An Introduction to Finite Element Analysis Using MATLAB

Milad Vahidian, Ph.D. Student of Mechanical Engineering, University of Tehran

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Motivation

There is not any limitation

Deep understanding of Finite Element Method

Commercial FEM software is garbage in garbage out

2D Truss Problem 2D Beam Problem **3D Truss Problem** 2D Frames (2D Column Beam) 3D Frames (3D Column Beam) Membrane Problem **Plane Stress Problems** Axisymmetric Problem 2D Transient Heat Transfer Problem Thin Plate Problem Thick Plate Problem

Introduction to MATLAB: MATLAB

MATLAB is an abbreviation for "MATrix LABoratory."

MATLAB is a programming platform designed specifically for **engineers** and **scientists**. The heart of MATLAB is the MATLAB language, a **matrix-based language** allowing the most natural expression of computational mathematics. While other programming languages mostly work with numbers one at a time, MATLAB is designed to operate primarily on whole matrices and arrays.

Introduction to MATLAB: MATLAB Reference

MATLAB Documentation

How to write code

doc + function/command

help + function/command

Introduction to MATLAB: Command vs. Function Syntax

In MATLAB, these statements are equivalent:

Command syntax:load Workspace.matFunction syntax:load(' Workspace.mat')

This equivalence is sometimes referred to as command-function **duality**.

All functions support this standard **function syntax**: [output1, ..., outputM] = functionName(input1, ..., inputN)

If you do not require any outputs from the function, and all of the inputs are character vectors (that is, text enclosed in single quotation marks), you can use this simpler **command syntax**: functionName input1 ... inputN

With command syntax, **you separate inputs with spaces rather than commas**, and do not enclose input arguments in parentheses. Command syntax always passes inputs as **character vectors**.

To use strings as inputs, use the function syntax. If a character vector contains a space, use the function syntax.

When a function input is a **variable**, you must use function syntax to pass the value to the function. Command syntax always passes inputs as **character** vectors and **cannot pass variable values**.

Introduction to MATLAB: Data types

By default, MATLAB stores all numeric variables as **double-precision floating-point** values. Additional data types store **text**, **integer** or **single-precision** values, or a combination of related data in a single variable

Numeric Types: Integer and floating-point data

Characters and Strings: Text in character arrays (' ') and string arrays (" ")

Dates and Time: Arrays of date and time values that can be displayed in different formats

Categorical Arrays: Arrays of qualitative data with values from a finite set of discrete, nonnumeric data

Tables: Arrays in tabular form whose named columns can have different types

Timetables: Time-stamped data in tabular form

Structures: Arrays with named fields that can contain data of varying types and sizes

Cell Arrays: Arrays that can contain data of varying types and sizes

Function Handles: Variables that allow you to invoke a function indirectly

Map Containers: Objects with keys that index to values, where keys need not be integers

Time Series: Data vectors sampled over time

Data Type Identification: Determining data type of a variable

Data Type Conversion: Converting between numeric arrays, character arrays, cell arrays, structures, or tables

Introduction to MATLAB: Common Functions and Commands

	ans	Most recent answer			
	clc	Clear Command Window			
	clear	Clear Workspace			
	global	Declare variables as global			
	plot	2-D line plot			
	format	Set Command Window output display format			
	iskeyword	Determine whether input is MATLAB keyword			
1	fpritf/sprintf	Write data to text file/Format data into string or character vector			
	zeros	Create array of all zeros			
	ones	Create array of all ones			
	eye/diag	Identity matrix/Creates or extract diagonals			
	fopen	Open file, or obtain information about open files			
	fcolse	Close one or all open files			
	patch	Plot one or more filled polygonal regions			

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Most Common

MATLAB code

Introduction to MATLAB: Common Functions and Commands

1-Matrices can be created in MATLAB by the command

>> A=[1 2 3;4 5 6;7 8 9] A = 1 2 3 5 4 6 7 8 9

Note the semi-colon at the end of each matrix line.

2-Operating with matrices

3-Statements: are operators, functions and variables, always producing a matrix which can be used later.

4-Matrix functions

eye	Identity matrix
zeros	A matrix of zeros
ones	A matrix of ones
diag	Creates or extract diagonals
rand	Random matrix

6-Loops: for and while 7-Relations 8-Submatrix 9-Logical indexing

5-Conditionals, if and switch

disp('Bad input!')

elseif max(x) > 0

y = x+1;

 $y = x^{2};$

switch units

case 'length'

case 'volume'

case 'time'

otherwise

end

disp('meters')

disp('hours')

disp('cubic meters')

disp('not interested')

x = -1

else

end

if x = = 0

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Introduction to MATLAB: M-file vs. Mlx-file

M-file:

Plain Code Scripts and Functions

In new Versions: Functions could be saved as separate m-files (function) as well as in the end off main script

Mlx-file:

MATLAB live scripts and live functions are interactive documents that combine MATLAB code with formatted text, equations, and images in a single environment called the Live Editor. In addition, live scripts store and display output alongside the code that creates it.

Functions could be saved as separate mlx-files (function) as well as in the end off main script

Introduction to FEA: Basic Concepts

Physical Problem

Mathematical Model

Solution

(governed by differential equations)

Introduction to FEA: Basic Concepts

What is Finite Element Analysis?

The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the numerical technique called Finite Element Method (FEM).

The basic idea behind the finite element method is **to divide** the structure, body, or region being analyzed into a large number of finite elements, or simply elements.

The solution region is considered to be built of many small, interconnected subregions called elements.

Space Discretization

FEM subdivides a large system into smaller, simpler parts that are called finite elements

construction of a **mesh** of the object

Introduction to FEA: Applications

Structural Analysis

Thermal Analysis

Fluid Structure Analysis

Electromagnetic Analysis

Multiphysics Analysis

Optimization Analysis

Introduction to FEA: Applications

Procedures

1-Discretization

2-Interpolation (Shape Function)

3-Derivation of characteristic matrices (element stiffness matrices and load vectors)

4-Assembly

5-Applying Boundary Conditions

6-Solving unknown

1-Discretization

The **first step** in the finite element method involves dividing the body into an equivalent system of **finite elements** with associated **nodes** and choosing the most appropriate **element type** to model most closely the actual physical behavior.

Small elements (and possibly higher-order elements) are generally desirable where the results are changing rapidly, such as where changes in geometry occur

Introduction to FEA: Analysis Procedures 2-Interpolation (Select a Displacement Function)

Since the displacement solution of a **complex structure** under any specified load conditions cannot be predicted **exactly**, we **assume** some suitable solution within an element to **approximate the unknown solution**. The assumed solution must be **simple** from a computational standpoint, but it should satisfy certain **convergence requirements**. In general, the solution or the interpolation model is taken in the **form of a polynomial**.

Approximate Solution
$$u(x, y, z) = \sum_{i=1}^{\infty} a_i N_i(x, y, z) = a_1 N_1(x, y, z) + a_2 N_2(x, y, z) + \cdots$$
 satisfy the **Essential** boundary conditions exactly $u(x, y, z) = [N(x, y, z)]\{a\}$

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes

Number of nodes and order of interpolation

Formulation

Integration

Shell

elements

elements

elements

Truss elements

Membrane elements

Infinite elements

and dashpots

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes: the translations and, for shell, pipe, and beam elements, the rotations at each node.

Number of nodes and order of interpolation

Formulation

Integration

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes

Number of nodes and order of interpolation

Formulation

Integration

(a) Linear element (8-node brick, C3D8)

(b) Quadratic element (20-node brick, C3D20)

(c) Modified second-order element (10-node tetrahedron, C3D10M)

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes

Number of nodes and order of interpolation

Formulation: mathematical theory used to define the element's behavior (Lagrangian or Eulerian/shell element: 1-general-purpose shell analysis, 2-thin shells, 3-for thick shells.)

Integration

Plane strain Plane stress Hybrid elements Incompatible-mode elements Small-strain shells Finite-strain shells Thick shells Thin shells

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes

Number of nodes and order of interpolation

Formulation

Integration: Using Gaussian quadrature for most elements (full or reduced integration)

	Full integration	Reduced integration		
First- order interpolation	× ×	×		
Second- order interpolation	× × × × × × × × ×	× × ×		

3-Derive element stiffness matrices and load vectors

From the assumed displacement model, the stiffness matrix $[K^e]$ and the load vector $\{P^e\}$ of element e are to be derived by using a suitable **variational principle**, a **weighted residual approach** (such as the Galerkin method), or **equilibrium** (direct method) conditions.

Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

Variational Approach

The variational approach is based on the application of variational calculus, which deals with the extremization of functionals in the form of integrals.

$$I = U(u, v, w, \dots) - W_{ext}(u, v, w, \dots) \Longrightarrow I = U(\{a\}) - W_{ext}(\{a\}) \Longrightarrow \delta I = 0 \Longrightarrow \frac{\partial I}{\partial a_i} = 0$$

Weighted Residual Approach

The weighted residual methods allow the finite element method to be applied directly to any differential equation.

$$L(u) + F(x, y, z) = 0 \Longrightarrow R = L(u = [N]\{a\}) + F(x, y, z) \implies \int_{V} w_i R \, dV = 0$$

Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

Force = Spring stiffness \times Net deformation of the spring

$$F_{i} = k_{e}(u_{i} - u_{j})$$

$$F_{j} = k_{e}(u_{j} - u_{i})$$

$$k_{e}\begin{bmatrix}1 & -1\\-1 & 1\end{bmatrix} \begin{Bmatrix} u_{i}\\ u_{j} \end{Bmatrix} = \begin{Bmatrix} F_{i}\\ F_{j} \end{Bmatrix}$$

$$F_{i} \longrightarrow k_{e} \qquad (j)$$

$$F_{j} \longrightarrow F_{j}$$
Spring element e

As an example

$$\begin{bmatrix} K^{(e)} \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} = \begin{bmatrix} (A_e E_e/l_e) & -(A_e E_e/l_e) \\ -(A_e E_e/l_e) & (A_e E_e/l_e) \end{bmatrix} = \frac{A_e E_e}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$Variational Approach$$

$$\delta U = \delta W_{ext} \Longrightarrow \iiint \{\delta \varepsilon\}^{T} \{\sigma\} dV = \iiint \{\delta U\}^{T} \{F_{b}\} dV + \iint \{\delta U\}^{T} \{T\} dS + \sum_{i=1}^{n} \{\delta U\}^{T} \{F_{p}\}$$
Stiffness matrix
Self Strain
Stress Vector
Total Strain
Elastic strain energy
Prestress energy
Surface Traction work
$$\iiint \{\delta \varepsilon\}^{T} [D] \{\varepsilon\} dV - \iiint \{\delta \varepsilon\}^{T} [D] \{\varepsilon_{0}\} dV + \iiint \{\delta \varepsilon\}^{T} \{\sigma_{0}\} dV - \iiint \{\delta U\}^{T} \{F_{b}\} dV - \iint \{\delta U\}^{T} T dS - \sum_{i=1}^{n} \{\delta U\}^{T} \{F_{p}\} = 0$$
Self strain energy
Body force work
$$\{u\} = \begin{cases} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{cases} = [N(x, y, z)] \{a\}$$

$$\{\varepsilon\} = [L] \{u\} = [L] [N(x, y, z)] \{a\} = [B] \{a\}$$

$$(\iiint \{B\}^{T} [D] \{B\} dV) \{a\} = \iiint \{B\}^{T} [D] \{\varepsilon_{0}\} dV - \iiint \{B\}^{T} \{\sigma_{0}\} dV + \oiint \{N\}^{T} \{F_{b}\} dV + \iint \{N\}^{T} \{T\} dS + \sum_{i=1}^{n} \{N\}^{T} \{F_{p}\}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Weighted Residual Approach

The weighted residual method is a technique that can be used to **obtain approximate solutions** to linear and nonlinear differential equations. If we use this method the finite element equations can be derived directly from the **governing differential equations** of the problem without any need of knowing the functional. We first **consider** the solution of equilibrium, eigenvalue, and propagation problems using the weighted residual method and then derive the finite element equations using the weighted residual approach.

Weighted Residual Point Collocation Method Least Squares Method Galerkin Method Galerkin Method

 $L(\{u\}) + F(x, y, z) = 0 \implies R = L(\{u\} = [N]\{a\}) + F(x, y, z) \implies \int_{U} N_i R \, dV = 0 \, i = 1, \dots, N$

Introduction to FEA: Analysis Procedures 4-Assemble element equations to obtain the overall equilibrium equations

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

$$[K_{1}]_{L} = \begin{bmatrix} 115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad [C_{1}] = \begin{bmatrix} \cos(0) & -\sin(0) & 0 & 0 \\ \sin(0) & \cos(0) & 0 & 0 \\ 0 & 0 & \cos(0) & -\sin(0) \\ 0 & 0 & \sin(0) & \cos(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad [K_{1}]_{G} = \begin{bmatrix} U_{1}/u_{1} \\ U_{1}/v_{1} \\ U_{2}/u_{2} \\ V_{2}/v_{2} \end{bmatrix} \begin{bmatrix} 115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[K_2]_L = \begin{bmatrix} 76666.67 & 0 & -76666.67 & 0 \\ 0 & 0 & 0 & 0 \\ -76666.67 & 0 & 76666.67 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_2] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} K_2]_G = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ V_2/V_2 \\ U_3/U_3 \\ V_3/V_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 76666.67 & 0 & -76666.67 \\ 0 & 0 & 0 & 0 \\ 0 & -76666.67 & 0 & 76666.67 \end{bmatrix}$$

TT /

$$[K_3]_L = \begin{bmatrix} 63791.43 & 0 & -63791.43 & 0 \\ 0 & 0 & 0 & 0 \\ -63791.43 & 0 & 63791.43 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_3] = \begin{bmatrix} 0.554699 & -0.832051 & 0 & 0 & 0 \\ 0.832051 & 0.554699 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.554699 & -0.832051 \\ 0 & 0 & 0 & 0.832051 & 0.554699 \end{bmatrix} \begin{bmatrix} K_3]_G = \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ U_3/u_2 \end{bmatrix} \begin{bmatrix} 19628 & 29442 & -19628 & -29442 \\ 29442 & 44163 & -29442 & -44163 \\ -19628 & -29442 & -19628 & 29442 \\ -19628 & -29442 & 19628 & 29442 \\ V_3/v_2 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix} V_1/v_1 \\ V_1/v_1 \end{bmatrix} \begin{bmatrix}$$

Introduction to FEA: A	Analysis Procedure	S
$[K_1]_G = \begin{cases} U_1/u_1 \\ V_1/v_1 \\ U_2/u_2 \\ V_2/v_2 \end{cases} \begin{bmatrix} 115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \mathbf{K} \end{bmatrix} = \begin{bmatrix} U_1 & V_1 & U_2 & V_2 & U_3 & V_3 \\ V_1 & 115000 & 0 & -115000 & 0 & 0 \\ V_1 & 0 & 0 & 0 & 0 & 0 \\ U_2 & -115000 & 0 & 115000 & 0 & 0 \\ -115000 & 0 & 115000 & 0 & 0 \\ U_3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$[K_2]_G = \begin{array}{c} U_2/u_2 \\ V_2/v_2 \\ U_3/u_3 \\ V_3/v_3 \end{array} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 76666.67 & 0 & -76666.67 \\ 0 & 0 & 0 & 0 \\ 0 & -766666.67 & 0 & 76666.67 \end{bmatrix}$	$\mathbf{K}_{3} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} U_{1} & V_{1} & U_{2} & V_{2} & U_{3} & V_{3} \\ U_{1} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	
$[K_3]_G = \begin{cases} U_1/u_1 & V_1/v_1 & U_3/u_2 & V_3/v_2 \\ U_1/u_1 & 19628 & 29442 & -19628 & -29442 \\ 29442 & 44163 & -29442 & -44163 \\ -19628 & -29442 & 19628 & 29442 \\ -19628 & -29442 & 19628 & 29442 \\ -29442 & -44163 & 29442 & 44163 \end{bmatrix}$	$\begin{bmatrix} \mathbf{K} \end{bmatrix} = \begin{bmatrix} U_1 & V_1 & U_2 & V_2 & U_3 & V_3 \\ V_1 & 19628 & 29442 & 0 & 0 & -19628 & -29442 \\ 29442 & 44163 & 0 & 0 & -29442 & -44163 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ U_2 & V_2 & 0 & 0 & 0 & 0 & 0 \\ U_3 & -19628 & -29442 & 0 & 0 & 19628 & 29442 \\ V_3 & -29442 & -44163 & 0 & 0 & 29442 & 44163 \end{bmatrix}$	

Milad Vahidian, Ph.D. Student of Mechanical Engineering

5- Apply Boundary Conditions

Governing equation, must be modified to account for the boundary conditions, is a set of simultaneous algebraic/ordinary differential/partial differential equations that can be written in expanded matrix form.

$$\begin{bmatrix} [K_{PP}] & \vdots & [K_{PF}] \\ \cdots & \cdots & \cdots \\ [K_{FP}] & \vdots & [K_{FF}] \end{bmatrix} \begin{cases} \{\delta_P\} \\ \cdots \\ \{\delta_F\} \end{cases} = \begin{cases} \{F_P\} \\ \cdots \\ \{F_F\} \end{cases}$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

	134628	29442	0	:	-115000	-19628	-29442	$U_1 = 0$		R_{X1}
	29442	44163	0	:	0	-29442	-44163	$V_1 = 0$		R_{Y1}
	0	0	76666.67	:	0	0	-76666.67	$V_2 = 0$		R_{Y2}
								{	$\} = \{$	
	-115000	0	0	:	115000	0	0	U_2		0
İ	-19628	-29442	0	:	0	19628	29442	U_3		12000
İ	-29442	-44163	-76666.67	÷	0	29442	120829.67	V_3		0
6- Solve for the unknown nodal displacements

It should be mentioned that K will always have an inverse for well-posed problems solved by the finite element method.

