An Introduction to Finite Element Analysis Using MATLAB

Motivation

FEM software

Programming FEA

Industrial purpose

There is not any limitation

> Deep understanding of Finite Element Method

Commercial FEM software is garbage in garbage out

Course Outline

1- Introduction to MATLAB

2- Introduction to FEA
$\{$ Applications
Analysis Procedure

2D Truss Problem
2D Beam Problem
3D Truss Problem
2D Frames (2D Column Beam)
3D Frames (3D Column Beam)
Membrane Problem
Plane Stress Problems
Axisymmetric Problem
2D Transient Heat Transfer Problem Thin Plate Problem
Thick Plate Problem

Introduction to MATLAB: MATLAB

MATLAB is an abbreviation for "MATrix LABoratory."

MATLAB is a programming platform designed specifically for engineers and scientists. The heart of MATLAB is the MATLAB language, a matrix-based language allowing the most natural expression of computational mathematics. While other programming languages mostly work with numbers one at a time, MATLAB is designed to operate primarily on whole matrices and arrays.

ARRAY

scalar
2

Introduction to MATLAB: MATLAB Reference

MATLAB Documentation
doc + function/command
help + function/command

Introduction to MATLAB: Command vs. Function Syntax

In MATLAB, these statements are equivalent

\(\begin{cases}Command syntax: \& load Workspace.mat
Function syntax: \& load(' Workspace.mat')\end{cases}\)

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax: [output1, ..., outputM] = functionName(input1, ..., inputN)

If you do not require any outputs from the function, and all of the inputs are character vectors (that is, text enclosed in single quotation marks), you can use this simpler command syntax: functionName input1 ... inputN

With command syntax, you separate inputs with spaces rather than commas, and do not enclose input arguments in parentheses. Command syntax always passes inputs as character vectors.

To use strings as inputs, use the function syntax.
If a character vector contains a space, use the function syntax.
When a function input is a variable, you must use function syntax to pass the value to the function. Command syntax always passes inputs as character vectors and cannot pass variable values.

Introduction to MATLAB: Data types

By default, MATLAB stores all numeric variables as double-precision floating-point values.
Additional data types store text, integer or single-precision values, or a combination of related data in a single variable

Numeric Types: Integer and floating-point data
Characters and Strings: Text in character arrays (' ') and string arrays (" ")
Dates and Time: Arrays of date and time values that can be displayed in different formats
Categorical Arrays: Arrays of qualitative data with values from a finite set of discrete, nonnumeric data
Tables: Arrays in tabular form whose named columns can have different types
Timetables: Time-stamped data in tabular form
Structures: Arrays with named fields that can contain data of varying types and sizes
Cell Arrays: Arrays that can contain data of varying types and sizes
Function Handles: Variables that allow you to invoke a function indirectly
Map Containers: Objects with keys that index to values, where keys need not be integers
Time Series: Data vectors sampled over time
Data Type Identification: Determining data type of a variable
Data Type Conversion: Converting between numeric arrays, character arrays, cell arrays, structures, or tables

Introduction to MATLAB: Common Functions and Commands

| | ans Most recent answer
 clc clear Clear Command Window
 global Clear Workspace
 plot Declare variables as global
 Most Common format 2-D line plot
 iskeyword Set Command Window output display format
 fpritf/sprintf Determine whether input is MATLAB keyword Write data to text file/Format data into string or character vector
 zeros Create array of all zeros
 ones Create array of all ones
 eye/diag Identity matrix/Creates or extract diagonals
 fopen Open file, or obtain information about open files
 fcolse Close one or all open files
 patch Plot one or more filled polygonal regions |
| :--- | :--- | :--- |

Introduction to MATLAB: Common Functions and Commands

1-Matrices can be created in MATLAB by the command
> $A=\left[\begin{array}{lllllll}1 & 2 & 3 ; 4 & 5 & 6 ; 7 & 8 & 9\end{array}\right]$
$\mathrm{A}=$

1	2	3
4	5	6
7	8	9

Note the semi-colon at the end of each matrix line.
2-Operating with matrices

5-Conditionals, if and switch

```
x=-1
if x==0
    disp('Bad input!')
elseif max (x) > 0
    y = x+1;
else
    y = x^2
end
```

 case 'volume'
 disp('cubic meters')
 case 'time'
 disp('hours')
 otherwise
 disp('not interested')
 end

3-Statements: are operators, functions and variables, always producing a matrix which can be used later.

4-Matrix functions

eye	Identity matrix
zeros	A matrix of zeros
ones	A matrix of ones
diag	Creates or extract diagonals
rand	Random matrix

6-Loops: for and while
7- Relations
8-Submatrix
9-Logical indexing

Introduction to MATLAB: M-file vs. Mlx-file

M-file:

Plain Code Scripts and Functions

In new Versions: Functions could be saved as separate m-files (function) as well as in the end off main script

Mlx-file:

MATLAB live scripts and live functions are interactive documents that combine MATLAB code with formatted text, equations, and images in a single environment called the Live Editor. In addition, live scripts store and display output alongside the code that creates it.

Functions could be saved as separate mlx-files (function) as well as in the end off main script

Introduction to MATLAB: Simulation Strategy

Introduction to FEA: Basic Concepts

Introduction to FEA: Basic Concepts

Methods of Analysis

Analytical Methods

Semi-analytical (Approximate) Methods

```
ODE Lumped-parameter Methods
PDE }=>\mathrm{ Separation of variables Series Discretization Methods
```

The existing mathematical tools will not be sufficient to find the exact solution (and sometimes, even an approximate solution) of most of the practical problems.

Introduction to FEA: Basic Concepts

Introduction to FEA: Basic Concepts

What is Finite Element Analysis?

The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the numerical technique called Finite Element Method (FEM).

The basic idea behind the finite element method is to divide the structure, body, or region being analyzed into a large number of finite elements, or simply elements.

The solution region is considered to be built of many small, interconnected subregions called elements.

Space Discretization

FEM subdivides a large system into smaller, simpler parts that are called finite elements

construction of a mesh of the object

Introduction to FEA: Applications

Introduction to FEA: Applications

Introduction to FEA: Applications

Introduction to FEA: Analysis Procedures

Procedures

1-Discretization

2-Interpolation (Shape Function)

3-Derivation of characteristic matrices (element stiffness matrices and load vectors)
4-Assembly
5-Applying Boundary Conditions
6-Solving unknown

Introduction to FEA: Analysis Procedures

1- Discretization

The first step in the finite element method involves dividing the body into an equivalent system of finite elements with associated nodes and choosing the most appropriate element type to model most closely the actual physical behavior.
Small elements (and possibly higher-order elements) are generally desirable where the results are changing rapidly, such as where changes in geometry occur

Spatial Discretization (Mesh)

Introduction to FEA: Analysis Procedures

(a) Simple two-noded line element (typically used to represent a bar or beam element) and the higher-order line element

Triangulars

(b) Simple two-dimensional elements with corner nodes (typically used to represent plane stress/strain) and higher-order two-dimensional elements with intermediate nodes along the sides

(c) Simple three-dimensional elements (typically used to represent three-dimensional stress state) and higher-order three-dimensional elements with intermediate nodes along edges

Introduction to FEA: Analysis Procedures
 2-Interpolation (Select a Displacement Function)

Since the displacement solution of a complex structure under any specified load conditions cannot be predicted exactly, we assume some suitable solution within an element to approximate the unknown solution. The assumed solution must be simple from a computational standpoint, but it should satisfy certain convergence requirements. In general, the solution or the interpolation model is taken in the form of a polynomial.

$$
\begin{aligned}
& \text { Approximate Solution } u(x, y, z)=\sum_{i=1} a_{i} N_{i}(x, y, z)=a_{1} N_{1}(x, y, z)+a_{2} N_{2}(x, y, z)+\cdots \quad \begin{array}{l}
\text { satisfy the Essential } \\
\text { boundary conditions exactly }
\end{array} \\
& \qquad u(x, y, z)=[N(x, y, z)]\{a\}
\end{aligned}
$$

Interpolation (Geometric Order of Element)

Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes
Number of nodes and order of interpolation
Formulation

Connector elements
such as springs

Integration

Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes: the translations and, for shell, pipe, and beam elements, the rotations at each node.

Number of nodes and order of interpolation

Formulation

Integration

Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes
Number of nodes and order of interpolation
Formulation

Integration

(a) Linear element (8-node brick, C3D8)

(b) Quadratic element (20-node brick, C3D20)

(c) Modified second-order element (10-node tetrahedron, C3D10M)

Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family
Degrees of freedom Number of nodes
Number of nodes and order of interpolation
Formulation: mathematical theory used to define the element's behavior (Lagrangian or Eulerian/shell
element: 1-general-purpose shell analysis, 2-thin shells, 3-for thick shells.)
Integration Plane strain
Plane stress
Hybrid elements
Incompatible-mode elements
Small-strain shells Finite-strain shells
Thick shells
Thin shells

Introduction to FEA: Analysis Procedures

Five aspects of an element characterize its behavior:

Family

Degrees of freedom Number of nodes
Number of nodes and order of interpolation
Formulation

Integration: Using Gaussian quadrature for most elements (full or reduced integration)

Introduction to FEA: Analysis Procedures

3-Derive element stiffness matrices and load vectors

From the assumed displacement model, the stiffness matrix $\left[K^{e}\right]$ and the load vector $\left\{P^{e}\right\}$ of element e are to be derived by using a suitable variational principle, a weighted residual approach (such as the Galerkin method), or equilibrium (direct method) conditions.

Introduction to FEA: Analysis Procedures

Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

Variational Approach

The variational approach is based on the application of variational calculus, which deals with the extremization of functionals in the form of integrals.

$$
I=U(u, v, w, \ldots)-W_{e x t}(u, v, w, \ldots) \Rightarrow I=U(\{a\})-W_{e x t}(\{a\})=\Rightarrow \delta I=0=\Rightarrow \frac{\partial I}{\partial a_{i}}=0
$$

Weighted Residual Approach

The weighted residual methods allow the finite element method to be applied directly to any differential equation.

$$
L(u)+F(x, y, z)=0 \Rightarrow R=L(u=[N]\{a\})+F(x, y, z) \Rightarrow \int_{V} w_{i} R d V=0
$$

Direct Approach

According to this method, the stiffness matrix and element equations relating nodal forces to nodal displacements are obtained using force equilibrium conditions for a basic element, along with force/deformation relationships.

Force $=$ Spring stiffness \times Net deformation of the spring

$$
\begin{aligned}
& F_{i}=k_{e}\left(u_{i}-u_{j}\right) \\
& F_{j}=k_{e}\left(u_{j}-u_{i}\right)
\end{aligned} \quad \square k_{e}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
u_{j}
\end{array}\right\}=\left\{\begin{array}{l}
F_{i} \\
F_{j}
\end{array}\right\}
$$

As an example

$$
\left[K^{(e)}\right]=\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]=\left[\begin{array}{cc}
\left(A_{e} E_{e} / l_{e}\right) & -\left(A_{e} E_{e} / l_{e}\right) \\
-\left(A_{e} E_{e} / l_{e}\right) & \left(A_{e} E_{e} / l_{e}\right)
\end{array}\right]=\frac{A_{e} E_{e}}{l_{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Variational Approach

$$
\begin{gathered}
\delta U=\delta W_{\text {ext }}=\Rightarrow \iiint_{V}\{\boldsymbol{\delta} \boldsymbol{\varepsilon}\}^{\boldsymbol{T}}\{\boldsymbol{\sigma}\} \boldsymbol{d} \boldsymbol{V}=\iiint_{V}\{\boldsymbol{\delta} \boldsymbol{U}\}^{\boldsymbol{T}}\left\{\boldsymbol{F}_{\boldsymbol{b}}\right\} \boldsymbol{d V}+\iint_{S}\{\boldsymbol{\delta} \boldsymbol{U}\}^{\boldsymbol{T}}\{\boldsymbol{T}\} \boldsymbol{d} \boldsymbol{S}+\sum_{i=1}^{n}\{\boldsymbol{\delta} \boldsymbol{U}\}^{\boldsymbol{T}}\left\{\boldsymbol{F}_{\boldsymbol{p}}\right\} \\
\text { Stiffness matrix } \left.\begin{array}{c}
\text { Self Strain } \\
\downarrow
\end{array} \text { Stress Vector } \longrightarrow \boldsymbol{\sigma}\right\}=[\boldsymbol{D}]\left(\{\boldsymbol{\varepsilon}\}-\left\{\boldsymbol{\varepsilon}_{\mathbf{0}}\right\}\right)+\left\{\boldsymbol{\sigma}_{\mathbf{0}}\right\} \longrightarrow \text { Prestress Vector } \longrightarrow
\end{gathered}
$$

Elastic strain energy

Prestress energy

Surface Traction work

$$
\iiint_{V}\{\boldsymbol{\delta} \boldsymbol{\varepsilon}\}^{T}[\boldsymbol{D}]\{\boldsymbol{\varepsilon}\} \boldsymbol{d} \boldsymbol{V}-\iiint_{V}\{\boldsymbol{\delta} \boldsymbol{\varepsilon}\}^{T}[\boldsymbol{D}]\left\{\boldsymbol{\varepsilon}_{\mathbf{0}}\right\} \boldsymbol{d} \boldsymbol{V}+\iiint_{V}\{\boldsymbol{\delta} \boldsymbol{\varepsilon}\}^{\boldsymbol{T}}\left\{\boldsymbol{\sigma}_{\mathbf{0}}\right\} \boldsymbol{d} \boldsymbol{V}-\iiint_{V}\{\boldsymbol{\delta} \boldsymbol{U}\}^{T}\left\{\boldsymbol{F}_{\boldsymbol{b}}\right\} \boldsymbol{d} \boldsymbol{V}-\iint_{S}\{\boldsymbol{\delta} \boldsymbol{U}\}^{\boldsymbol{T}} \boldsymbol{T} \boldsymbol{d} \boldsymbol{d}-\sum_{i=1}^{n}\{\boldsymbol{\delta} \boldsymbol{U}\}^{\boldsymbol{T}}\left\{\boldsymbol{F}_{\boldsymbol{p}}\right\}=0
$$

$$
\{u\}=\left\{\begin{array}{c}
u(x, y, z) \\
v(x, y, z) \\
w(x, y, z)
\end{array}\right\}=[N(x, y, z)]\{a\}
$$

$$
\{\varepsilon\}=[L]\{u\}=[L][N(x, y, z)]\{a\}=[B]\{a\}
$$

$$
\left(\iiint_{V}\{B\}^{T}[D]\{B\} d V\right)\{a\}=\iiint_{V}\{B\}^{T}[D]\left\{\varepsilon_{0}\right\} d V-\iiint_{V}\{B\}^{T}\left\{\sigma_{0}\right\} d V+\iiint_{V}\{N\}^{T}\left\{F_{b}\right\} d V+\iint_{S}\{N\}^{T}\{T\} d S+\sum_{i=1}^{n}\{N\}^{T}\left\{F_{p}\right\}
$$

