D. Student of Mechanical Engineering 112



Problem 7: Membrane Problem

Space Discretization: Mesh Generation

Milad Vahidian, Ph.D. Student of Mechanical Engineering 113



Problem 7: Membrane Problem

Interpolation (Shape) Function

w(é,m) =co+ 1€+ cn + c3én

Ni(E,m) =025(1 - & —n+&n)
N,(Em) =025 + & —m—&n)
N3(Em) =025(1 + & +n+&n)
Ny(&Em) =025(1 = &E+n—&n)

w(é,n) = Nywy + Now, + Naws + Nyw,

wq ()

wEn D = INED NEm) Na@Em) NaEmpd2H)
w3 (t)

W, (t)
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Problem 7: Membrane Problem
Element Stiffness Matrix: Variational Approach

ow \° ow \°
&) )
T=%ﬂ p@_V:)sz 51=5Lt2UfA (U—W—T)dA]dt=0
A 1
W=HA fl,y,)w(x,y, t)dA l

51 = j:UJ [aw ( ) ihid (g;")]dA—JL f(x,y,t)6w(x,y,t)dA—ﬂA pa;TVZV6W(x,y,t)dA]dt=0

w = [N]{a}

d[N] a[N]Ta[N] )
((ﬂ [ax ox = Oy ay]dA){a}—(ﬂA [N]Tf(x,y,t)dA)—UjA [N]T,DdA){a}>5{a}=0
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Problem 7: Membrane Problem
Element Stiffness Matrix: Variational Approach

1" 9[N] a[N]Ta[N] "
(U [ ox Ox dy 0y ]dA> laj — (jA [N]Tf(x,y, t)dA)— <ﬂA [N]Tp dA) (i} =0

[MI{a(©)} + [Kta(®)} = F(©)

4

B ~ d[N]Ta[N] a[N]T 9[N] F(t) = N1T dA
—HA [N]"p[N]dA [K]—HA P( o ay)dA ) = ﬂ Ifloy, )
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Problem 7: Membrane Problem
Element Stiffness Matrix: Galerkin Approach

0?2 0?2 92w 62 320N
P (axvzv + a;;) + f(x,y,t) = p—= Ot2 j}j [N]T ax2 03[12] >{a} + f(x,y,t) —p[N]{d}] dA = 0

[N]TP (ag;,]n +%§]ny> dc =0

d[N]T 0[N] O[N]T [N
U[ ( x] (gx [ay] a[y]){}+[N]Tf(xyt)—[N] P[N{a}]dA+

[MI{a(©)} + [Kta(®)} = F(©)

!

C

=UA [N1Tp[N]dA [K] = U ( ™ a[al\;]Taa[l}Y])dA F(t)—jf NI"f(x,y,t)dA
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Problem 7: Membrane Problem
Element Stiffness Matrix

4 2 1 2

_ T _Pl2 4 2 4
[M]—jjA INIpINlaa =5[2 % 2
2 1 2 4]

d[N]T 9[N] O[N]T 9[N]
[K]szA P( ox Ox T dy 6y>dA

(F (1)} = j j [NI™f(x, v, £)dA
A
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Problem 7: Membrane Problem

—ox  dyT] ( ON;)
& a& 0x
“lax oy | |an

Lo ond U dy |

/]

[soparametric Element mm=)

[0x
¢
d0x

on

Element Stiffness Matrix

0y

¢
dy

on.

- 4 4
N, AN,
Xi
=1 af =1 af
SON, N,
o
Li=1 aT] =1 (977

Vi

Vi

X = N1x1 + NzXZ + N3X3 + N4X4_

Yy = Nyy; + Noyo, + N3ys + Nyys

Milad Vahidian, Ph.D. Student of Mechanical Engineering

‘AN,

N,

N,

5N4' [~

X1

S S S N | B
aNl aNz 6N3 6N4 x3
lon  dn oOn on ll*4
3N,- ] 81\7I )

0 0
{ x| ey &
ay J 81’[

V1]
V2
V3
Va |
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Problem 7: Membrane Problem
Element Stiffness Matrix

[MI{a(®)} + [Kl{a(t)} = F(©)

4 2 1 2]

B . pl2 4 2 4
[M]—ffA INI"pINlaa =5[% % 2 1
2 1 2 4

O[N]" 0[N]  O[N]" 9[N] (Tt rt(aINT" a[N]  A[N]" O[N]
= [ (BRI 0 w-p [ (T + T ) dei e midar

nhp

= 1) WIB(E, 1" [DIB(E;,n)1detlJ (&,m)]
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Problem 7: Membrane Problem

Assemblage
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Problem 7: Membrane Problem

Assemblage
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[Kpr]

| [Krr]

Problem 7: Membrane Problem

[Kpr]

[Krr]

|

Apply Boundary Conditions

{E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
{'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Problem 7: Membrane Problem

Solve (free) Nodal Displacement

(87} = [Ker ]l {{Fr) — [Kpp] (85)) » (67} = [Krr] ™" {FFr)
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Problem 7: Membrane Problem

Calculation of the Element Resultants

SUPPORT REACTIONS
If{6,} =0

[Kpp] {10p} 4+ [Kpr] {05} = {Fp} — {Fp} = | Kpr] {OF)

MEMBERS’ FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and “steering” vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(G) =0

c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee x edg

3. Obtain element stress vector sigma = dee x bee x edg

4. Store the strains for all the elements EPS(j, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(], :) = sigma for printing to result file

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Plane Stress Problem: T3

Problem Discerption

L 70 mm l
| |
§
'§ >
5 .
é >
70 mm = > £
= = 35 mm
= > R
i >
i
1% >
Fixed in the y-direction i
L 140 mm |
E =70 GPa v =0.33 Thickness = 2 mm
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Plane Stress Problem: T3

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying
assumptions can be made regarding the stress or strain distributions.

\

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain
o ~ _1 Y 0 ] r € A O\ _1 -V -V 0 | €xx
XX XX E
E v 1 0 - _ —V 1 —-v 0
19w [ = ; 1 €n [ T 0+ —2v) _ =
L Tay | 0 O > Yoz | . i 5| o
0,,=0 and ¢&,, #0 0,, 70 and ¢,,=0
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Plane Stress Problem: T3

The infinitesimal strain displacements relations for both theories

8 _ _
€ = — 9,
0x o 0x
HAY - 9 u
o5 eleoglf] m aw
du v Yy 3 9
Yx}:__l__ —_— -
dy  0x | dy  0x_

u=N1u1+Nzuz+...+Nnun»[u}:[m O | N, 0 | ... | N, 0]‘1}2* » {U}Z[N]CI
v:N1V1+N2V2+"'+NnVn v 0 Nl | 0 Nz | | 0 Nn
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By substitution

(e} = [LI(U)
(U} = INl{@}

Plane Stress Problem: T3

~dN, dN-
ox ox
oN,
{e} = [L]IN][{a}= |B]{a} Bl=| 0 FN |0
dN, oN, N,
L dy ax | ay

Milad Vahidian, Ph.D. Student of Mechanical Engineering

N, 7
0 e 0
| | .

oN. adN,
—2 0

dy dy
N, | | aN, ON,

dx o dy  ax _
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Plane Stress Problem: T3

Variational Approach

[‘stey{orav = [ stuybrav + [ S{UY {r1dr + Y S{UN, o (P

4

[5€e} = 8([Bl{a)}) = [Bl{da} (dU} = 8(INl{a)) = [N]{da} {o} = [Dl{e} = [D][Bl{a}

Py (eed)

Lj [B)'[D] [B]rdA] (a) = [INT {bYdA + [INT (el + 3 [N 1" P

4

K] = LI[B]T[D][B]tdA} (£} = [NV {B}dA + [NV {#}tdl + 3 [N ooy 1" (P}
[Ka} = /.
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Plane Stress Problem: T3

Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, 2)

Element Connectivity connec(nel, 3)

Material and Geometrical Properties E=70x%x102MPa v=0.3
Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector fg

Milad Vahidian, Ph.D. Student of Mechanical Engineering 131



Plane Stress Problem: T3

Interpolation Vs
AY
Constant Strain Triangle (CST) s
Ni(x,y) = my; + mpx + my3y
Yo
Ny(x,y) = my; + mypx + myy
Ni(x,y) = m3 + mzx + ms3y : Uy
X2Y3 — A3)2 Y2 — )3 X3 — X2 U
my, = mp; = mpz =
2A 2A 2A
" Y1 — X)) m _Ys— N - I .
21 — 2A 22 — 2A 23 — 2A <
- X2 — 0 " N =N - XX
31 — 2A 32 — 2A 33 — 2A
1 ox; oy
1

A= —det| 1
> X2 Y2

1 x5 ys_
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Plane Stress Problem: T3

Stiffness Matrix

»
Vi
O | N2 O | N3 O U,
1. ( = [N €} = [B]ia
vl Y - i S (€)= (B
Us
V3
N oN 7
0O | — 0 | — 0
0x ox "y, 0 | mp O | mym OC
ON IN. oN
o o S =0 om0 m |0 m
dy ay ay
aN, | oN, 0N, | ON; 0N, | mys my | oMy omy | maz ma
0x ay ox ady ox
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Plane Stress Problem: T3

Stiffness Matrix
[K.]{a} = .

[K.] = [B]'[D][BIA,

r 0 R i 0

Body Forces 0gA Traction Forces 0 Concentrated Forces
0 —qcos 0L, 3/2 (V=10 7 0 0 7 y
[yepaa=-L1 ° 4 [aear=eq " | o K- o o :
A, 3 | pgA. L. —qsinBL, ;/2 S W (P = g g :1;1} s N20=1 ) 0 1 [ OP] o
“ =1 P
0 —qcosOL, 5/2 . . . . !
PgA. | —q sin 0L, 3/2 ) 0 0 0 0 0
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[Kpr]

| [Krr]

Plane Stress Problem: T3

Apply B.C’s and Solve (free) Nodal Displacement

[KPF] {E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
e {'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

[Krr]

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Plane Stress Problem: T3

Calculation of the Element Resultants

SUPPORT REACTIONS
If{6,} =0

[Kpp] {10p} 4+ [Kpr] {05} = {Fp} — {Fp} = | Kpr] {OF)

MEMBERS’ FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and “steering” vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(G) =0

c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee x edg

3. Obtain element stress vector sigma = dee x bee x edg

4. Store the strains for all the elements EPS(j, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(], :) = sigma for printing to result file

Milad Vahidian, Ph.D. Student of Mechanical Engineering

136




Plane Stress Problem: T6

Problem Discerption

tYy

’i

1000N=Pl

L =60mm C =10mm E =200 GPa v =0.3 Thickness = 5 mm
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Plane Stress Problem: T6

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying
assumptions can be made regarding the stress or strain distributions.