6-Calculation of the Element Resultants

SUPPORT REACTIONS

$$\{F_P\} = [K_{PF}] \{\delta_F\} \quad \begin{cases} R_{X1} \\ R_{Y1} \\ R_{Y2} \end{cases} = \begin{bmatrix} -115000 & -19628 & -29442 \\ 0 & -29442 & -44163 \\ 0 & 0 & -76666.67 \end{bmatrix} \begin{cases} 0 \\ 0.9635 \\ -0.2348 \end{cases} = \begin{cases} -12 \\ -18 \\ 18 \end{cases} \text{kN}$$

MEMBERS' FORCES

{δ}

Once all the displacements are known, the member forces can be easily obtained

$$\{\overline{d_3}\} \longrightarrow \{d_3\} = [C_3]^T \{\overline{d_3}\}$$

$$\{f_3\} = \begin{bmatrix} 63791.43 & 0 & -63791.43 & 0 \\ 0 & 0 & 0 & 0 \\ -63791.43 & 0 & 63791.43 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.3391 \\ -0.9319 \end{bmatrix} = \begin{bmatrix} -21.631 \\ 0 \\ 21.631 \\ 0 \end{bmatrix} kN$$

Material Nonlinearity: Due to non-linear constitutive law (e.g., polymer materials)

Non-linear Structural Problems

Geometric Nonlinearity: Due to Large displacements or large rotations

Boundary Nonlinearity: Due to non-linearity of boundary conditions (i.e., contact problems)

Problem Discerption

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)	
Length	m	mm ft		in	
Force	N	Ν	lbf	lbf	
Mass	kg	tonne (10 ³ kg)	slug	lbf s ² /in	
Time	s	S	s	s	
Stress	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi (lbf/in ²)	
Energy	J	mJ (10 ⁻³ J)	ft lbf	in <mark>I</mark> bf	
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s²/in ⁴	

Data Preparation (Create Input file)

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Global Stiffness Matrix

$$[K_e] \{d_e\} = \{f_e\} \qquad [C]^T \{\overline{d_e}\} = [C]^T \{\overline{f_e}\} \qquad [C][K_e][C]^T \{\overline{d_e}\} = \{\overline{f_e}\} \qquad [\overline{K_e}] \{\overline{d_e}\} = \{\overline{f_e}\} \qquad [\overline{K_e}] \{\overline{d_e}\} = [C][K_e][C]^T$$

Element stiffness matrix in the global coordinate system

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Problem 1: Truss Problem Assemblage

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

Assemblage

$$[K_1]_L = \begin{bmatrix} 115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad [C_1] = \begin{bmatrix} \cos(0) & -\sin(0) & 0 & 0 \\ \sin(0) & \cos(0) & 0 & 0 \\ 0 & 0 & \cos(0) & -\sin(0) \\ 0 & 0 & \sin(0) & \cos(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad [K_1]_G = \begin{bmatrix} U_1/u_1 \\ U_1/u_1 \\ U_2/u_2 \\ V_2/v_2 \end{bmatrix} \begin{bmatrix} 115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[K_2]_L = \begin{bmatrix} 76666.67 & 0 & -76666.67 & 0 \\ 0 & 0 & 0 & 0 \\ -76666.67 & 0 & 76666.67 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_2] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} K_2]_G = \begin{bmatrix} U_2/u_2 \\ V_2/v_2 \\ U_3/u_3 \\ V_3/v_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 76666.67 & 0 & -76666.67 \\ 0 & 0 & 0 & 0 \\ 0 & -76666.67 & 0 & 76666.67 \end{bmatrix}$$

$$[K_3]_L = \begin{bmatrix} 63791.43 & 0 & -63791.43 & 0 \\ 0 & 0 & 0 & 0 \\ -63791.43 & 0 & 63791.43 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_3] = \begin{bmatrix} 0.554699 & -0.832051 & 0 & 0 \\ 0.832051 & 0.554699 & 0 & 0 \\ 0 & 0 & 0.554699 & -0.832051 \\ 0 & 0 & 0.832051 & 0.554699 \end{bmatrix} \begin{bmatrix} K_3]_G = \begin{bmatrix} V_1/u_1 \\ V_1/v_1 \\ U_3/u_2 \\ V_3/v_2 \end{bmatrix} \begin{bmatrix} 19628 & 29442 & -19628 & -29442 \\ 29442 & 44163 & -29442 & -44163 \\ -19628 & -29442 & -44163 \\ -19628 & -29442 & 19628 & 29442 \\ V_3/v_2 \\ -29442 & -44163 & 29442 & 44163 \end{bmatrix}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

	T T /	V 7 /	T T /	V. La	Accomblage			U_1	V_1	U_2	V_2	U_3	73 7
Г	U_1/u_1	V_1/V_1	U_2/u_2	v_2/v_2	ASSCIIIDIAge		U_1	115000) 0	-115000) 0	0	0
U_1/u_1	115000	0	-115000	0			V_1	0	0	0	0	0	0
$[K_1]_G = \frac{V_1/v_1}{U_1}$	0	0	0	0		[K] =	U_2	-11500	0 0	115000	0	0	0
U_2/u_2	-115000	0	115000	0		[**] —	V_2	0	0	0	0	0	0
V_2/V_2	_ 0	0	0	0]			U_3	0	0	0	0	0	0
							V_3	0	0	0	0	0	0
								$U_1 V_1$	U_2	V_2	U_3	Va	\$
							U_1	ο ο	0	0	0	0	7
U_{2}/u_{2}	ГО	0	0	0 1			V_1	0 0	0	0	0	0	
$V_2 V_2$	0 76	6666.6	57 0	-76666.67		[K] —	U_2	0 0	0	0	0	0	
$[\kappa_2]_G = U_3/u_3$	0	0	0	0		[K] —	V_2	0 0	0	76666.67	0	-7666	6.67
V_{3}/v_{3}	L0 -70	6666.	67 0	76666.67			U_3	0 0	0	0	0	0	
							V_3	0 0	0	-76666.67	0	76666	6.67
								U_1	V	$V_1 = U_2$	V_2	U_3	V_3
							U_1	19628	294	142 0	0 -	-19628	-29442
	U_{1}/u_{1}	V_1/v_1	U_3/u_2	V_{3}/v_{2}			V_1	29442	441	163 0	0 -	-29442	-44163
U_1/u_1	19628	29442	-19628	-29442		[K] —	U_2	0	C) 0	0	0	0
$[K_3]_G = \frac{V_1/v_1}{V_1}$	29442	44163	-29442	-44163		[K] =	V_2	0	0) 0	0	0	0
U_3/u_2	-19628 -	-29442	19628	29442			U_3	-19628	-29	0442 0	0	19628	29442
V_{3}/v_{2}		-44163	29442	44163			V_3		-44	163 0	0	29442	44163

Assemblage

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$\{F_P\} = [K_{PF}] \{\delta_F\} \quad \begin{cases} R_{X1} \\ R_{Y1} \\ R_{Y2} \end{cases} = \begin{bmatrix} -115000 & -19628 & -29442 \\ 0 & -29442 & -44163 \\ 0 & 0 & -76666.67 \end{bmatrix} \begin{cases} 0 \\ 0.9635 \\ -0.2348 \end{cases} = \begin{cases} -12 \\ -18 \\ 18 \end{cases} \text{kN}$$

MEMBERS' FORCES

{δ}

Once all the displacements are known, the member forces can be easily obtained

$$\{\overline{d_3}\} \qquad \qquad \{d_3\} = \begin{bmatrix} 63791.43 & 0 & -63791.43 & 0 \\ 0 & 0 & 0 & 0 \\ -63791.43 & 0 & 63791.43 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.3391 \\ -0.9319 \end{bmatrix} = \begin{bmatrix} -21.631 \\ 0 \\ 21.631 \\ 0 \end{bmatrix} \text{kN}$$

Different types of modeling and associated assumptions

Problem Discerption

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Data Preparation (Create Input file)

Element	F_{y1}	M_1	F_{y2}	M_2
1	-10^{4}	-10^{7}	-10^{4}	10 ⁷
2	-10^{4}	-8.33×10^{6}	-10^{4}	-8.33×10^{6}
3	0	0	0	0

Loading

Interpolation (Shape Function)

.

$$w(x) = c_{1}x^{3} + c_{2}x^{2} + c_{3}x + c_{4}$$

$$w(x = 0) = w_{1} = c_{4}$$

$$w(x) = \left[\frac{2}{L^{3}}(w_{1} - w_{2}) + \frac{1}{L^{2}}(\theta_{1} + \theta_{2})\right]x^{3}$$

$$+ \left[-\frac{3}{L^{2}}(w_{1} - w_{2}) - \frac{1}{L}(2\theta_{1} + \theta_{2})\right]x^{2} + \theta_{1}x + w_{1}$$

$$w(x = L) = w_{2} = c_{1}L^{3} + c_{2}L^{2} + c_{3}L + c_{4}$$

$$\frac{dw}{dx}\Big|_{x=L} = \theta_{2} = 3c_{1}L^{2} + 2c_{2}L + c_{3}$$

$$[N] = [N_{1} \quad N_{2} \quad N_{3} \quad N_{4}]$$

$$w(x) = [N]\{d_{e}\}$$

$$w(x) = [N]\{d_{e}\}$$

$$N_{1} = \frac{1}{L^{3}}(2x^{3} - 3x^{2}L + L^{3}) \quad N_{2} = \frac{1}{L^{3}}(x^{3}L - 2x^{2}L^{2} + xL^{3})$$

$$N_{3} = \frac{1}{L^{3}}(-2x^{3} + 3x^{2}L) \quad N_{4} = \frac{1}{L^{3}}(x^{3}L - x^{2}L^{2})$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Direct Equilibrium Approach

$$\begin{cases} F_1 = EI \frac{d^3 w(x)}{dx^3} \Big|_{x=0} = \frac{EI}{L^3} (12w_1 + 6L\theta_1 - 12w_2 + 6L\theta_2) \\ M_1 = -EI \frac{d^2 w(x)}{dx^2} \Big|_{x=0} = \frac{EI}{L^3} (6Lw_1 + 4L^2\theta_1 - 6Lw_2 + 2L^2\theta_2) \\ F_2 = -EI \frac{d^3 w(x)}{dx^3} \Big|_{x=L} = \frac{EI}{L^3} (-12w_1 - 6L\theta_1 + 12w_2 - 6L\theta_2) \\ M_2 = EI \frac{d^2 w(x)}{dx^2} \Big|_{x=L} = \frac{EI}{L^3} (6Lw_1 + 2L^2\theta_1 - 6Lw_2 + 4L^2\theta_2) \end{cases}$$

Local Stiffness Matrix

Local Stiffness Matrix: Internal Hinge

Internal Hinge Zero value of the bending moment
Discontinuity in the slope of the deflection curve

Procedure

Discretize the beam using two elements

The hinge should be accounted for only once; either associated with element 1 or with element 2

If the beam is discretized with two elements, one with a hinge at its right end and the other with a hinge at its left, the result will be a singular stiffness matrix.

$$\begin{bmatrix} 3EI/L^3 & 3EI/L^2 & -3EI/L^3 & 0 \\ 3EI/L^2 & 3EI/L & -3EI/L^2 & 0 \\ -3EI/L^3 & -3EI/L^2 & 3EI/L^3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_{11} \\ \theta_{11} \\ w_{12} \\ \theta_{12} \\ \theta_{12} \end{bmatrix} = \begin{bmatrix} F_{11} \\ M_{11} \\ F_{12} \\ M_{12} \end{bmatrix} \begin{bmatrix} 3EI/L^3 & 0 & -3EI/L^3 & 3EI/L^2 \\ 0 & 0 & 0 & 0 \\ -3EI/L^3 & 0 & 3EI/L^3 & -3EI/L^2 \\ 3EI/L^2 & 0 & -3EI/L^2 & 3EI/L \end{bmatrix} \begin{bmatrix} w_{21} \\ \theta_{21} \\ w_{22} \\ \theta_{22} \end{bmatrix} = \begin{bmatrix} F_{21} \\ M_{21} \\ F_{22} \\ M_{22} \end{bmatrix}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Internal hinge

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \qquad \text{If} \{\delta_{p}\} = 0 \qquad \{F_{P}\} = [K_{PF}] \{\delta_{F}\}$$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

$$\{\delta\} \qquad \qquad \{d_e\} \qquad \qquad \{F_e\} = [K_e]\{d_e\} - \{F_0\}$$

 $\{F_e\}$: The vector of equivalent nodal forces at element level

Problem Discerption

 $E = 200 \ GPa$ $A = 0.02 \ m^2$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

3D Truss Problem Consistent Units

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)	
Length	m	mm	ft	in	
Force	N	N lbf		lbf	
Mass	kg	tonne (10 ³ kg)	slug	lbf s ² /in	
Time	s	S	s	s	
Stress	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi (lbf/in ²)	
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf	
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s ² /in ⁴	

Data Preparation (Create Input file)

geom (nnd, dim=3)

Nodes Coordinates

connec (nel, nne=2)

Element Connectivity

Material and Geometrical Properties

E = 200 GPa $A = 0.02 m^2$

Boundary Conditions

nf (nnd, nodof=3)

Loading

load (nnd, dim=3)

Discretization and Interpolation

$$u(x) = c_{0} + c_{1}x$$

$$u(x = 0) = u_{1} = c_{0}$$

$$u(x) = \left[\frac{(u_{2} - u_{1})}{L}\right]x + u_{1}$$

$$v(x) = c_{0}' + c_{1}'x$$

$$v(x = 0) = v_{1} = c_{0}'$$

$$v(x) = \left[\frac{(v_{2} - v_{1})}{L}\right]x + v_{1}$$

$$w(x) = c_{0}'' + c_{1}'x$$

$$w(x = 0) = w_{1} = c_{0}''$$

$$w(x) = \left[\frac{(w_{2} - w_{1})}{L}\right]x + w_{1}$$

$$w(x) = \left[\frac{(u_{1} - u_{1})}{L}\right]x + w_{1}$$

$$w(x) = \left[\frac{(u_{2} - u_{1})}{L}\right]x + w_{1}$$

$$w(x) = \left[\frac{(u_{1} - u_{1})}{L}\right]x + w_{1}$$

Local Stiffness Matrix

Transformation Matrix

Transformation Matrix

Element stiffness matrix in the global coordinate system

Matrix Form

$$[k] = [R]^T [k^{\prime}][R]$$

Index Form

$$\{k\} = k_{ij}e_ie_j \qquad e'_m = r_{mi}e_i$$
$$\{k'\} = k'_{mn}e'_me'_n \qquad e'_n = r_{nj}e_j$$

$$k_{ij} = k'_{mn} r_{mi} r_{nj}$$
More Efficient Procedure

$$\begin{cases} f_{1x} = EA\left(\frac{u_1 - u_2}{L}\right) \\ f_{2x} = EA\left(\frac{u_2 - u_1}{L}\right) \end{cases} \qquad [k_e] = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