Weighted Residual Approach

The weighted residual method is a technique that can be used to obtain approximate solutions to linear and nonlinear differential equations. If we use this method the finite element equations can be derived directly from the governing differential equations of the problem without any need of knowing the functional. We first consider the solution of equilibrium, eigenvalue, and propagation problems using the weighted residual method and then derive the finite element equations using the weighted residual approach.
Weighted Residual $\left\{\begin{array}{l}\text { Point Collocation Method } \\ \text { Subdomain Collocation Method } \\ \text { Least Squares Method } \\ \text { Galerkin Method }\end{array}\right.$

Galerkin Method

$$
L(\{u\})+F(x, y, z)=0 \Rightarrow R=L(\{u\}=[N]\{a\})+F(x, y, z) \Rightarrow \Rightarrow \int_{V} N_{i} R d V=0 i=1, . ., N
$$

Introduction to FEA: Analysis Procedures

4-Assemble element equations to obtain the overall equilibrium equations

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\frac{A E}{L} & 0 & -\frac{A E}{L} & 0 \\
0 & 0 & 0 & 0 \\
-\frac{A E}{L} & 0 & \frac{A E}{L} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2}
\end{array}\right\}} \\
& {\left[K_{1}\right]_{L}=\left[\begin{array}{cccc}
115000 & 0 & -115000 & 0 \\
0 & 0 & 0 & 0 \\
-115000 & 0 & 115000 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[K_{2}\right]_{L}=\left[\begin{array}{ccc}
76666.67 & 0 & -76666.67 \\
0 & 0 & 0 \\
-76666.67 & 0 & 76666.67 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right] \quad\left[K_{3}\right]_{L}=\left[\begin{array}{cccc}
63791.43 & 0 & -63791.43 & 0 \\
0 & 0 & 0 & 0 \\
-63791.43 & 0 & 63791.43 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Introduction to FEA: Analysis Procedures

$\left[K_{1}\right]_{L}=\left[\begin{array}{cccc}115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left[C_{1}\right]=\left[\begin{array}{cccc}\cos (0) & -\sin (0) & 0 & 0 \\ \sin (0) & \cos (0) & 0 & 0 \\ 0 & 0 & \cos (0) & -\sin (0) \\ 0 & 0 & \sin (0) & \cos (0)\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{l}\left.K_{1}\right]_{G}=\end{array} \begin{array}{ccc}U_{1} / u_{1} \\ V_{1} / v_{1} \\ U_{2} / u_{2} \\ V_{2} / v_{2}\end{array} \begin{array}{ccc}U_{1} / u_{1} & V_{1} / v_{1} & U_{2} / u_{2} \\ 115000 & 0 & V_{2} / v_{2} \\ 0 & -115000 & 0 \\ -115000 & 0 & 0 \\ 0 & 115000 & 0 \\ 0 & 0\end{array}\right]$
$\left[K_{2}\right]_{L}=\left[\begin{array}{cccc}76666.67 & 0 & -76666.67 & 0 \\ 0 & 0 & 0 & 0 \\ -76666.67 & 0 & 76666.67 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left[C_{2}\right]=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad\left[K_{2}\right]_{G}=\begin{gathered}U_{2} / u_{2} \\ V_{2} / v_{2} \\ U_{3} / u_{3}\end{gathered}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 76666.67 & 0 \\ 0 & -76666.67 \\ V_{3} / v_{3} & -76666.67 & 0 \\ 0 & 76666.67\end{array}\right]$

Introduction to FEA: Analvsis Procedures

Introduction to FEA: Analysis Procedures

5- Apply Boundary Conditions

Governing equation, must be modified to account for the boundary conditions, is a set of simultaneous algebraic/ordinary differential/partial differential equations that can be written in expanded matrix form.
$\left[\begin{array}{ccc}{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\ \cdots & \cdots & \cdots \\ {\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}\end{array}\right]\left\{\begin{array}{c}\left\{\delta_{P}\right\} \\ \cdots \\ \left\{\delta_{F}\right\}\end{array}\right\}=\left\{\begin{array}{c}\left\{F_{P}\right\} \\ \cdots \\ \left\{F_{F}\right\}\end{array}\right\}$
The subscripts P and F refer respectively to the prescribed and free degrees of freedom
$\left[\begin{array}{ccccccc}134628 & 29442 & 0 & \vdots & -115000 & -19628 & -29442 \\ 29442 & 44163 & 0 & \vdots & 0 & -29442 & -44163 \\ 0 & 0 & 76666.67 & \vdots & 0 & 0 & -76666.67 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -115000 & 0 & 0 & \vdots & 115000 & 0 & 0 \\ -19628 & -29442 & 0 & \vdots & 0 & 19628 & 29442 \\ -29442 & -44163 & -76666.67 & \vdots & 0 & 29442 & 120829.67\end{array}\right]\left\{\begin{array}{c}U_{1}=0 \\ V_{1}=0 \\ V_{2}=0 \\ \cdots \\ U_{2} \\ U_{3} \\ V_{3}\end{array}\right\}=\left\{\begin{array}{c}R_{X 1} \\ R_{Y 1} \\ R_{Y 2} \\ \cdots \\ 0 \\ 12000 \\ 0\end{array}\right\}$

Introduction to FEA: Analysis Procedures

6-Solve for the unknown nodal displacements

$$
\left.\left.\begin{array}{ccc}
{\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\}}
\end{array} \quad \begin{array}{l}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]\right\} \begin{aligned}
& \\
& \\
& \left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
\end{aligned}
$$

It should be mentioned that K will always have an inverse for well-posed problems solved by the finite element method.

Introduction to FEA: Analysis Procedures

6-Calculation of the Element Resultants

SUPPORT REACTIONS
$\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\} \quad\left\{\begin{array}{l}R_{X 1} \\ R_{Y 1} \\ R_{Y 2}\end{array}\right\}=\left[\begin{array}{ccc}-115000 & -19628 & -29442 \\ 0 & -29442 & -44163 \\ 0 & 0 & -76666.67\end{array}\right]\left\{\begin{array}{c}0 \\ 0.9635 \\ -0.2348\end{array}\right\}=\left\{\begin{array}{c}-12 \\ -18 \\ 18\end{array}\right\} \mathrm{kN}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

$$
\begin{aligned}
& \{\delta\} \longrightarrow\left\{\overline{d_{3}}\right\} \longrightarrow\left\{d_{3}\right\}=\left[C_{3}\right]^{T}\left\{\overline{d_{3}}\right\} \\
& \left\{f_{3}\right\}=\left[\begin{array}{cccc}
63791.43 & 0 & -63791.43 & 0 \\
0 & 0 & 0 & 0 \\
-63791.43 & 0 & 63791.43 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0.3391 \\
-0.9319
\end{array}\right\}=\left\{\begin{array}{c}
-21.631 \\
0 \\
21.631 \\
0
\end{array}\right\} \mathrm{kN}
\end{aligned}
$$

Introduction to FEA: Analysis Procedures

Static Problem (ODEs or PDEs)
$\frac{d}{d x}\left(A E \frac{d u(x)}{d x}\right)=w(x)$

FEM
System of Algebraic Equations
(Linear or Non-linear)

$$
[K]\{a\}=f \longrightarrow\{a\}
$$

Introduction to FEA: Analysis Procedures

Non-linear
Structural
Problems $\left\{\begin{array}{l}\text { Material Nonlinearity: Due to non-linear constitutive law (e.g., polymer materials) } \\ \text { Goundary Nonlinearity: Due to non-linearity of boundary conditions (i.e., contact problems) }\end{array}\right.$

Introduction to FEA: Analysis Procedures

Problem 1: Truss Problem

Problem Discerption

Problem 1: Truss Problem

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	Ibf	Ibf
Mass	kg	tonne ($10^{3} \mathrm{~kg}$)	slug	Ibf $\mathrm{s}^{2} / \mathrm{in}$
Time	s	s	5	s
Stress	$\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	MPa ($\mathrm{N} / \mathrm{mm}^{2}$)	$\mathrm{lbf} / \mathrm{ft}^{2}$	psi ($\mathrm{lbf} / \mathrm{in}^{2}$)
Energy	J	$\mathrm{mJ}\left(10^{-3} \mathrm{~J}\right)$	ft lbf	in Ibf
Density	$\mathrm{kg} / \mathrm{m}^{3}$	tonne/mm ${ }^{3}$	slug/ft ${ }^{3}$	lbf s ${ }^{2} / \mathrm{in}^{4}$

Problem 1: Truss Problem

Data Preparation (Create Input file)

Nodes Coordinates \longrightarrow geom $=\left[\begin{array}{cc}0 & 0 \\ 4000 & 0 \\ 4000 & 6000\end{array}\right]$
Element Connectivity \longrightarrow connec $=\left[\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 1 & 3\end{array}\right]$
Material and Geometrical Properties \longrightarrow prop $=\left[\begin{array}{ll}200000 & 2300 \\ 200000 & 2300 \\ 200000 & 2300\end{array}\right]$
Boundary Conditions $\longrightarrow \mathbf{n f}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right] \longrightarrow \mathbf{n f}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 2 & 3\end{array}\right]$
Loading \longrightarrow load $=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 1200 & 0\end{array}\right]$

Problem 1: Truss Problem

Discretization and Interpolation

$$
\left.\begin{array}{l}
u(x)=c_{0}+c_{1} x \\
\left\{\begin{array}{l}
u(x=0)=u_{1}=c_{0} \\
u(x=L)=u_{2}=c_{0}+c_{1} L
\end{array}\right. \\
\left\{\begin{array}{l}
v(x)={c^{\prime}}_{0}+c^{\prime}{ }_{1} x \\
v(x=0)=v_{1}=c^{\prime}{ }_{0} \\
v(x=L)=v_{2}=c^{\prime}{ }_{0}+c^{\prime}{ }_{1} L
\end{array}\right. \\
\left\{v(x)=\left[\frac{\left(u_{2}-u_{1}\right)}{L}\right] x+u_{1}\right. \\
L
\end{array}\right] x+v_{1}, ~\left\{\begin{array}{lll}
\left.v_{2}-v_{1}\right) \\
{[N]=\left[\begin{array}{lll}
N_{1} & 0 & N_{2} \\
0 & N_{1} & 0 \\
N_{2}
\end{array}\right]} \\
N_{1}=\left(1-\frac{x}{L}\right) & N_{2}=\frac{x}{L}
\end{array}\right.
$$

$$
\left\{d_{e}\right\}=\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}^{T}
$$

Problem 1: Truss Problem

Direct Approach

$$
\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=[N]\left\{d_{e}\right\}
$$

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

$\{\sigma\}=[D][L][N]\left\{d_{e}\right\}$

$$
\sigma_{x}=E \varepsilon_{x}\left\{\begin{array}{l}
f_{x 1}=E A\left(\frac{u_{1}-u_{2}}{L}\right) \\
f_{x 2}=E A\left(\frac{u_{2}-u_{1}}{L}\right)
\end{array}\right.
$$

$$
\begin{array}{ll}
{[N]=\left[\begin{array}{cccc}
N_{1} & 0 & N_{2} & 0 \\
0 & N_{1} & 0 & N_{2}
\end{array}\right]} & N_{1}=\left(1-\frac{x}{L}\right) \\
{[L]=\left[\begin{array}{ll}
\frac{\partial}{\partial x} & 0
\end{array}\right]} & {[D]=[E]}
\end{array}
$$

$$
N_{2}=\frac{x}{L}
$$

Problem 1: Truss Problem

Local Stiffness Matrix

$$
\left[\begin{array}{cccc}
\frac{A E}{L} & 0 & -\frac{A E}{L} & 0 \\
0 & 0 & 0 & 0 \\
-\frac{A E}{L} & 0 & \frac{A E}{L} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2}
\end{array}\right\}
$$

$$
\left[K_{e}\right]\left\{d_{e}\right\}=\left\{f_{e}\right\}
$$

$$
\left\{d_{e}\right\}=\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}^{T}
$$

$$
\left\{\bar{d}_{e}\right\}=\left\{U_{1}, V_{1}, U_{2}, V_{2}\right\}^{T}
$$

$\left\{\bar{f}_{e}\right\}=\left\{F_{x 1}, F_{y 1}, F_{x 2}, F_{y 2}\right\}^{T}$

$$
[C]=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & \cos (\theta) & -\sin (\theta) \\
0 & 0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad\left\{\begin{array}{l}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}
$$

Problem 1: Truss Problem

Global Stiffness Matrix

$$
[C]=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & \cos (\theta) & -\sin (\theta) \\
0 & 0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\begin{aligned}
& \left\{d_{e}\right\}=\lceil C]^{T}\left\{\overline{d_{e}}\right\} \\
& {\left[K_{e}\right]\left\{d_{e}\right\}=\left\{f_{e}\right\}} \\
& \left\{f_{e}\right\}=\lceil C\rceil^{T}\left\{\bar{f}_{e}\right\} . \\
& \underbrace{[C]\left[K_{e}\right][C]^{T}}\left\{\overline{d_{e}}\right\}=\left\{\overline{\boldsymbol{F}_{e}}\right\} \\
& {\left[\overline{K_{e}}\right]=[C]\left[K_{e}\right][C]^{T}} \\
& {\left[\overline{K_{e}}\right]\left\{\overline{d_{e}}\right\}=\left\{\overline{f_{e}}\right\}}
\end{aligned}
$$

Problem 1: Truss Problem

Assemblage

The individual element nodal equilibrium equations are assembled into the global nodal equilibrium equations.
$\left[K_{1}\right]_{L}=\left[\begin{array}{cccc}115000 & 0 & -115000 & 0 \\ 0 & 0 & 0 & 0 \\ -115000 & 0 & 115000 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left[K_{2}\right]_{L}=\left[\begin{array}{cccc}76666.67 & 0 & -76666.67 & 0 \\ 0 & 0 & 0 & 0 \\ -76666.67 & 0 & 76666.67 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left[K_{3}\right]_{L}=\left[\begin{array}{cccc}63791.43 & 0 & -63791.43 & 0 \\ 0 & 0 & 0 & 0 \\ -63791.43 & 0 & 63791.43 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Problem 1: Truss Problem