\

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain
o ~ _1 Y 0 ] r € A O\ _1 -V -V 0 | €xx
XX XX E
E v 1 0 - _ —V 1 —-v 0
19w [ = ; 1 €n [ T 0+ —2v) _ =
L Tay | 0 O > Yoz | . i 5| o
0,,=0 and ¢&,, #0 0,, 70 and ¢,,=0
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Plane Stress Problem: T6

The infinitesimal strain displacements relations for both theories

P _ _
EH:—u i 0
0x o 0x
v S 9 U
S S R F A R
du  dv Yoy
Yx}*:_+_

u=N1u1+Nzuz+...+Nnun»[u}:[m O | N, 0 | ... | N, 0]‘1}2’ » {U}Z[N]CI
v:N1V1+N2V2+"'+NnVn v 0 Nl | 0 Nz | | 0 Nn .
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Plane Stress Problem: T6

By substitution R

/v ‘/
(e} = LIV} O az, & ; s az,
<{U}=[N];b {s}=[ﬂ&cd/=£31{a} Bl=| 0 a—y 0 a—y [ a—;
~ —_ dN, 0dN, | dN, ON, o oN, ON,

' . <
© - o [
8 - T oo™ - e
)

%)Q //%Qy&
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Plane Stress Problem: T6

Variational Approach

[‘stey{orav = [ stuybrav + [ S{UY {r1dr + Y S{UN, o (P

4

[5€e} = 8([Bl{a)}) = [Bl{da} (dU} = 8(INl{a)) = [N]{da} {o} = [Dl{e} = [D][Bl{a}

Lj [B)'[D] [B]rdA] (a) = [INT {bYdA + [INT (el + 3 [N 1" P

4

K] = LI[B]T[D][B]tdA} (£} = [NV {B}dA + [NV {#}tdl + 3 [N ooy 1" (P}
[Ka} = /.
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Plane Stress Problem: T6

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity connec(nel, nne)

Material and Geometrical Properties E=2x10°>MPa v=0.3
Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector F
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Plane Stress Problem: T6

Discretization
\- ofﬁ“ - nnd = 0;
k= 0;
for i=1:NXE
for j=1:NYE
k=k+1;
nl =j+ (i-1)*(NYE + 1);
geom(nl,:) = [(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin |;
n2 =j+i*(NYE+1);
geom(n2,:) = [i*dhx-X_origin, (j-1)*dhy-Y_origin |;
v Do n3=nl+1;
geom(n3,:) = [(i-1)*dhx-X_origin , j*dhy-Y_origin |;
n4d =n2 + 1;
geom(n4,:) = [i*dhx-X_origin , j*dhy-Y_origin |;
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3];
connec(nel,:) = [n2 n4 n3];
«—i=NXE —~ nnd = n4;
end
end
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i % 5 i 5% & 7 8 &% 1o B3 1% @ 54 185 1% 18 19 208 280 251 242 283 o4 295
% 7 5 3 &1 &b 75 & % B 1% 13 192 183 1Bs 1% 18 197 208 2l 2% o1 252 o83 2T
g b5 5 2 & 64 5 8 & 08 179 1% 141 152 188 1% 185 19 207 of8 2% 240 251 282 273
g 7 2 a ) & 74 & % 107 18 1% 130 &1 & a8 8 206 27 P8 2 2% %1 2R
7 i % i § & 75 & % 16 117 1% 1% %0 181 172 18 18 205 o6 2% 2% 240 20 oA
8 7 % 3 &0 61 7% 8 4 105 116 12%r 1% 148 160 171 182 19 204 205 2% 27 288 289 2%
8 i 5 % b & 7 8 & 104 115 1% 13 1% 18 170 181 192 203 2ta 235 23 247 288 289
7 1 % 3 b £ 0 8 & 103 114 1% 1% 37 18 16 80 181 22 o3 % %5 o 287 2k
T 3 S 6 8 3 102 173 124 1% 13 18 8 170 180 201 22 23 B4 o5 28 267
o
i 2 3% i & 68 78 8@ 101 112 133 1% 45 18 187 178 18 200 201 292 2% 244 285 266
R\
¥ B & e 5% &7 78 & 10 M 1% 1% 14 18 18 177 18 19 200 251 2% 243 o84 265
= 2
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Plane Stress Problem: T6

Discretization
nnd = 0;
for i=1:NXE

k=0;

for j=1:NYE

k—j= NYE—

«—i= NXE—

end
end

k=k+1;

nl = (2%-1) + (2*-2)*(2*NYE+1) ; n2 = (2%-1) + (2*-1)*(2*NYE+1);
n3 = (2%-1) + (2*)*(2*NYE+1);

nd=nl14+1;, n5=n2+1; n6=n3+1;

n7=nl1l4+2; n8=n2+2; n9=n3+2;

%

geom(nl,:) = [(i-1)*dhx - X_origin, (j-1)*dhy - Y_origin];
geom(n2,:) = [((2*i-1)/2)*dhx - X_origin, (j-1)*dhy - Y_origin |;
geom(n3,:) = [i*dhx - X_origin, (j-1)*dhy - Y_origin |;
geom(n4,:) = [(i-1)*dhx - X_origin, ((2*j-1)/2)*dhy - Y_origin |;
geom(n>5,:) = [((2*i-1)/2)*dhx - X_origin , ((2*j-1)/2)*dhy - Y_origin |;
geom(n6,:) = [i*dhx - X_origin, ((2*j-1)/2)*dhy - Y_origin |;
geom(n7,:) = [(i-1)*dhx - X_origin, j*dhy - Y_origin];
geom(n8,:) = [((2*i-1)/2)*dhx - X_origin , j*dhy - Y_origin];
geom(n9,:) = [i*dhx - X_origin, j*dhy - Y_origin];

%

nel = 2*k;

m = nel -1;

connec(m,:) = [n1 n2 n3 n5 n7 n4];

connec(nel,:) = [n3 n6 n9 n8 n7 n5]J;

nnd= max([nl n2 n3 n4 n5 n6 n7 n8 n9));

% XIN and YIN are two vectors that holds the coordinates X and Y

% of the grid necessary for the function contourf (XIN,YIN, stress)

XIG(2*i-1) = geom(n1,1); XIG(2*) = geom(n2,1); XIG(2*i+1) = geom(n3,1);
YIG(2%j-1) = geom(n1,2); YIG(2*j) = geom(n4,2); YIG(2*j+1) = geom(n7,2);
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Plane Stress Problem: T6

Interpolation

Linear Strain Triangle (LST) Ay n4

(N (&,M) ) (—A(1 —27)

Na(E.m) 4EA s -
[vew| _ [-ea-20| s

Ns(&,m) —n(l —2n) 00 > €
Noe) | 4m |

A=1-&—n

u= N1u1 +N2H2 + N3H3 +N4H4 ~+ N5H5 +N6u,5
(U} = [N{a}
V=N + Novs + N3vs + Nyvs + Nsvs + Nevs
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Plane Stress Problem: T6

Stiffness Matrix

U

u= Nlul +N2U2 + N3u3 -|-N4u4 + N5u5 -|-N6u6 Vi
Vv = Niv; + Novy + N3v; + Nyvy + Nsvs + NeVs Uy

vV
Us
!u}=|:N. O | N, 0 | Ny O | N, O | Ns O | N 0}1;3}‘ {€}=[B]{a}
v O NN | O Ny | O N | O N | 0O N | 0 Nolluw

V4

0 0 — 0 0 — 0
ox ox | ox | ox | ax | ox
oN oN oN dN. dN. oN,
Bl=| 0 — | 0 — ] 0 — ] 0 — | 0 — | 0 —
dy dy dy dy dy dy
dN, dN, | oN, 0N, | ON; O0N; | dN, JN, | dNs 0N | dNg ONg
_ Jdy  Ox dy  ox dy  ox dy  0x ady  0x dy  0x
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Plane Stress Problem: T6

Stiffness Matrix

ON, _ N, ox | dN, dy N pAx Ay (9N AR B B o A
9E, ~ ox 9E Ay &, 9E | _ |98 ag | ] ox | = | 08 9E|_|m0E =9k
ON, _ 0N, dx | 9N, dy N || ax ay | | aw ox 9y yo N iaﬂy
on  dx an 9y am Lon ) Lon dnd Udy . Lo amd [T om0 I om
X = Nix; + Nyxy + N3x3 + Nyxy + Nsxs + NeXe -z NAX)L RS 15‘\\.
=A = b :
Y =Niyi + Noys + N3ys + Nyys + Nsys + Neys %_N % B o
_ _ N \62 _xl }’1_
X1 N
—dN;, JIN, %‘ X2y
= 98 Q& T dE || )2 o] 1—4N 4A—§&) —1+44& 4n 0 —4n X3 s
~ | N, 0N, N | |+ » =311 _a —4f 0 46 —1+4n 4A -1 ||x v
. on  dn  9n
'@QS B Xs Vs
' ‘_\—/\,,—\N\/ _x6 yé_
'E”Vg1 aN, Q\ ~
QY
| 0X L ¢, Qo@(cg\
@ \ N, ’*76@(
[ dy L 0N
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Plane Stress Problem: T6

Stiffness Matrix

(K. ]{a} =f.
K.] = Lj[B]T[DJ[B]nm]
+11-§&

(K] =1 | [BEIDIBEMIdetld (E,m)ldn dE,
0 0

nhp

= 1) WIB(E&,n)' [DI[B(&;,n)1detl (&;,1)]
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[Kpr]

| [Krr]

Plane Stress Problem: T6

Apply B.C’s and Solve (free) Nodal Displacement

[KPF] {E'P} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
e {'6' *} = ) (8, = [Keel ™' {{Fr} — [Krp] (34))

{Fr) _
[Krpl{0p} + [Kpr] {0r} = {Fr}

[Krr]

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Plane Stress Problem: T6

Deflection of the Neutral Line of Cantilever Beam

vPxy* Px* PL*x PL’
v = b —
2ET 6E] 2ET 3EI

0 T
g 002
E 5 f
E —0.04: peoeeeereerrmarinsaninan ............... esssessresisncesees ssssussa "
) : -
= z
B 0,06 psssmmmar brcomsrsissy ‘
& : ' == Numerical :
g -0l | ;
0 10 20 30 40 50 60
Length (mm)
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Plane Stress Problem: T6

Calculation of the Element Resultants

SUPPORT REACTIONS
If{6,} =0

[Kpp] {10p} 4+ [Kpr] {05} = {Fp} — {Fp} = | Kpr] {OF)

MEMBERS’ FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and “steering” vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(G) =0

c. Otherwise edg(j) = delta(g(j))
2. Obtain element strain vector eps = bee x edg

3. Obtain element stress vector sigma = dee x bee x edg

4. Store the strains for all the elements EPS(j, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(], :) = sigma for printing to result file
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Plane Stress Problem: Q4

Problem Discerption
30 kN 30 kN
500 | 300 %@ l
Reinforced concrete
o E =40000 MPa
g v=0.17
Depth =100 mm
O A
1 100 | 700
a JP P| a
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Plane Stress Problem: Q4

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying
assumptions can be made regarding the stress or strain distributions.