 $\{r'_x\} = [\cos(x, y') \quad \cos(y, y') \quad \cos(z, y')]\{r_x\}$

 $[K_e] = [R]^T [k_e] [R]$

$$\cos(x, x') = \frac{x_j - x_i}{L} \quad \cos(y, x') = \frac{y_j - y_i}{L} \quad \cos(z, x') = \frac{z_j - z_i}{L}$$

$$[R] = \begin{bmatrix} [T] & [0] \\ [0] & [T] \end{bmatrix} = \begin{bmatrix} \frac{x_j - x_i}{L} & \frac{y_j - y_i}{L} & \frac{z_j - z_i}{L} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{x_j - x_i}{L} & \frac{y_j - y_i}{L} & \frac{z_j - z_i}{L} \end{bmatrix}$$

$$[R] \bigotimes \qquad \text{Global} \qquad \qquad \text{Coordinate} \qquad \qquad [R]^T \bigotimes \qquad \text{Local} \qquad \qquad \text{Coordinate} \qquad \qquad \text{Coordinate}$$

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

Problem Description

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)	
Length	m	mm	ft	in	
Force	Ν	Ν	lbf	lbf	
Mass	kg	tonne (10 ³ kg)	slug	lbf s ² /in	
Time	s	S	s	S	
Stress	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi (lbf/in ²)	
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf	
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s²/in4	

Discretization

 $\frac{qL^2}{8}$

 $\frac{5qL}{8}$

Data Preparation (Create Input file)

geom (nnd, dim=2)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

connec (nel, nne=2)

E

A

Boundary Conditions

nf (nnd, nodof=3)

Loading

load (nnd, nodof=3)

Interpolation (Shape Function)

Interpolation (Shape Function)

$$v(x) = \frac{1}{L^3} [2x^3 - 3x^2L + L^3] v_1 + \frac{1}{L^3} [x^3L - 2x^2L^2 + xL^3] \theta_1 + \frac{1}{L^3} [-2x^3 + 3x^2L] v_2 + \frac{1}{L^3} [x^3L - x^2L^2] \theta_2$$

$$N_3 = \frac{1}{L^3} [2x^3 - 3x^2L + L^3] \quad N_4 = \frac{1}{L^3} [x^3L - 2x^2L^2 + xL^3] \quad N_5 = \frac{1}{L^3} [-2x^3 + 3x^2L] \quad N_6 = \frac{1}{L^3} [x^3L - x^2L^2] \theta_2$$

$$\begin{cases} u(x) \\ v(x) \end{cases} = [N] \{ d_e \}$$

$$\begin{cases} u(x) \\ v(x) \end{cases} = \begin{bmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 \\ 0 & N_3 & N_4 & 0 & N_5 & N_6 \end{bmatrix} \begin{cases} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{cases}$$

Direct Equilibrium Approach

$$f_{x1} = EA\left(\frac{u_1 - u_2}{L}\right)$$
$$f_{x2} = EA\left(\frac{u_2 - u_1}{L}\right)$$

$$F_{y1} = EI \frac{d^3 v(x)}{dx^3} \Big|_{x=0} = \frac{EI}{L^3} (12v_1 + 6L\theta_1 - 12v_2 + 6L\theta_2)$$

$$M_1 = -EI \frac{d^2 v(x)}{dx^2} \Big|_{x=0} = \frac{EI}{L^3} (6Lv_1 + 4L^2\theta_1 - 6Lv_2 + 2L^2\theta_2)$$

$$F_{y2} = -EI \frac{d^3 v(x)}{dx^3} \Big|_{x=L} = \frac{EI}{L^3} (-12v_1 - 6L\theta_1 + 12v_2 - 6L\theta_2)$$

$$M_2 = EI \frac{d^2 v(x)}{dx^2} \Big|_{x=L} = \frac{EI}{L^3} (6Lv_1 + 2L^2\theta_1 - 6Lv_2 + 4L^2\theta_2)$$

 $\{d_e\} = \{u_1, v_1, \theta_1, u_2, v_2, \theta_2\}^T \{F_e\} = \{F_{x1}, F_{y1}, M_1, F_{x2}, F_{y2}, M_2\}^T$

hinge at its left end:

$$[K_e] = \begin{bmatrix} AE/L & 0 & 0 & -AE/L & 0 & 0 \\ 0 & 3EI/L^3 & 0 & 0 & -3EI/L^3 & 3EI/L^2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -AE/L & 0 & 0 & AE/L & 0 & 0 \\ 0 & -3EI/L^3 & 0 & 0 & 3EI/L^3 & -3EI/L^2 \\ 0 & 3EI/L^2 & 0 & 0 & -3EI/L^2 & 3EI/L \end{bmatrix}$$

Global Stiffness Matrix

$$\{d_e\} = [C]^T \{d_e\}$$
$$[K_e] \{d_e\} = \{f_e\}$$
$$\{f_e\} = [C]^T \{\overline{f_e}\}$$

$$[C][K_e][C]^T \{\overline{d_e}\} = \{\overline{f_e}\} \qquad [\overline{K_e}]\{\overline{d_e}\} = \{\overline{f_e}\}$$
$$[\overline{K_e}] = [C][K_e][C]^T$$
$$\mathcal{R}^T \models \mathcal{R} \longrightarrow \mathcal{R} = [T] \xrightarrow{T}$$

[<i>C</i>] =	$\cos \theta$	$-\sin\theta$	0	0	0	0
	sin 0	$\cos \theta$	0	0	0	0
	0	0	1	0	0	0
	0	0	0	$\cos \theta$	$-\sin\theta$	0
	0	0	0	$\sin \theta$	$\cos \theta$	0
	0	0	0	0	0	1

Element stiffness matrix in the global coordinate system

 $[\overline{K_e}] = [C][K_e][C]^T$

Assemblage

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

 $\{F_P\} = [K_{PF}] \{\delta_F\}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

 $\{\delta\} \longrightarrow \{\overline{d_3}\} \longrightarrow \{d_3\} = [C_3]^T \{\overline{d_3}\}$

Problem Description

Discretization

Statically Equivalent Nodal Loads

Data Preparation (Create Input file)

geom (nnd, dim = 3)

Nodes Coordinates

connec (nel, nne = 2)

Element Connectivity

Material and Geometrical Properties

E = 200 GPa $A = 0.02 m^{2}$ $I = m^{4}$

Boundary Conditions

nf (nnd, nodof = 6)

Loading

load (nnd, nodof = 6)

Interpolation (Shape Function)

Interpolation (Shape Function)

 $u(x) = \left[1 - \frac{x}{L}\right]u_1 + \left[\frac{x}{L}\right]u_2 \qquad \qquad N_1 = \left[1 - \frac{x}{L}\right] \qquad N_2 = \left[\frac{x}{L}\right]$

$$v(x) = \frac{1}{L^3} [2x^3 - 3x^2L + L^3] v_1 + \frac{1}{L^3} [x^3L - 2x^2L^2 + xL^3] \theta_1 + \frac{1}{L^3} [-2x^3 + 3x^2L] v_2 + \frac{1}{L^3} [x^3L - x^2L^2] \theta_2$$

$$N_3 = \frac{1}{L^3} [2x^3 - 3x^2L + L^3] \quad N_4 = \frac{1}{L^3} [x^3L - 2x^2L^2 + xL^3] \quad N_5 = \frac{1}{L^3} [-2x^3 + 3x^2L] \quad N_6 = \frac{1}{L^3} [x^3L - x^2L^2] \theta_2$$

$$\begin{cases} u(x) \\ v(x) \end{cases} = [N]\{d_e\}$$

$$\begin{cases} u(x) \\ v(x) \end{cases} = \begin{bmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 \\ 0 & N_3 & N_4 & 0 & N_4 & N_6 \end{bmatrix} \begin{cases} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{cases}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Milad Vahidian, Ph.D. Student of Mechanical Engineering

3D Frames

Transformation Matrix

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Transformation Matrix

Element stiffness matrix in the global coordinate system

Matrix Form

$$[k] = [R]^T [k'][R]$$

Index Form

$$\{k\} = k_{ij}e_ie_j \qquad e'_m = r_{mi}e_i$$
$$\{k'\} = k'_{mn}e'_me'_n \qquad e'_n = r_{nj}e_j$$

$$k_{ij} = k'_{mn} r_{mi} r_{nj}$$

Global Stiffness Matrix

 $[k] = [R]^T [k^{/}][R]$

Element stiffness matrix in the global coordinate system

Assemblage

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

 $\{F_P\} = [K_{PF}] \{\delta_F\}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

Problem Discerption

Space Discretization: Mesh Generation

For each interval i and j, four nodes n1, n2, n3, and n4 and **two** elements are created. The first element has nodes n1, n2, n3, while the second element has nodes n2, n4, n3.

Interpolation (Shape) Function

$$N_1(x, y) = m_{11} + m_{12}x + m_{13}y$$
$$N_2(x, y) = m_{21} + m_{22}x + m_{23}y$$
$$N_3(x, y) = m_{31} + m_{32}x + m_{33}y$$

$$A = \frac{1}{2} \det \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix}$$

Element Stiffness Matrix: Variational Approach

$$U = \frac{1}{2} \iint_{A} P\left[\left(\frac{\partial w}{\partial x}\right)^{2} + \left(\frac{\partial w}{\partial y}\right)^{2}\right] dA$$

$$T = \frac{1}{2} \iint_{A} \rho\left(\frac{\partial w}{\partial t}\right)^{2} dA$$

$$\delta I = \delta \int_{t_{1}}^{t_{2}} \left[\iint_{A} (U - W - T) dA\right] dt = 0$$

$$W = \iint_{A} f(x, y, t)w(x, y, t) dA$$

$$\delta I = \int_{t_{1}}^{t_{2}} \left[\iint_{A} P\left[\frac{\partial w}{\partial x}\delta\left(\frac{\partial w}{\partial x}\right) + \frac{\partial w}{\partial y}\delta\left(\frac{\partial w}{\partial y}\right)\right] dA - \iint_{A} f(x, y, t)\delta w(x, y, t) dA - \iint_{A} \rho\frac{\partial^{2} w}{\partial t^{2}}\delta w(x, y, t) dA\right] dt = 0$$

$$w = [N]\{a\}$$

$$\delta I = \left(\left(\iint_{A} P\left[\frac{\partial [N]^{T}}{\partial x}\frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y}\frac{\partial [N]}{\partial y}\right] dA\right)\{a\} - \left(\iint_{A} [N]^{T} f(x, y, t) dA\right) - \left(\iint_{A} [N]^{T} \rho dA\right)\{\ddot{a}\}\right)\delta\{a\} = 0$$

Element Stiffness Matrix: Variational Approach

$$\left(\iint_{A} P\left[\frac{\partial[N]^{T}}{\partial x}\frac{\partial[N]}{\partial x} + \frac{\partial[N]^{T}}{\partial y}\frac{\partial[N]}{\partial y}\right]dA\right)\{a\} - \left(\iint_{A} [N]^{T}f(x,y,t)dA\right) - \left(\iint_{A} [N]^{T}\rho \, dA\right)\{\ddot{a}\} = 0$$

 $[M]{\ddot{a}(t)} + [K]{a(t)} = F(t)$

$$[M] = \iint_{A} [N]^{T} \rho[N] dA \qquad [K] = \iint_{A} P\left(\frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y}\right) dA \qquad F(t) = \iint_{A} [N]^{T} f(x, y, t) dA$$

Element Stiffness Matrix: Galerkin Approach

$$P\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) + f(x, y, t) = \rho \frac{\partial^2 w}{\partial t^2} = [N]\{a\} \iint_A [N]^T \left[P\left(\frac{\partial^2 [N]}{\partial x^2} + \frac{\partial^2 [N]}{\partial y^2}\right) \{a\} + f(x, y, t) - \rho[N]\{\ddot{a}\} \right] dA = 0$$

$$\iint_A \left[-P\left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y}\right) \{a\} + [N]^T f(x, y, t) - [N]^T \rho[N]\{\ddot{a}\} \right] dA + \oint_C [N]^T P\left(\frac{\partial [N]}{\partial x} n_x + \frac{\partial [N]}{\partial y} n_y\right) dC = 0$$

$$[M]\{\ddot{a}(t)\} + [K]\{a(t)\} = F(t)$$

$$[M] = \iint_A [N]^T \rho[N] dA \qquad [K] = \iint_A P\left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y}\right) dA \qquad F(t) = \iint_A [N]^T f(x, y, t) dA$$

Element Stiffness Matrix

$$[M] = \iint_{A} [N]^{T} \rho[N] dA = \iint_{A^{e}} \begin{bmatrix} L_{i} \\ L_{j} \\ L_{k} \end{bmatrix} \rho [L_{i} \quad L_{j} \quad L_{k}] dx dy = \rho \iint_{A^{e}} \begin{bmatrix} L_{i}^{2} & L_{i}L_{j} & L_{i}L_{k} \\ L_{j}L_{i} & L_{j}^{2} & L_{j}L_{k} \\ L_{k}L_{i} & L_{k}L_{j} & L_{k}^{2} \end{bmatrix} = \frac{\rho}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\begin{split} & [K] = \iint_{A} T \left(\frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y} \right) dA = \iint_{A^{e}} \begin{bmatrix} m_{21} \\ m_{22} \\ m_{23} \end{bmatrix} T \begin{bmatrix} m_{21} & m_{22} & m_{21} \\ m_{21} & m_{21} & m_{22} & m_{21} \\ m_{22} & m_{21} & m_{22}^{2} & m_{22} \\ m_{23} & m_{21} & m_{23} \\ m_{23} & m_{21} & m_{23} \\ m_{23} & m_{21} & m_{23} \\ m_{23} & m_{22} & m_{22}^{2} \end{bmatrix} + TA \begin{bmatrix} m_{21}^{2} & m_{22} \\ m_{23}^{2} & m_{31} \\ m_{32} \\ m_{31} & m_{32} \\ m_{33} \\ m_{31} & m_{33} \\ m_{33} \\ m_{31} & m_{33} \\ m_{33} \\ m_{33} \\ m_{31} & m_{33} \\ m_$$

$$\{F(t)\} = \iint_A \ [N]^T P \ dA$$

Assemblage
Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Solve (free) Nodal Displacement

 $\{\delta_F\} = [K_{FF}]^{-1} \{\{F_F\} - [K_{FP}] \{\delta_P\}\}$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \qquad \text{If} \{\delta_{p}\} = 0 \qquad \{F_{P}\} = [K_{PF}] \{\delta_{F}\}$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector **edg**

b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0

c. Otherwise edg(j) = delta(g(j))

2. Obtain element strain vector **eps = bee** × **edg**

3. Obtain element stress vector **sigma = dee** × **bee** × **edg**

- 4. Store the strains for all the elements **EPS(i, :) = eps** for printing to result file
- 5. Store the stresses for all the elements **SIGMA(i, :) = sigma** for printing to result file

Problem Discerption

Space Discretization: Mesh Generation

Interpolation (Shape) Function

 $w(\xi,\eta) = c_0 + c_1\xi + c_2\eta + c_3\xi\eta$

 $N_{1}(\xi,\eta) = 0.25(1 - \xi - \eta + \xi\eta)$ $N_{2}(\xi,\eta) = 0.25(1 + \xi - \eta - \xi\eta)$ $N_{3}(\xi,\eta) = 0.25(1 + \xi + \eta + \xi\eta)$ $w(\xi,\eta) = N_{1}w_{1} + N_{2}w_{2} + N_{3}w_{3} + N_{4}w_{4}$ $N_{4}(\xi,\eta) = 0.25(1 - \xi + \eta - \xi\eta)$

$$y$$
 u_4 u_4 u_3 u_3 u_3 u_4 u_4 u_4 u_4 u_3 u_2 u_2 u_2 u_2 u_3 u_4 u_4 u_1 u_1 u_2 u_2 u_3 u_3 u_4 » n

A 1/

$$w(\xi,\eta,t) = \begin{bmatrix} N_1(\xi,\eta) & N_2(\xi,\eta) & N_3(\xi,\eta) & N_4(\xi,\eta) \end{bmatrix} \begin{cases} w_1(t) \\ w_2(t) \\ w_3(t) \\ w_4(t) \end{cases}$$