Assemblage

$$
\left.\left[K_{3}\right]_{L}=\left[\begin{array}{cccc}
63791.43 & 0 & -63791.43 & 0 \\
0 & 0 & 0 & 0 \\
-63791.43 & 0 & 63791.43 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[C_{3}\right]=\left[\begin{array}{cccc}
0.554699 & -0.832051 & 0 & 0 \\
0.832051 & 0.554699 & 0 & 0 \\
0 & 0 & 0.554699 & -0.832051 \\
0 & 0 & 0.832051 & 0.554699
\end{array}\right] \quad\left[K_{3}\right]_{G}=\begin{array}{c}
U_{1} / u_{1} \\
V_{1} / v_{1} \\
U_{3} / u_{2} \\
V_{3} / v_{2}
\end{array} \begin{array}{ccc}
U_{1} / u_{1} & V_{1} / v_{1} & U_{3} / u_{2} \\
19628 & 29442 & -19628 \\
29442 & -29442 \\
44163 & -29442 & -44163 \\
-19628 & -29442 & 19628 \\
-29442 & -44163 & 29442
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[K_{1}\right]_{L}=\left[\begin{array}{cccc}
115000 & 0 & -115000 & 0 \\
0 & 0 & 0 & 0 \\
-115000 & 0 & 115000 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[C_{1}\right]=\left[\begin{array}{cccc}
\cos (0) & -\sin (0) & 0 & 0 \\
\sin (0) & \cos (0) & 0 & 0 \\
0 & 0 & \cos (0) & -\sin (0) \\
0 & 0 & \sin (0) & \cos (0)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[K_{1}\right]_{G}=\begin{array}{ccc}
U_{1} / u_{1} \\
V_{1} / v_{1} \\
U_{2} / u_{2} \\
V_{2} / v_{2}
\end{array}\left[\begin{array}{ccc}
U_{1} / u_{1} & V_{1} / v_{1} & U_{2} / u_{2}
\end{array} V_{2} / v_{2}{ }_{c}\right.} \\
& {\left[K_{2}\right]_{L}=\left[\begin{array}{cccc}
76666.67 & 0 & -76666.67 & 0 \\
0 & 0 & 0 & 0 \\
-76666.67 & 0 & 76666.67 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[C_{2}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[K_{2}\right]_{G}=\begin{array}{cccc}
U_{2} / u_{2} \\
V_{2} / v_{2} \\
U_{3} / u_{3} \\
V_{3} / v_{3}
\end{array}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 76666.67 & 0 \\
0 & -76666.67 \\
0 & -76666.67 & 0 \\
0 & 76666.67
\end{array}\right]}
\end{aligned}
$$

Problem 1: Truss Problem

$$
\begin{aligned}
& \left.\left[K_{2}\right]_{G}=\begin{array}{c}
\\
U_{2} / u_{2} \\
V_{2} / v_{2} \\
U_{3} / u_{3} \\
V_{3} / v_{3}
\end{array}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 76666.67 & 0 & -76666.67 \\
0 & 0 & 0 & 0 \\
0 & -76666.67 & 0 & 76666.67
\end{array}\right] \quad \square \quad[\mathbf{K}]=\begin{array}{cccccc}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array} \begin{array}{cccccc}
U_{1} & V_{1} & U_{2} & V_{2} & U_{3} & V_{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 76666.67 & 0 & -76666.67 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -76666.67 & 0 & 76666.67
\end{array}\right]
\end{aligned}
$$

Problem 1: Truss Problem

Assemblage

$[\mathbf{K}]=$| U_{1} |
| :---: |
| U_{1} |
| V_{1} |
| U_{2} |
| V_{2} |
| U_{3} |
| V_{3} |\(\left[\begin{array}{cccccc}115000 \& 0 \& V_{1} \& V_{2} \& U_{3} \& V_{3}

0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 115000 \& 0 \& 115000 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right]\)

Element 1

Element 2

$[\mathbf{K}]=$| U_{1} |
| :---: |
| U_{1} |
| V_{1} |
| U_{2} |
| V_{2} |
| U_{3} |
| V_{3} |\(\left[\begin{array}{cccccc}115000+19628 \& 29442 \& V_{1} \& -115000 \& U_{2} \& V_{2}

29442 \& 44163 \& 0 \& 0 \& -29442 \& -44163

-115000 \& 0 \& 115000 \& 0 \& 0 \& V_{3}

0 \& 0 \& 0 \& 76666.67 \& 0 \& -76666.67

-19628 \& -29442 \& 0 \& 0 \& 19628 \& 29442

-29442 \& -44163 \& 0 \& -76666.67 \& 29442 \& 44163+76666.67\end{array}\right]\)

Problem 1: Truss Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{l}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array} \Rightarrow\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}} \\
\text { If }\left\{\delta_{p}\right\}=0
\end{array}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem 1: Truss Problem

Calculation of the Element Resultants

SUPPORT REACTIONS
$\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\} \quad\left\{\begin{array}{l}R_{X 1} \\ R_{Y 1} \\ R_{Y 2}\end{array}\right\}=\left[\begin{array}{ccc}-115000 & -19628 & -29442 \\ 0 & -29442 & -44163 \\ 0 & 0 & -76666.67\end{array}\right]\left\{\begin{array}{c}0 \\ 0.9635 \\ -0.2348\end{array}\right\}=\left\{\begin{array}{c}-12 \\ -18 \\ 18\end{array}\right\} \mathrm{kN}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

$$
\begin{gathered}
\{\delta\} \Longleftrightarrow\left\{\overline{d_{3}}\right\} \longrightarrow\left\{d_{3}\right\}=\left[C_{3}\right]^{T}\left\{\overline{d_{3}}\right\} \\
\left\{f_{3}\right\}=\left[\begin{array}{cccc}
63791.43 & 0 & -63791.43 & 0 \\
0 & 0 & 0 & 0 \\
-63791.43 & 0 & 63791.43 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0.3391 \\
-0.9319
\end{array}\right\}=\left\{\begin{array}{c}
-21.631 \\
0 \\
21.631 \\
0
\end{array}\right\} \mathrm{kN}
\end{gathered}
$$

Problem 2: Beam Problem

Different types of modeling and associated assumptions

Problem 2: Beam Problem

Problem Discerption

Problem 2: Beam Problem

Data Preparation (Create Input file)

Nodes Coordinates \quad geom $=\left[\begin{array}{c}0 \\ 4000 \\ 9000 \\ 16000\end{array}\right]$

Material and Geometrical Properties

$$
\mathbf{p r o p}=\left[\begin{array}{ll}
200000 & 200 . e+6 \\
200000 & 200 . e+6 \\
200000 & 200 . e+6
\end{array}\right]
$$

$$
\text { Boundary Conditions } \quad \mathbf{n f}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \quad \mathbf{n f}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 2 \\
0 & 0
\end{array}\right]
$$

Loading

Element	$F_{y 1}$	M_{1}	$F_{y 2}$	M_{2}
1	-10^{4}	-10^{7}	-10^{4}	10^{7}
2	-10^{4}	-8.33×10^{6}	-10^{4}	-8.33×10^{6}
3	0	0	0	0

Problem 2: Beam Problem

Euler-Bernoulli theory of bending

$$
\frac{d^{2} w}{d x^{2}}=\frac{M}{E I}
$$

$$
\frac{d^{3} w}{d x^{3}}=\frac{1}{E I} \frac{d M}{d x}=\frac{S}{E I}
$$

$$
\frac{d^{4} w}{d x^{4}}=\frac{1}{E I} \frac{d S}{d x}=\frac{q(x)}{E I}
$$

$$
\left\{F_{e}\right\}=\left\{F_{1}, M_{1}, F_{2}, M_{2}\right\}^{T}
$$

$\left\{d_{e}\right\}=\left\{w_{1}, \theta_{1}, w_{2}, \theta_{2}\right\}^{T}$

Problem 2: Beam Problem

Interpolation (Shape Function)

$$
\left\{\begin{array}{l}
w(x)=c_{1} x^{3}+c_{2} x^{2}+c_{3} x+c_{4} \\
w(x=0)=w_{1}=c_{4} \\
\left.\frac{d w}{d x}\right|_{x=0}=\theta_{1}=c_{3} \\
w(x=L)=w_{2}=c_{1} L^{3}+c_{2} L^{2}+c_{3} L+c_{4} \\
\left.\frac{d w}{d x}\right|_{x=L}=\theta_{2}=3 c_{1} L^{2}+2 c_{2} L+c_{3}
\end{array}\right.
$$

$$
w(x)=\left[\frac{2}{L^{3}}\left(w_{1}-w_{2}\right)+\frac{1}{L^{2}}\left(\theta_{1}+\theta_{2}\right)\right] x^{3}
$$

$$
+\left[-\frac{3}{L^{2}}\left(w_{1}-w_{2}\right)-\frac{1}{L}\left(2 \theta_{1}+\theta_{2}\right)\right] x^{2}+\theta_{1} x+w_{1}
$$

$$
w(x)=[N]\left\{d_{e}\right\}
$$

$$
\left.[W(x)]_{1 \times 1}=\left[\begin{array}{r}
n \\
1 \times 4
\end{array}\right\} d e\right\}
$$

$$
\begin{aligned}
& {[N]=\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right]} \\
& N_{1}=\frac{1}{L^{3}}\left(2 x^{3}-3 x^{2} L+L^{3}\right) \quad N_{2}=\frac{1}{L^{3}}\left(x^{3} L-2 x^{2} L^{2}+x L^{3}\right) \\
& N_{3}=\frac{1}{L^{3}}\left(-2 x^{3}+3 x^{2} L\right) \quad N_{4}=\frac{1}{L^{3}}\left(x^{3} L-x^{2} L^{2}\right)
\end{aligned}
$$

Problem 2: Beam Problem

Direct Equilibrium Approach

$$
\left\{\begin{array}{l}
F_{1}=\left.E I \frac{d^{3} w(x)}{d x^{3}}\right|_{x=0}=\frac{E I}{\mathrm{~L}^{3}}\left(12 w_{1}+6 L \theta_{1}-12 w_{2}+6 L \theta_{2}\right) \\
M_{1}=-\left.E I \frac{d^{2} w(x)}{d x^{2}}\right|_{x=0}=\frac{E I}{\mathrm{~L}^{3}}\left(6 L w_{1}+4 L^{2} \theta_{1}-6 L w_{2}+2 L^{2} \theta_{2}\right) \\
F_{2}=-\left.E I \frac{d^{3} w(x)}{d x^{3}}\right|_{x=L}=\frac{E I}{\mathrm{~L}^{3}}\left(-12 w_{1}-6 L \theta_{1}+12 w_{2}-6 L \theta_{2}\right) \\
M_{2}=\left.E I \frac{d^{2} w(x)}{d x^{2}}\right|_{x=L}=\frac{E I}{\mathrm{~L}^{3}}\left(6 L w_{1}+2 L^{2} \theta_{1}-6 L w_{2}+4 L^{2} \theta_{2}\right)
\end{array}\right.
$$

$$
\left\{d_{e}\right\}=\left\{w_{1}, \theta_{1}, w_{2}, \theta_{2}\right\}^{T}
$$

Problem 2: Beam Problem

Local Stiffness Matrix

$$
\left\{\begin{array}{l}
F_{y 1} \\
M_{1} \\
F_{y 2} \\
M_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} & 6 E I / L^{2} \\
6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} & 2 E I / L \\
-12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3} & -6 E I / L^{2} \\
6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} & 4 E I / L
\end{array}\right]\left\{\begin{array}{c}
w_{1} \\
\theta_{1} \\
w_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\left\{f_{e}\right\}=\left[K_{e}\right]\left\{\delta_{e}\right\}
$$

(b)

$$
\left\{d_{e}\right\}=\left\{w_{1}, \theta_{1}, w_{2}, \theta_{2}\right\}^{T}
$$

Problem 2: Beam Problem

Local Stiffness Matrix: Internal Hinge

Internal Hinge $\left\{\begin{array}{l}\text { Discontinuity in the slope of the deflection curve } \\ \text { Zero value of the bending moment }\end{array}\right.$

Discretize the beam using two elements
The hinge should be accounted for only once; either associated with element 1 or with element 2
If the beam is discretized with two elements, one with a hinge at its right end and the other with a hinge at its left, the result will be a singular stiffness matrix.
$\left[\begin{array}{cccc}3 E I / L^{3} & 3 E I / L^{2} & -3 E I / L^{3} & 0 \\ 3 E I / L^{2} & 3 E I / L & -3 E I / L^{2} & 0 \\ -3 E I / L^{3} & -3 E I / L^{2} & 3 E I / L^{3} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left\{\begin{array}{c}w_{11} \\ \theta_{11} \\ w_{12} \\ \theta_{12}\end{array}\right\}=\left\{\begin{array}{c}F_{11} \\ M_{11} \\ F_{12} \\ M_{12}\end{array}\right\} \quad\left[\begin{array}{cccc}3 E I / L^{3} & 0 & -3 E I / L^{3} & 3 E I / L^{2} \\ 0 & 0 & 0 & 0 \\ -3 E I / L^{3} & 0 & 3 E I / L^{3} & -3 E I / L^{2} \\ 3 E I / L^{2} & 0 & -3 E I / L^{2} & 3 E I / L\end{array}\right]\left\{\begin{array}{l}w_{21} \\ \theta_{21} \\ w_{22} \\ \theta_{22}\end{array}\right\}=\left\{\begin{array}{l}F_{21} \\ M_{21} \\ F_{22} \\ M_{22}\end{array}\right\}$

Problem 2: Beam Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\left.\begin{array}{r}
\left.\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
\end{array}\right] \begin{gathered}
\text { If }\left\{\delta_{p}\right\}=0 \\
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
\end{gathered}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem 2: Beam Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \quad\left\{\quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}\right.
$$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

$$
\{\delta\} \longmapsto\left\{d_{e}\right\} \longmapsto\left\{F_{e}\right\}=\left[K_{e}\right]\left\{d_{e}\right\}-\left\{F_{0}\right\}
$$