\

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain
o ~ _1 Y 0 ] r € A O\ _1 -V -V 0 | €xx
XX XX E
E v 1 0 - _ —V 1 —-v 0
19w [ = ; 1 €n [ T 0+ —2v) _ =
L Tay | 0 O > Yoz | . i 5| o
0,,=0 and ¢&,, #0 0,, 70 and ¢,,=0
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Plane Stress Problem: Q4

The infinitesimal strain displacements relations for both theories

8 — —
EH:_u 9 0
0x o ox
v S 0 u
o=h W o=l g\ = @=w
du v Yo 3 9
Yx}:__l__ — -
dy  0x | dy  0x_

u=N1u1+N2u2—|—"°+Nnun»{M}Z[Nl 0 1 N O | .. | N o]m»{[]} = [Nla

v:N1V1+N2V2+"'+NnVn v 0 Nl | 0 NZ | | 0 Nn
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Plane Stress Problem: Q4

By substitution

" () = L} " o
g =
ON N N,
< {e} = [L][N[{a}=[Bl{a}  [B]=| O a—y 0 8—y 0
w0} = [N]ia} N, N aN, N 3N, N
. 1 1 | 2 2 | | n
_ dy ox ay 0x ay ox
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Plane Stress Problem: Q4

Variational Approach

[‘stey{orav = [ stuybrav + [ S{UY {r1dr + Y S{UN, o (P

4

[5€e} = 8([Bl{a)}) = [Bl{da} (dU} = 8(INl{a)) = [N]{da} {o} = [Dl{e} = [D][Bl{a}

Lj [B)'[D] [B]rdA] (a) = [INT {bYdA + [INT (el + 3 [N 1" P

4

K] = LI[B]T[D][B]tdA} (£} = [NV {B}dA + [NV {#}tdl + 3 [N ooy 1" (P}
[Ka} = /.
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Plane Stress Problem: Q4

Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, 2)

Element Connectivity connec(nel, nne)

Material and Geometrical Properties E=4x10*MPa v =0.17
Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector fg
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Plane Stress Problem: Q4

Discretization: Mesh Generation

nnd =0;
k =0;
fori= 1:NXE
for j=1:NYE
W= \S\% k=k+1;
nl =j+ (i-1)*(NYE + 1);
geom(nl,:) = [(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin |;
n2 =j+i*(NYE+1);
geom(n2,:) = [i*dhx-X_origin, (j-1)*dhy-Y_origin |;
\&* n3 =nl+ 1;
ny & geom(n3,:) = [(i-1)*dhx-X_origin, j*dhy-Y_origin |;
, n4d =n2+ 1;
V‘:l\ a\ geom(n4,:) = [i*dhx-X_origin, j*dhy-Y_origin |;
& —_ L nel =k;
‘,,:—'1_// i NXE— connec(nel,:) = [n1 n2 n4 n3];
nnd = n4;
end
end
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Plane Stress Problem: Q

g & I g & B @ o % B % 4% @ B 8 M 1B B i 27 e s
g T $ @ S & 7 & & & w7 e 1% 1% 1ds 52 481 70 e 48 187 286 25 2%
7 LI 5 % B £ & o & 9 1 s 12 4% @2 451 8 18 1% 87 1% 205 2 2%
8 R S 2 & & & /8 & § 05 114 1% %2 4 5% 18 s 1% 1% 1% 204 23 2%

g n B £ & 8 & & 7 & % 1 3 12 4% % 1l 1% 187 1% 185 18 203 22 2

7 7 » 5 @ b} & & % & & 193 172 121 1% 1% 148 157 186 175 184 193 202 211 2%
3 ) b2 2 & B 57 & % & & 12 1T 1% 1% 138 197 1% 165 174 183 192 201 20 279
M‘“
“%1' ] % % 5 & & & 7 & & 11 1o 1fe 1% 1% 1% 185 16s 17 18 1% 200 200 27
] i % 5 @ & & # & 2 90 100 178 1% 1% 145 154 183 172 181 1% 180 208 217
5 ‘.'\9
1Yt » %
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Plane Stress Problem: Q4

Interpolation
Four node Iso-parametric Element

Ni(&EM) =025(1 — & —m+&n)
N>(&En) =025(1+ & —n—&n)
N:(Em) = 0251+ &E+n+&n)
N,(&M) =0.25(1 — &£+ —&n)

O 3= Cor A% ¥ €17\ & SN\

uk_'\ s ..1\_-_\.\'\

u = Nyu; + Nrur + Nsuz + Nauy
v = N,v; + N,v, + N3v; + Nyv,

WA 11\ =\3
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Plane Stress Problem: Q4

Stiffness Matrix

251
Vi

Uy

{e} = [LI{U}
...... N o]~ (U} = [N}a) ~{6}= [Bl{a}
...... | 0 Ny X

- .

aNg 3N3 8N4 7]

@' w0 % Fra
N N N N

b | 0 b | 0 b | 0 h

dy dy dy dy

aN, 0N, | oN, 0N, | ON; 0N, | oN, 0N,
_ Jdy ox dy ox ay 0x ay ox _
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Plane Stress Problem: Q4

Stiffness Matrix

U,

Vi

[u}=|:N1 0 | N, 0 | Ny O | N, 0]41’2'-{U}=[N]{a} - {e} = [Bl{a)
[ Tlo om0 om0 M 0 N e

: L LS ST
R\ LR =
;™ SO - S Y *\S“\\ Uy

5 v, IF coord
% —_—
i \ —_ - ™ - - _ _ B
IN; ox dy IN; ) -ox  dy 4 0N, 4 9N, ON, 0N, IN,
dE 0t 9E | | ox dE  9E P TR TR 9 A& T 9 || )
< y — 1 ¢ [J] — —_ [J] =
% % Q % ax ay 4 1}:“\}'l 4 Eﬂ\f’l 8N1 3N2 3N4
Loan ) Lon ond Uay | L an o ;ﬁx" ;ﬁyi L oan an 0 om -
B - . Xy Yy
SR L L Xt t— x = Nix; + Nox, + Nyxs + Nyxy r % 1 ' % 1
0x B 0&
y =Ny, + Ny, + Nsy; + N,y, *%*z[‘l]l‘%'
o=f % on
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Plane Stress Problem: Q4

Stiffness Matrix

4 9N,
2 5
4 BN,
Z Vi

- o _

Vi
V2
V3

(ONi) [ox 9y (9N mox dy [& N,
ot | _|og ae || ax | 3 BE 2 5F
on [T ar oy [Jam | YT e ay | T s,
on Lon  ond U dy | _ﬁ %_ _;Ex"
X = lel + Ngxz + N}Xj + N4x¢|
y = Ny, + Noy> + N3y; + N,y
= ! —(I-m d-m A+n) —A+mn)
4-1-& —-1+4¢& (14§ (1-9§
.\'—\—’ — S~

S
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—dN, 0N,
g,  a&
[J] =
oN, 0N,
L an an
dN; —ox 0y
a¢& & 9§
1 =
aN, dx dy
on Lo on-
r AN )
o e
1 i 1
JaN,
L 3y J

X1 N

X2 W

| Xy Yy
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Plane Stress Problem: Q4

Stiffness Matrix

K. wa} = fe

[K.]= LJ[B]T[D][B]@} / (£} = [INI(bYedA + [INT {shedl + > [Nigois )" (P

A,

@k 0 M

Next Slide

+1 +1

T o
(K] =1 | [IBEnI"IDIB(En)derlJ (&, m)ldn dE
—1-1

.K_zf\-\r'}-‘é

ngp ngp

=1) Y WWIBE, I [DIBE,n)derlJ (&;1)]

i=1 j=1
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Plane Stress Problem: Q4

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local
coordinates, £ = samp(ig, 1) and n = samp(jg, 1).

iv. Evaluate the Jacobian jac = der * coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute
the inverse of the Jacobian as jacl = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1l *
der

viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d * thic
* Wi *wj*Bx*Dx*B

4. Assemble the stiffness matrix ke into the global matrix kk
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Plane Stress Problem: Q4

Force Vectors . :‘

ngp  ngp 0 ) ";
Body Forces j[N]T{b}tdA = ’Z Z W,W,[N(E,, ;1" detlJ(E.m)] | )

= —pg .

A, i=1 j=1 . o
_ - ih\fhi Y B F .l
Traction Forces . 9y *% - )
g, = q;dL CoOS X — qndL Sin X = qrdx — qndy q, = (q,a—a — q”ﬁ) dE_
= ¢,dL dLsinx = g, ,: 3 9

B = b eos ot gl Snec = duche+ qy=(qna_;,+qé)da

When the nodes of an element are numbered anticlockwise

vy {j}dfl =t [IN@G+DT {Z”}dl ;
| R

, ' . 1 a tangential force, such as qy, is positive if it acts
nep (C]r %}_’4_1) —q, %{H)) anticlockwise. A normal force, such as q,, is positive if it
acts toward the interior of the element
=1y WINE.+D]" ,
i=1 ( ax(Eﬂ'a +1) + ay((t—vl, +1)) AI] nl3-4 a1 qnlz_4
A T T

1
oI
)
IS
)
X
w
11

10 0 ] ‘1
l "
0 1 0 0 -P Il E Ili ¢
0 0 10 2P . T
0 0o 0 1| (2P 0 \ \
Concentrated Forces Y vi._.(r) = 0 o { p}= - [0}24 .
k=t B In practice, when the loads are uniformly distributed they are
0 0 0 0 0 replaced by equivalent nodal loads. The preceding development is
0 0 0 0 0 to be used only if the shape of the loading is complicated.
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[Kpr]

| [Krr]

Plane Stress Problem: Q4

Apply B.C’s and Solve (free) Nodal Displacement

[KPF] {6:3} {FP} [KFP] {6:1} + [KFF] {5F} - {FP}
a =1 o B (8} = [Keel ' {{Fr} — [Ker] {85})
{6r} {Fr} _
[Kre] | [Kep] {#p} + [Ker] {06} = {FF}

Paneoive vt ¥

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Plane Stress Problem: Q4

Calculation of the Element Resultants

SUPPORT REACTIONS

If{6,} =0

(Kep] {85} + [Kpr] {85} = (Fp} o) {(Fp} = [Kpr] {6F)
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Plane Stress Problem: Q4

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this
we set ngp = 1.

1. For each element

2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp

b. Loop over the Gauss points jg = 1 to ngp

c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local
coordinates £ = samp(ig, 1) and n = samp(jg, 1)

d. Evaluate the Jacobian jac = der * coord

e. Evaluate the determinant of the Jacobian as d = det(jac)

f. Compute the inverse of the Jacobian as jacl = inv(jac)

g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1l = der
h. Use the function formbee.m to form the strain matrix bee

i. Compute the strains as eps = bee * eld

j. Compute the stresses as sigma = dee * eps

4. Store the stresses in the matrix SIGMA(nel, 3)
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Plane Stress Problem: Q8

Problem Discerption
30 kN 30 kN
500 | 300 %@ l
Reinforced concrete
o E =40000 MPa
g v=0.17
Depth =100 mm
O A
1 100 | 700
a JP P| a

Milad Vahidian, Ph.D. Student of Mechanical Engineering 171



Plane Stress Problem: Q8

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying
assumptions can be made regarding the stress or strain distributions.