Element Stiffness Matrix: Variational Approach

$$\begin{split} U &= \frac{1}{2} \iint_{A} P\left[\left(\frac{\partial w}{\partial x}\right)^{2} + \left(\frac{\partial w}{\partial y}\right)^{2}\right] dA \\ T &= \frac{1}{2} \iint_{A} \rho\left(\frac{\partial w}{\partial t}\right)^{2} dA \\ W &= \iint_{A} f(x, y, t)w(x, y, t) dA \\ \delta I &= \int_{t_{1}}^{t_{2}} \left[\iint_{A} P\left[\frac{\partial w}{\partial x}\delta\left(\frac{\partial w}{\partial x}\right) + \frac{\partial w}{\partial y}\delta\left(\frac{\partial w}{\partial y}\right)\right] dA - \iint_{A} f(x, y, t)\delta w(x, y, t) dA - \iint_{A} \rho\frac{\partial^{2} w}{\partial t^{2}}\delta w(x, y, t) dA \right] dt = 0 \\ W &= [N]\{a\} \\ \delta I &= \left(\left(\iint_{A} P\left[\frac{\partial [N]^{T}}{\partial x}\frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y}\frac{\partial [N]}{\partial y}\right] dA \right) \{a\} - \left(\iint_{A} [N]^{T} f(x, y, t) dA \right) - \left(\iint_{A} [N]^{T} \rho dA \right) \{\ddot{a}\} \right) \delta\{a\} = 0 \end{split}$$

Element Stiffness Matrix: Variational Approach

$$\left(\iint_{A} P\left[\frac{\partial [N]^{T}}{\partial x}\frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y}\frac{\partial [N]}{\partial y}\right]dA\right)\{a\} - \left(\iint_{A} [N]^{T}f(x,y,t)dA\right) - \left(\iint_{A} [N]^{T}\rho \, dA\right)\{\ddot{a}\} = 0$$

 $[M]{\ddot{a}(t)} + [K]{a(t)} = F(t)$

$$[M] = \iint_{A} [N]^{T} \rho[N] dA \qquad [K] = \iint_{A} P\left(\frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y}\right) dA \qquad F(t) = \iint_{A} [N]^{T} f(x, y, t) dA$$

Element Stiffness Matrix: Galerkin Approach

$$P\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) + f(x, y, t) = \rho \frac{\partial^2 w}{\partial t^2} = [N] \{a\} \iint_A [N]^T \left[P\left(\frac{\partial^2 [N]}{\partial x^2} + \frac{\partial^2 [N]}{\partial y^2}\right) \{a\} + f(x, y, t) - \rho[N] \{\ddot{a}\} \right] dA = 0$$

$$\iint_A \left[-P\left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y}\right) \{a\} + [N]^T f(x, y, t) - [N]^T \rho[N] \{\ddot{a}\} \right] dA + \oint_C [N]^T P\left(\frac{\partial [N]}{\partial x} n_x + \frac{\partial [N]}{\partial y} n_y\right) dC = 0$$

$$[M] \{\ddot{a}(t)\} + [K] \{a(t)\} = F(t)$$

$$[M] = \iint_A [N]^T \rho[N] dA \qquad [K] = \iint_A P\left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y}\right) dA \qquad F(t) = \iint_A [N]^T f(x, y, t) dA$$

Element Stiffness Matrix

$$[M] = \iint_{A} [N]^{T} \rho[N] dA = \frac{\rho}{9} \begin{bmatrix} 4 & 2 & 1 & 2 \\ 2 & 4 & 2 & 4 \\ 1 & 2 & 4 & 2 \\ 2 & 1 & 2 & 4 \end{bmatrix}$$

$$[K] = \iint_{A} P\left(\frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y}\right) dA$$

$$\{F(t)\} = \iint_A [N]^T f(x, y, t) dA$$

Element Stiffness Matrix

$$\begin{cases} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{cases} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_i}{\partial \eta} \end{bmatrix} \begin{cases} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_i}{\partial \eta} \end{cases} \quad [J] = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^4 \frac{\partial N_i}{\partial \xi} x_i & \sum_{i=1}^4 \frac{\partial N_i}{\partial \xi} y_i \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \frac{\partial N_3}{\partial \xi} & \frac{\partial N_4}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_i}{\partial \eta} y_i \end{bmatrix}$$

Isoparametric Element

 $x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$ $y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$

Element Stiffness Matrix

 $[M]\{\ddot{a}(t)\} + [K]\{a(t)\} = F(t)$

$$[M] = \iint_{A} [N]^{T} \rho[N] dA = \frac{\rho}{9} \begin{bmatrix} 4 & 2 & 1 & 2 \\ 2 & 4 & 2 & 4 \\ 1 & 2 & 4 & 2 \\ 2 & 1 & 2 & 4 \end{bmatrix}$$

$$[K] = \iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x}\frac{\partial[N]}{\partial x} + \frac{\partial[N]^{T}}{\partial y}\frac{\partial[N]}{\partial y}\right)dA \qquad [K] = P\int_{-1}^{+1}\int_{-1}^{+1}\left(\frac{\partial[N]^{T}}{\partial x}\frac{\partial[N]}{\partial x} + \frac{\partial[N]^{T}}{\partial y}\frac{\partial[N]}{\partial y}\right)det[J(\xi,\eta)]d\xi d\eta$$

$$= t \sum_{i=1}^{nhp} W_i[B(\xi_i, \eta_i]^T[D][B(\xi_i, \eta_i)] \det[J(\xi_i, \eta_i)]$$

Assemblage

Assemblage

Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Solve (free) Nodal Displacement

 $\{\delta_F\} = [K_{FF}]^{-1} \{\{F_F\} - [K_{FP}] \{\delta_P\}\}$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \qquad \text{If} \{\delta_{p}\} = 0 \qquad \{F_{P}\} = [K_{PF}] \{\delta_{F}\}$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector **edg**

b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0

c. Otherwise edg(j) = delta(g(j))

2. Obtain element strain vector **eps = bee** × **edg**

3. Obtain element stress vector **sigma = dee** × **bee** × **edg**

- 4. Store the strains for all the elements **EPS(i, :) = eps** for printing to result file
- 5. Store the stresses for all the elements **SIGMA(i, :) = sigma** for printing to result file

Problem Discerption

$$E = 70 GPa$$
 $v = 0.33$ Thickness $= 2 mm$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress

Plane strain

The infinitesimal strain displacements relations for both theories

By substitution

$$\begin{cases} \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}]\{\boldsymbol{U}\} \\ \{\boldsymbol{U}\} = [\boldsymbol{N}]\{\boldsymbol{a}\} \end{cases} \quad \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\} = [\boldsymbol{B}]\{\boldsymbol{a}\} \qquad [\boldsymbol{B}] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & | & \frac{\partial N_2}{\partial x} & 0 & | & \dots & | & \frac{\partial N_n}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & | & 0 & \frac{\partial N_2}{\partial y} & | & \dots & | & 0 & \frac{\partial N_n}{\partial y} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & | & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial x} & | & \dots & | & \frac{\partial N_n}{\partial y} & \frac{\partial N_n}{\partial x} \end{bmatrix}$$

Variational Approach

$$\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} dV = \int_{V_{e}} \delta\{U\}^{T}\{b\} dV + \int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d\Gamma + \sum_{i} \delta\{U\}^{T}_{([x]=[\overline{x}])}\{P\}_{i}$$

$$\{\delta\epsilon\} = \delta([B]\{a\}) = [B]\{\delta a\} \qquad \{\delta U\} = \delta([N]\{a\}) = [N]\{\delta a\} \qquad \{\sigma\} = [D]\{\epsilon\} = [D][B]\{a\}$$

$$\left[\int_{A_{e}} [B]^{T}[D][B]tdA\right] \{a\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

connec(nel, 3)

Material and Geometrical Properties

 $E = 70 \times 10^3 MPa \ \nu = 0.3$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector **fg**

Interpolation

Constant Strain Triangle (CST)

 $N_1(x, y) = m_{11} + m_{12}x + m_{13}y$ $N_2(x, y) = m_{21} + m_{22}x + m_{23}y$ $N_3(x, y) = m_{31} + m_{32}x + m_{33}y$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Stiffness Matrix

$$[K_e]\{a\}=f_e$$

$[K_e] = [B]^T [D] [B] t A_e$

y

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \qquad \text{If} \{\delta_{p}\} = 0 \qquad \{F_{P}\} = [K_{PF}] \{\delta_{F}\}$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector **edg**

b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0

c. Otherwise edg(j) = delta(g(j))

2. Obtain element strain vector **eps = bee** × **edg**

3. Obtain element stress vector **sigma = dee** × **bee** × **edg**

- 4. Store the strains for all the elements **EPS(i, :) = eps** for printing to result file
- 5. Store the stresses for all the elements **SIGMA(i, :) = sigma** for printing to result file

Problem Discerption

Milad Vahidian, Ph.D. Student of Mechanical Engineering

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress

Plane strain

The infinitesimal strain displacements relations for both theories

Variational Approach

$$\int_{V_{\epsilon}} \delta\{\epsilon\}^{T}\{\sigma\} dV = \int_{V_{\epsilon}} \delta\{U\}^{T}\{b\} dV + \int_{\Gamma_{\epsilon}} \delta\{U\}^{T}\{t\} d\Gamma + \sum_{i} \delta\{U\}^{T}_{([x]=[\overline{x}])}\{P\}_{i}$$

$$\{\delta\epsilon\} = \delta([B]\{a\}) = [B]\{\delta a\} \qquad \{\delta U\} = \delta([N]\{a\}) = [N]\{\delta a\} \qquad \{\sigma\} = [D]\{\epsilon\} = [D][B]\{a\}$$

$$\left[\int_{A_{\epsilon}} [B]^{T}[D][B]tdA\right] \{a\} = \int_{A_{\epsilon}} [N]^{T}\{b\}tdA + \int_{L_{\epsilon}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{\epsilon}\} = \int_{A_{\epsilon}} [N]^{T}\{b\}tdA + \int_{L_{\epsilon}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{\epsilon}\} = \int_{A_{\epsilon}} [N]^{T}\{b\}tdA + \int_{L_{\epsilon}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$[K_{\epsilon}]\{a\} = f_{\epsilon}$$

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

connec(nel, nne)

Material and Geometrical Properties

 $E = 2 \times 10^5 MPa \quad v = 0.3$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector ${f F}$

Discretization

9	12 12	23 nel =	34 = 2.K	45	0 56	0 67	7 8	89 Milad	100 Vahidia	0 111	122	133	144	155	166	177	188	199	210	221	232	243	254	265
2	13 13	24	0 35	0 46	0 57	0 68	0 79	0 90	101	0 112	123	134	0 145	0 156	167	178	0 189	200	211	222	233	0 244	255	266
3	0 14	25	8 36	47	0 58	0 69	0 80	0 91	102	113	1 <mark>0</mark>	135	0 146	1 <mark>0</mark> 157	1 <mark>0</mark>	1 <mark>7</mark> 9	1 <mark>9</mark> 0	201	212	2 <mark>0</mark> 223	2 <mark>0</mark> 234	245	2 <mark>0</mark> 256	267
<mark>9</mark>	0 15	0 26	<mark>0</mark> 37	0 48	0 59	₩	0 81	0 92	1 <mark>0</mark> 3	1 <mark>0</mark> 114	125	1 <mark>0</mark> 136	1 <mark>0</mark> 147	1 <mark>0</mark>	1 <mark>0</mark> 9	1 <mark>8</mark> 0	191	202	213	224	235	2 <mark>0</mark> 246	257	268
<mark>0</mark> 5	<mark>0</mark> 16	<mark>0</mark> 27	0 38	0 49	0 60	<mark>9</mark>	<mark>0</mark> 82	0 93	104	0 115	126	137	148	0 159	1 <mark>7</mark> 0	181	192	203	0 214	225	236	247	258	269
6	17	0 28	<mark>0</mark> 39	50	0 61	0 72	0 83	0 94	105	1 <mark>9</mark> 116	127	1 <mark>0</mark> 138	1 <mark>0</mark> 149	160	171	1 <mark>8</mark> 2	1 <mark>9</mark> 3	204	215	226	237	2 <mark>4</mark> 8	259	270
9	<mark>0</mark> 18	0 29	0 40	0 51	<mark>0</mark> 62	<mark>0</mark> 73	<mark>0</mark> 84	0 95	106	117	1 <mark>2</mark> 8	0 139	150	161	172	183	194	205	216	227	238	249	260	271
8	<mark>0</mark> 19	<mark>0</mark> 30	<mark>9</mark> 41	0 52	0 63	7 4	0 85	0 96	107	118	129	140	151	162	173	184	195	206	217	228	239	250	2 <mark>6</mark> 1	272
<mark>0</mark> 9	0 20	0 31	0 42	0 53	0 64	<mark>0</mark> 75	0 86	0 97	108	0 119	1 <mark>0</mark> 130	141	152	163	174	185	196	207	218	229	2 <mark>4</mark> 0	251	262	273
0 10	0 21	0 32	<mark>9</mark> 43	0 54	0 65	7 6	<mark>0</mark> 87	0 98	109	120	1 <mark>0</mark> 131	142	1 <mark>5</mark> 3	1 <mark>6</mark> 4	175	1 <mark>8</mark> 6	1 <mark>9</mark> 7	208	219	230	2 <mark>0</mark> 241	252	2 <mark>6</mark> 3	274
0 11	0 22	<mark>0</mark> 33	0 44	0 55	0 66	9 7	0 88	0 99	110	121	132	0 143	0 154	0 165	176	187	0 198	209	220	231	0 242	0 253	0 264	275

Interpolation

Linear Strain Triangle (LST)

$$\begin{cases} N_1(\xi,\eta) \\ N_2(\xi,\eta) \\ N_3(\xi,\eta) \\ N_4(\xi,\eta) \\ N_5(\xi,\eta) \\ N_6(\xi,\eta) \end{cases} = \begin{cases} -\lambda(1-2\lambda) \\ 4\xi\lambda \\ -\xi(1-2\xi) \\ 4\xi\eta \\ -\eta(1-2\eta) \\ 4\eta\lambda \end{cases}$$

 $u = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4 + N_5 u_5 + N_6 u_6$ $v = N_1 v_1 + N_2 v_2 + N_3 v_3 + N_4 v_4 + N_5 v_5 + N_6 v_6$

$$\{U\} = [N]\{a\}$$

Stiffness Matrix

Stiffness Matrix

 $[K_e]{a} = f_e$ $[K_e] = \left[\int_{A} [B]^T [D] [B] t \, dA \right]$ $+11-\xi$ $[K_e] = t \int_{0}^{1} \int_{0}^{1} [B(\xi,\eta)]^T [D] [B(\xi,\eta)] \det[J(\xi,\eta)] d\eta d\xi$ $= t \sum W_i [B(\xi_i, \eta_i)]^T [D] [B(\xi_i, \eta_i)] \det [J(\xi_i, \eta_i)]$

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Deflection of the Neutral Line of Cantilever Beam

$$v = \frac{vPxy^2}{2EI} + \frac{Px^3}{6EI} - \frac{PL^2x}{2EI} + \frac{PL^3}{3EI}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \qquad \text{If} \{\delta_{p}\} = 0 \qquad \{F_{P}\} = [K_{PF}] \{\delta_{F}\}$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector g

a. Loop over the degrees of freedom of the element to obtain element displacements vector **edg**

b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0

c. Otherwise edg(j) = delta(g(j))

2. Obtain element strain vector **eps = bee** × **edg**

3. Obtain element stress vector **sigma = dee** × **bee** × **edg**

- 4. Store the strains for all the elements **EPS(i, :) = eps** for printing to result file
- 5. Store the stresses for all the elements **SIGMA(i, :) = sigma** for printing to result file

Problem Discerption

Milad Vahidian, Ph.D. Student of Mechanical Engineering

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress

Plane strain

The infinitesimal strain displacements relations for both theories

By substitution

$$\begin{cases} \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}]\{\boldsymbol{U}\} \\ \{\boldsymbol{U}\} = [\boldsymbol{N}]\{\boldsymbol{a}\} \end{cases} \quad \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\} = [\boldsymbol{B}]\{\boldsymbol{a}\} \qquad [\boldsymbol{B}] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & | & \frac{\partial N_2}{\partial x} & 0 & | & \dots & | & \frac{\partial N_n}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & | & 0 & \frac{\partial N_2}{\partial y} & | & \dots & | & 0 & \frac{\partial N_n}{\partial y} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & | & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial x} & | & \dots & | & \frac{\partial N_n}{\partial y} & \frac{\partial N_n}{\partial x} \end{bmatrix}$$