$\left\{F_{e}\right\}$: The vector of equivalent nodal forces at element level

3D Truss Problem

Problem Discerption

$$
E=200 \mathrm{GPa} \quad A=0.02 \mathrm{~m}^{2}
$$

3D Truss Problem

Consistent Units

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	lbf	lbf
Mass	kg	tonne $\left(10^{3} \mathrm{~kg}\right)$	slug	$\mathrm{lbf} \mathrm{s} 2 / \mathrm{in}$
Time	s	s	s	s
Stress	$\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	$\mathrm{MPa}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\mathrm{lbf} / \mathrm{ft}^{2}$	$\mathrm{psi}\left(\mathrm{lbf} / \mathrm{in}^{2}\right)$
Energy	J	$\mathrm{mJ}\left(10^{-3} \mathrm{~J}\right)$	ft lbf	in lbf
Density	$\mathrm{kg} / \mathrm{m}^{3}$	tonne $/ \mathrm{mm}^{3}$	$\mathrm{slug} / \mathrm{ft}^{3}$	$\mathrm{lbf} \mathrm{s}^{2} / \mathrm{in}^{4}$

3D Truss Problem

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading
geom (nnd, dim=3)
connec (nel, nne=2)

$$
\begin{aligned}
& E=200 G P a \\
& A=0.02 \mathrm{~m}^{2}
\end{aligned}
$$

nf (nnd, nodof=3)
load (nnd, dim=3)

3D Truss Problem

Discretization and Interpolation

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
u(x)=c_{0}+c_{1} x \\
u(x=0)=u_{1}=c_{0} \\
u(x=L)=u_{2}=c_{0}+c_{1} L
\end{array} \\
\begin{array}{l}
v(x)=c_{0}^{\prime}+c_{1}^{\prime} x
\end{array} \\
\left\{\begin{array}{l}
v(x=0)=v_{1}=c_{0}^{\prime} \\
v(x=L)=v_{2}=c_{0}^{\prime}+c_{1}^{\prime} L
\end{array}\right. \\
u(x)=\left[\frac{\left(u_{2}-u_{1}\right)}{L}\right] x+u_{1} \\
\left\{v(x)=\left[\frac{\left(v_{2}-v_{1}\right)}{L}\right] x+v_{1}\right. \\
\begin{array}{l}
w(x=0)=w_{1}=c_{0}^{\prime \prime} \\
w(x=L)=w_{2}=c_{0}^{\prime \prime}+c_{1}^{\prime \prime} L
\end{array} \\
\begin{array}{l}
w(x)=c_{0}^{\prime \prime}+c_{1}^{\prime \prime} x
\end{array} \left\lvert\, \begin{array}{l}
\left\{\begin{array}{l}
u(x) \\
v(x) \\
w(x)
\end{array}\right\}=[N]\left\{d_{e}\right\}
\end{array}\right. \\
{[N]=\left[\begin{array}{ccccc}
N_{1} & 0 & 0 & N_{2} & 0 \\
0 & N_{1} & 0 & 0 & N_{2} \\
0 & 0 & N_{1} & 0 & 0 \\
0
\end{array}\right]} \\
N_{1}=\left(1-\frac{x}{L}\right) \\
N_{2}=\frac{x}{L}
\end{array} \\
& \left\{d_{e}\right\}=\left\{u_{1} v_{1} w_{1} u_{2} v_{2} w_{2}\right\}^{T}
\end{aligned}
$$

3D Truss Problem

Local Stiffness Matrix

$$
\begin{aligned}
& \left\{\begin{array}{c}
u(x) \\
v(x) \\
w(x)
\end{array}\right\}=\left[\begin{array}{cccccc}
N_{1} & 0 & 0 & N_{2} & 0 & 0 \\
0 & N_{1} & 0 & 0 & N_{2} & 0 \\
0 & 0 & N_{1} & 0 & 0 & N_{2}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1} \\
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right\}, ~ N_{1}=1-\frac{x}{L} \quad N_{2}=\frac{x}{L} \\
& \varepsilon_{x x}=\frac{\partial u(x)}{\partial x} \longrightarrow L=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \sigma_{x x}=E \varepsilon_{x x} \longrightarrow D=\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & E & 0 \\
0 & 0 & E
\end{array}\right]
\end{aligned}
$$

$$
\left\{\begin{array}{l}
f_{1 x}=E A\left(\frac{u_{1}-u_{2}}{L}\right) \\
f_{2 x}=E A\left(\frac{u_{2}-u_{1}}{L}\right)
\end{array} \frac{A E}{L}\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
w_{1} \\
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right\}=\left\{\begin{array}{l}
f_{x_{1}} \\
f_{y 1} \\
f_{z 1} \\
f_{x_{2}} \\
f_{y 2} \\
f_{z 2}
\end{array}\right\} \square\left[K_{e}\right]\left\{d_{e}\right\}=\left\{f_{e}\right\}\right.
$$

3D Truss Problem

Transformation Matrix

$r=r_{x} i+r_{y} j+r_{z} k=r_{x}^{\prime} i^{\prime}+r_{y}^{\prime} j^{\prime}+r_{z}^{\prime} k^{\prime}\left\{\begin{array}{l}r_{x} i . i^{\prime}+r_{y} j . i^{\prime}+r_{z} k . i^{\prime}=r_{x}^{\prime} \\ r_{x} i . j^{\prime}+r_{y} j . j^{\prime}+r_{z} k . j^{\prime}=r_{y}^{\prime} \\ r_{x} i . k^{\prime}+r_{y} j . k^{\prime}+r_{z} k . k^{\prime}=r_{z}^{\prime} k^{\prime}\end{array}\right.$
$\left\{\begin{array}{l}r_{x}^{\prime} \\ r_{y}^{\prime} \\ r_{z}^{\prime}\end{array}\right\}=\left[\begin{array}{ccc}i . i^{\prime} & j . i^{\prime} & k . i^{\prime} \\ i . j^{\prime} & j . j^{\prime} & k . j^{\prime} \\ i . k^{\prime} & j . k^{\prime} & k . k^{\prime}\end{array}\right]\left\{\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right\} \square\left\{\begin{array}{l}r_{x}^{\prime} \\ r_{y}^{\prime} \\ r_{z}^{\prime}\end{array}\right\}=\underbrace{\left[\begin{array}{ccc}\cos \left(x, x^{\prime}\right) & \cos \left(y, x^{\prime}\right) & \cos \left(z, x^{\prime}\right) \\ \cos \left(x, y^{\prime}\right) & \cos \left(y, y^{\prime}\right) & \cos \left(z, y^{\prime}\right) \\ \cos \left(x, z^{\prime}\right) & \cos \left(y, z^{\prime}\right) & \cos \left(z, z^{\prime}\right)\end{array}\right]}\left\{\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right\}, x_{i}^{\prime}$
$\cos \left(x, x^{\prime}\right)=\frac{x_{j}-x_{i}}{L} \quad \cos \left(y, x^{\prime}\right)=\frac{y_{j}-y_{i}}{L} \quad \cos \left(z, x^{\prime}\right)=\frac{z_{j}-z_{i}}{L}$
$[R]=\left[\begin{array}{ll}{[T]} & {[0]} \\ {[0]} & {[T]}\end{array}\right]$

$$
D=\sqrt{\cos ^{2}\left(x, x^{\prime}\right)+\cos ^{2}\left(y, x^{\prime}\right)}
$$

$\cos \left(x, y^{\prime}\right)=\frac{\cos \left(y, x^{\prime}\right)}{D}$

$$
\cos \left(y, y^{\prime}\right)=-\frac{\cos \left(x, x^{\prime}\right)}{D}
$$

$$
\cos \left(z, y^{\prime}\right)=-\frac{\cos \left(x, x^{\prime}\right)}{D}
$$

$\cos \left(x, z^{\prime}\right)=-\frac{\cos \left(x, x^{\prime}\right) \cos \left(z, x^{\prime}\right)}{D} \quad \cos \left(y, z^{\prime}\right)=-\frac{\cos \left(y, x^{\prime}\right) \cos \left(z, x^{\prime}\right)}{D} \quad \cos \left(z, z^{\prime}\right)=D$

3D Truss Problem

Transformation Matrix

$$
e_{i}^{\prime}=T_{i j} e_{j} \square\left\{\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right\}=\underbrace{\left[\begin{array}{lll}
e_{1}^{\prime} \cdot e_{1} & e_{1}^{\prime} \cdot e_{2} & e_{1}^{\prime} \cdot e_{3} \\
e_{2}^{\prime}, e_{1} & e_{2}^{\prime} \cdot e_{2} & e_{2}^{\prime} \cdot e_{3} \\
e_{3}^{\prime} \cdot e_{1} & e_{3}^{\prime} \cdot e_{2} & e_{3}^{\prime} \cdot e_{3}
\end{array}\right]}_{[T]}\left\{\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right\}
$$

$$
[R]=\left[\begin{array}{cc}
{[T]} & {[0]} \\
{[0]} & {[T]}
\end{array}\right]
$$

3D Truss Problem

Transformation Matrix

Element stiffness matrix in the global coordinate system

$$
\begin{array}{ll}
\text { Matrix Form } & {[k]=[R]^{T}[k /][R]} \\
& \{k\}=k_{i j} e_{i} e_{j} \xrightarrow[e_{m}^{\prime}=r_{m i} e_{i}]{\text { Index Form }} \quad \begin{array}{l}
e_{n}^{\prime}=r_{n j} e_{j}
\end{array} \quad k_{i j}=k^{\prime}{ }_{m n} r_{m i} r_{n j}
\end{array}
$$

3D Truss Problem

More Efficient Procedure

$$
[R] \mathbb{\bigotimes} \underset{\begin{array}{c}
\text { Global } \\
\text { Coordinate }
\end{array}}{\rightleftharpoons} \begin{gathered}
\text { Local } \\
\text { Coordinate }
\end{gathered}
$$

Global
Coordinate

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{1 x}=E A\left(\frac{u_{1}-u_{2}}{L}\right) \\
f_{2 x}=E A\left(\frac{u_{2}-u_{1}}{L}\right)
\end{array} \square\left[k_{e}\right]=\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\right. \\
& \left\{\begin{array}{lll}
\left\{x_{x}^{\prime}\right\} & =\left[\cos \left(x, y^{\prime}\right)\right. & \cos \left(y, y^{\prime}\right) \\
\left.\cos \left(z, y^{\prime}\right)\right]\left\{r_{x}\right\} & {\left[K_{e}\right]=[R]^{T}\left[k_{e}\right][R]}
\end{array}\right. \\
& \cos \left(x, x^{\prime}\right)=\frac{x_{j}-x_{i}}{L} \quad \cos \left(y, x^{\prime}\right)=\frac{y_{j}-y_{i}}{L} \quad \cos \left(z, x^{\prime}\right)=\frac{z_{j}-z_{i}}{L} \\
& {[R]=\left[\begin{array}{cc}
{[T]} & {[0]} \\
{[0]} & {[T]}
\end{array}\right]=\left[\begin{array}{cccccc}
\frac{x_{j}-x_{i}}{L} & \frac{y_{j}-y_{i}}{L} & \frac{z_{j}-z_{i}}{L} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{x_{j}-x_{i}}{L} & \frac{y_{j}-y_{i}}{L} & \frac{z_{j}-z_{i}}{L}
\end{array}\right]}
\end{aligned}
$$

3D Truss Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\begin{array}{r}
\left.\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]\left\{\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}\right. \\
\\
\text { If }\left\{\delta_{p}\right\}=0 \\
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
\end{array}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

3D Truss Problem

Calculation of the Element Resultants

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

Problem 4: 2D Frames

Problem Description

Problem 4: 2D Frames

All input and output data must be specified in consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	Ibf	Ibf
Mass	kg	tonne ($10^{3} \mathrm{~kg}$)	slug	Ibf $\mathrm{s}^{2} / \mathrm{in}$
Time	s	s	s	s
Stress	$\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	$\mathrm{MPa}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\mathrm{lbf} / \mathrm{ft}^{2}$	psi (lbf/in ${ }^{2}$)
Energy	J	$\mathrm{mJ}\left(10^{-3} \mathrm{~J}\right)$	ft lbf	in Ibf
Density	$\mathrm{kg} / \mathrm{m}^{3}$	tonne/mm ${ }^{3}$	slug/ft ${ }^{3}$	lbf s ${ }^{2} / \mathrm{in}^{4}$

Problem 4: 2D Frames

Discretization

Problem 4: 2D Frames

Problem 4: 2D Frames

Data Preparation (Create Input file)Nodes Coordinatesgeom (nnd, dim=2)
connec (nel, nne=2)
Element ConnectivityE
Material and Geometrical Properties AIBoundary Conditionsnf (nnd, nodof=3)
Loading
load (nnd, nodof=3)

Problem 4: 2D Frames

Interpolation (Shape Function)

$$
\begin{aligned}
& v(x)=c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
& \left\{\begin{array}{l}
v(x=0)=v_{1}=c_{0} \\
\left.\frac{d v}{d x}\right|_{x=0}=\theta_{1}=c_{1} \\
v(x=L)=v_{2}=c_{3} L^{3}+c_{2} L^{2}+c_{1} L+c_{0} \\
\left.\frac{d v}{d x}\right|_{x=L}=\theta_{2}=3 c_{3} L^{2}+2 c_{2} L+c_{1} \\
\left.\left.\left.v(x)=\frac{1}{L^{3}}\left[2 x_{1}^{3}-3 x^{2} L+v_{2}\right)+\frac{1}{L^{2}}\left(\theta_{1}+\theta_{2}\right)\right] v_{1}+\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \theta_{1}+\frac{1}{L^{2}}\left[v_{1}-v_{2}\right)-\frac{1}{L}\left(2 \theta_{1}+\theta_{2}\right)\right] x^{2}+\theta_{1} x+v_{1} L\right] v_{2}+\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right] \theta_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
u(x)=c_{1} x+c_{0} \\
\left\{\begin{array}{l}
u(x=0)=u_{1}=c_{0} \\
u(x=L)=u_{2}=c_{0}+c_{1} L
\end{array}\right.
\end{gathered}
$$

$$
u(x)=\left[\frac{\left(u_{2}-u_{1}\right)}{L}\right] x+u_{1}
$$

$$
u(x)=\left[1-\frac{x}{L}\right] u_{1}+\left[\frac{x}{L}\right] u_{2}
$$

Problem 4: 2D Frames

Interpolation (Shape Function)

$$
u(x)=\left[1-\frac{x}{L}\right] u_{1}+\left[\frac{x}{L}\right] u_{2} \quad \square \quad N_{1}=\left[1-\frac{x}{L}\right] \quad N_{2}=\left[\frac{x}{L}\right]
$$

$$
v(x)=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+L^{3}\right] v_{1}+\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \theta_{1}+\frac{1}{L^{3}}\left[-2 x^{3}+3 x^{2} L\right] v_{2}+\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right] \theta_{2}
$$

$$
N_{3}=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+L^{3}\right] \quad N_{4}=\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \quad N_{5}=\frac{1}{L^{3}}\left[-2 x^{3}+3 x^{2} L\right] \quad N_{6}=\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right]
$$

$$
\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=[N]\left\{d_{e}\right\} \quad \square \quad\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=\left[\begin{array}{cccccc}
N_{1} & 0 & 0 & N_{2} & 0 & 0 \\
0 & N_{3} & N_{4} & 0 & N_{5} & N_{6}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
\theta_{1} \\
u_{2} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