\

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress Plane strain
o ~ _1 Y 0 ] r € A O\ _1 -V -V 0 | €xx
XX XX E
E v 1 0 - _ —V 1 —-v 0
19w [ = ; 1 €n [ T 0+ —2v) _ =
L Tay | 0 O > Yoz | . i 5| o
0,,=0 and ¢&,, #0 0,, 70 and ¢,,=0
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Plane Stress Problem: Q8

The infinitesimal strain displacements relations for both theories

8 — —
EH:_u 9 0
0x o ox
v S 0 u
o=h W o=l g\ = @=w
du v Yo 3 9
Yx}:__l__ — -
dy  0x | dy  0x_

u=N1u1+N2u2—|—"°+Nnun»{M}Z[Nl 0 1 N O | .. | N o]m»{[]} = [Nla

v:N1V1+N2V2+"'+NnVn v 0 Nl | 0 NZ | | 0 Nn
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Plane Stress Problem: Q8

By substitution

" () = L} " o
g =
ON N N,
< {e} = [L][N[{a}=[Bl{a}  [B]=| O a—y 0 8—y 0
w0} = [N]ia} N, N aN, N 3N, N
. 1 1 | 2 2 | | n
_ dy ox ay 0x ay ox
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Plane Stress Problem: Q8

Variational Approach

[‘stey{orav = [ stuybrav + [ S{UY {r1dr + Y S{UN, o (P

4

[5€e} = 8([Bl{a)}) = [Bl{da} (dU} = 8(INl{a)) = [N]{da} {o} = [Dl{e} = [D][Bl{a}

Lj [B)'[D] [B]rdA] (a) = [INT {bYdA + [INT (el + 3 [N 1" P

! <

K] = LI[B]T[D][B]tdA} (£} = [NV {B}dA + [NV {#}tdl + 3 [N ooy 1" (P}
[Ka} = /.
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Plane Stress Problem: Q8

Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, 2)

Element Connectivity connec(nel, nne)

Material and Geometrical Properties E=4x10*MPa v =0.17
Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector fg
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|dhx|

Plane Stress Problem: Q8

Discretization: Mesh Generation

1to NYE

j=

®

dhy

nz

nnd

=0:

k=0;
for i=1:NXE
for j=1:NYE

k=k+1;
nl1=(i-1)*(3*NYE+2)+2%j - 1;
n2=i*(3*NYE+2)+j - NYE - 1;
n3=i*(3*NYE+2)+2*j-1;

n4=n3 + 1; n5=n3 + 2; n6=n2 + 1;
n7=nl + 2; n8=nl + 1;
geom(nl,:)=[(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin];
geom(n3,:)=[i*dhx - X_origin, (j-1)*dhy-Y_origin];
geom(n>5,:)=[i*dhx-X_origin, j*dhy - Y_origin];

[

geom(n7,:)=[(i-1)*dhx - X_origin, j*dhy - Y_origin];
geom(n2,:)=[(geom(nl,1)+geom(n3,1))/2, (geom(nl,2)+geom(n3,2))/2];

. geom(n4,:)=[(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];

.
>

i=1to NXE

geom(n6,:)=[(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:)=[(geom(nl,1)+ geom(n7,1))/2 (geom(nl,2)+ geom(n7,2))/2];
nel =k;

nnd = nb5;

connec(k,:)=[n1 n2 n3 n4 n5 n6 n7 n8]j;

end

end
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Plane Stress Problem: Q8

«\ksrﬂf‘h Discretization: Mesh Generation

% & B § &% & 7 7 & & & 107 172 121

% % & 8 8 % &
8 8 P 8 8 & & 8 8 § & &% & S
) 8 8 3 % 8 %
% 8 % & ) § & 2 & & % B o g
% 8 & % 8 & A
5 2 % 8 8 & 8 8 & & ) % o
% & & 8 & @ &
% 8 % 8 8 & & 9 & & & 8 B &
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Plane Stress Problem: Q8

L
1 ‘\-
. v 1. C b\*geb
Interpolation LN ~Cen
Eight-noded Iso-parametric Element C-z“;o"‘% x Ay N
r R r N ~
N2(E,m) 0.50(1 — EH(1 —n) e A“\,.‘l\ e 0

N3(&,m) —0251+&A —mA - &+m)
N4(&,m) 0.50(1 + &)1 —n?*)
Ns(&,m) —025(1+ &)1 4+mA -&—-mn)
No(E.1) 0.50(1 — £)( +n)
N;(&,m) —025(1 - &) A+m(1+&—m)
Ns(E) ]| 0.50(1 — &)(1 —n?)

U= Nlul + Nzuz —|—N3u3 +N4M4 +N5H5 -+ Nﬁu(, +N7u7 + Ngug

v = Nvi + Novy + N3vs + Nyvy + Nsvs + Neve + N7v7 + Ngvg
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N, O
0 N

Plane Stress Problem: Q8

Stiffness Matrix

N, 0 |
0 N |

GRS ‘&*‘__% @

d&
IN;

L dn |

~0x 7 ( ON;)
d¢ 3:5 ox

= 1 >
dx 0y oN;

Lo ond U dy |

/] =

)
V1
U
Ne 07”7
0 N
ug
Vy
—ox 0y 'iaN,.
0& 0§ | = 0§
ox dy I oN;
m ol | &
- 0T n- | =1 OM

!
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Xi

Xi

X=Nx; +Nyx; + -
y=Ny, + Ny, +--- 4+ Ngys

8§ ON;
2 5%

i=1

8 9N,
Z d
i=1 0T]

+ NgIg

Vi

Vi

V1=

- (U} = [N){a} - 1€} = [Bliaj

AU Qoofé\
m — —
~ON, 9N, aNe | !
9E aE D& X2 M
oN, 0N, 0Ny
L 01 on on
| Xg  Ys_
3N,- ] [ 8]\'7I ]
0x a&
b =[J]" »
oN, [ 1oy
Qi . ay p . 81’] y
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Plane Stress Problem: Q8

Stiffness Matrix

251
Vi

Uy

------ N 0]4"_2, ‘ (U} = [N{a) ‘ {e} = [Bl{d}
...... | 0 N :

ug
N~ &~ Try N
\
?&‘1,(‘\ B
N N 7
—Z 0 | ... ... = 0
ox 0x
oN. oN
0 — | ... ... | 0 8
dy dy
IN, 9N, | | oN, 0N,
ay ox a0y ox _
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Plane Stress Problem: Q8

Stiffness Matrix

K ]ta} =

[K.] = |:AI[B] [D][B]tdA /{f} B N] {b}tdA + I[N {t}tdl + Z N({x} {x}) i
\B\\, Next Slide

= tj"j (BN IDIB(E ) el (Em)ldn dE.

=1) Y WWIBE, I [DIBE,n)derlJ (&;1)]
i=1 j=1
e e e = = -~
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Plane Stress Problem: Q8

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local
coordinates, £ = samp(ig, 1) and n = samp(jg, 1).

iv. Evaluate the Jacobian jac = der * coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute
the inverse of the Jacobian as jacl = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1l *
der

viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d * thic
* Wi *wj*Bx*Dx*B

4. Assemble the stiffness matrix ke into the global matrix kk
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Body Forces

A,

Traction Forces

Plane Stress Problem: Q8

Force Vectors

ngp  ngp

i=1 j=1

q. = q,dLcos & — q,dL sin x = q,dx — q,dy

qy = q,dL cos x + q,dL sin x = q,dx + q,dy

T 9«
{[N] {q} —tj[N(a +1)]” {q}

ngp

=) WIN(E,+D]"

i=1

Concentrated Forces

"
(.

D Nl (P} =
k=1

[N (phrda =13 Y WWINGE )

dx(&;, +1) dy(&i +1)\ |
RT3 )

dx(&;, +1) ay(ai,+1))
dE, NPT

1 0] [0 0]

0 1 0 0
00 10

0 o0|[o0 0 1] (2P
0 0 {—P “lo of]o
00 00
00 0 0

0 0 0 0

—pPg
_ ox
q. = q:aa
Bx
qy - q E’
0N

det[J (&)
> €
ay -
qn E d& 2P
8
) ae
e
x‘
When the nodes of an element are numbered anticlockwise
a tangential force, such as gy, is positive if it acts
anticlockwise. A normal force, such as q,, is positive if it
acts toward the interior of the element
% g 2 lg
g 6 3;: &
L PR EEEY) i 4
AN =
i

In practice, when the loads are uniformly distributed they are
replaced by equivalent nodal loads. The preceding development is
to be used only if the shape of the loading is complicated.
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[Kpr]

| [Krr]

Plane Stress Problem: Q8

Apply B.C’s and Solve (free) Nodal Displacement

) (8:) = [Ker] ™ {{Fr} — [Kep] {85))

Keel | [(5)) () [Kpr) ;4/}1 (Ko (85) = ()
‘e P — P ‘
) I RN e _
(Koo (50 + K] (86) = ()

S
O
N
5\ fraass® (8¢} = [Kirl™ {F)

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

[Krr]
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Plane Stress Problem: Q8

Calculation of the Element Resultants

SUPPORT REACTIONS

If{6,} =0

(Kep] {85} + [Kpr] {85} = (Fp} o) {(Fp} = [Kpr] {6F)
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Plane Stress Problem: Q8

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this
we set ngp = 1.

1. For each element

2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)

a. Loop over the Gauss points ig = 1 to ngp

b. Loop over the Gauss points jg = 1 to ngp

c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local
coordinates £ = samp(ig, 1) and n = samp(jg, 1)

d. Evaluate the Jacobian jac = der * coord

e. Evaluate the determinant of the Jacobian as d = det(jac)

f. Compute the inverse of the Jacobian as jacl = inv(jac)

g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1l = der
h. Use the function formbee.m to form the strain matrix bee

i. Compute the strains as eps = B * eld

j. Compute the stresses as sigma = D * eps

4. Store the stresses in the matrix SIGMA(nel, 3)
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Axisymmetric Problem

Problem Discerption

rY
]

200 kN

l ' 63.662 kKN/m?

| 2 m ?}‘%iﬂ" @
R=7m . R<7m -
E=10°kN/m? » %>
v=0.35 § @
Rock substratum +2 +2
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LENGTH MASS TIME FORCE STRESS ENERGY VELOCITY ACCELERATION
R T T T O =TT
mm kg ms kN GPa 1le+03 m] m/s 1le+03 m/s?
mm g ms N MPa m]J m/s 1e+03 m/s?
mm kg S mN kPa 1le-03 m] le-03 m/s 1le-03 m/s?
mm g S le-06 N Pa le-06 m] le-03 m/s le-03 m/s?
mm kgf-s?/mm S kgf kgf/mm? kgf-mm 1e-03m/s 1e-03 m/s?
. 5 kg ................ i s i M ; a] ............... m/sm/sz ...... :
Y resssns C m ............... kg ................ S ............. 1 e02N1e+02pale04] ........ 1e02m/5 ....... 1 eoz m/sz
cm kg ms le+04 N 1e+08 Pa le+02] le+01 m/s le+04 m/s®
cm kg us le+10N le+14 Pa 1e+08] le+04 m/s 1le+10 m/s?
cm g S dyne dyne/cm? erg le-02m/s 1le-02 m/s?
cm g ms le+01 N bar le-01] le+01 m/s 1le+04 m/s?
cm g us 1e+07 N Mbar le+05] le+04 m/s le+10 m/s?
in Ibf-s?/in S Ibf psi Ibf-in in/s in/s?
ft slug S 1bf psf Ibf-ft ft/s ft/s?