Variational Approach

$$\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} dV = \int_{V_{e}} \delta\{U\}^{T}\{b\} dV + \int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d\Gamma + \sum_{i} \delta\{U\}^{T}_{([x]=[\overline{x}])}\{P\}_{i}$$

$$\{\delta\epsilon\} = \delta([B]\{a\}) = [B]\{\delta a\} \qquad \{\delta U\} = \delta([N]\{a\}) = [N]\{\delta a\} \qquad \{\sigma\} = [D]\{\epsilon\} = [D][B]\{a\}$$

$$\left[\int_{A_{e}} [B]^{T}[D][B]tdA\right] \{a\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

connec(nel, nne)

Material and Geometrical Properties

 $E = 4 \times 10^4 MPa \ \nu = 0.17$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector **fg**

Discretization: Mesh Generation


```
nnd =0;
for i = 1:NXE
  for j=1:NYE
   k = k + 1;
    n1 = j + (i-1)^*(NYE + 1);
    geom(n1,:) = [(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin];
   n2 = j + i^{*}(NYE+1);
    geom(n2,:) = [i*dhx-X_origin, (j-1)*dhy-Y_origin];
    n3 = n1 + 1;
    geom(n3,:) = [(i-1)*dhx-X_{origin}, j*dhy-Y_{origin}];
    n4 = n2 + 1;
    geom(n4,:) = [i*dhx-X_origin, j*dhy-Y_origin];
    nel = k;
    connec(nel,:) = [n1 n2 n4 n3];
    nnd = n4;
```

$N_{a} = 1$ $N_{z} = 10$ Milad Vahidian Ph D. Student of Mechanical Engineering												ing													
n 3		1) 1) 10	20 20 19	0 29 29 28	38 38 37	0 47 46	0 56 55	0 65 64	74 73	0 83 0 82	0 92 91	101 100	110 109	119 118	128 127	137 137 136	0 146 145	155 155 154	164 163	173 172	182 181	191 190	200 199	209 208	218 217
•	03	12 N4*1	21	0 30	0 39	0 48	0 57	0 66	0 75	0 84	0 93	102	111	120	129	0 138	147 147	0 156	0 165	174	0 183	192	201	210	219
	4	13	Ž2	31	40	49	58	67	76	85	94	1Ŭ3	112	121	130	139	148	157	166	175	184	193	2ŏ2	2Ĭ1	220
	g	0	23	32	41 0	50	59	68	\$	86	95	104	113	122	131	140	149	158	167	176	185	194	203	212	221
	6	0 15	0 24	0 33	0 42	0 51	0 60	0 69	<mark>7</mark> 8	<mark>8</mark> 7	0 96	105	114	123	0 132	141	150	0 159	168	177	186	195	204	2 <mark>0</mark> 213	222
	9	0 16	0 25	0 34	0 43	0 52	0 61	7 0	<mark>-</mark> 9	0 88	0 97	106	115	1 <mark>2</mark> 4	133	142	1 <mark>5</mark> 1	1 <mark>6</mark> 0	0 169	178	187	196	205	2 <mark>0</mark> 214	223
	8	0 17	0 26	0 35	0 44	0 53	0 62	71	0 80	0 89	0 98	107	0 116	125	134	143	152	161	170	179	0 188	197	206	215	224
	9	0 18	0 27	0 36	0 45	0 54	0 63	0 72	0 81	0 90	0 99	108	117	126	135	144	153	162	171	180	189	198	207	216	225

Interpolation

Four node Iso-parametric Element

 $N_{1}(\xi,\eta) = 0.25(1 - \xi - \eta + \xi\eta)$ $N_{2}(\xi,\eta) = 0.25(1 + \xi - \eta - \xi\eta)$ $N_{3}(\xi,\eta) = 0.25(1 + \xi + \eta + \xi\eta)$ $N_{4}(\xi,\eta) = 0.25(1 - \xi + \eta - \xi\eta)$

$$u = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4$$
$$v = N_1 v_1 + N_2 v_2 + N_3 v_3 + N_4 v_4$$

$$u(s,n) = c_0 + c_1 s + c_2 n + c_3 s n$$

 $u(-1, -1) = u_n$

u(1,1) = 43

Stiffness Matrix

$$\begin{cases} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{cases} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{cases} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{cases} \quad [J] = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{4} \frac{\partial N_i}{\partial \xi} x_i & \sum_{i=1}^{4} \frac{\partial N_i}{\partial \eta} x_i \\ \frac{\Delta N_i}{\partial \eta} x_i & \sum_{i=1}^{4} \frac{\partial N_i}{\partial \eta} y_i \end{bmatrix} \quad [J] = \begin{bmatrix} \frac{\partial N_i}{\partial \xi} & \frac{\partial N_2}{\partial \xi} & \cdots & \frac{\partial N_4}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \cdots & \frac{\partial N_4}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_i & y_i \\ x_i & y_i \end{bmatrix}$$
$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$
$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$$
$$\begin{bmatrix} J] = \frac{1}{4} \begin{bmatrix} -(1 - \eta) & (1 - \eta) & (1 + \eta) & -(1 + \eta) \\ -(1 - \xi) & -(1 + \xi) & (1 + \xi) & (1 - \xi) \end{bmatrix} \begin{bmatrix} x_i & y_i \\ x_i & y_i \end{bmatrix}$$
$$\begin{bmatrix} x_i & y_i \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial X}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} = [J]^{-1} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

Stiffness Matrix

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel

2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m

3. Initialize the stiffness matrix to zero **a**. Loop over the Gauss points ig = 1 to ngp **b**. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates, $\xi = \text{samp}(\text{ig}, 1)$ and $\eta = \text{samp}(\text{jg}, 1)$.

iv. Evaluate the Jacobian jac = der * coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute the inverse of the Jacobian as jac1 = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 * der

viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d * thick * wi * wj * B * D * B

4. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q4 Force Vectors $\int_{A_{\epsilon}} [N]^T \{b\} t \, dA = t \sum_{i=1}^{ngp} \sum_{j=1}^{ngp} W_i W_j [N(\xi_i, \eta_j)]^T \begin{cases} 0\\ -\rho g \end{cases} det[J(\xi_i, \eta_j)]$ **Body Forces** $q_{x} = \left(q_{t}\frac{\partial x}{\partial\xi} - q_{n}\frac{\partial y}{\partial\xi}\right)d\xi$ **Traction Forces** $q_x = q_t dL \cos \alpha - q_n dL \sin \alpha = q_t dx - q_n dy$ $q_y = q_n dL \cos \alpha + q_t dL \sin \alpha = q_n dx + q_t dy$ $q_{y} = \left(q_{n}\frac{\partial x}{\partial \xi} + q_{t}\frac{\partial y}{\partial \xi}\right)d\xi,$ $\int_{A_{\epsilon}} [N]^{T} \left\{ \begin{array}{c} q_{x} \\ q_{y} \end{array} \right\} dA = t \int_{L_{3-4}} [N(\xi + 1)]^{T} \left\{ \begin{array}{c} q_{x} \\ q_{y} \end{array} \right\} dl$ $= t \sum_{i=1}^{ngp} W_i [N(\xi_i, +1)]^T \begin{cases} \left(q_t \frac{\partial x(\xi_i, +1)}{\partial \xi} - q_n \frac{\partial y(\xi_i, +1)}{\partial \xi} \right) \\ \left(q_n \frac{\partial x(\xi_i, +1)}{\partial \xi} + q_t \frac{\partial y(\xi_i, +1)}{\partial \xi} \right) \end{cases}$ $\begin{bmatrix} 1 & & & & & & & \\ 0 & 1 & & & & & \\ 0 & 0 & & & & & 1 & 0 \end{bmatrix}$ -P2P0 0 0 1 0 $\sum_{k=1}^{\infty} [N]_{x=x_k} \{P_k\} =$ **Concentrated Forces** 0 0 0 0 0 0 0 0 0

When the nodes of an element are numbered anticlockwise a tangential force, such as q_t , is positive if it acts anticlockwise. A normal force, such as q_n , is positive if it acts toward the interior of the element

In practice, when the loads are uniformly distributed they are replaced by equivalent nodal loads. The preceding development is to be used only if the shape of the loading is complicated.

Apply B.C's and Solve (free) Nodal Displacement

$$\begin{bmatrix} [K_{PP}] & \vdots & [K_{PF}] \\ \cdots & \cdots & \cdots \\ [K_{FP}] & \vdots & [K_{FF}] \end{bmatrix} \begin{cases} \{\delta_{P}\} \\ \cdots \\ \{\delta_{F}\} \end{cases} = \begin{cases} \{F_{P}\} \\ \cdots \\ \{\delta_{F}\} \end{cases} = \begin{cases} \{F_{P}\} \\ \cdots \\ \{F_{F}\} \end{cases} \implies \begin{bmatrix} [K_{PP}] \{\delta_{P}\} + [K_{PF}] \{\delta_{F}\} = \{F_{P}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{\{F_{F}\} - [K_{FP}] \{\delta_{P}\} \} = \{F_{F}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{\{F_{F}\} - [K_{FP}] \{\delta_{P}\} = 0 \end{cases}$$

$$\begin{bmatrix} [K_{PP}] \{\delta_{P}\} + [K_{FF}] \{\delta_{F}\} = \{F_{F}\} \} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{F_{F}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{F_{F}\}$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{ \delta_P \} + [K_{PF}] \{ \delta_F \} = \{ F_P \}$$

If
$$\{\delta_p\} = 0$$

$$\{F_P\} = [K_{PF}] \{\delta_F\}$$

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this we set ngp = 1.

1. For each element

- 2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
- 3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)
- a. Loop over the Gauss points ig = 1 to ngp
- b. Loop over the Gauss points jg = 1 to ngp
- c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local coordinates $\xi = \text{samp}(\text{ig}, 1)$ and $\eta = \text{samp}(\text{jg}, 1)$
- d. Evaluate the Jacobian jac = der * coord
- e. Evaluate the determinant of the Jacobian as d = det(jac)
- f. Compute the inverse of the Jacobian as jac1 = inv(jac)
- g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 * der
- h. Use the function formbee.m to form the strain matrix bee
- i. Compute the strains as eps = bee * eld
- j. Compute the stresses as sigma = dee * eps

4. Store the stresses in the matrix SIGMA(nel, 3)

Problem Discerption

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems

Plane stress

Plane strain

The infinitesimal strain displacements relations for both theories

By substitution

$$\begin{cases} \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}]\{\boldsymbol{U}\} \\ \{\boldsymbol{U}\} = [\boldsymbol{N}]\{\boldsymbol{a}\} \end{cases} \quad \{\boldsymbol{\varepsilon}\} = [\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\} = [\boldsymbol{B}]\{\boldsymbol{a}\} \qquad [\boldsymbol{B}] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & | & \frac{\partial N_2}{\partial x} & 0 & | & \dots & | & \frac{\partial N_n}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & | & 0 & \frac{\partial N_2}{\partial y} & | & \dots & | & 0 & \frac{\partial N_n}{\partial y} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & | & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial x} & | & \dots & | & \frac{\partial N_n}{\partial y} & \frac{\partial N_n}{\partial x} \end{bmatrix}$$

Variational Approach

$$\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} dV = \int_{V_{e}} \delta\{U\}^{T}\{b\} dV + \int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d\Gamma + \sum_{i} \delta\{U\}^{T}_{([x]=[\overline{x}])}\{P\}_{i}$$

$$\{\delta\epsilon\} = \delta([B]\{a\}) = [B]\{\delta a\} \qquad \{\delta U\} = \delta([N]\{a\}) = [N]\{\delta a\} \qquad \{\sigma\} = [D]\{\epsilon\} = [D][B]\{a\}$$

$$\left[\int_{A_{e}} [B]^{T}[D][B]tdA\right] \{a\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$\{f_{e}\} = \int_{A_{e}} [N]^{T}\{b\}tdA + \int_{L_{e}} [N]^{T}\{t\}tdl + \sum_{i} [N_{([x]=[\overline{x}])}]^{T}\{P\}_{i}$$

$$[K_{e}]\{a\} = f_{e}$$

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

connec(nel, nne)

Material and Geometrical Properties

 $E = 4 \times 10^4 MPa \ \nu = 0.17$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector **fg**

Discretization: Mesh Generation

Plane Stress Problem: Q8															
3NVE-	(HYEN) = N	23 28	37	0 42	0 51	0 56	0 65	9	0 79	0 84	0 93	0 98	107	0 112	121
		222	0 36		50		0 64		0 78		0 92		106		0 120
	9 <u>1</u> 3	21 27	0 35	0 41	0 49	0 55	0 63	0 69	\$	0 83	91	97	0 105	10 111	119
		•	0 34		0 48		0 62		0 76		90		104		118
	g	19 26	0 33	40	47 47	0 54	0 61	0 68	75	0 82	0 89	0 96	1 <mark>0</mark> 3	110	0 117
		0 18	0 32		0 46		0 60		0 74		0 88		0 102		0 116
	9 11	0 25	0 31	0 39	0 45	0 53	0 59	0 67	0 73	0 81	0 87	0 95	0 101	0 109	0 115
	1	6	0 30		0 44		0 58		0 72		0 86		100		114
	1 10	15 24	0 29	0 38	0 43	0 52	0 57	0 66	71	0 80	0 85	0 94	0 99	108	1 <mark>0</mark> 113
NVE=9	M_{i} Milad Vahidian, Ph.D. Student of Mechanical Engineering														

$$u = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4 + N_5 u_5 + N_6 u_6 + N_7 u_7 + N_8 u_8$$

 $v = N_1 v_1 + N_2 v_2 + N_3 v_3 + N_4 v_4 + N_5 v_5 + N_6 v_6 + N_7 v_7 + N_8 v_8$

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element i = 1 to nel

2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m

3. Initialize the stiffness matrix to zero **a**. Loop over the Gauss points ig = 1 to ngp **b**. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates, $\xi = \text{samp}(\text{ig}, 1)$ and $\eta = \text{samp}(\text{jg}, 1)$.

iv. Evaluate the Jacobian jac = der * coord v. Evaluate the determinant of the Jacobian as d = det(jac) vi. Compute the inverse of the Jacobian as jac1 = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 * der

viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke = ke + d * thick * wi * wj * B * D * B

4. Assemble the stiffness matrix ke into the global matrix kk

dξ

dξ

Force Vectors

$$\begin{array}{ll} \textbf{Body Forces} \qquad \int_{A_{e}} [N]^{T}\{b\}t \, dA = t \sum_{i=1}^{ngp} \sum_{j=1}^{ngp} W_{i}W_{j}[N(\xi_{i},\eta_{j})]^{T} \begin{cases} 0\\ -\rho g \end{cases} det[J(\xi_{i},\eta_{j})] \\ \hline \textbf{Traction Forces} \\ q_{x} = q_{i}dL\cos\alpha - q_{n}dL\sin\alpha = q_{i}dx - q_{n}dy \qquad q_{x} = \left(q_{i}\frac{\partial x}{\partial\xi} - q_{n}\frac{\partial y}{\partial\xi}\right)d\xi \\ q_{y} = q_{n}dL\cos\alpha + q_{i}dL\sin\alpha = q_{n}dx + q_{i}dy \qquad q_{y} = \left(q_{n}\frac{\partial x}{\partial\xi} + q_{i}\frac{\partial y}{\partial\xi}\right)d\xi \\ \int_{A_{e}} [N]^{T} \begin{cases} q_{x} \\ q_{y} \end{cases} dA = t \int_{L_{i-4}} [N(\xi_{i}+1)]^{T} \begin{cases} q_{x} \\ q_{y} \end{cases} dl \\ = t \sum_{i=1}^{ngp} W_{i}[N(\xi_{i},+1)]^{T} \begin{cases} \left(q_{i}\frac{\partial x(\xi_{i},+1)}{\partial\xi} - q_{n}\frac{\partial y(\xi_{i},+1)}{\partial\xi}\right) \\ \left(q_{n}\frac{\partial x(\xi_{i},+1)}{\partial\xi} + q_{i}\frac{\partial y(\xi_{i},+1)}{\partial\xi}\right) \end{cases} \end{cases} \right) \end{aligned}$$

When the nodes of an element are numbered anticlockwise a tangential force, such as q_t , is positive if it acts anticlockwise. A normal force, such as q_n , is positive if it acts toward the interior of the element

In practice, when the loads are uniformly distributed they are eplaced by equivalent nodal loads. The preceding development is to be used only if the shape of the loading is complicated.