Problem 4: 2D Frames

Direct Equilibrium Approach

$$
\left\{\begin{array}{l}
f_{x 1}=E A\left(\frac{u_{1}-u_{2}}{L}\right) \\
f_{x 2}=E A\left(\frac{u_{2}-u_{1}}{L}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
F_{y 1}=\left.E I \frac{d^{3} v(x)}{d x^{3}}\right|_{x=0}=\frac{E I}{\mathrm{~L}^{3}}\left(12 v_{1}+6 L \theta_{1}-12 v_{2}+6 L \theta_{2}\right) \\
M_{1}=-\left.E I \frac{d^{2} v(x)}{d x^{2}}\right|_{x=0}=\frac{E I}{\mathrm{~L}^{3}}\left(6 L v_{1}+4 L^{2} \theta_{1}-6 L v_{2}+2 L^{2} \theta_{2}\right) \\
F_{y 2}=-\left.E I \frac{d^{3} v(x)}{d x^{3}}\right|_{x=L}=\frac{E I}{\mathrm{~L}^{3}}\left(-12 v_{1}-6 L \theta_{1}+12 v_{2}-6 L \theta_{2}\right) \\
M_{2}=\left.E I \frac{d^{2} v(x)}{d x^{2}}\right|_{x=L}=\frac{E I}{\mathrm{~L}^{3}}\left(6 L v_{1}+2 L^{2} \theta_{1}-6 L v_{2}+4 L^{2} \theta_{2}\right)
\end{array}\right.
$$

Problem 4: 2D Frames

$$
\left[K_{e}\right]=\int_{0}^{L}[B]^{T}[D][B] A d x
$$

Local Stiffness Matrix

$\left[K_{e}\right]=\left[\begin{array}{cccccc}A E / L & 0 & 0 & -A E / L & 0 & 0 \\ 0 & 12 E I / L^{3} & 6 E I / L^{2} & 0 & -12 E I / L^{3} & 6 E I / L^{2} \\ 0 & 6 E I / L^{2} & 4 E I / L & 0 & -6 E I / L^{2} & 2 E I / L \\ -A E / L & 0 & 0 & A E / L & 0 & 0 \\ 0 & -12 E I / L^{3} & -6 E I / L^{2} & 0 & 12 E I / L^{3} & -6 E I / L^{2} \\ 0 & 6 E I / L^{2} & 2 E I / L & 0 & -6 E I / L^{2} & 4 E I / L\end{array}\right]$

$$
\left\{d_{e}\right\}=\left\{u_{1}, v_{1}, \theta_{1}, u_{2}, v_{2}, \theta_{2}\right\}^{T} \quad\left\{F_{e}\right\}=\left\{F_{x 1}, F_{y 1}, M_{1}, F_{x 2}, F_{y 2}, M_{2}\right\}^{T}
$$

hinge at its right end:

hinge at its left end:
$\left[K_{e}\right]=\left[\begin{array}{cccccc}A E / L & 0 & 0 & -A E / L & 0 & 0 \\ 0 & 3 E I / L^{3} & 3 E I / L^{2} & 0 & -3 E I / L^{3} & 0 \\ 0 & 3 E I / L^{2} & 3 E I / L & 0 & -3 E I / L^{2} & 0 \\ -A E / L & 0 & 0 & A E / L & 0 & 0 \\ 0 & -3 E I / L^{3} & -3 E I / L^{2} & 0 & 3 E I / L^{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \quad\left[K_{e}\right]=\left[\begin{array}{cccccc}A E / L & 0 & 0 & -A E / L & 0 \\ 0 & 3 E I / L^{3} & 0 & 0 & -3 E I / L^{3} & 3 E I / L^{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -A E / L & 0 & 0 & A E / L & 0 & 0 \\ 0 & -3 E I / L^{3} & 0 & 0 & 3 E I / L^{3} & -3 E I / L^{2} \\ 0 & 3 E I / L^{2} & 0 & 0 & -3 E I / L^{2} & 3 E I / L\end{array}\right]$

Problem 4: 2D Frames

Global Stiffness Matrix

$$
\begin{aligned}
& \left\{d_{e}\right\}=\lceil C]^{T}\left\{\overline{d_{e}}\right\} \\
& {\left[K_{e}\right]\left\{d_{e}\right\}=\left\{f_{e}\right\}} \\
& \left\{f_{e}\right\}=\lceil C\rceil^{T}\left\{\overline{f_{e}}\right\} \\
& \underbrace{[C]\left[K_{e}\right][C]^{T}}\left\{\overline{d_{e}}\right\}=\left\{\overline{f_{e}}\right\} \\
& {\left[\overline{K_{e}}\right]\left\{\overline{d_{e}}\right\}=\left\{\overline{f_{e}}\right\}} \\
& {\left[\overline{K_{e}}\right]=[C]\left[K_{e}\right][C]^{T}} \\
& R^{\top} \text { kt } R \leadsto R=\left[\begin{array}{ll}
\boxed{+\top} & \\
& T
\end{array}\right] \\
& {[C]=\left[\begin{array}{cccccc}
\cos \theta & -\sin \theta & 0 & 0 & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \theta & -\sin \theta & 0 \\
0 & 0 & 0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { Element stiffness matrix in the global coordinate system } \\
& {\left[\overline{K_{e}}\right]=[C]\left[K_{e}\right][C]^{T}}
\end{aligned}
$$

Assemblage

Problem 4: 2D Frames

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem 4: 2D Frames

Calculation of the Element Resultants

SUPPORT REACTIONS

$\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained

$$
\{\delta\} \quad\left\{\overline{d_{3}}\right\} \quad \Longrightarrow\left\{d_{3}\right\}=\left[C_{3}\right]^{T}\left\{\overline{d_{3}}\right\}
$$

$$
\begin{array}{lll}
K \delta=F & \stackrel{d}{ } & \downarrow \\
\text { Kede }=P_{e} & f_{e}-f_{0}
\end{array}
$$

3D Frame Problem

Problem Description

3D Frame Problem
 Discretization

3D Frame Problem
 Statically Equivalent Nodal Loads

3D Frame Problem

Data Preparation (Create Input file)
 geom (nnd, dim $=3$)

Nodes Coordinates
connec (nel, nne = 2)

Material and Geometrical Properties

$$
\begin{aligned}
& E=200 G P a \\
& A=0.02 \mathrm{~m}^{2} \\
& I=m^{4}
\end{aligned}
$$

Boundary Conditions

$$
\operatorname{nf}(\mathrm{nnd}, \text { nodof }=6)
$$

Loading

```
load (nnd, nodof = 6)
```


3D Frame Problem

Interpolation (Shape Function)

$$
\begin{aligned}
& v(x)=c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
& \left\{\begin{array}{l}
v(x=0)=v_{1}=c_{0} \\
\left.\frac{d v}{d x}\right|_{x=0}=\theta_{1}=c_{1} \\
v(x=L)=v_{2}=c_{3} L^{3}+c_{2} L^{2}+c_{1} L+c_{0} \\
\left.\frac{d v}{d x}\right|_{x=L}=\theta_{2}=3 c_{3} L^{2}+2 c_{2} L+c_{1} \\
\left.v(x)=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+L^{3}\right] v_{1}+\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \theta_{1}+\frac{1}{L^{2}}\left(\theta_{1}+\theta_{2}\right)\right] x^{3}+\left[-\frac{3}{L^{2}}\left(v_{1}-v_{2}\right)-\frac{1}{L}\left(2 \theta_{1}+\theta_{2}\right)\right] x^{2}+\theta_{1} x+v_{1} \\
w(x)=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right] \theta_{2}+\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \theta_{1}+\frac{1}{L^{3}}\left[-2 x^{3}+3 x^{2} L\right] w_{2}+\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right] \theta_{2}\right.
\end{array}\right.
\end{aligned}
$$

$u(x)=c_{1} x+c_{0}$
$\left\{\begin{array}{l}u(x=0)=u_{1}=c_{0} \\ u(x=L)=u_{2}=c_{0}+c_{1} L\end{array}\right.$

$$
u(x)=\left[\frac{\left(u_{2}-u_{1}\right)}{L}\right] x+u_{1}
$$

$$
u(x)=\left[1-\frac{x}{L}\right] u_{1}+\left[\frac{x}{L}\right] u_{2}
$$

3D Frame Problem

Interpolation (Shape Function)

$$
u(x)=\left[1-\frac{x}{L}\right] u_{1}+\left[\frac{x}{L}\right] u_{2} \quad \square \quad N_{1}=\left[1-\frac{x}{L}\right] \quad N_{2}=\left[\frac{x}{L}\right]
$$

$$
v(x)=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+L^{3}\right] v_{1}+\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \theta_{1}+\frac{1}{L^{3}}\left[-2 x^{3}+3 x^{2} L\right] v_{2}+\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right] \theta_{2}
$$

$$
N_{3}=\frac{1}{L^{3}}\left[2 x^{3}-3 x^{2} L+L^{3}\right] \quad N_{4}=\frac{1}{L^{3}}\left[x^{3} L-2 x^{2} L^{2}+x L^{3}\right] \quad N_{5}=\frac{1}{L^{3}}\left[-2 x^{3}+3 x^{2} L\right] \quad N_{6}=\frac{1}{L^{3}}\left[x^{3} L-x^{2} L^{2}\right]
$$

$$
\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=[N]\left\{d_{e}\right\} \quad \square \quad\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=\left[\begin{array}{cccccc}
N_{1} & 0 & 0 & N_{2} & 0 & 0 \\
0 & N_{3} & N_{4} & 0 & N_{4} & N_{6}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
\theta_{1} \\
u_{2} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

3D Frame Problem

$$
\left[K_{e}\right]=\int_{0}^{L}[B]^{T}[D][B] A d x
$$

$$
\left[K_{e}\right]=\left[\begin{array}{cccccccccccc}
\frac{E A}{L} & 0 & 0 & 0 & 0 & 0 & -\frac{E A}{L} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{12 E I_{z}}{L^{3}} & 0 & 0 & 0 & \frac{6 E I_{z}}{L^{2}} & 0 & -\frac{12 E I_{z}}{L^{3}} & 0 & 0 & 0 & \frac{6 E I_{z}}{L^{2}} \\
0 & 0 & \frac{12 E I_{y}}{L^{3}} & 0 & -\frac{6 E I_{y}}{L^{2}} & 0 & 0 & 0 & -\frac{12 E I_{y}}{L^{3}} & 0 & -\frac{6 E I_{y}}{L^{2}} & 0 \\
0 & 0 & 0 & \frac{G J}{L} & 0 & 0 & 0 & 0 & 0 & -\frac{G J}{L} & 0 & 0 \\
0 & 0 & -\frac{6 E I_{y}}{L^{2}} & 0 & \frac{4 E I_{y}}{L} & 0 & 0 & 0 & \frac{6 E I_{y}}{L^{2}} & 0 & \frac{2 E I_{y}}{L} & 0 \\
0 & \frac{6 E I_{z}}{L^{2}} & 0 & 0 & 0 & \frac{4 E I_{z}}{L} & 0 & -\frac{6 E I_{z}}{L^{2}} & 0 & 0 & 0 & \frac{2 E I_{z}}{L} \\
-\frac{0 A}{L} & 0 & 0 & 0 & 0 & 0 & \frac{E A}{L} & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{12 E I_{z}}{L^{3}} & 0 & 0 & 0 & -\frac{6 E I_{z}}{L^{2}} & 0 & \frac{12 E I_{z}}{L^{3}} & 0 & 0 & 0 & -\frac{6 E I_{z}}{L^{2}} \\
0 & 0 & -\frac{12 E I_{y}}{L^{3}} & 0 & \frac{6 E I_{y}}{L^{2}} & 0 & 0 & 0 & \frac{12 E I_{y}}{L^{3}} & 0 & \frac{6 E I_{y}}{L^{2}} & 0 \\
0 & 0 & 0 & -\frac{G J}{L} & 0 & 0 & 0 & 0 & 0 & \frac{G J}{L} & 0 & 0 \\
0 & 0 & -\frac{6 E I_{y}}{L^{2}} & 0 & \frac{2 E I_{y}}{L} & 0 & 0 & 0 & \frac{6 E I_{y}}{L^{2}} & 0 & \frac{4 E I_{y}}{L} & 0 \\
0 & \frac{6 E I_{z}}{L^{2}} & 0 & 0 & 0 & \frac{2 E I_{z}}{L} & 0 & -\frac{6 E I_{z}}{L^{2}} & 0 & 0 & 0 & \frac{4 E I_{z}}{L}
\end{array}\right]
$$

3D Frames

Transformation Matrix

$r=r_{x} i+r_{y} j+r_{z} k=r_{x}^{\prime} i^{\prime}+r_{y}^{\prime} j^{\prime}+r_{z}^{\prime} k^{\prime}\left\{\begin{array}{l}r_{x} i . i^{\prime}+r_{y} j . i^{\prime}+r_{z} k . i^{\prime}=r_{x}^{\prime} \\ r_{x} i . j^{\prime}+r_{y} j . j^{\prime}+r_{z} k . j^{\prime}=r_{y}^{\prime} \\ r_{x} i . k^{\prime}+r_{y} j . k^{\prime}+r_{z} k . k^{\prime}=r_{z}^{\prime} k^{\prime}\end{array}\right.$
$\left\{\begin{array}{l}r_{x}^{\prime} \\ r_{y}^{\prime} \\ r_{z}^{\prime}\end{array}\right\}=\left[\begin{array}{lll}i . i^{\prime} & j . i^{\prime} & k . i^{\prime} \\ i . j^{\prime} & j . j^{\prime} & k . j^{\prime} \\ i . k^{\prime} & j . k^{\prime} & k . k^{\prime}\end{array}\right]\left(\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right\} \square\left\{\begin{array}{l}r_{x}^{\prime} \\ r_{y}^{\prime} \\ r_{z}^{\prime}\end{array}\right\}=\left[\begin{array}{lll}\cos \left(x, x^{\prime}\right) & \cos \left(y, x^{\prime}\right) & \cos \left(z, x^{\prime}\right) \\ \cos \left(x, y^{\prime}\right) & \cos \left(y, y^{\prime}\right) & \cos \left(z, y^{\prime}\right) \\ \cos \left(x, z^{\prime}\right) & \cos \left(y, z^{\prime}\right) & \cos \left(z, z^{\prime}\right)\end{array}\right]\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right\}$
$\cos \left(x, x^{\prime}\right)=\frac{x_{j}-x_{i}}{L} \quad \cos \left(y, x^{\prime}\right)=\frac{y_{j}-y_{i}}{L} \quad \cos \left(z, x^{\prime}\right)=\frac{z_{j}-z_{i}}{L}$