Axisymmetric Problem

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Axisymmetric Problem

An axisymmetric problem is a three-dimensional problem that can be solved using a two-dimensional model

provided that it posses a symmetry of revolution in both geometry, material properties and loading, and it can
lend itself to a cylindrical coordinate.

4

The only displacements required to define its behavior are the ones in the 7 and z directions, denoted by u and
v, respectively. They are not a function of 6.
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Axisymmetric Problem
Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, dim=2)

Element Connectivity connec(nel, nne=8)

Material and Geometrical Properties E =10°kPa v =0.35

Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector F
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|dhx|

Axisymmetric Problem

Discretization: Mesh Generation

1to NYE

j=

nz

dhy

B ©| @

=
@ F
o

8

nnd

=0:

k=0;
for i=1:NXE
for j=1:NYE

k=k+1;
nl1=(i-1)*(3*NYE+2)+2%j - 1;
n2=i*(3*NYE+2)+j - NYE - 1;
n3=i*(3*NYE+2)+2*j-1;

n4=n3 + 1; n5=n3 + 2; n6=n2 + 1;
n7=nl + 2; n8=nl + 1;
geom(nl,:)=[(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin];
geom(n3,:)=[i*dhx - X_origin, (j-1)*dhy-Y_origin];
geom(n>5,:)=[i*dhx-X_origin, j*dhy - Y_origin];

[

geom(n7,:)=[(i-1)*dhx - X_origin, j*dhy - Y_origin];
geom(n2,:)=[(geom(nl,1)+geom(n3,1))/2, (geom(nl,2)+geom(n3,2))/2];

. geom(n4,:)=[(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];

.
>

1”2y

i=1to NXE

geom(n6,:)=[(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:)=[(geom(nl,1)+ geom(n7,1))/2 (geom(nl,2)+ geom(n7,2))/2];
nel =k;

nnd = nb5;

connec(k,:)=[n1 n2 n3 n4 n5 n6 n7 n8j;

end

end
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Axisymmetric Problem

Discretization: Mesh Generation

g T b % 5 2 & & & 7 i & & & 107 172 121
g 2 % 8 & i 2 106 120
7 ik 2 b2 3 a bl & 63 & b4 8 3 & 105 111 170
g % o B & % & 104 118
g 2 8 % 5 & & & & 68 7% & & % 103 110 117
7 i 2 ® ) 7 8 102 17
e o5
“ §—% @ b & ) B & & & e & & & 101 100 17
\\% 9 F%‘ o :% 491 % % 306 180 1?4
¥ i i b2 % 5 B & & & 7 8 8 & & 108 173
Q“(‘ {\']. ‘\“b
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Axisymmetric Problem

Interpolation

For an element having n nodes, the components of the displacement vector are interpolated using nodal approximations

m
Vi
f_ .« .. y
<M—N1u1+N2u2+ +N”u” ' {H}_[Nl 0 | Nz 0 | | Nn 0:|4V§>
v=Nv, +Nywv, + -+ Ny, ’ A
u,
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Axisymmetric Problem

Interpolation

Eight-nodded [so-parametric Element

(Ni(&m)|
N> (&E,m)
N5(&,m)
N4(&,m)
Ns(&,m)
Ng(&,m)
N;(&,m)

| Ne(Em)

(0251 — &)1 —m) (1 +E+1))
0.50(1 — &)(1 —n)
—025(1 + &1 —m)(1 —&E+mn)
0.50(1 + &)(1 —n?)
—025(1+&)A +mA —-&—1n)
0.50(1 — &)1 +mn)
—025(1 - A +mA+E—1)

0.50(1 — &)(1 —n?)
Az =

Aky

U= N]HI + Nzuz —I—N3u3 +N4M4 +N5H5 —I—Nﬁu6 + N;rltj +N3H3

Vv = Nvi + Novas + N3vs + Navs + Nsvs + Neve + N7vs + Ngvg

Milad Vahidian, Ph.D. Student of Mechanical Engineering

= Cq + C,\b -\-C-,_t\.» < 5‘\.& C-U\SL A Q_b \\l _‘S%S\\Ar Q;S\\"‘_
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Axisymmetric Problem

Strain-Displacement Relations

The infinitesimal strain displacements relations for axisymmetric problems

~ ou T
€ = —
ar ~ 0 0 7
. _ (rtwdo—rdd _u e,] |
o rdo o Jeal _ 0 3y | 1
< v el | Y1
€. = — /I’ 0
= az LFY-"ZJ a 3
du N v | dy  dx
Y = 7 PN :
q i 8z 8.’” ‘ JL)

T (€} =[LIU | qou o\ \ ) Sad
e o S

L5
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Axisymmetric Problem

Strain-Displacement Relations

By substitution

(e} = [LI{U}
¥ » (e} = [LIIN]{a)= [B){a}
() = Nl{a)

- ON IN. N, -
_al 0 | —= N - 0
X X X
IN IN IN,
0O — | 0 — | 0
B=| N 0w " N,
—L 0 | = 0 | ... ] 0
r r r
IN, 0N, | dN, ON, | | IN, 0N,
| dy  Ox dy  0Ox dy  0x _
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Axisymmetric Problem

Stress—Strain Relations

In an axisymmetric problem, the shear strains y,.¢ and y,g and the shear stresses 1,9 and 1,4 all vanish because of
the radial symmetry.

. 1 —v v 8% 0 e,
o E v 1 —v v 0 c

1 5t = v v I —v 0 1 ¢
Op (I 4+v)(1—2v) (1 — 2v) €
T, 0 0 0 > [ Vrz )

— -
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Axisymmetric Problem

Stiffness Matrix + Force Vectors

( ||| o1 dv> (@ = [|[ By iEay - [[[ By oy + ||| wyrEay + [[ s + i{N}T{Fp}
|4 |4 |74 |74 S i=1

r
Ve, z

(K] = [I[B]T[D][B] dv] = [IJVI[B]T[D][B]rdrdG dz} () = IJ'[N]T {lg } rdrdz
A,

l,
CE‘ F; F, € F, F, F; {ff} — I[N]T {t, } r dl
] R o L <

-

(£} = ZINT", {ﬁ}

Z o

F= (2rg+1y) E
6 ' 6
Fy= 1710 (ryr2m) F (ro+ 1)
T ron+r
2 6 1 2 3 0 1
rl—r
Fa=
3 6
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Axisymmetric Problem

Stiffness Matrix

251
Vi

Uy

0 | N O | ... ... N 0]{‘3 ‘ (U} = [Nl{a} ‘ {e} = |B{a}
0 N | 0 N | 0 N |

- N ON N, -
a_l 0 | 3_2 0 | | 5 0
X X X
N N N,
0O — | 0 — | 0
B=| ~ » N, » N »
= 0 =2 0 | . "0
r r r
dN, 0N, | dN, N, | | dN, ON,
L dy  Ox Jy  0Ox dy  0x _
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Axisymmetric Problem

Stiffness Matrix

251
Vi

Uy

N O | N, O | ... ... | N 0]4"1 - {U} = [N{a} - {e} = [Bl{a}
0 N | O Ny | .. .o | 0 NJ]?

A : .
AR ;N b_l Us ™ COOfC;
NI R Lo Iz
%, EL L S T vy o -
- —_
~dx  dyT (ON:) -9x  dy [&L 0N, 5 AN, —IN, 0N, aNg7 | ¢
= 2] XSt o o e
d&  9& | | ox 9E & I 2 d& 9§ &
= A = ] = o
ax dy | | an, dx dy 89N, 8 AN, dN; 0N, dNg
- ~ Z Xi Z yi “ e e
_311 311_ ; By ) L on an- i1 on -1 on " _ - an 311 E)n _
| X8 Vs
L\\\ﬂlk _ X =Nx; +Noxo + + -+ + NgXg ON; AN
h—1 ’*' - -
ﬁ_g‘s’ y=Niy1 +Noy, + - - - + Ngys -y 9x L= I& |
~ = » = |
\‘;'5 r = lel + Nzxz + -4 N8x8 Dﬂ\ % %
{_:\8, r . 81’] p
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Axisymmetric Problem

Numerical Integration of the Stiffness Matrix

(K = | [[BE&EWI IDIBE)Ir(E,n)detl] (E,1)] dn dE

-1 -1
ngp  ngp

= 5 S WWBE. )V DB, m)Ir(En)derlI (£,

i=l j=1

For each element, it is evaluated as follows:
1. For every elementi = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q8.m

3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmquad.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates,

¢ = samp(ig, 1) and n =samp(jg, 1).

iv. Evaluate the Jacobian jac = der * coord

v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1l = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jacl * der

viii. Use the function formbee_axi to form the strain matrix bee and calculate the radius r at the integration pointas r = "¢ N;x;

ix. Compute the stiffness matrix as ke = ke+ d « wi = wj *BT *D xB % r
4. Assemble the stiffness matrix ke into the global matrix kk
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Axisymmetric Problem

Force Vectors
Body Forces
r | b,
= II[N] rdrdz
b.
A,
¢ F, F, ’ FF F F
Traction Forces o g oy |
T rr : .
(f) = N1t : S
L N i’l—?‘ 1"1—?"0
Fy= (2rg+1y) F = To
6
Fy= 0 (re2m) Fy= "% Govry
Concentrated Forces A

(£} = SINTF {ﬁ}

<
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Axisymmetric Problem

Discretization: Mesh Generation

e T r
(1) = v H rdl 1
LJJL ¢ / -~ S
10.606
_N1 0 80 5.303 15915 5.303 o
;o | .
! M ¢ v i}
. . 37. @  J ¥ 149 o
{f} — 0 rdl 56 93 112 e
s - 163662 (N/m?) s = 6
- . 369 $ 92 T E -
c -
N8 0 .% 5
0 Ngl g .
i 8 5 :
EIE
F ) (E Fy Ey F3 ‘g .
T i_ >~ 3
2
r ‘ ry ) | 1
o (2rg+1y) F, = r'16—r0 Ty 0(; 5 A p
r=r '1—ro
= (rg+2ry) Fy= (ro+11) Radial direction (m)
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[Kpr]

| [Krr]

[Kpr]

[Krr]

|

Axisymmetric Problem
Apply B.C’s and Solve (free) Nodal Displacement

{E'P} {FP} [KFP] {6:1} + [KFF] {5F} = {FP}
U — e - {or) = [KFF]—I UFr} — [Kep] {0p})
{0F} {Fr} _
[Kep] {0p) + [Krr] {05} = {Fr}
\"W\"W

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Axisymmetric Problem
Calculation of the Element Resultants

SUPPORT REACTIONS

If{6,} =0

(Kep] {85} + [Kpr] {85} = (Fp} o) {(Fp} = [Kpr] {6F)
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Axisymmetric Problem
Calculation of the Element Resultants

Element Displacement

A4
B Matrix

|

Strain

J

Stress
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Problem: Transient Thermal Analysis

aT
“k% =hy(T = Tp)
hy = 150 W/m?°C
2) T, = 80°C
F. - ‘ A
C(35.90)
aT
(l) —ka—n=hb(T—Tb)
= 20
T = 350°C L ‘T:():Oggfé" &
e (3)
kw .
Q= 100;5 B(30.30)
_ -
¢ = 400 kg°C o\ 5
k = 40 ‘W/mec 3 Tx0.8) . (@)
ay
kg
p= 7800?