Apply B.C's and Solve (free) Nodal Displacement

$$\begin{bmatrix} [K_{PP}] & \vdots & [K_{PF}] \\ \cdots & \cdots & \cdots \\ [K_{FP}] & \vdots & [K_{FF}] \end{bmatrix} \begin{cases} \{\delta_{P}\} \\ \cdots \\ \{\delta_{F}\} \end{cases} = \begin{cases} \{F_{P}\} \\ \cdots \\ \{\delta_{F}\} \end{cases} = \begin{cases} [K_{FP}] \{\delta_{F}\} + [K_{FF}] \{\delta_{F}\} = \{F_{F}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{\{F_{F}\} - [K_{FP}] \{\delta_{P}\}\} \end{cases}$$

$$\begin{bmatrix} [K_{FP}] \{\delta_{P}\} + [K_{FF}] \{\delta_{F}\} = \{F_{F}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{F_{F}\}$$

$$\begin{bmatrix} [K_{FP}] \{\delta_{P}\} + [K_{FF}] \{\delta_{F}\} = \{F_{F}\} \end{cases} \implies \{\delta_{F}\} = [K_{FF}]^{-1} \{F_{F}\} \end{cases}$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_P\} + [K_{PF}] \{\delta_F\} = \{F_P\}$$

If
$$\{\delta_p\} = 0$$

$$\{F_P\} = [K_{PF}] \{\delta_F\}$$

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this we set ngp = 1.

1. For each element

- 2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m
- 3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)
- a. Loop over the Gauss points ig = 1 to ngp
- b. Loop over the Gauss points jg = 1 to ngp
- c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local coordinates $\xi = \text{samp}(\text{ig}, 1)$ and $\eta = \text{samp}(\text{jg}, 1)$
- d. Evaluate the Jacobian jac = der * coord
- e. Evaluate the determinant of the Jacobian as d = det(jac)
- f. Compute the inverse of the Jacobian as jac1 = inv(jac)
- g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 * der
- h. Use the function formbee.m to form the strain matrix bee
- i. Compute the strains as eps = B * eld
- j. Compute the stresses as sigma = D * eps

4. Store the stresses in the matrix SIGMA(nel, 3)

Problem Discerption

LENGTH	MASS	TIME	FORCE	STRESS	ENERGY	VELOCITY	ACCELERATION	
mm	ton	S	N	МРа	mJ	1e-03 m/s	1e-03 m/s ²	
mm	kg	ms	kN	GPa	1e+03 mJ	m/s	1e+03 m/s ²	
mm	g	ms	Ν	МРа	mJ	m/s	1e+03 m/s ²	
mm	kg	S	mN	kPa	1e-03 mJ	1e-03 m/s	1e-03 m/s ²	
mm	g	S	1e-06 N	Ра	1e-06 mJ	1e-03 m/s	1e-03 m/s ²	
mm	kgf-s²/mm	S	kgf	kgf/mm ²	kgf-mm	1e-03 m/s	1e-03 m/s ²	
m	kg	S	N	Pa	J	m/s	m/s ²	
cm	kg	S	1e-02 N	1e+02 Pa	1e-04. J	1e-02 m/s	1e-02 m/s ²	
cm	kg	ms	1e+04 N	1e+08 Pa	1e+02 J	1e+01 m/s	1e+04 m/s ²	
cm	kg	us	1e+10 N	1e+14 Pa	1e+08 J	1e+04 m/s	1e+10 m/s ²	
cm	g	S	dyne	dyne/cm ²	erg	1e-02 m/s	1e-02 m/s ²	
cm	g	ms	1e+01 N	bar	1e-01 J	1e+01 m/s	1e+04 m/s ²	
cm	g	us	1e+07 N	Mbar	1e+05 J	1e+04 m/s	1e+10 m/s ²	
in	lbf-s ² /in	S	lbf	psi	lbf-in	in/s	in/s ²	
ft	slug	S	lbf	psf	lbf-ft	ft/s	ft/s ²	

An axisymmetric problem is a **three-dimensional** problem that can be solved using a **two-dimensional model** provided that it posses a **symmetry of revolution** in both **geometry**, **material properties** and **loading**, and it can lend itself to a cylindrical coordinate.

The only displacements required to define its behavior are the ones in the r and z directions, denoted by u and v, respectively. They are not a function of θ .

Data Preparation (Create Input file)

Nodes Coordinates

geom(nnd, dim=2)

Element Connectivity

connec(nel, nne=8)

Material and Geometrical Properties

 $E = 10^5 kPa \ \nu = 0.35$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector ${\bm F}$

Discretization: Mesh Generation

Discretization: Mesh Generation

.

	9	0 14	0 23	0 28	0 37	0 42	0 51	0 56	0 65	%	9	0 84	0 93	0 98	107	0 112	121
	8		0 22		0 36		0 50		0 64		0 78		0 92		0 106		1 <mark>2</mark> 0
	9	0 13	0 21	0 27	0 35	0 41	0 49	0 55	0 63	0 69	9	0 83	91 91	0 97	0 105	111	0 119
	6		0 20		0 34		0 48		62		<mark>7</mark> 6		90		104		0 118
	g	12	19 19	0 26	0 33	40	47	54	0 61	0 68	75	82 82	89	96 96	103	110	0 117
	9 4		0 18		0 32		0 46		0 60		0 74		0 88		0 102		0 116
1/7	3	N6	- N5	0 25	0 31	0 39	0 45	0 53	0 59	0 67	0 73	0 81	0 87	0 95	0 101	0 109	0 115
N8	2		ie na		0 30		0 44		0 58		<mark>0</mark> 72		0 86		0 100		0 114
(9	10 112	_] 18 N-3	0 24	0 29	0 38	0 43	0 52	0 57	0 66	<mark>7</mark> 1	80 80	0 85	94 94	0 99	00 108	0 113

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Interpolation

For an element having n nodes, the components of the displacement vector are interpolated using nodal approximations

Interpolation

$$u = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4 + N_5 u_5 + N_6 u_6 + N_7 u_7 + N_8 u_8$$

 $v = N_1 v_1 + N_2 v_2 + N_3 v_3 + N_4 v_4 + N_5 v_5 + N_6 v_6 + N_7 v_7 + N_8 v_8$

Strain-Displacement Relations

The infinitesimal strain displacements relations for axisymmetric problems

Axisymmetric Problem Strain-Displacement Relations

By substitution

$$\{\varepsilon\} = [L]\{U\} \\ \{U\} = [N]\{a\}$$
 { $\varepsilon\} = [L][N]\{a\} = [B]\{a\}$

$$[B] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & | & \frac{\partial N_2}{\partial x} & 0 & | & \dots & | & \frac{\partial N_n}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & | & 0 & \frac{\partial N_2}{\partial y} & | & \dots & | & 0 & \frac{\partial N_n}{\partial y} \\ \frac{N_1}{r} & 0 & | & \frac{N_2}{r} & 0 & | & \dots & | & \frac{N_n}{r} & 0 \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & | & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial x} & | & \dots & | & \frac{\partial N_n}{\partial y} & \frac{\partial N_n}{\partial x} \end{bmatrix}$$

Stress–Strain Relations

In an axisymmetric problem, the shear strains $\gamma_{r\theta}$ and $\gamma_{z\theta}$ and the shear stresses $\tau_{r\theta}$ and $\tau_{z\theta}$ all vanish because of the radial symmetry.

Stiffness Matrix + Force Vectors

$$\left(\iiint_{V} \{B\}^{T}[D]\{B\} dV \right) \{a\} = \iiint_{V} \{B\}^{T}[D]\{\varepsilon_{0}\} dV - \iiint_{V} \{B\}^{T}\{\sigma_{0}\} dV + \iiint_{V} \{N\}^{T}\{F_{b}\} dV + \iint_{S} \{N\}^{T}\{T\} dS + \sum_{l=1}^{n} \{N\}^{T}\{F_{p}\}$$

$$[K_{c}] = \left[\iint_{V_{c}} [B]^{T}[D][B] dV \right] = \left[\iint_{V_{c}} [B]^{T}[D][B]r dr d\theta dz \right] \qquad \{f_{b}\} = \iint_{A_{c}} [N]^{T} \left\{ \begin{matrix} b_{r} \\ b_{z} \end{matrix}\right\} r dr dz \right]$$

$$\left\{ f_{s}\} = \iint_{L} [N]^{T} \left\{ \begin{matrix} t_{r} \\ t_{z} \end{matrix}\right\} r dl \right] \qquad \{f_{c}\} = \sum_{i} [N]^{T} r_{i} \left\{ \begin{matrix} P_{r} \\ P_{z} \end{matrix}\right\}$$

$$\left\{ f_{c}\} = \sum_{i} [N]^{T} r_{i} \left\{ \begin{matrix} P_{r} \\ P_{z} \end{matrix}\right\}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Numerical Integration of the Stiffness Matrix

$$[K_e] = \int_{-1}^{+1} \int_{-1}^{+1} [B(\xi,\eta)]^T [D] [B(\xi,\eta)] r(\xi,\eta) det[J(\xi,\eta)] d\eta d\xi$$

= $\sum_{i=1}^{ngp} \sum_{j=1}^{ngp} W_i W_j [B(\xi_i,\eta_j)]^T [D] [B(\xi_i,\eta_j)] r(\xi_i,\eta_j) det[J(\xi_i,\eta_j)]$

For each element, it is evaluated as follows:

1. For every element i = 1 to nel

2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q8.m

3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp

ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmquad.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates, $\xi = \text{samp}(\text{ig}, 1)$ and $\eta = \text{samp}(\text{ig}, 1)$.

 $\zeta = \text{Samp}(\text{Ig}, 1) \text{ and } \text{I} = \text{Samp}(\text{Ig}, 1).$

iv. Evaluate the Jacobian jac = der * coord

v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)

vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv = jac1 * der viii. Use the function formbee_axi to form the strain matrix bee and calculate the radius r at the integration point as $r = \sum_{j=1}^{nne} N_j x_j$ ix. Compute the stiffness matrix as $ke = ke + d * wi * wj * B^T * D * B * r$ 4. Assemble the stiffness matrix ke into the global matrix kk

Body Forces

$$\{f_b\} = \iint_{A_e} [N]^T \begin{cases} b_r \\ b_z \end{cases} r \, dr \, dz$$

Traction Forces

$$\{f_s\} = \int_L [N]^T \begin{cases} t_r \\ t_z \end{cases} r \, dl$$

Concentrated Forces

$$\{f_c\} = \Sigma_i [N]^T r_i \begin{cases} P_r \\ P_z \end{cases}_i$$

Discretization: Mesh Generation

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{\delta_P\} + [K_{PF}] \{\delta_F\} = \{F_P\}$$

If
$$\{\delta_p\} = 0$$

$$\{F_P\} = [K_{PF}] \{\delta_F\}$$

Calculation of the Element Resultants

Element Displacement

E:(0,0) D:(80,0) A:(70,90) F:(0,90) mm

Time Discretization

Solution at $t + \Delta t$ is obtained by quantities at tEquilibrium eq.s are not satisfied precisely Shorter time increments are needed to reach convergence

Central Difference Method

Runge-Kutta Method

Explicit

Solution at $t + \Delta t$ is obtained by quantities at $t + \Delta t$ Equilibrium eq.s are satisfied precisely The solution is unconditionally stable

Implicit

Newmark-Beta Method

Wilson-Theta Method

 $[M]\{x''\} + [C]\{x'\} + [K]\{x\} = \{f\}$ $[K]\{x\} = \{f\} - ([M]\{x''\} + [C]\{x'\})$ $[K]^{-1}[K]\{x\} = [K]^{-1}(\{f\} - ([M]\{x''\} + [C]\{x'\}))$ $\{x\} = [K]^{-1}(\{f\} - ([M]\{x''\} + [C]\{x'\}))$

 $[M]\{x''\} + [C]\{x'\} + [K]\{x\} = \{f\}$ $[M]\{x''\} = \{f\} - ([C]\{x'\} + [K]\{x\})$ $[M]^{-1}[M]\{x''\} = [M]^{-1} (\{f\} - ([C]\{x'\} + [K]\{x\}))$ $\{x''\} = [M]^{-1} (\{f\} - ([C]\{x'\} + [K]\{x\}))$

Implicit Integration vs. Explicit Integration

Problem: Transient Thermal Analysis

Explicit Method: Central Difference Method

$$\begin{bmatrix} [M]\{\ddot{d}_{i}\} + [K]\{d_{i}\} = \{F_{i}\} \\ \{\dot{d}_{i}\} = \frac{\{d_{i+1}\} - \{d_{i-1}\}}{2(\Delta t)} \\ \{\ddot{d}_{i}\} = \frac{\{\dot{d}_{i+1}\} - \{\dot{d}_{i-1}\}}{2(\Delta t)} \\ \begin{bmatrix} [M]\{d_{i+1}\} = (\Delta t)^{2}\{F_{i}\} + [2[M] - (\Delta t)^{2}[K]]\{d_{i}\} - [M]\{d_{i-1}\} \\ \\ \{d_{i-1}\} = \{d_{i}\} - (\Delta t)\{\dot{d}_{i}\} + \frac{(\Delta t)^{2}}{2}\{\ddot{d}_{i}\} \\ \end{bmatrix}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

d_-1

Step 1

Given: $\{d_0\}$, $\{\dot{d}_0\}$, and $\{F(t)\}$.

Step 2

If $\{\ddot{d}_0\}$ is not initially given, solve $\{\ddot{d}_0\} = [M]^{-1}(\{F_0\} - [K]\{d_0\})$ at t = 0 for $\{\ddot{d}_0\}$

Step 3

By using Taylor expansion, obtain is $\{d_{-1}\}$; that is,

$$\{d_{-1}\} = \{d_0\} - (\Delta t)\{\dot{d}_0\} + \frac{(\Delta t)^2}{2}\{\ddot{d}_0\}$$

Step 4

now solve equation for $\{d_1\}$

 $\{d_1\} = [M]^{-1}\{(\Delta t)^2 \{F_0\} + [2[M] - (\Delta t)^2 [K]] \{d_0\} - [M] \{d_{-1}\}\}$

Step 5 solve for $\{\ddot{d}_1\}$ as

 $\{\ddot{d}_1\} = [M]^{-1}(\{F_1\} - [K]\{d_1\})$

Step 6

With $\{d_0\}$ initially given, and $\{d_1\}$ determined from step 4, use Eq. below to obtain $\{d_2\}$

 $\{d_2\} = [M]^{-1}\{(\Delta t)^2\{F_1\} + [2[M] - (\Delta t)^2[K]]\{d_1\} - [M]\{d_0\}\}$

Step 7

Using the result of step 5 and initial condition $\{d_0\}$ given in step 1, determine the velocity at the first time step by Eq below

$$\{\dot{d}_1\} = \frac{\{d_2\} - \{d_0\}}{2(\Delta t)}$$

Step 8

Use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and velocity for all other time steps.

$$\{d_{i-1}\} = \{d_i\} - (\Delta t)\{\dot{d}_i\} + \frac{(\Delta t)^2}{2}\{\ddot{d}_i\}$$
(16.3.8)

$$[M]\{d_{i+1}\} = (\Delta t)^2 \{F_i\} + [2[M] - (\Delta t)^2 [K]]\{d_i\} - [M]\{d_{i-1}\}$$
(16.3.7)

$$[M]\{d_{i+1}\} = (\Delta t)^2 \{F_i\} + [2[M] - (\Delta t)^2 [K]]\{d_i\} - [M]\{d_{i-1}\}$$
(16.3.7)

$$\{\ddot{d}_i\} = [M]^{-1}(\{F_i\} - [K]\{d_i\})$$
(16.3.5)

$$\{\dot{d}_i\} = \frac{\{d_{i+1}\} - \{d_{i-1}\}}{2(\Delta t)}$$
(16.3.1)

Implicit Method: Newmark's Method

$$[M]\{\ddot{a}_{i}\} + [K]\{d_{i}\} = \{F_{i}\} \qquad [M]\{\ddot{a}_{i+1}\} = \{F_{i+1}\} - [K]\{d_{i+1}\} \\ \{\dot{a}_{i+1}\} = \{\dot{a}_{i}\} + (\Delta t)[(1 - \gamma)\{\ddot{a}_{i}\} + \gamma\{\ddot{a}_{i+1}\}] \\ \text{The parameter } \beta \text{ is generally chosen between 0 and } \frac{1}{4}, \text{ and } \gamma \text{ is often taken to be} \frac{1}{2}. \\ \{d_{i+1}\} = \{d_{i}\} + (\Delta t)\{\dot{d}_{i}\} + (\Delta t)^{2}[(\frac{1}{2} - \beta)\{\ddot{d}_{i}\} + \beta\{\ddot{d}_{i+1}\}] \\ \times [M] \\ \hline [M]\{d_{i+1}\} = [M]\{d_{i}\} + (\Delta t)[M]\{\dot{d}_{i}\} + (\Delta t)^{2}[M](\frac{1}{2} - \beta)\{\ddot{d}_{i}\} + \beta(\Delta t)^{2}[\{F_{i+1}\} - [K]\{d_{i+1}\}] \\ ([M] + \beta(\Delta t)^{2}[K])\{d_{i+1}\} = \beta(\Delta t)^{2}\{F_{i+1}\} + [M]\{d_{i}\} + (\Delta t)[M]\{\dot{d}_{i}\} + (\Delta t)^{2}[M](\frac{1}{2} - \beta)\{\ddot{d}_{i}\} \\ \\ \hline ([M] + \beta(\Delta t)^{2}[K])\{d_{i+1}\} = \beta(\Delta t)^{2}\{F_{i+1}\} + [M]\{d_{i}\} + (\Delta t)[M]\{\dot{d}_{i}\} + (\Delta t)^{2}[M](\frac{1}{2} - \beta)\{\ddot{d}_{i}\} \\ \\ \hline ([M] + \beta(\Delta t)^{2}[K])\{d_{i+1}\} = \{F_{i+1}\} + \frac{[M]}{\beta(\Delta t)^{2}}\{d_{i}\} + \frac{[M]}{\beta(\Delta t)}\{\dot{d}_{i}\} + \frac{[M]}{\beta}(\frac{1}{2} - \beta)\{\ddot{d}_{i}\} \\ \\ \hline [K'] \{d_{i+1}\} = \{F_{i+1}'\} \\ \hline [K']\{d_{i+1}\} = \{F_{i+1}'\} \\ \hline \end{tabular}$$

Step 1

Starting at time t = 0, $\{d_0\}$ and $\{\dot{d}_0\}$ is known from the given initial conditions.