$\cos \left(x, y^{\prime}\right)=\frac{\cos \left(y, x^{\prime}\right)}{D}$

$$
\cos \left(y, y^{\prime}\right)=-\frac{\cos \left(x, x^{\prime}\right)}{D}
$$

$$
\cos \left(z, y^{\prime}\right)=0
$$

$\cos \left(x, z^{\prime}\right)=-\frac{\cos \left(x, x^{\prime}\right) \cos \left(z, x^{\prime}\right)}{D}$

$$
\cos \left(y, z^{\prime}\right)=-\frac{\cos \left(y, x^{\prime}\right) \cos \left(z, x^{\prime}\right)}{D}
$$

$$
\cos \left(z, z^{\prime}\right)=D
$$

3D Frames

Transformation Matrix

$$
e_{i}^{\prime}=T_{i j} e_{j} \square\left\{\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right\}=\underbrace{\left[\begin{array}{lll}
e_{1}^{\prime} \cdot e_{1} & e_{1}^{\prime} \cdot e_{2} & e_{1}^{\prime} \cdot e_{3} \\
e_{2}^{\prime}, e_{1} & e_{2}^{\prime}, e_{2} & e_{2}^{\prime} \cdot e_{3} \\
e_{3}^{\prime} \cdot e_{1} & e_{3}^{\prime} \cdot e_{2} & e_{3}^{\prime} \cdot e_{3}
\end{array}\right]}_{[T]}\left\{\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right\}
$$

$$
[R]=\left[\begin{array}{ccc}
{[T]} & {[0]} & {[0]} \\
{[0]} & {[T]} & {[0]} \\
{[0]} & {[0]} & {[T]}
\end{array}\right]
$$

3D Truss Problem

Transformation Matrix

Element stiffness matrix in the global coordinate system

$$
\begin{aligned}
& \text { Matrix Form } \\
& {[k]=[R]^{T}\left[k^{\prime}\right][R]} \\
& \{k\}=k_{i j} e_{i} e_{j} \\
& \text { Index Form } \\
& \left\{k^{\prime}\right\}=k_{m n}^{\prime} e_{m}^{\prime} e_{n}^{\prime} \\
& k_{i j}=k^{\prime}{ }_{m n} r_{m i} r_{n j}
\end{aligned}
$$

3D Frame Problem

Global Stiffness Matrix

$[k]=[R]^{T}\left[k^{\prime}\right][R]$
Element stiffness matrix in the global coordinate system

Assemblage

3D Frame Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\left.\begin{array}{r}
\left.\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
\end{array}\right] \begin{gathered}
\text { If }\left\{\delta_{p}\right\}=0 \\
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
\end{gathered}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

3D Frame Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}$

MEMBERS' FORCES

Once all the displacements are known, the member forces can be easily obtained $\{\delta\} \longrightarrow\left\{\overline{d_{3}}\right\} \longrightarrow\left\{d_{3}\right\}=\left[C_{3}\right]^{T}\left\{\overline{d_{3}}\right\}$

Problem 6: Membrane Problem

Problem Discerption

Problem 6: Membrane Problem

Space Discretization: Mesh Generation

For each interval i and j, four nodes n1, n2, n3, and n4 and two elements are created. The first element has nodes n1, n2, n3, while the second element has nodes n2, n4, n3.

$$
\begin{gathered}
\text { nel }=2 \times \text { NXE } \times \text { NYE } \\
\text { nnd }=(N X E+1) \times(\text { NYE }+1)
\end{gathered}
$$

Problem 6: Membrane Problem

Interpolation (Shape) Function

$$
\begin{aligned}
& N_{1}(x, y)=m_{11}+m_{12} x+m_{13} y \\
& N_{2}(x, y)=m_{21}+m_{22} x+m_{23} y \\
& N_{3}(x, y)=m_{31}+m_{32} x+m_{33} y
\end{aligned}
$$

$$
\begin{array}{lll}
m_{11}=\frac{x_{2} y_{3}-x_{3} y_{2}}{2 A} & m_{12}=\frac{y_{2}-y_{3}}{2 A} & m_{13}=\frac{x_{3}-x_{2}}{2 A} \\
m_{21}=\frac{x_{3} y_{1}-x_{1} y_{3}}{2 A} & m_{22}=\frac{y_{3}-y_{1}}{2 A} & m_{23}=\frac{x_{1}-x_{3}}{2 A} \\
m_{31}=\frac{x_{1} y_{2}-x_{2} y_{1}}{2 A} & m_{32}=\frac{y_{1}-y_{2}}{2 A} & m_{33}=\frac{x_{2}-x_{1}}{2 A}
\end{array}
$$

$$
A=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right]
$$

Problem 6: Membrane Problem

Element Stiffness Matrix: Variational Approach

$$
\begin{aligned}
U & =\frac{1}{2} \iint_{A} P\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] d A \\
T & =\frac{1}{2} \iint_{A} \rho\left(\frac{\partial w}{\partial t}\right)^{2} d A \\
W & =\iint_{A} f(x, y, t) w(x, y, t) d A
\end{aligned}
$$

$$
\delta I=\int_{t_{1}}^{t_{2}}\left[\iint_{A} P\left[\frac{\partial w}{\partial x} \delta\left(\frac{\partial w}{\partial x}\right)+\frac{\partial w}{\partial y} \delta\left(\frac{\partial w}{\partial y}\right)\right] d A-\iint_{A} f(x, y, t) \delta w(x, y, t) d A-\iint_{A} \rho \frac{\partial^{2} w}{\partial t^{2}} \delta w(x, y, t) d A\right] d t=0
$$

$$
w=[N]\{a\}
$$

$$
\delta I=\left(\left(\iint_{A} P\left[\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right] d A\right)\{a\}-\left(\iint_{A}[N]^{T} f(x, y, t) d A\right)-\left(\iint_{A}[N]^{T} \rho d A\right)\{\ddot{a}\}\right) \delta\{a\}=0
$$

Problem 6: Membrane Problem

Element Stiffness Matrix: Variational Approach

$$
\left(\iint_{A} P\left[\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right] d A\right)\{a\}-\left(\iint_{A}[N]^{T} f(x, y, t) d A\right)-\left(\iint_{A}[N]^{T} \rho d A\right)\{\ddot{a}\}=0
$$

$$
[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t)
$$

$$
[M]=\iint_{A}[N]^{T} \rho[N] d A \quad[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A \quad F(t)=\iint_{A}[N]^{T} f(x, y, t) d A
$$

Problem 6: Membrane Problem

Element Stiffness Matrix: Galerkin Approach

$$
\begin{gathered}
\left.P\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)+f(x, y, t)=\rho \frac{\partial^{2} w}{\partial t^{2}} w=[N]\{a\}\right\rangle \int_{A}[N]^{T}\left[P\left(\frac{\partial^{2}[N]}{\partial x^{2}}+\frac{\partial^{2}[N]}{\partial y^{2}}\right)\{a\}+f(x, y, t)-\rho[N]\{\ddot{a}\}\right] d A=0 \\
\iint_{A}\left[-P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right)\{a\}+[N]^{T} f(x, y, t)-[N]^{T} \rho[N]\{\ddot{a}\}\right] d A+\oint_{C}[N]^{T} P\left(\frac{\partial[N]}{\partial x} n_{x}+\frac{\partial[N]}{\partial y} n_{y}\right) d C=0 \\
{[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t)} \\
{[M]=\iint_{A}[N]^{T} \rho[N] d A \quad[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A \quad F(t)=\iint_{A}[N]^{T} f(x, y, t) d A}
\end{gathered}
$$

Problem 6: Membrane Problem

Element Stiffness Matrix

$$
[M]=\iint_{A}[N]^{T} \rho[N] d A=\iint_{A^{e}}\left[\begin{array}{l}
L_{i} \\
L_{j} \\
L_{k}
\end{array}\right] \rho\left[\begin{array}{lll}
L_{i} & L_{j} & L_{k}
\end{array}\right] d x d y=\rho \iint_{A^{e}}\left[\begin{array}{ccc}
L_{i}^{2} & L_{i} L_{j} & L_{i} L_{k} \\
L_{j} L_{i} & L_{j}^{2} & L_{j} L_{k} \\
L_{k} L_{i} & L_{k} L_{j} & L_{k}^{2}
\end{array}\right]=\frac{\rho}{12}\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& {[K]=\iint_{A} T\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A=\iint_{A^{e}}\left[\begin{array}{l}
m_{21} \\
m_{22} \\
m_{23}
\end{array}\right] T\left[\begin{array}{lll}
m_{21} & m_{22} & m_{23}
\end{array}\right] d x d y+\iint_{A^{e}}\left[\begin{array}{l}
m_{31} \\
m_{32} \\
m_{33}
\end{array}\right] T\left[\begin{array}{lll}
m_{31} & m_{32} & m_{33}
\end{array}\right] d x d y} \\
& =T A\left[\begin{array}{ccc}
m_{21}^{2} & m_{21} m_{22} & m_{21} m_{23} \\
m_{22} m_{21} & m_{22}^{2} & m_{22} m_{23} \\
m_{23} m_{21} & m_{23} m_{22} & m_{23}^{2}
\end{array}\right]+T A\left[\begin{array}{ccc}
m_{31}^{2} & m_{31} m_{32} & m_{31} m_{33} \\
m_{32} m_{31} & m_{32}^{2} & m_{32} m_{33} \\
m_{33} m_{31} & m_{33} m_{32} & m_{33}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\{F(t)\}=\iint_{A}[N]^{T} P d A
$$

Problem 6: Membrane Problem

Assemblage

Problem 6: Membrane Problem

Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem 6: Membrane Problem

Solve (free) Nodal Displacement

$$
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
$$

$$
\text { If } \left.\left\{\delta_{p}\right\}=0\right\rangle
$$

$$
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
$$

Problem 6: Membrane Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \quad \Longrightarrow \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}
$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector \mathbf{g}
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If $\mathrm{g}(\mathrm{j})=0$, then the degree of freedom is restrained; $\operatorname{edg}(\mathrm{j})=\mathbf{0}$
c. Otherwise $\operatorname{edg}(\mathrm{j})=\operatorname{delta}(\mathrm{g}(\mathrm{j}))$
2. Obtain element strain vector eps $=$ bee \times edg
3. Obtain element stress vector sigma $=$ dee \times bee $\times \mathbf{e d g}$
4. Store the strains for all the elements EPS(i,:) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file

Problem 7: Membrane Problem

Problem Discerption

Problem 7: Membrane Problem

Space Discretization: Mesh Generation

Problem 7: Membrane Problem

Interpolation (Shape) Function

$$
w(\xi, \eta)=c_{0}+c_{1} \xi+c_{2} \eta+c_{3} \xi \eta
$$

$$
\begin{aligned}
& N_{1}(\xi, \eta)=0.25(1-\xi-\eta+\xi \eta) \\
& N_{2}(\xi, \eta)=0.25(1+\xi-\eta-\xi \eta) \quad w(\xi, \eta)=N_{1} w_{1}+N_{2} w_{2}+N_{3} w_{3}+N_{4} w_{4} \\
& N_{3}(\xi, \eta)=0.25(1+\xi+\eta+\xi \eta) \\
& N_{4}(\xi, \eta)=0.25(1-\xi+\eta-\xi \eta)
\end{aligned}
$$

\xrightarrow{x}

$$
w(\xi, \eta, t)=\left[\begin{array}{llll}
N_{1}(\xi, \eta) & N_{2}(\xi, \eta) & N_{3}(\xi, \eta) & N_{4}(\xi, \eta)
\end{array}\right]\left\{\begin{array}{l}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t) \\
w_{4}(t)
\end{array}\right\}
$$

Problem 7: Membrane Problem

Element Stiffness Matrix: Variational Approach

$$
\begin{aligned}
U & =\frac{1}{2} \iint_{A} P\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] d A \\
T & =\frac{1}{2} \iint_{A} \rho\left(\frac{\partial w}{\partial t}\right)^{2} d A \\
W & =\iint_{A} f(x, y, t) w(x, y, t) d A
\end{aligned}
$$

$$
\delta I=\int_{t_{1}}^{t_{2}}\left[\iint_{A} P\left[\frac{\partial w}{\partial x} \delta\left(\frac{\partial w}{\partial x}\right)+\frac{\partial w}{\partial y} \delta\left(\frac{\partial w}{\partial y}\right)\right] d A-\iint_{A} f(x, y, t) \delta w(x, y, t) d A-\iint_{A} \rho \frac{\partial^{2} w}{\partial t^{2}} \delta w(x, y, t) d A\right] d t=0
$$

$$
w=[N]\{a\}
$$

$$
\delta I=\left(\left(\iint_{A} P\left[\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right] d A\right)\{a\}-\left(\iint_{A}[N]^{T} f(x, y, t) d A\right)-\left(\iint_{A}[N]^{T} \rho d A\right)\{\ddot{a}\}\right) \delta\{a\}=0
$$

Problem 7: Membrane Problem

Element Stiffness Matrix: Variational Approach

$$
\left(\iint_{A} P\left[\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right] d A\right)\{a\}-\left(\iint_{A}[N]^{T} f(x, y, t) d A\right)-\left(\iint_{A}[N]^{T} \rho d A\right)\{\ddot{a}\}=0
$$

$$
[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t)
$$

$$
[M]=\iint_{A}[N]^{T} \rho[N] d A \quad[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A \quad F(t)=\iint_{A}[N]^{T} f(x, y, t) d A
$$

Problem 7: Membrane Problem

Element Stiffness Matrix: Galerkin Approach

$$
\begin{gathered}
\left.P\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)+f(x, y, t)=\rho \frac{\partial^{2} w}{\partial t^{2}} w=[N]\{a\}\right\rangle \iint_{A}[N]^{T}\left[P\left(\frac{\partial^{2}[N]}{\partial x^{2}}+\frac{\partial^{2}[N]}{\partial y^{2}}\right)\{a\}+f(x, y, t)-\rho[N]\{\ddot{a}\}\right] d A=0 \\
\iint_{A}\left[-P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right)\{a\}+[N]^{T} f(x, y, t)-[N]^{T} \rho[N]\{\ddot{a}\}\right] d A+\oint_{C}[N]^{T} P\left(\frac{\partial[N]}{\partial x} n_{x}+\frac{\partial[N]}{\partial y} n_{y}\right) d C=0 \\
{[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t)} \\
{[M]=\iint_{A}[N]^{T} \rho[N] d A \quad[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A \quad F(t)=\iint_{A}[N]^{T} f(x, y, t) d A}
\end{gathered}
$$