T(x,y,0) = 50 °C

E:(0,0) D:(80,0) A:(70,90) F:(0,90) mm
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Problem: Transient Thermal Analysis

Finite Element Method = Space Discretization + Interpolation/

-
'
Dynamic Problem FEM System of ODEs
(PDEs) J (Linear or Non-linear) J
Time Discretization
wiet) + 2 ( 2 t>> _ ,0ukt [MI{a(6)} + [K1{a(®)} = F(t) - {a)
0x 0x ot?

{a(t)} = {a;}
{a(t; + At)} = {a;41}
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Problem: Transient Thermal Analysis

Time Discretization

’Central Difference Method

~
Explicit =

_Runge-Kutta Method

Time Integration <

Newmark-Beta Method

_Implicit -

Wilson-Theta Method

Milad Vahidian, Ph.D. Student of Mechanical Engineering

i,_, ————— — —

Solution at t + At is
obtained by quantities
att

Equilibrium eq.s are not
satisfied precisely

Shorter time
increments are needed
to reach convergence

Implicit

Solution at t + At is
|~ obtained by quantities at
t+ At

Equilibrium eq.s are
satisfied precisely

The solution is
unconditionally stable
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Time Discretization

r
A
Explicit Implicit

Solution at t + At is obtained by quantities at t Solution at t + At is obtained by quantities at t + At

Equilibrium eq.s are not satisfied precisely Equilibrium eq.s are satisfied precisely

Shorter time increments are needed to reach convergence The solution is unconditionally stable
(Central Difference Method ’Newmark-Beta Method
< =

Runge-Kutta Method Wilson-Theta Method

— —
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Problem: Transient Thermal Analysis

Implicit Integration VS. Explicit Integration
[M]{x"} + [Cl{x'}+ [K]{x}= {f} [M]{x"} + [Cl{x"} + [K]{x} = {f}
[Kl{x} = {f} - (IMH{x"} + [CHxD) M]{(x"} = {f}— ([Cl{x"} + [K]{x})
(K17 [K}{x} = [K]7*({f} — ((M]{x"} + [Cl{x'D) [M] 7 [M]{x"} = [M]7* ({F} — ([C]{x} + [K]{x})
{x} = [K]7'({f} — (IMI{x"} + [CH{xD) {7} =[M]7T ({f} - ([CHx} + [K]{x]D)

Milad Vahidian, Ph.D. Student of Mechanical Engineering 213




Problem: Transient Thermal Analysis
Explicit Method: Central Difference Method

[M1{d;} + [K1{d;} = {F}}
(d) = {di+l}2_A{di—1}
) G0y gy = i) = 20d) + {di)
! 2
o Adie1) — {di-1) (89
di} =
_ L 2(An)
[MY{dis1} = (ADXE} + [2[M] = (A0D*[K1{d;} — [M){di—1)
. 2 .o do
— ()= (@) - oy + S5 4G) T s
C;—’\
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Problem: Transient Thermal Analysis

Step 1
Given: {do}, {do}, and {F (t)}.
Step 2 )
If {d,} is not initially given, solve {do} M]Y({F,} — [K1{do}) att = 0 for {d,}
Step 3
By using Taylor expansion, obtain is {d_; }; that is,
: At)?
(d-1) = {do) = (Wnjdo} + S (di)

Step 4
now solve equation for {d, }

{di} = M H{(AD* {Fo} + [2[M] — (AN’ [K1{do} — [M1{d-1})

Step 5 )
solve for {d,} as

{d} = IMI"\({R} — [K){d})
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Problem: Transient Thermal Analysis

Step 6
With {d,} initially given, and {d,} determined from step 4, use Eq. below to obtain {d,}

{d2} = IMT"H{(AD* (R} + [2IM] — (AD*[K]H{di} — [M]{do}}

Step 7
Using the result of step 5 and initial condition {d,} given in step 1, determine the velocity at the first time step by

Eq below

_ {da) = {do}
2(Ar)

{di}

Step 8
Use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and velocity for all other time steps.

216
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START

Input the boundary and initial conditions
{dy} and {d}, the number of time steps, and the size
of the time step or increment At

1

Evaluate the initial acceleration from

{dy) = M ({Fy} = [K1{dy})

1

Solve Eq. (16.3.8) for {d_,}

1

Solve Eq. (16.3.7) for {d,}

i

A

DO i = 1, Total number of time steps

'

Solve Eq. (16.3.7) for {d,}

1

Solve Eq. (16.3.5) for {d,}

!

Solve Eq. (16.3.1) for {d;)

Output the displacements {d,}, velocities {d},
and accelerations {d,} for a given
time step i

END

. A2 .
(i) = (d) = oty + Sy (16.3.8)
[(M1{d;i+1} = (AD*{F} + [2[M] — (AD?[K){d;} — [M){d;-1} (16.3.7)
(M1{dier} = (AD2E) + 2IM] — (A2IKTHA) — MUdi)  (16.37)
(d;}) = MY ({F) — [K1{d;}) (16.3.5)
() — (i)
{d;} 2(A1) (16.3.1)

Milad Vahidian, Ph.D. Student of Mechanical Engineering 217




Problem: Transient Thermal Analysis
Implicit Method: Newmark’s Method -

M{d;} + [K1{d;} = {F;} m——) [M1{d;41} = {Fie1} — [K1{d;is1}

{dis1} = {d;} + (AD[I — Y){d;} + yldis1}] \ g

~<_The parameter £ is generally chosen between 0 and i ,and y is often taken to be ; .

(dis1} = {di} + (AD{d;}) + (AD[(L — B){di} + Bldi+1}] X [M] =)

“— -

MWdiw1} = [MU{di} + (AD[IMNd;} + (A [M1(5 — B){di} + BAN?[{F1} — [K1{di+1}]

(IM] + BN K D{di+1} = BAN* (F1) + [M]{di} + (ADIM {di} + (A (M I(3 — B){di)

M M
(BEA])ZHK]){%} (i) + gy 40 4 [),(A){d} Pla-e)@)

[K'] {E+1}

[K'N{di+1} = {Fir1} =)
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Problem: Transient Thermal Analysis

Step 1
Starting at time t = 0, {d,} and {d,} is known from the given initial conditions.

Step 2
Solve Eq. below at t = 0 for {d,}; that s,

(do} = MT"'({Fo} — [K1{do})
Step 3 . )
Solve Eq. below for {d;}, because {F;,} is known for all time steps and {d,}, {dy}, and {d,} are now known

from steps 1 and 2. [K'Ndi+1} = {F11)

Step 4
Use Eq. below to solve for {d} as
{di} =

B B L 5 l B ) .. :|
B |:{d1} {do} — (A {do} — (A1) ( 5 B {do}
Step 5

Solve Eq. below directly for {d;} ‘ . ) )
{div1} = {di} + (ADIA — y){di} + yidit1}]
Step 6

Using the results of steps 4 and 5, go back to step 3 to solve for {d,} and then to steps 4 and 5 to solve for
{d,} and {d,}. Use steps 3-5 repeatedly to solve for {d;.}, {d;+1}, and {d;,}
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Problem: Transient Thermal Analysis

Input the boundary and initial conditions {d,} and {a;ﬂ},
the number of time steps, the size of
the time step or increment Az, and the
values of fand y

1
Evaluate the initial acceleration , '
from {dy} = [MT'({Fy} - [K1{dy}) [K'Hdi+1} = {Fi+1}
+ [K[] {F;;-I' 1 }
DO i = 1, Total number of time steps = |
1 —— l \
[M] [M] (M] ., [M]/1 .
Solve Eq. (16.3.13) for {d,,, }; that is, (—2 + [K]> {dig1} = (Fipd + g dd + < {di} +—= <— - ﬁ) {d}
sobve (1] = (o) BAD p@o? T pan T \2
' o o
Solve Egs. (16.3.10) and (16.3.9) for {d;,,} and {d;,,} (dis1} = {di} + (AD[A = P)di} + yldi1}] (16.3.9)
' (div1) = {(di} + AD{d) + ADG — B + Bldi )] (16.3.10)
Output the displacements {d;}, velocities {d.},

and accelerations {E.E,r} for a given —
time step i

END
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Problem: Transient Thermal Analysis

G ing Diffi ial E ' 0 kaT + 0 kaT +Q = o I
overning Differential Equation pyl dee ay\ "3y Q = pc En _
c1(t) R
T(x,y,t) = c1(t) + c2(O)x + c3(D)y T=[1 x y]|c(t) |
C3 (t) )
T; = ¢q + cx; + 3 _
l l l T; (t) 1 x c1(t) 1 x oy [Ti®
T; = ¢ + X + c3Y; Tit)[ =1 % ¢ (¢) Tx,y,t)=[1 x yl|1 % Tj(t)
Ty (t) 1 xg J’k c3(t) Loxe vl 1Te(t)

Ty = 1 + Coxp + C3Yk wﬁ_\w

Ni(x,y) = my; + my1x + mgyy
Ni(x,y) = myp + Myox + m3yy

{TO}=[Ti(®) T(t) T3(®)]"

[N]=[N; N, Ns] Ni(x,y) = my3 + My3x + m3zy

221
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Problem: Transient Thermal Analysis

T(X,y, t) = Ni(xr:V)Ti(t) + ]VJ(X, :V)T](t) + Nk(xi y)Tk(t)
TO}Y=[T@®) LG @] [N]=[N1 Nz Ns]

Ni(x,y) = my; + my;x + m3,y
N;(x,y) = my; + myx + mgzyy

Ni(x,y) = my3 + my3x + mz3y

my1 = (ijk - xk)’i)/ZA mypq = ()’j - Yk)/ZA mszq = (xk — xj)/ZA

1 x; vy
1 l l
myy = (XY — X Yi)/2A My, = Yk —Yi) /24 m3y = (x; — x5) /2A A= Edet <l1 Xj yf])

mys = (x;y; — x5;)/24  mys = (y;—y;)/24 ma; = (x; — x;)/24
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Problem: Transient Thermal Analysis

Weighted Residual Approach

NT 6 kaT dxd 0
ﬁAe 0x ay dy +Q- 'DC_ XY=

oONT oONT
j NTk—nde f —k —dxdy+f NTk—nydC f —k —dxdy+ ﬂ NTQdxdy — jf NTpc—dxdy =0
Ae _ Hae Oy 9 Ae Ae

. 0T aNT aT aNT . .
ﬂ N pc—dxdy+ﬂ dx y+ﬂ dxdy=U N dedy—j N’ g,dC
Ae a Ae Ae Ae Ce

s

—> NTq,dC = j NThps(T — T, ., )dC + j NThap(T — T, ,p,)dC
FA AD

J\AJO: \J\U\ -j UJU

ﬂ NTpe 2L dxd +U aNTkaTdd +ﬂ aNTkaTdd +J NTh T| dc+j NTh T| dc
e P e T o e Y T e Ty T ay T T L, A ap AP L O