Step 2

Solve Eq. below at t = 0 for $\{\ddot{d}_0\}$; that is,

$$\{\ddot{d}_0\} = [M]^{-1}(\{F_0\} - [K]\{d_0\})$$

Step 3

Solve Eq. below for $\{d_1\}$, because $\{F'_{i+1}\}$ is known for all time steps and $\{d_0\}$, $\{\dot{d}_0\}$, and $\{\ddot{d}_0\}$ are now known from steps 1 and 2. $[K']\{d_{i+1}\} = \{F'_{i+1}\}$

Step 4

Use Eq. below to solve for $\{\ddot{d}_1\}$ as

$${\ddot{d}_1} = \frac{1}{\beta(\Delta t)^2} \left[\{d_1\} - \{d_0\} - (\Delta t)\{\dot{d}_0\} - (\Delta t)^2 \left(\frac{1}{2} - \beta\right) \{\ddot{d}_0\} \right]$$

Step 5

Solve Eq. below directly for $\{\dot{d}_1\}$

$$\{\dot{d}_{i+1}\} = \{\dot{d}_i\} + (\Delta t)[(1 - \gamma)\{\ddot{d}_i\} + \gamma\{\ddot{d}_{i+1}\}]$$

Step 6

Using the results of steps 4 and 5, go back to step 3 to solve for $\{d_2\}$ and then to steps 4 and 5 to solve for $\{\ddot{d}_2\}$ and $\{\dot{d}_2\}$. Use steps 3–5 repeatedly to solve for $\{d_{i+1}\}, \{\dot{d}_{i+1}\}, \text{ and } \{\ddot{d}_{i+1}\}$

 $T(x, y, t) = N_i(x, y)T_i(t) + N_j(x, y)T_j(t) + N_k(x, y)T_k(t)$

 $\{T(t)\} = \begin{bmatrix} T_1(t) & T_2(t) & T_3(t) \end{bmatrix}^T$ $[N] = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix}$

 $N_i(x, y) = m_{11} + m_{21}x + m_{31}y$

 $N_j(x,y) = m_{12} + m_{22}x + m_{32}y$

 $N_k(x, y) = m_{13} + m_{23}x + m_{33}y$

$$\begin{split} m_{11} &= (x_j y_k - x_k y_i)/2A & m_{21} = (y_j - y_k)/2A & m_{31} = (x_k - x_j)/2A \\ m_{12} &= (x_k y_i - x_i y_k)/2A & m_{22} = (y_k - y_i)/2A & m_{32} = (x_i - x_k)/2A & A = \frac{1}{2}det \left(\begin{bmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_k & y_k \end{bmatrix} \right) \\ m_{13} &= (x_i y_j - x_j y_i)/2A & m_{23} = (y_i - y_j)/2A & m_{31} = (x_j - x_i)/2A \end{split}$$

Weighted Residual Approach

$$\iint_{A^{e}} \mathbf{N}^{T} \left[\frac{\partial}{\partial x} \left(k \ \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \ \frac{\partial T}{\partial y} \right) + Q - \rho c \ \frac{\partial T}{\partial t} \right] dx dy = 0$$

$$\int_{C^{e}} \mathbf{N}^{T} k \frac{\partial T}{\partial x} n_{x} dC - \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \ \frac{\partial T}{\partial x} dx dy + \int_{C^{e}} \mathbf{N}^{T} k \frac{\partial T}{\partial y} n_{y} dC - \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \ \frac{\partial T}{\partial y} dx dy + \iint_{A^{e}} \mathbf{N}^{T} Q dx dy - \iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} dx dy = 0$$

$$\iint_{A^{e}} \mathbf{N}^{T} \rho c \ \frac{\partial T}{\partial t} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \ \frac{\partial T}{\partial x} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \ \frac{\partial T}{\partial y} dx dy = \iint_{A^{e}} \mathbf{N}^{T} Q dx dy - \iint_{C^{e}} \mathbf{N}^{T} q_{n} dC$$

$$\longrightarrow \int_{C^{e}} \mathbf{N}^{T} q_{n} dC = \int_{F^{A}} \mathbf{N}^{T} h_{F^{A}} (T - T_{a_{F^{A}}}) dC + \int_{A^{D}} \mathbf{N}^{T} h_{A^{D}} (T - T_{a_{AD}}) dC$$

$$\iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial T}{\partial y} dx dy + \int_{FA} \mathbf{N}^{T} h_{FA} T \Big|_{FA} dC + \int_{AD} \mathbf{N}^{T} h_{AD} T \Big|_{AD} dC$$
$$= \iint_{A^{e}} \mathbf{N}^{T} Q dx dy + \int_{FA} \mathbf{N}^{T} h_{FA} T_{a_{FA}} dC + \int_{AD} \mathbf{N}^{T} h_{AD} T_{a_{AD}} dC$$

$$\iint_{A^{e}} \mathbf{N}^{r} \rho c \frac{\partial T}{\partial t} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} dx dy + \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} \frac{\partial \mathbf{N}^{T}}{\partial y} \frac{\partial T}{\partial y} dx dy + \int_{F^{A}} \mathbf{N}^{r} h_{F^{A}} T \Big|_{F^{A}} dC + \int_{A^{D}} \mathbf{N}^{r} h_{A^{D}} T \Big|_{A^{D}} dC$$

$$\mathbf{C}^{e} \dot{a}^{e} + \mathbf{K}^{e} a^{e} = \mathbf{f}^{e}$$

$$\mathbf{K}^{e} = \mathbf{K}^{e}_{xx} + \mathbf{K}^{e}_{yy} + \mathbf{K}^{e}_{cvB}$$

$$\mathbf{C}^{e} \mathbf{f}^{e} = \mathbf{f}^{e}_{Q} + \mathbf{f}^{e}_{q} + \mathbf{f}^{e}_{cvB}$$

$$\mathbf{K}^{e}_{xx} = \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial \mathbf{N}}{\partial x} dx dy$$

$$\mathbf{C}^{e} = \iint_{A^{e}} \mathbf{N}^{T} \rho c \mathbf{N} dx dy$$

$$\mathbf{f}^{e}_{Q} = \iint_{A^{e}} \mathbf{N}^{T} Q dx dy$$

$$\mathbf{f}^{e}_{Q} = \iint_{A^{e}} \mathbf{N}^{T} Q dx dy$$

$$\mathbf{f}^{e}_{Q} = \iint_{A^{e}} \mathbf{N}^{T} Q dx dy$$

$$\mathbf{f}^{e}_{CvB} = \int_{F}^{A} \mathbf{N}^{T} h_{FA} \mathbf{N} dC + \int_{D}^{D} \mathbf{N}^{T} h_{AD} \mathbf{N} dC$$

$$\mathbf{C}^{e} = \iint_{A^{e}} \mathbf{N}^{T} \rho c \, \mathbf{N} \, dx dy = \iint_{A^{e}} \begin{bmatrix} L_{i} \\ L_{j} \\ L_{k} \end{bmatrix} \rho c \, [L_{i} \quad L_{j} \quad L_{k}] \, dx dy = \rho c \iint_{A^{e}} \begin{bmatrix} L_{i}^{2} & L_{i}L_{j} & L_{i}L_{k} \\ L_{j}L_{i} & L_{j}^{2} & L_{j}L_{k} \\ L_{k}L_{i} & L_{k}L_{j} & L_{k}^{2} \end{bmatrix} dx dy = \frac{\rho c}{12} A_{e} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\mathbf{K}_{xx}^{e} = \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial \mathbf{N}}{\partial x} dx dy = \iint_{A^{e}} \begin{bmatrix} m_{21} \\ m_{22} \\ m_{23} \end{bmatrix} k \begin{bmatrix} m_{21} & m_{22} & m_{23} \end{bmatrix} dx dy = kA_{e} \begin{bmatrix} m_{21}^{2} & m_{21}m_{22} & m_{21}m_{23} \\ m_{22}m_{21} & m_{22}^{2} & m_{22}m_{23} \\ m_{23}m_{21} & m_{23}m_{22} & m_{23}^{2} \end{bmatrix}$$

$$\mathbf{K}_{yy}^{e} = \iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial \mathbf{N}}{\partial y} dx dy = \iint_{A^{e}} \begin{bmatrix} m_{31} \\ m_{32} \\ m_{33} \end{bmatrix} k \begin{bmatrix} m_{31} & m_{32} & m_{33} \end{bmatrix} dx dy = kA_{e} \begin{bmatrix} m_{31}^{2} & m_{31}m_{32} & m_{31}m_{33} \\ m_{32}m_{31} & m_{32}^{2} & m_{32}m_{33} \\ m_{33}m_{31} & m_{33}m_{32} & m_{33}^{2} \end{bmatrix}$$

$$\mathbf{K}_{cvB}^{e} = \int_{FA} \mathbf{N}^{T} h_{FA} \mathbf{N} \, dC + \int_{AD} \mathbf{N}^{T} h_{AD} \mathbf{N} \, dC = \int_{C^{e}} \begin{bmatrix} L_{i} \\ L_{j} \\ L_{k} \end{bmatrix} h_{B} \begin{bmatrix} L_{i} & L_{j} & L_{k} \end{bmatrix} dC = \int_{C^{e}} h_{B} \begin{bmatrix} L_{i}^{2} & L_{i}L_{j} & 0 \\ L_{j}L_{i} & L_{j}^{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} dC = \frac{h_{B} l_{ij}}{6} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{f}_{\mathbf{Q}}^{e} = \iint_{A^{e}} \mathbf{N}^{T} Q \, dx dy = \frac{QA_{e}}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$\mathbf{f}_{cvB}^{e} = \int_{F}^{A} \mathbf{N}^{T} h_{FA} T_{aFA} dC + \int_{A}^{D} \mathbf{N}^{T} h_{AD} T_{aAD} dC = \frac{h_{B} l_{ij} T_{aB}}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

Г1

Y

$$\bar{T}(x, y, t) = T(x, y, t) - 350 \begin{cases} \bar{T}(x, y, t) = 0 & @FE \\ -k\frac{\partial \bar{T}}{\partial y} = h_{b2}(\bar{T}(x, y, t) + 350 - 80) = h_{b2}(\bar{T}(x, y, t) + 270) & @FA \\ -k\frac{\partial \bar{T}}{\partial n} = h_{b3}(\bar{T}(x, y, t) + 350 - 60) = h_{b2}(\bar{T}(x, y, t) + 290) & @AD \\ -k\frac{\partial \bar{T}}{\partial y} = 0 & @DE \end{cases}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

$$\bar{T}(x, y, t) = T(x, y, t) - 350 \begin{cases} \bar{T}(x, y, t) = 0 & @FE \\ -k\frac{\partial \bar{T}}{\partial y} = h_{b2}(\bar{T}(x, y, t) + 350 - 80) = h_{b2}(\bar{T}(x, y, t) + 270) & @FA \\ -k\frac{\partial \bar{T}}{\partial n} = h_{b3}(\bar{T}(x, y, t) + 350 - 60) = h_{b2}(\bar{T}(x, y, t) + 290) & @AD \\ -k\frac{\partial \bar{T}}{\partial y} = 0 & @DE \end{cases}$$

 $[\mathbf{C}]\{\dot{\overline{\mathbf{T}}}(t)\} + [\mathbf{K}]\{\overline{\mathbf{T}}(t)\} = \{\mathbf{F}\} \qquad \qquad \qquad \begin{bmatrix} [\mathbf{C}_{PP}] & [\mathbf{C}_{PF}] \\ [\mathbf{C}_{FP}] & [\mathbf{C}_{FF}] \end{bmatrix} \begin{cases} \{\dot{\mathbf{T}}_{P}(t)\} \\ \{\dot{\mathbf{T}}_{F}(t)\} \end{cases} + \begin{bmatrix} [\mathbf{K}_{PP}] & [\mathbf{K}_{PF}] \\ [\mathbf{K}_{FP}] & [\mathbf{K}_{FF}] \end{bmatrix} \begin{cases} \{\mathbf{T}_{P}(t)\} \\ \{\mathbf{T}_{F}(t)\} \end{cases} = \begin{cases} \{\mathbf{F}_{P}\} \\ \{\mathbf{F}_{F}\} \end{cases}$

 $[\mathbf{C}_{PP}]\{\dot{\mathbf{T}}_{P}(t)\} + [\mathbf{C}_{PF}]\{\dot{\mathbf{T}}_{F}(t)\} + [\mathbf{K}_{PP}]\{\mathbf{T}_{P}(t)\} + [\mathbf{K}_{PF}]\{\mathbf{T}_{F}(t)\} = \{\mathbf{F}_{P}\}$ $[\mathbf{C}_{FP}]\{\dot{\mathbf{T}}_{P}(t)\} + [\mathbf{C}_{FF}]\{\dot{\mathbf{T}}_{F}(t)\} + [\mathbf{K}_{FP}]\{\mathbf{T}_{P}(t)\} + [\mathbf{K}_{FF}]\{\mathbf{T}_{F}(t)\} = \{\mathbf{F}_{F}\}$

 $\{\mathbf{T}_{\mathbf{P}}(t)\} = 0$ $[\mathbf{C}_{\mathbf{F}\mathbf{F}}]\{\dot{\mathbf{T}}_{F}(t)\} + [\mathbf{K}_{\mathbf{F}\mathbf{F}}]\{\mathbf{T}_{\mathbf{F}}(t)\} = \{\mathbf{F}_{\mathbf{F}}\}$

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

....

Boundary Conditions

nf(nnd, nodof)

Loading

$$ar{T}_{AD} = -290 \ (C), \qquad h_{AD} = 100 \ \left(\frac{W}{m^2 \ C}\right)$$

 $ar{T}_{AF} = -270 \ (C), \qquad h_{AD} = 150 \ \left(\frac{W}{m^2 \ C}\right)$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

$$Q = 10^5 \left(\frac{W}{m^3}\right), \qquad c = 400 \left(\frac{J}{kg C}\right), \qquad k = 40 \left(\frac{W}{m C}\right)$$
$$\rho = 7800 \left(\frac{kg}{m^3}\right), \qquad T(x, y, t = 0) = 50 (C)$$

connec(nel, nne)

Apply B.C's and Solve (free) Nodal Displacement

 $[\mathbf{C}_{PP}]\{\dot{\mathbf{T}}_{P}(t)\} + [\mathbf{C}_{PF}]\{\dot{\mathbf{T}}_{F}(t)\} + [\mathbf{K}_{PP}]\{\mathbf{T}_{P}(t)\} + [\mathbf{K}_{PF}]\{\mathbf{T}_{F}(t)\} = \{\mathbf{F}_{P}\}$ $[\mathbf{C}_{FP}]\{\dot{\mathbf{T}}_{P}(t)\} + [\mathbf{C}_{FF}]\{\dot{\mathbf{T}}_{F}(t)\} + [\mathbf{K}_{FP}]\{\mathbf{T}_{P}(t)\} + [\mathbf{K}_{FF}]\{\mathbf{T}_{F}(t)\} = \{\mathbf{F}_{F}\}$ $\mathcal{A} = \mathcal{A} (\mathcal{A}, \mathcal{A})$ The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem Description

Plates are structural elements that are bound by two lateral surfaces .The dimensions of the lateral surfaces are very large compared to the thickness of the plate. A plate may be thought of as the two-dimensional equivalent of a beam. Plates are also generally subject to loads normal to their plane.