Problem 7: Membrane Problem

Element Stiffness Matrix

$$
\begin{aligned}
& {[M]=\iint_{A}[N]^{T} \rho[N] d A=\frac{\rho}{9}\left[\begin{array}{llll}
4 & 2 & 1 & 2 \\
2 & 4 & 2 & 4 \\
1 & 2 & 4 & 2 \\
2 & 1 & 2 & 4
\end{array}\right]} \\
& {[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A} \\
& \{F(t)\}=\iint_{A}[N]^{T} f(x, y, t) d A
\end{aligned}
$$

Problem 7: Membrane Problem

Element Stiffness Matrix

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \quad[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{lll}
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right] \quad[J]=\left[\begin{array}{lll}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \frac{\partial N_{3}}{\partial \xi} \\
\frac{\partial N_{4}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \frac{\partial N_{3}}{\partial \eta} \\
\frac{\partial N_{4}}{\partial \eta}
\end{array}\right]\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right] \\
\text { Isoparametric Element } \longrightarrow \begin{array}{l}
x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}+N_{4} x_{4} \\
y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}+N_{4} y_{4}
\end{array} \quad\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
\end{gathered}
$$

Problem 7: Membrane Problem

Element Stiffness Matrix

$$
[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t)
$$

$$
[M]=\iint_{A}[N]^{T} \rho[N] d A=\frac{\rho}{9}\left[\begin{array}{llll}
4 & 2 & 1 & 2 \\
2 & 4 & 2 & 4 \\
1 & 2 & 4 & 2 \\
2 & 1 & 2 & 4
\end{array}\right]
$$

$$
[K]=\iint_{A} P\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) d A \quad[K]=P \int_{-1}^{+1} \int_{-1}^{+1}\left(\frac{\partial[N]^{T}}{\partial x} \frac{\partial[N]}{\partial x}+\frac{\partial[N]^{T}}{\partial y} \frac{\partial[N]}{\partial y}\right) \operatorname{det}[J(\xi, \eta)] d \xi d \eta
$$

$$
=t \sum_{i=1}^{n h p} W_{i}\left[B\left(\xi_{i}, \eta_{i}\right]^{T}[D]\left[B\left(\xi_{i}, \eta_{i}\right)\right] \operatorname{det}\left[J\left(\xi_{i}, \eta_{i}\right)\right]\right.
$$

Problem 7: Membrane Problem

Assemblage

Problem 7: Membrane Problem

Assemblage

Problem 7: Membrane Problem

Apply Boundary Conditions

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Problem 7: Membrane Problem

Solve (free) Nodal Displacement
$\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}$
If $\left\{\delta_{p}\right\}=0$ >

$$
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
$$

Problem 7: Membrane Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \quad \Longrightarrow \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}
$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector \mathbf{g}
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If $\mathrm{g}(\mathrm{j})=0$, then the degree of freedom is restrained; $\operatorname{edg}(\mathrm{j})=\mathbf{0}$
c. Otherwise $\operatorname{edg}(\mathrm{j})=\operatorname{delta}(\mathrm{g}(\mathrm{j}))$
2. Obtain element strain vector eps $=$ bee \times edg
3. Obtain element stress vector sigma $=$ dee \times bee \times edg
4. Store the strains for all the elements EPS(i,:) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file

Plane Stress Problem: T3

Problem Discerption

$$
E=70 \mathrm{GPa} \quad v=0.33 \quad \text { Thickness }=2 \mathrm{~mm}
$$

Plane Stress Problem: T3

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems
Plane stress
Plane strain

$$
\begin{gathered}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{(1-v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x z}
\end{array}\right\} \quad\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & -v & 0 \\
-v & 1-v & 0 \\
0 & 0 & \frac{(1-2 v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\sigma_{z z}=0 \text { and } \varepsilon_{z z} \neq 0
\end{gathered}
$$

Plane Stress Problem: T3

The infinitesimal strain displacements relations for both theories

$$
\begin{aligned}
& \epsilon_{x x}=\frac{\partial u}{\partial x} \\
& \epsilon_{y y}=\frac{\partial v}{\partial y} \\
& \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{aligned} \quad\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\} \quad\{\epsilon\}=[L] U
$$

$$
\begin{array}{r}
u=N_{1} u_{1}+N_{2} u_{2}+\cdots+N_{n} u_{n} \\
v=N_{1} v_{1}+N_{2} v_{2}+\cdots+N_{n} v_{n}
\end{array} \square\left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{cccccccccc}
N_{1} & 0 & \mid & N_{2} & 0 & \mid & \cdots & \mid & N_{n} & 0 \\
0 & N_{1} & \mid & 0 & N_{2} & \mid & \ldots & \mid & 0 & N_{n}
\end{array}\right]
$$

Plane Stress Problem: T3

By substitution

$$
\left\{\begin{array}{l}
\{\varepsilon\}=[\boldsymbol{L}]\{\boldsymbol{U}\} \\
\{\boldsymbol{U}\}=[\boldsymbol{N}]\{\boldsymbol{a}\}
\end{array}\right.
$$

$$
\{\boldsymbol{\varepsilon}\}=[\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\}=[\boldsymbol{B}]\{\boldsymbol{a}\} \quad[B]=\left[\begin{array}{cccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right]
$$

Plane Stress Problem: T3

Variational Approach

$$
\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} d V=\int_{V_{e}} \delta\{U\}^{T}\{b\} d V+\int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d \Gamma+\sum_{i} \delta\{U\}_{(\{x\}=\{\bar{x})}^{T}\{P\}_{i}
$$

$$
\{\delta \epsilon\}=\delta([B]\{a\})=[B]\{\delta a\}
$$

$$
\{\delta U\}=\delta([N]\{a\})=[N]\{\delta a\}
$$

$$
\{\sigma\}=[D]\{\epsilon\}=[D][B]\{a\}
$$

$$
\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]\{a\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{((x x)=\{x\})}\right]^{T}\{P\}_{i}
$$

$$
\{\sigma\}=D]\left(\{\varepsilon\}-\left\{\varepsilon_{0}\right\}\right)+\sigma_{0} \mid
$$

$$
\left[K_{e}\right]=\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]
$$

$$
\left\{f_{e}\right\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\overline{\}}\})}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]\{a\}=f_{e}
$$

Plane Stress Problem: T3

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading


```
connec(nel, 3)
```

$$
E=70 \times 10^{3} \mathrm{MPa} \quad v=0.3
$$

nf(nnd, nodof)

The force in the global force vector fg

Plane Stress Problem: T3

Interpolation

Constant Strain Triangle (CST)
$N_{1}(x, y)=m_{11}+m_{12} x+m_{13} y$
$N_{2}(x, y)=m_{21}+m_{22} x+m_{23} y$
$N_{3}(x, y)=m_{31}+m_{32} x+m_{33} y$

$$
\begin{array}{lll}
m_{11}=\frac{x_{2} y_{3}-x_{3} y_{2}}{2 A} & m_{12}=\frac{y_{2}-y_{3}}{2 A} & m_{13}=\frac{x_{3}-x_{2}}{2 A} \\
m_{21}=\frac{x_{3} y_{1}-x_{1} y_{3}}{2 A} & m_{22}=\frac{y_{3}-y_{1}}{2 A} & m_{23}=\frac{x_{1}-x_{3}}{2 A} \\
m_{31}=\frac{x_{1} y_{2}-x_{2} y_{1}}{2 A} & m_{32}=\frac{y_{1}-y_{2}}{2 A} & m_{33}=\frac{x_{2}-x_{1}}{2 A}
\end{array}
$$

$$
A=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right]
$$

Plane Stress Problem: T3

Stiffness Matrix

Plane Stress Problem: T3

Stiffness Matrix

$$
\left[K_{e}\right]\{a\}=f_{e}
$$

$$
\left[K_{e}\right]=[B]^{T}[D][B] t A_{e}
$$

Body Forces	0	Traction Forces	0 0	Concentrated Forces
$\int_{A_{e}}[N]^{T}\{b\} t d A=-\frac{t}{3}$	0 $\rho g A_{e}$ 0 $\rho g A_{e}$	$\int_{L_{e}}[N]^{T}\{t\} t d l=t$	$-q \cos \theta L_{2-3} / 2$ $-q \sin \theta L_{2-3} / 2$ $-q \cos \theta L_{2-3} / 2$ $-q \sin \theta L_{2-3} / 2$	$\sum_{i}\left[N_{(x)=[(x)}\right]^{T}\{P\}_{i}=\left[\begin{array}{cc}N_{1}=1 & 0 \\ 0 & N_{1}=1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{l}H \\ 0\end{array}\right\}+\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ N_{2}=1 & 0 \\ 0 & N_{2}=1 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{l}0 \\ -P\end{array}\right\}=\left\{\begin{array}{c}H \\ 0 \\ 0 \\ -P \\ 0 \\ 0\end{array}\right\}$

Plane Stress Problem: T3

Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Plane Stress Problem: T3

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \quad \Longrightarrow \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}
$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector \mathbf{g}
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If $\mathrm{g}(\mathrm{j})=0$, then the degree of freedom is restrained; $\operatorname{edg}(\mathrm{j})=\mathbf{0}$
c. Otherwise $\operatorname{edg}(\mathrm{j})=\operatorname{delta}(\mathrm{g}(\mathrm{j}))$
2. Obtain element strain vector eps $=$ bee \times edg
3. Obtain element stress vector sigma $=$ dee \times bee $\times \mathbf{e d g}$
4. Store the strains for all the elements EPS(i,:) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file

Plane Stress Problem: T6

Problem Discerption

$L=60 \mathrm{~mm}$
$C=10 \mathrm{~mm}$
$E=200 G P a$
$v=0.3$
Thickness $=5 \mathrm{~mm}$

Plane Stress Problem: T6

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems
Plane stress
Plane strain

$$
\begin{gathered}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{(1-v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x z}
\end{array}\right\} \quad\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & -v & 0 \\
-v & 1-v & 0 \\
0 & 0 & \frac{(1-2 v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\sigma_{z z}=0 \text { and } \varepsilon_{z z} \neq 0
\end{gathered}
$$

Plane Stress Problem: T6

The infinitesimal strain displacements relations for both theories

$$
\begin{aligned}
& \epsilon_{x x}=\frac{\partial u}{\partial x} \\
& \epsilon_{y y}=\frac{\partial v}{\partial y} \\
& \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
& \left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\} \quad \square \quad\{\epsilon\}=[L] U \\
& \begin{array}{l}
u=N_{1} u_{1}+N_{2} u_{2}+\cdots+N_{n} u_{n} \\
v=N_{1} v_{1}+N_{2} v_{2}+\cdots+N_{n} v_{n}
\end{array} \square\left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{cccccccccc}
N_{1} & 0 & \mid & N_{2} & 0 & \mid & \ldots & \mid & N_{n} & 0 \\
0 & N_{1} & \mid & 0 & N_{2} & \mid & \ldots & \mid & 0 & N_{n}
\end{array}\right] \\
& 7
\end{aligned}
$$

Plane Stress Problem: T6

By substitution

$$
\varepsilon=\underbrace{\infty}
$$

$$
S=D B C=\left[\begin{array}{llll}
m_{2} & 0 & m_{23} & 0
\end{array}\right]=\rightarrow
$$

$$
c_{e}=\sqrt{3}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\{\boldsymbol{\varepsilon}\}=[\boldsymbol{L}]\{\boldsymbol{U}\} \\
\{\boldsymbol{U}\}=[\boldsymbol{N}]\{\boldsymbol{a}\} \\
\hline
\end{array}\right. \\
& \{\boldsymbol{\varepsilon}\}=\underbrace{[\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\}}=[\boldsymbol{B}]\{\boldsymbol{a}\} \quad[B]=\left[\begin{array}{cccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right]
\end{aligned}
$$

Plane Stress Problem: T6

Variational Approach

$$
\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} d V=\int_{V_{e}} \delta\{U\}^{T}\{b\} d V+\int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d \Gamma+\sum_{i} \delta\{U\}_{(\{x\rangle=\{\bar{x})}^{T}\{P\}_{i}
$$

$$
\{\delta \epsilon\}=\delta([B]\{a\})=[B]\{\delta a\}
$$

$$
\{\delta U\}=\delta([N]\{a\})=[N]\{\delta a\}
$$

$$
\{\sigma\}=[D]\{\epsilon\}=[D][B]\{a\}
$$

$$
\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]\{a\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\bar{x})\}}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]=\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]
$$

$$
\left\{f_{e}\right\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\overline{\}}\})}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]\{a\}=f_{e}
$$

Plane Stress Problem: T6

Data Preparation (Create Input file)
Nodes Coordinates
Element Connectivity connec(nel, nne)
Material and Geometrical Properties $E=2 \times 10^{5} M P a \quad v=0.3$
Boundary Conditions
nf(nnd, nodof)
LoadingThe force in the global force vector \mathbf{F}

Plane Stress Problem: T6

Discretization

	22	${ }_{33}$	94	${ }_{55}$	$\stackrel{\circ}{6}$	ir	88	9	110	121	132	143	154	165	196	187	198	289	220	231	242	293	264	275
10	21	32	${ }_{43}$	54	${ }_{6} 5$	96	87	98	189	120	131	142	153	164	195	186	${ }_{197}$	288	299	230	291	252	283	274
9	20	31	42	${ }_{53}$	${ }_{64}$	\% 5	86	97	108	119	130	141	152	163	174	185	${ }^{196}$	287	298	229	240	251	262	273
8	9	30	41	52	63	94	85	96	187	198	129	140	151	162	193	184	195	286	297	228	239	250	261	272
9	${ }_{18}$	29	40	${ }_{51}$	$\%^{\circ}$	${ }^{13}$	${ }_{84}$	95	106	117	${ }_{128}$	139	150	161	172	${ }_{183}$	194	205	296	227	${ }^{238}$	${ }^{29} 9$	280	271
8	if	${ }^{28}$	39	50	$¢_{1}$	P2	83	94	105	196	${ }_{127}$	${ }_{138}$	149	180	191	182	193	284	295	226	${ }_{23} 7$	${ }^{248}$	259	290
ξ	${ }_{16}$	27	${ }_{38}$	49	$\stackrel{\circ}{8}$	$\stackrel{1}{1}$	82	${ }_{93}$	184	115	126	137	148	159	190	${ }_{181}$	${ }_{192}$	283	294	225	${ }^{236}$	247	298	269
8	15	26	37	48	59	9	81	92	183	114	125	136	147	158	169	180	191	282	293	224	235	246	$2{ }^{27}$	268