== jj NTdedy‘l‘j NThFATaFAdC +f NThADTaADdC
A€ FA
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Problem: Transient Thermal Analysis

oT ONT aT ONT aT . . :
NTpc—dxdy+ —k—dxdy+ —k—dxdy+ NhFAT| dC+ | NThpT| dC |
|

1

|

1

= ff NTQdXdy+f NThFATaFAdC-I_f N hADTaADdC
FA AD

C°a® + K°a® = f°

A
Ke K§x+K§y+Ka,B ce fe = £+ S+ %, A
A
Y f 7 A h
- - [ Noax
— X
xx Ae Ce = ﬂ N”pc N dxdy Q Ae g
Ae
aNT ON +
K;y:U 5 ka dxdy A b
A® _Iy_ Y | :j NThFATaFAdC-I_j NThADTaAD dC
F A
A

A
KﬁvB - f NThFAN dC +j NThAD N dC
F D



Problem: Transient Thermal Analysis

R )
ce = ﬂ N”pc N dxdy = Jf Lilpc[Li Lj Lg]dxdy = pc Jf LiL; L?  LiL|dxdy = EA 1 2 1
A 4 el L 13| 112
ONT (M1 [ m%1 Mpy1Mpy My My3)
K¢, = ﬂ —k —dxdy ﬂ Maa | k[M21 M2 My3] dxdy = kA, |m,,myq m%z My Mys
4° 4% IMas |My3Myy  My3My; ms,
ONT (M 31] [ "1%1 M31M3y  M3ziM33]
jJ _k _dxdy = jJ m32 k[m?)l m32 m33] dXdy = kAe m32m31 m;z,z m32m33
4 4% IMss |M33M3zqy  M3z3M3y m3;

i ;0 hol[2 10
ng — f NThFAN dcC +f NThADN dcC = f Lj hg [Li Lj Lk] dC = f hg Lle- L? 0 dC = 6 J 1 2 0
FA AD ce 0 0 O 000

A

04, [1
f{3=ﬂ NTQ dxdy = ==
Ae

A D 1
. T T hBl T,p5
F A 0
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Problem: Transient Thermal Analysis

/T(x,y, t)=0 @FE
_ oT _ _
T(x,y,t) = T(x,y,t) — 350 < _kE = hy,(T(x,y,t) + 350 —80) = hy,(T(x,y,t) + 270) @ FA
oT _ _
—k% = hy3(T(x,y,t) + 350 — 60) = hy,(T(x,y,t) + 290) @ AD
k ot =0 @ DE
\— ay -
—kg—;l;.=hb(7'—7'b)
hy = 150 W/m?°C
(2 To=80%
Fo—< ° A
C(35,90)
(1) -kg—:=n,,(r-r,,)
T = 350°C " =T:°=°ggfg' 2
o (3)
B(30,30)

aT(x,0,t) o
gl Ly

ay
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Problem: Transient Thermal Analysis

rT(x,y, t) =0 @FE

_ oT _ _
T(x,y,t) = T(x,y,t) —350 < —k— = hy,(T(x,y,t) + 350 — 80) = h,,(T(x,y,t) +270) @FA

dy
oT _ _
—k% = hy3(T(x,y,t) + 350 — 60) = hy,(T(x,y,t) + 290) @ AD
oT
—k— =0 @DE
dy

. [Cppl [Cpel] (1Tp(t)}) | [[Kpp]l [Kppl]({Te(ON _ ({Fp}
CIff 0] + KT} = (7) —) [[c';f: [Crr] ]{{T,I:(t)}} [KEE kol oy = L)

[Cppl{Tp(t)} + [Cpel{Tr(¢)} + [Kpp{Tp(£)} + [Kppl{Te(t)} = {Fp} (To ()} = 0
- . —
[Cep{Tp(¢)} + [Cepel{Tr(t)} + [Kepl{Tp(£)} + [Kppl{Te (1)} = {Fg} ‘

[Crel{Tr(t)} + [Kepl{Tp(t)} = {Fg}

Milad Vahidian, Ph.D. Student of Mechanical Engineering
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Problem: Transient Thermal Analysis
Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, 2)

Element Connectivity connec(nel, nne)

0= 105(%), C=400<1<é_c>’ k =40(%)

Material and Geometrical Properties "
p = 7800 (m—gg) T(x,y,t = 0) = 50 (C)

Boundary Conditions nf(nnd, nodof)

_ w
TAD = —290 (C), hAD =100 ( > C)
Loading

Tar = —270 (C), h =150(
AF () AD m2C
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Problem: Transient Thermal Analysis
Apply B.C’s and Solve (free) Nodal Displacement

. _ [Cppl [Cpel] ({Tp(t)}) | [[Kpp]l [Kppl]({Tp(ON _ ({Fp}
ff @)+ KIT©) = ;) — [ CEE]‘{{Ti(t)}} [KEE] kel teron) = )

[Cppl{Tp(t)} + [Copl{Tr (¢)} + [Kppl{Tp ()} + [Kppl{Tr(t)} = {Fp}
[Cepl{Tp(t)} + [Cppl{Tr(t)} + [Kepl{Tp ()} + [Kepl{Te(0)} = {Fg}

{Tp()} =0
‘ [Ceel{Tr(t)} + [Keel{Tp(t)} = {Fg}

MATLAB ODE45

= i&*a%\
i 7z = OM Weed 1 (Te(0))

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Thin Plate Problem

Problem Description

tz

36 in. (914.4 mm)

Simply supported

y
RS ’
S 1000 Ib (44482 N)
A0S &
WP oo &
Q\ﬂ
SN
Simplysupported ;o5 ih (6.35 mm)

X

Plates are structural elements that are bound by two lateral surfaces .The dimensions of the lateral surfaces are
very large compared to the thickness of the plate. A plate may be thought of as the two-dimensional equivalent of
a beam. Plates are also generally subject to loads normal to their plane.
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Thin Plate Problem

The small deflection theory of plates attributed to Kirchhoff is based on the following assumptions:

1. The x-y plane coincides with the middle plane of the plate in the undeformed geometry.
2. The lateral dimension of the plate is at least 10 times its thickness.

3. The vertical displacement of any point of the plate can be taken equal to that of the point (below or above it) in
the middle plane.

4. A vertical element of the plate before bending remains perpendicular to the middle surface of the plate after
bending. ‘ Vz = )/yZ =0
5. Strains are small: deflections are less than the order of (1/100) of the span length.

6. The strain of the middle surface is zero or negligible.
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Thin Plate Problem

Considering the plate element shown in Figure, the in-plane displacements u and v, respectively in the
directions x and y, can be expressed as

ou ( 3w ]
du Jw aw ax <o
sz = O e _— = 0 U= —2I— (SP Jv a?.w X
» 0z 0x » dx » Ew f = 1 a— t = 1 _Zﬁ t = =21 X
_ v ow ow Yo Y Y Xsy
Vyz = —+—=0 V= 22— %_I_@ 28w
9z dy dy Ly " ax) | a0y |
The vector {y} = [)(x Xy )(xy]T is called the vector of curvature or generalized strain

/

b4 —_, ow

> 5

Roeevenen..
e T
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Thin Plate Problem

Internal stresses in a thin plate. Moments and shear forces due to internal stresses in a thin plate.

Moments and shear forces due to internal stresses in a thin plate.

hj2 hj2

M, = j 0. 2dz Q. = vr 0.z
—hy2 —h/2
h/2 h/2

M, = f 0,,2dz Q,, = f 0,,dz
—h/2 —hy2

h/2
M, = f T2 dz

—h/2
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Thin Plate Problem

Internal stresses in plates produce bending moments and shear forces as illustrated in Figures. The
moments and shear forces are the resultants of the stresses and are defined as acting
per unit length of plate. These internal actions are defined as

h/2

Assuming a state M, = j 0,2dz
of plane stress —hy/2
conditions for h/2
plate bending M, = j 0,,2dz
o e
{0} = [DI{e} {0} = —z[DI{x} » )2 » (M} = = DI{x}
M, = f T2 dz
1 v 0 e
_E v 1 0 h/2
_0 0 7 —h/2
h/2
Q,, = j 0,,dz

—h/2
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Thin Plate Problem

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling
that Q, represents force per unit length along the edge dy and requiring force equilibrium in z
direction results in

Q.

dy

dx) dy + (Q_v -+ dy)dx + g(x,y)dxdy = 0

X

Moment equilibrium about the y-axis leads to

oM,
ay 0x

=0,

3M, M, I*M,,
+ +
ox? oxdy Jy?

$

GOVERNING EQUATION IN TERMS OF DISPLACEMENT VARIABLES

otw otw *'w  qg(x,y) 4 q _ ER’
49 _ 1" Viw = — D, =
o “amaty T oy D, » D, 12(1 —+?)
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Thin Plate Problem

3

h
M} = ﬁ[D]{X}

1
o U =5 (" [D}x) A

D =
12(1 —v?)
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Thin Plate Problem

Discretization: Mesh Generation

y
18 in. (457.2 mm)
29 Symmetry 280
19
9 81
%)
=]9]
T
g >
5 5]
a. £
= z
g )
=
£
W
2
3
21 1 73
1 >
20 30 262 x

Simply supported edge
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Thin Plate Problem

Rectangular Element: Interpolation

The element has four nodes and 12 DOF in total - A trial function will contain 12 parameters
w(x,y) = a; + arx + azy + a,x% + asxy + agy? + arx3 + agx?y + agxy? + a0y> + a1 x3y + a;oxy3
w(xy, Y1) = wy
w(xz,¥2) = wy '
w(x3,y3) = ws

4 3
W(Xg,Ya) = Wy
Ky
w g 1 2'
O, (x,y) = -t 20, + asy + 3a,x% + 2agxy + agy? + 3a1x%y + ay ‘v o4k A,
\{
Oy (x1,¥1) = Ox1 0x(x3,Y3) = Oxs

0 (X2,¥2) = Oy 0 (X4, Ys) = Oxq

w
6, (x,y) = v a3 + asx + 2agy + agx? + 2aqxy + 3aq9y? + a1x3 + 3a,xy?