Milad Vahidian, Ph.D. Student of Mechanical Engineering

The small deflection theory of plates attributed to Kirchhoff is based on the following assumptions:

1. The x-y plane coincides with the middle plane of the plate in the undeformed geometry.

2. The lateral dimension of the plate is at least **10** times its thickness.

3. The vertical displacement of any point of the plate can be taken equal to that of the point (below or above it) in the middle plane.

4. A vertical element of the plate before bending remains perpendicular to the middle surface of the plate after bending. $\gamma_{xz} = \gamma_{yz} = 0$

5. **Strains are small**: deflections are less than the order of (1/100) of the span length.

6. The strain of the middle surface is zero or negligible.

Considering the plate element shown in Figure, the in-plane displacements u and v, respectively in the directions x and y, can be expressed as

$$\gamma_{xz} = 0$$

$$\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = 0$$

$$\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0$$

$$u = -z\frac{\partial w}{\partial x}$$

$$\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0$$

$$v = -z\frac{\partial w}{\partial y}$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

The vector $\{\chi\} = [\chi_x \chi_y \chi_{xy}]^T$ is called the vector of curvature or **generalized strain**

Internal stresses in a thin plate. Moments and shear forces due to internal stresses in a thin plate.

q(x,y) q(x,y) r_{xy} σ_{xx} σ_{xx} τ_{xy} σ_{yy} τ_{xy} τ_{xy}

Moments and shear forces due to internal stresses in a thin plate.

 $M_{xx} = \int_{-h/2}^{h/2} \sigma_{xx} z \, dz \qquad \qquad Q_{xx} = \int_{-h/2}^{h/2} \sigma_{xx} dz$ $M_{yy} = \int_{-h/2}^{h/2} \sigma_{yy} z \, dz \qquad \qquad Q_{yy} = \int_{-h/2}^{h/2} \sigma_{yy} dz$ $M_{xy} = \int_{-h/2}^{h/2} \tau_{xy} z \, dz$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

Internal stresses in plates produce bending moments and shear forces as illustrated in Figures. The moments and shear forces are the resultants of the stresses and are defined as acting per unit length of plate. These internal actions are defined as

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling that Q_x represents force per unit length along the edge dy and requiring force equilibrium in z direction results in

$$-Q_x dy - Q_y dx + \left(Q_x + \frac{\partial Q_x}{\partial x} dx\right) dy + \left(Q_y + \frac{\partial Q_y}{\partial y} dy\right) dx + q(x, y) dx dy = 0$$

Moment equilibrium about the y-axis leads to

 ∂I

$$\frac{M_{xy}}{\partial y} + \frac{\partial M_{xx}}{\partial x} = Q_x$$

$$\frac{\partial M_{xx}}{\partial x^2} + \frac{\partial M_{xy}}{\partial x \partial y} + \frac{\partial M_{yy}}{\partial y^2} + q(x, y) = 0$$

GOVERNING EQUATION IN TERMS OF DISPLACEMENT VARIABLES

$$\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial^2 x \partial^2 y} + \frac{\partial^4 w}{\partial y^4} = \frac{q(x, y)}{D_r} \qquad \qquad \nabla^4 w = \frac{q}{D_r}$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

 $Q_y + \frac{\partial Q_y}{\partial Q_y}$ Z

 ∂M_{v}

Discretization: Mesh Generation

Rectangular Element: Interpolation

The element has four nodes and 12 DOF in total

A trial function will contain 12 parameters

 $w(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 xy + \alpha_6 y^2 + \alpha_7 x^3 + \alpha_8 x^2 y + \alpha_9 xy^2 + \alpha_{10} y^3 + \alpha_{11} x^3 y + \alpha_{12} xy^3$ $w(x_1, y_1) = w_1$ $w(x_2, y_2) = w_2$ $w(x_3, y_3) = w_3$ $w(x_A, y_A) = w_A$ $\theta_{x}(x,y) = \frac{\partial w}{\partial x} = \alpha_{2} + 2\alpha_{4}x + \alpha_{5}y + 3\alpha_{7}x^{2} + 2\alpha_{8}xy + \alpha_{9}y^{2} + 3\alpha_{11}x^{2}y + \alpha_{12}y$ $\theta_x(x_1, y_1) = \theta_{x1}$ $\theta_x(x_3, y_3) = \theta_{x3}$ $\theta_{x}(x_{2}, y_{2}) = \theta_{x2}$ $\theta_{x}(x_{4}, y_{4}) = \theta_{x4}$ $\theta_{y}(x,y) = \frac{\partial w}{\partial y} = \alpha_{3} + \alpha_{5}x + 2\alpha_{6}y + \alpha_{8}x^{2} + 2\alpha_{9}xy + 3\alpha_{10}y^{2} + \alpha_{11}x^{3} + 3\alpha_{12}xy^{2}$

$$\begin{aligned} \theta_y(x_1, y_1) &= \theta_{y1} & \theta_y(x_3, y_3) &= \theta_{y3} \\ \theta_y(x_2, y_2) &= \theta_{y2} & \theta_y(x_4, y_4) &= \theta_{y4} \end{aligned}$$

Thick Plate Problem (Mindlin Plate Theory)

Problem Description

Consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	Ν	lbf	lbf
Mass	kg	tonne (10 ³ kg)	slug	lbf s ² /in
Time	s	s	s	s
Stress	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi (lbf/in ²)
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s ² /in ⁴

Data Preparation (Create Input file)

geom(nnd, 2)

Nodes Coordinates

Element Connectivity

connec(nel, nne)

Material and Geometrical Properties

 $E = 30 \times 10^{6} (psi) v = 0.3$

Boundary Conditions

nf(nnd, nodof)

Loading

The force in the global force vector F_f

Discretization: Mesh Generation

Milad Vahidian, Ph.D. Student of Mechanical Engineering

In thick plates, the assumption that a vertical element of the plate before bending remains perpendicular to the middle surface of the plate after bending is relaxed. Transverse normal may rotate without remaining normal to the mid-plane. A line originally normal to the middle plane will develop rotation components θ_x relative to the middle plane after deformation as shown in Figure. A similar definition holds for θ_y . Hence, the displacement field becomes

$$u = z\theta_{x}$$

$$v = z\theta_{y}$$

$$w = w(x, y)$$

$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \gamma_{zx} \end{cases} = \begin{cases} z\frac{\partial\theta_{x}}{\partial x} \\ z\frac{\partial\theta_{y}}{\partial y} \\ z\left(\frac{\partial\theta_{x}}{\partial y} + \frac{\partial\theta_{y}}{\partial x}\right) \\ z\left(\theta_{y} - \frac{\partial w}{\partial y}\right) \\ z\left(\theta_{x} - \frac{\partial w}{\partial x}\right) \end{cases}$$

These equations are the main equations of the Mindlin plate theory. The theory accounts for transverse shear deformations and is applicable for moderately thick plates. Unlike in thin plate theory, it is important to notice that the transverse displacement w(x, y) and slopes θ_x , θ_y are independent. Notice also that the thick plate theory reduces to thin plate theory if $\theta_x = -\frac{\partial w}{\partial x}$ and $\theta_y = -\frac{\partial w}{\partial y}$.

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling that Q_x represents force per unit length along the edge dy and requiring force equilibrium in z direction results in

$$-Q_x dy - Q_y dx + \left(Q_x + \frac{\partial Q_x}{\partial x} dx\right) dy + \left(Q_y + \frac{\partial Q_y}{\partial y} dy\right) dx + q(x, y) dx dy = 0$$

Moment equilibrium about the y-axis leads to

$$\frac{\partial M_{xy}}{\partial y} + \frac{\partial M_{xx}}{\partial x} = Q_x$$

$$\frac{\partial^2 M_{xx}}{\partial x^2} + \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_{yy}}{\partial y^2} + q(x, y) = 0$$

Milad Vahidian, Ph.D. Student of Mechanical Engineering

K V

STRESS-STRAIN RELATIONSHIP

Assuming the material is homogeneous and isotropic, the plane stresses σ_{xx} , σ_{yy} , and τ_{xy} are related to the strains through the elasticity matrix [D]. The shear strains τ_{yz} and τ_{xz} are related to the shear strains γ_{yz} and γ_{xz} through

Milad Vahidian, Ph.D. Student of Mechanical Engineering

The Equation can be written more compactly as

 $\{M\} = [D_M]\{\chi\}$

The total strain energy of the plate is given as

Rectangular Element: Interpolation

The element has 8 nodes and 24 DOF in total

A trial function will contain 24 parameters

 C^0 iso-parametric shape functions can be used for the thick plate element formulation

 $w(x,y) = N_{1}(\xi,\eta)w_{1} + N_{3}(\xi,\eta)w_{2} + N_{3}(\xi,\eta)w_{3} + N_{4}(\xi,\eta)w_{4} + N_{5}(\xi,\eta)w_{5} + N_{6}(\xi,\eta)w_{6} + N_{7}(\xi,\eta)w_{7} + N_{8}(\xi,\eta)w_{8}$ $\theta_{x}(x,y) = N_{1}(\xi,\eta)\theta_{x1} + N_{3}(\xi,\eta)\theta_{x2} + N_{3}(\xi,\eta)\theta_{x3} + N_{4}(\xi,\eta)\theta_{x4} + N_{5}(\xi,\eta)\theta_{x5} + N_{6}(\xi,\eta)\theta_{x6} + N_{7}(\xi,\eta)\theta_{x7} + N_{8}(\xi,\eta)\theta_{x8}$ $\theta_{y}(x,y) = N_{1}(\xi,\eta)\theta_{y1} + N_{3}(\xi,\eta)\theta_{y2} + N_{3}(\xi,\eta)\theta_{y3} + N_{4}(\xi,\eta)\theta_{y4} + N_{5}(\xi,\eta)\theta_{y5} + N_{6}(\xi,\eta)\theta_{y6} + N_{7}(\xi,\eta)\theta_{y7} + N_{8}(\xi,\eta)\theta_{y8}$

Strain Energy:
$$U = U_B + U_S = \frac{1}{2} \int_A \{\chi_B\}^T [D_B] \{\chi_B\} dA + \frac{\kappa}{2} \int_A \{\chi_S\}^T [D_S] \{\chi_S\} dA$$
 ($\kappa = 5/6$)
 $\{\chi\}_B = [L_B][N] \{a\} = [B_B] \{a\}$ $\{\chi\}_S = [L_S][N] \{a\} = [B_S] \{a\}$
 $\{a\} = \begin{bmatrix} w_1 & \theta_{x1} & \theta_{y1} & | & \dots & \dots & | & w_n & \theta_{xn} & \theta_{yn} \end{bmatrix}^T$ $\underbrace{1}_2 \int [[\mathcal{B}_B] \{\lambda\} \langle\lambda\}_T] [D_B] \{\lambda\}_T \langle\lambda\}_T] [D_B] \{\mu\}_T \langle\lambda\}_T \rangle = \begin{bmatrix} 0 & \frac{\partial}{\partial \chi} & 0 & 0 \\ 0 & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial \chi} \end{bmatrix}$ $[N] = \begin{bmatrix} N_1 & 0 & 0 & | & \dots & \dots & | & N_n & 0 & 0 \\ 0 & N_1 & 0 & | & \dots & \dots & | & 0 & N_n & 0 \\ 0 & 0 & N_1 & | & \dots & \dots & | & 0 & 0 & N_n \end{bmatrix}$ $[L_S] = \begin{bmatrix} -\frac{\partial}{\partial y} & 0 & 1 \\ -\frac{\partial}{\partial \chi} & 1 & 0 \end{bmatrix}$
 $[B_S] = \begin{bmatrix} 0 & \frac{\partial N_1}{\partial \chi} & 0 & | & \dots & \dots & | & 0 & 0 & N_n \\ 0 & 0 & \frac{\partial N_1}{\partial \chi} & | & \dots & \dots & | & 0 & 0 & N_n \end{bmatrix}$ $[B_S] = \begin{bmatrix} -\frac{\partial N_1}{\partial \chi} & 0 & N_1 & | & \dots & \dots & | & -\frac{\partial N_n}{\partial \chi} & 0 & N_n \\ -\frac{\partial N_1}{\partial \chi} & N_1 & 0 & | & \dots & \dots & | & 0 & 0 & N_n \end{bmatrix}$ $[K_e] = [K_B] + [K_S] = \int_{A_e} [B_B]^T [D_B] [B_B] dA + \kappa \int_{A_e} [B_S]^T [D_S] [B_S] dA$ $(\kappa = 5/6)$
Mild Vahdia, Ph.D. Student of Mechanical Engineering 248

Remark: It is important to note that the shear stiffness $[K_S]$ is a function of h since $[D_S]$ is a function of h, and the bending stiffness $[K_B]$ is a function of h^3 since $[D_B]$ is a function of h^3 . A consequence of this is that the **shear energy dominates as the thickness of the plate becomes very small compared to its side length**. This is called shear locking. One way of resolving this problem is to under integrate the shear energy term. For example, if the 8 node quadrilateral is used, then the bending energy is to be integrated with 3×3 Gauss points, while the shear energy is to be integrated only with a 2×2 rule.

NN

24

11.0

$$\begin{cases} \frac{\partial N_{i}}{\partial \xi} \\ \frac{\partial N_{i}}{\partial \eta} \\ \frac{\partial N_{i$$

Stiffness Matrix

Thick Plate Problem Stiffness Matrix

$$\begin{array}{l}
\textbf{Thick Place Problem} \\
\textbf{Force vector} \\
\textbf{Body Forces} \quad \int_{\Lambda_{n}} [N]^{T}\{b\} \ dA = \sum_{i=1}^{ngp} \sum_{j=1}^{ngp} W_{i}W_{j}[N(\xi_{i},\eta_{j})]^{T} \begin{cases} 0 \\ -\rho g \end{cases} det[J(\xi_{i},\eta_{j})] \\
\textbf{Traction Forces} \\
q_{x} = q_{i}dL\cos\alpha - q_{n}dL\sin\alpha = q_{i}dx - q_{n}dy \\
q_{y} = q_{n}dL\cos\alpha + q_{i}dL\sin\alpha = q_{n}dx + q_{i}dy \\
q_{y} = q_{n}dL\cos\alpha + q_{i}dL\sin\alpha = q_{n}dx + q_{i}dy \\
\int_{\Lambda_{n}} [N]^{T} \begin{cases} q_{i} \\ q_{j} \end{cases} dA = \int_{L_{n-1}} [N(\xi_{j}+1)]^{T} \begin{cases} q_{i} \\ q_{i} \\ q_{i} \end{cases} dI \\
= \sum_{i=1}^{ngp} W_{i}[N(\xi_{n},+1)]^{T} \begin{cases} \left(q_{i}\frac{\partial x(\xi_{n},+1)}{\partial\xi} - q_{n}\frac{\partial y(\xi_{n},+1)}{\partial\xi}\right) \\
\left(q_{n}\frac{\partial x(\xi_{n},+1)}{\partial\xi} + q_{i}\frac{\partial y(\xi_{n},+1)}{\partial\xi}\right) \end{cases} \\
\textbf{Concentrated Forces} \quad \sum_{i=1} [N]_{m_{n}}[P_{i}] = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

252

C

► 2P

x

ξ

 $q_n L_{3-4}$

2

 q_n

 $\frac{q_n L_{3-4}}{2}$

4

 \cong

A D
Thick Plate Problem

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Thick Plate Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$$[K_{PP}] \{ \delta_P \} + [K_{PF}] \{ \delta_F \} = \{ F_P \}$$

If
$$\{\delta_p\} = 0$$

$$\{F_P\} = [K_{PF}] \{\delta_F\}$$

Thanks for attention

Milad Vahidian, Ph.D. Student

Milad Vahidian, Ph.D. Student of Mechanical Engineering