Hy(xlryl) =0y 9y(x3»Y3) = 0y3
0y (x2,y2) = 0y, 0y (x4, Ys) = Oy4
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Thick Plate Problem
(Mindlin Plate Theory)

Problem Description

k)
Z

36 in. (914.4 mm)

Y=

Simply supported
3\
& 1000 Ib (4448.2 N)
Ky L >
Q9 l &
Y o8 o
;2&
S

Simply supported H=0.25 in. (6.35 mm)
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Thick Plate Problem

Consistent units
Quantity SI SI (mm) US Unit (ft) US Unit (inch)
Length m mm ft E- ------- i-n- _______ i
Force N N bf | Ibf
Mass kg tonne (103 kg) slug Ibf s2/in
Time s S S i S E
Stress | pa (N/m2) | MPa (N/mm?2) |bf/ft2 E psi (Ibf/in2) i
Energy : mJ (1073 ) ft Ibf E in Ibf i
Density | kg/m3 tonne/mm?3 slug/ft> i____l?_f_g,_z!_irf___j
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Thick Plate Problem

Data Preparation (Create Input file)

Nodes Coordinates geom(nnd, 2)

Element Connectivity connec(nel, nne)

Material and Geometrical Properties E =30x10°(psi) v=0.3
Boundary Conditions nf(nnd, nodof)

Loading The force in the global force vector F_f
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Thick Plate Problem

Discretization: Mesh Generation

¥
18 in. (457.2 mm) T e
& t for j=1:NYE Soie A
1520 Ity 280 k=k+1; REA
5 % N\
8l nl = (i-1)*(3*NYE+2)425-1;  n8=nl+ 1; n7 =nl + 2;
n2 =i*(3*NYE+2)+j-NYE- 1, n6 =n2 + 1;
& n3 = i*(3*NYE+2)+2%j-1; n4=n3+1; n5=n3+ 2;
o0 %
; geom(nl,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin |;
8 g‘ geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin |;
é QE) geom(n2,:) = [(geom(nl,1)+geom(n3,1))/2 (geom(nl,2)+geom(n3,2))/2];
= = geom(n>5,:) = [i*dhx- X_origin j*dhy - Y_origin |;
o A geom(n4,:) = [(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
oy
2* geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin |;
A geom(né6,:) = [(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
ﬁ.’\\ g/eom(n&:) = [(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];
N 0
&1-3 @ o \ ne]dz k; :
nnd = n5;
we f @ L ) 3 ” connec(k,:) = [n1 n2 n3 n4 n5 n6 n7 n8];
o 20 30, 262 x end
M Simply supported edge end
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Thick Plate Problem

In thick plates, the assumption that a vertical element of the plate before bending remains perpendicular to the middle
surface of the plate after bending is relaxed. Transverse normal may rotate without remaining normal to the mid-plane.
A line originally normal to the middle plane will develop rotation components 8, relative to the middle plane after
deformation as shown in Figure. A similar definition holds for 6,,. Hence, the displacement field becomes

These equations are the main equations of the Mindlin plate theory. The theory accounts for transverse shear
deformations and is applicable for moderately thick plates. Unlike in thin plate theory, it is important to notice that the
transverse displacement w(x, y) and slopes 6,, 6,, are independent. Notice also that the thick plate theory reduces to

thin plate theory if 6, = —dw/dx and 6,, = —dw/dy .
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Thick Plate Problem

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling
that Q, represents force per unit length along the edge dy and requiring force equilibrium in z
direction results in

Gl x

dx)dy n (Q}. n aa—%dy)dx + q(x, y)dxdy = 0

X

Moment equilibrium about the y-axis leads to

oM,, IM,
—I_ — X
ay 0x Q

M, M, 9°M,
9x? T dx0y T 9y? +aley) =0
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Thick Plate Problem

STRESS-STRAIN RELATIONSHIP

Assuming the material is homogeneous and isotropic, the plane stresses oy, 0y, and Ty, are related to the
strains through the elasticity matrix [D].The shear strains 7,,, and 7, are related to the shear strains y,, and y,,
through

h/2
M, = j U‘Hzﬂ‘ig
e ) 90,
o} =\{D{e h/2 dx
j } } el M,, = f 0y,2dz m) | DrD V;()Dr g g 8_ i
I v 0 )2 M. v x D, ; 3y
pi—_E v 1 0 *M;}: 0 o DU=w o []ee e
PI= 1% (1—) 2 2 3y o
0 0 Vo — p 9, 0 0 0 Gh 0 ow
2 v = f T2 dz ) Lo 0 0 0 Gh (9}-— 8_y)
o-5)
S 1 4 I —
Ty 0 G X w — 0, daz Eh3
) FY ) —h/2 Dr — 12(1 — ’Vz) X
G = E h/2
2(1 +v) 0, = f o,,dz

pel W
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Thick Plate Problem

The Equation can be written more compactly as
{M} = [Dy{x}

The total strain energy of the plate is given as

P 1 ,
U= 0T DalddA Wy U= Uy + U= 3 f WDl 4+ - J ixa 1033 cs) 4

N CD>
U= ¢\/ Q-Q’QQ;\” T ®

K is the shear energy correction factor equal to 5/6

00,
ow 1 v 0
i) (6.-5) ER hoo
_ 95 _ y _ v o1 0 D] =G [ ]
(Bex 4 89},) ox _0 0 5 |
ay ox /|
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Thick Plate Problem

Rectangular Element: Interpolation

The element has 8 nodes and 24 DOF in total ‘ A trial function will contain 24 parameters

C? iso-parametric shape functions can be used for the thick plate element formulation

Eight-nodded Iso-parametric Element W (A = =W,
. (VE] (0250 -8 A -+ E+m)] 17
W= 2 NiEmw, Ny (E.m) 0.50(1 — £2)(1 —m)
: i=1
) N;(E,m) —0.25(1+ &)(1 —n)(1 — E+7)
L0, =Y N(&m, NEM| ] 050+ &)1 -
j =1 Ns@Em | | -025a+ &+ —&-n)
8, = ZNI(E,T])E'),,- Ns(E,1) 0.50(1 = &) (1 +m) /
. i=1 N;(&,1) —025(1 = &)1 +mA +&—n)
e )| 0.50(1 — £)(1 — )

w(x,y) = N (&, mwy + N3 (&, nw, + N3 (&, mws + Nu(&,mwy + Ns(&,m)ws + Ng (&, nwe + N7 (E,m)w, + Ng(&,n)wg
0, (x,¥) = N1 (§,1m)0x1 + N3(&, )0y + N3(&,1) 053 + Ny(§,1)054 + N5 (&,1)0x5 + No(&,1)0x6 + N7(§,1)057 + Ng(&,1)0ys
0, (x,y) = N1(&,m)0y1 + N3(&, 10y + N3(&,1)0,3 + Ny(&,1)0,4 + N5 (&,1)0,5 + Ne(E,1)60,6 + N7 (E,1)60,7 + Ng(&,1)0,5
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Thick Plate Problem

. |
Strain Energy: U = Uy + Us = - [ (s [Dslixs}dA + 5 [l IDsMxs)dA - (e =5/6)
A A
{xX}s = [Lg][N]{a}= [Bsl{a} {X}s = [Ls][N{a} = [Bsl{a}
i ; ~
{a} = _Wl exl Gyl | e e e w, e_m eyn] 15 @Bb\\Q\\ -\-_bB\ Qﬁgb(}\
2
0 % ] ; K-{BTD'S‘)Q
9 N0 0 | ... ... ... | N, 0 O ~Z 0 1
[Lyd=10 0 52l IM=|0 N 0 | ... ... ... | 0 N, 0 L= &
5 3 0 0 N | oo vr ... | 0 0 N, 9 )
_0 a—y a_ ox
oN, ﬂ
Oaa?vll """"" g a?vn SN N Ny
B,=|0 0 B | | 0 0 By (B,] = 8813; aaz\yf
0 N N, | o | 0 N, N, - N O | oo L | — N
dy  Ox dy  Ox 0x ox

[K.] = [Kp] + [Ks] = I[BB]T[DB][BB] dA + « f[Bs]T[Ds][Bs] dA  (k=5/6)
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Thick Plate Problem

Remark: It is important to note that the shear stiffness [K] is a function of h since [Ds] is a function of
h, and the bending stiffness [Kg] is a function of h3 since [Dg] is a function of h3 . A consequence of
this is that the shear energy dominates as the thickness of the plate becomes very small compared to
its side length. This is called shear locking. One way of resolving this problem is to under integrate the

shear energy term. For example, if the 8 node quadrilateral is used, then the bending energy is to be
integrated with 3 x 3 Gauss points, while the shear energy is to be integrated only with a 2 x 2 rule.

A™ o ¥ R R
e OO U FRN dex coofd
_/\_—\_\—E ~ _
_ I IR R
(N ) —dx  dy [ ON:) -9x  dy [&L 9N 8 AN, ON; 0N, ONg
ae | |oe 9 || o e ae| | Hoet Har” IE 0L ag ||
N, dx dy IN; dx  Jy i AN, 28: ON, dN; 9N, ONg
— P Xi i A
L dn Lon ond U dy Lon ond [ I on i1 Bny_ L on dn an
| X Vs
Qx:N1x1+N2x2+'--—|—Ngxg rON; ) r ON; )
Iy:NQ’1+N2)’2+“'+Ns)’s dx ) 9§
4 L = [J]" |
Do ¢ | 2N, ON;
L dy L 01
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(B3] =

oN,
0x

o
dy

N,

dy
aN,

ox

Thick Plate Problem

oN,
ox

aN,
dy

Stiffness Matrix

00,
< 0x
00
Z—y
dy
(BBI 20,
: ay 0x
ow
Z(e}, — a—y)
ow
0. — =)
Z( 0x
.
dN,
dy
oN,
ox

w = Z N;(&,n)w;
i=1

‘ .
i=1

[Bs] =

8, =Y Ni(&m8,
i=1
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Thick Plate Problem

Stiffness Matrix
(K Jia} = f
K] = LJ[B]T[D][B] dA] (£ = [INV{b} dA + [INV{1) di+ Y [Nqomm )" (P
e A, L. i
Next Slide
+1 +1 T ———

K] = [ [[BE&NN (DIBEm)detlJ (& m)ldn d&
-1 -1

ngp ngp

= Z Z W, Wi[B(&, ;1" [DI[B(E;,m))]det[J (&;,m))]

i=1 j=l1
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Thick Plate Problem

Force vector
ngp  ngp 0
BodyForces  [INI'{b} dA= ) Z WWIN (& detJ(£,,m))]
— —pPg
A, =1l j=
Traction Forces dx dy
. =(q= — g, 2 ) ds
q. = q,dLcos x — q,dL sin x = q,dx — q,dy 9 (q’aa @ 8&)
g, = q.dLcos « + q,dLsin &« = g,dx + q,dy I )
9y =\ 9n < dg
E, BE
J"[N] { } dA = j[N(a,H)] {q }dl : M g,
La- y T qn 2 - 2
( ( dx(&;, +1) . dy (&, +1)) ‘ 4 1 3 A \ 3
ngp qt BE, qn 35, 1{ ll

= WIN(E, +1)]" 5 [ ] 1 g
; [N(&, +1)] ( (s +D) ay(z,,.,+1)) \1 N \—}‘/ :
qn BE, ql 85, 1 : 1 \

1 0 0 0 0
0 1 0 0 —-P
0 0 1 0 2P
Concentrated Forces Y'wi_.ipi=| {0 }= 01 [2P }:4 0

- o oll-p[ |0 of]o 0
0 0 0 0 0
0 O 0 0 0
0 0 0 0] K 252




Thick Plate Problem

Apply B.C’s and Solve (free) Nodal Displacement

[Ker]l 0 [Ker) | [(50) {Fp} [Kpp] 185} + [Kpr] (8} = {F))
SRR | ANl P ) o =) (5.} = [Ker]™" ({Fr) — [Ker] {85))
[Kep] 0 [Kerl | (or} (Fr) [Kzp] {?{r (K] {87} = {Fr)

Janesd

{SF} — [KFF]_I {FF}

The subscripts P and F refer respectively to the prescribed and free degrees of freedom
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Thick Plate Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

If{6,} =0

(Kep] {85} + [Kpr] {85} = (Fp} o) {(Fp} = [Kpr] {6F)
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Thanks for attention

Milad Vahidian, Ph.D. Student
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