Plane Stress Problem: T6

Discretization

$$
\begin{aligned}
& \text { nnd }=0 ; \quad k=0 ; \\
& \text { for } i=1 \text { :NXE } \\
& \quad \text { for } j=1: \text { NYE }
\end{aligned}
$$

$\mathrm{k}=\mathrm{k}+1$
$\mathrm{n} 1=\left(2^{*} \mathrm{j}-1\right)+\left(2^{*} \mathrm{i}-2\right) *(2 * \mathrm{NYE}+1) ; \quad \mathrm{n} 2=(2 * \mathrm{j}-1)+(2 * \mathrm{i}-1)^{*}\left(2^{*} \mathrm{NYE}+1\right)$; $\mathrm{n} 3=\left(2^{*} \mathrm{j}-1\right)+\left(2^{*} \mathrm{i}\right) *\left(2^{*} \mathrm{NYE}+1\right)$;
$\mathrm{n} 4=\mathrm{n} 1+1 ; \mathrm{n} 5=\mathrm{n} 2+1 ; \mathrm{n} 6=\mathrm{n} 3+1 ;$
$\mathrm{n} 7=\mathrm{n} 1+2 ; \quad \mathrm{n} 8=\mathrm{n} 2+2 ; \quad \mathrm{n} 9=\mathrm{n} 3+2 ;$
\%
geom(n1,:) $=\left[(\mathrm{i}-1)^{*}\right.$ dhx - X_origin,$(\mathrm{j}-1)^{*}$ dhy - Y_origin $]$;
geom(n2,:) $=\left[\left(\left(2^{*} \mathrm{i}-1\right) / 2\right)^{*}\right.$ dhx - X_origin , $(\mathrm{j}-1)^{*}$ dhy - Y_origin $]$;
geom(n3,:) $=\left[\mathrm{i}^{*}\right.$ dhx - X_origin,$(\mathrm{j}-1)^{*}$ dhy - Y_origin $]$;
geom(n4,:) $=\left[(\mathrm{i}-1)^{*}\right.$ dhx - X_origin , $\left(\left(2^{*} \mathrm{j}-1\right) / 2\right)^{*}$ dhy - Y_origin];
geom(n5,:) $=\left[\left(\left(2^{*} \mathrm{i}-1\right) / 2\right){ }^{*}\right.$ dhx - X_origin,$\left(\left(2^{*} \mathrm{j}-1\right) / 2\right){ }^{*}$ dhy - Y_origin $] ;$
geom(n6,:) $=\left[i^{*} d h x-\right.$ X_origin,$\left.\left(\left(2^{*} j-1\right) / 2\right) * d h y-Y _o r i g i n ~\right] ;$
geom(n7,:) $=\left[(\mathrm{i}-1)^{*}\right.$ dhx - X_origin , j*dhy - Y_origin];
geom(n8,:) $=\left[\left(\left(2^{*} \mathrm{i}-1\right) / 2\right)^{*}\right.$ dhx - X_origin , j^{*} dhy -Y _origin $] ;$
geom(n9,:) $=$ [i*dhx - X_origin , j*dhy - Y_origin];
\%
nel $=2 *$;
$\mathrm{m}=$ nel -1 ;
connec (m,:) $=[\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \mathrm{n} 5 \mathrm{n} 7 \mathrm{n} 4]$;
connec(nel,:) $=[$ n3 n6 n9 n8 n7 n5];
nnd= $\max ([n 1 \mathrm{n} 2 \mathrm{n} 3 \mathrm{n} 4 \mathrm{n} 5 \mathrm{n} 6 \mathrm{n} 7 \mathrm{n} 8 \mathrm{n} 9]) ;$
$\%$ XIN and YIN are two vectors that holds the coordinates X and Y
$\%$ of the grid necessary for the function contourf (XIN,YIN, stress)
$\operatorname{XIG}(2 * i-1)=\operatorname{geom}(n 1,1) ; \operatorname{XIG}(2 * i)=\operatorname{geom}(n 2,1) ; \operatorname{XIG}(2 * i+1)=\operatorname{geom}(n 3,1)$ YIG(2*j-1) $=\operatorname{geom}(n 1,2) ; \operatorname{YIG}(2 * j)=\operatorname{geom}(n 4,2) ; Y I G(2 * j+1)=\operatorname{geom}(n 7,2)$

Plane Stress Problem: T6

Interpolation

Linear Strain Triangle (LST)
$\left\{\begin{array}{l}N_{1}(\xi, \eta) \\ N_{2}(\xi, \eta) \\ N_{3}(\xi, \eta) \\ N_{4}(\xi, \eta) \\ N_{5}(\xi, \eta) \\ N_{6}(\xi, \eta)\end{array}\right\}=\left\{\begin{array}{c}-\lambda(1-2 \lambda) \\ 4 \xi \lambda \\ -\xi(1-2 \xi) \\ 4 \xi \eta \\ -\eta(1-2 \eta) \\ 4 \eta \lambda\end{array}\right\}$

$\lambda=1-\xi-\eta$
$u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}+N_{4} u_{4}+N_{5} u_{5}+N_{6} u_{6}$
$v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}+N_{4} v_{4}+N_{5} v_{5}+N_{6} v_{6}$

$$
\{U\}=[N]\{a\}
$$

Plane Stress Problem: T6

Stiffness Matrix

$$
\begin{aligned}
& u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}+N_{4} u_{4}+N_{5} u_{5}+N_{6} u_{6} \\
& v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}+N_{4} v_{4}+N_{5} v_{5}+N_{6} v_{6} \\
& \left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{ccccccccccccccc}
N_{1} & 0 & 1 & N_{2} & 0 & \mid & N_{3} & 0 & \mid & N_{4} & 0 & \mid & N_{5} & 0 & \mid c c c \\
0 & N_{1} & 1 & 0 & N_{2} & \mid & 0 & N_{3} & \mid & 0 & N_{4} & \mid & 0 & N_{5} & \mid \\
0 & N_{6}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4} \\
u_{4} \\
u_{5} \\
v_{5} \\
u_{6} \\
v_{6}
\end{array}\right\}
\end{aligned}
$$

$[B]=\left[\begin{array}{cccccccccccccccc}\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \frac{\partial N_{3}}{\partial x} & 0 & \mid & \frac{\partial N_{4}}{\partial x} & 0 & \mid & \frac{\partial N_{5}}{\partial x} & 0 & \mid & \frac{\partial N_{6}}{\partial x} \\ 0 \\ 0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & 0 & \frac{\partial N_{3}}{\partial y} & \mid & 0 & \frac{\partial N_{4}}{\partial y} & \mid & 0 & \frac{\partial N_{5}}{\partial y} & \mid & 0 \\ \frac{\partial N_{6}}{\partial y} \\ \frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \left\lvert\, \frac{\partial N_{2}}{\partial y}\right. & \frac{\partial N_{2}}{\partial x} & \left\lvert\, \frac{\partial N_{3}}{\partial y}\right. & \frac{\partial N_{3}}{\partial x} & \left\lvert\, \frac{\partial N_{4}}{\partial y}\right. & \frac{\partial N_{4}}{\partial x} & \left\lvert\, \frac{\partial N_{5}}{\partial y}\right. & \frac{\partial N_{5}}{\partial x} & \left\lvert\, \frac{\partial N_{6}}{\partial y}\right. & \frac{\partial N_{6}}{\partial x}\end{array}\right]$

Plane Stress Problem: T6

Stiffness Matrix

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial N_{i}}{\partial \xi}=\frac{\partial N_{i}}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial N_{i}}{\partial y} \frac{\partial y}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}=\frac{\partial N_{i}}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial N_{i}}{\partial y} \frac{\partial y}{\partial \eta}
\end{array} \square\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \square[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\sum_{i=1}^{6} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{6} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{6} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{6} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right] \\
& \begin{array}{l}
x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}+N_{4} x_{4}+N_{5} x_{5}+N_{6} x_{6}=\sum_{i=1}^{6} N_{i} x_{i} \rightarrow \frac{\partial x}{\partial x_{j}}=\sum \frac{\partial M_{i}}{\partial \xi} x_{i} . \\
y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}+N_{4} y_{4}+N_{5} y_{5}+N_{6} y_{6}=\sum_{i}^{6} N \cdot y_{i}
\end{array} \\
& {[J]=\left[\begin{array}{cccc}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \ldots & \frac{\partial N_{6}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial} & \frac{\partial N_{2}}{\partial \eta} & \ldots & \frac{\partial N_{6}}{\partial}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots
\end{array}\right] \quad \square[J]=\frac{1}{4}\left[\begin{array}{ccccc}
1-4 \lambda & 4(\lambda-\xi) & -1+4 \xi & 4 \eta & 0 \\
1-4 \lambda & -4 \xi & 0 & 4 \xi & -1+4 \eta \\
4(\lambda-\eta)
\end{array}\right]} \\
& \underset{R}{\operatorname{Der}}\left[\begin{array}{llll}
\frac{\partial N_{1}}{\partial \eta} & \overline{\partial \eta} & \cdots & \frac{N_{6}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
\vdots & \vdots \\
x_{6} & y_{6}
\end{array}\right] \\
& \underbrace{-} \\
& \left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\} \rightarrow \text { der }
\end{aligned}
$$

Plane Stress Problem: T6

Stiffness Matrix

$$
\begin{aligned}
& {\left[K_{e}\right]\{a\}=f_{e}} \\
& {\left[K_{e}\right]=\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]} \\
& {\left[K_{e}\right]=t \int_{0}^{+1} \int_{0}^{1-\xi}[B(\xi, \eta)]^{T}[D][B(\xi, \eta)] \operatorname{det}[J(\xi, \eta)] d \eta d \xi} \\
& \\
& =t \sum_{i=1}^{n n p} W_{i}\left[B\left(\xi_{i}, \eta \eta_{i j}\right]^{T}[D]\left[B\left(\xi_{i}, \eta_{i}\right)\right] \operatorname{det}\left[J\left(\xi_{i}, \eta_{i}\right)\right]\right.
\end{aligned}
$$

Plane Stress Problem: T6

Apply B.C's and Solve (free) Nodal Displacement

$$
\left.\begin{array}{c}
\left.\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
\end{array}\right] \begin{gathered}
\text { If }\left\{\delta_{p}\right\}=0 \\
\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{F_{F}\right\}
\end{gathered}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Plane Stress Problem: T6

Deflection of the Neutral Line of Cantilever Beam

$$
v=\frac{v P x y^{2}}{2 E I}+\frac{P x^{3}}{6 E I}-\frac{P L^{2} x}{2 E I}+\frac{P L^{3}}{3 E I}
$$

Plane Stress Problem: T6

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \quad\left\{\quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}\right.
$$

MEMBERS' FORCES

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and "steering" vector \mathbf{g}
a. Loop over the degrees of freedom of the element to obtain element displacements vector edg
b. If $\mathrm{g}(\mathrm{j})=0$, then the degree of freedom is restrained; $\operatorname{edg}(\mathrm{j})=\mathbf{0}$
c. Otherwise $\operatorname{edg}(\mathrm{j})=\operatorname{delta}(\mathrm{g}(\mathrm{j}))$
2. Obtain element strain vector eps $=$ bee \times edg
3. Obtain element stress vector sigma $=$ dee \times bee $\times \mathbf{e d g}$
4. Store the strains for all the elements EPS(i,:) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file

Plane Stress Problem: Q4

Problem Discerption

Plane Stress Problem: Q4

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems
Plane stress
Plane strain

$$
\begin{gathered}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{(1-v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x z}
\end{array}\right\} \quad\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & -v & 0 \\
-v & 1-v & 0 \\
0 & 0 & \frac{(1-2 v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\sigma_{z z}=0 \text { and } \varepsilon_{z z} \neq 0
\end{gathered}
$$

Plane Stress Problem: Q4

The infinitesimal strain displacements relations for both theories

$$
\begin{aligned}
& \epsilon_{x x}=\frac{\partial u}{\partial x} \\
& \epsilon_{y y}=\frac{\partial v}{\partial y} \\
& \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{aligned} \quad\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\} \quad \square \quad\{\epsilon\}=[L] U
$$

$\{U\}=[N] a$

Plane Stress Problem: Q4

By substitution

$$
\begin{aligned}
\{\boldsymbol{\varepsilon}\} & =[\boldsymbol{L}]\{\boldsymbol{U}\} \\
\{\boldsymbol{U}\} & =[\boldsymbol{N}]\{\boldsymbol{a}\}
\end{aligned}
$$

$$
\{\boldsymbol{\varepsilon}\}=[\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\}=[\boldsymbol{B}]\{\boldsymbol{a}\} \quad[B]=\left[\begin{array}{cccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right]
$$

Plane Stress Problem: Q4

Variational Approach

$$
\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} d V=\int_{V_{e}} \delta\{U\}^{T}\{b\} d V+\int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d \Gamma+\sum_{i} \delta\{U\}_{(\{x\}=\{\bar{x})}^{T}\{P\}_{i}
$$

$$
\{\delta \epsilon\}=\delta([B]\{a\})=[B]\{\delta a\}
$$

$$
\{\delta U\}=\delta([N]\{a\})=[N]\{\delta a\}
$$

$$
\{\sigma\}=[D]\{\epsilon\}=[D][B]\{a\}
$$

$$
\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]\{a\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\bar{x})\}}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]=\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]
$$

$$
\left\{f_{e}\right\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(x x)=\{x\})}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]\{a\}=f_{e}
$$

Plane Stress Problem: Q4

 Data Preparation (Create Input file)Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading
nf(nnd, nodof)
geom(nnd, 2)

```
connec(nel, nne)
```

$E=4 \times 10^{4} M P a \quad v=0.17$

The force in the global force vector fg

Plane Stress Problem: Q4

Discretization: Mesh Generation

```
nnd \(=0\);
\(\mathrm{k}=0\);
for \(\mathrm{i}=1\) :NXE
    for \(j=1\) :NYE
    \(\mathrm{k}=\mathrm{k}+1\);
    \(\mathrm{n} 1=\mathrm{j}+(\mathrm{i}-1)^{*}(\mathrm{NYE}+1)\);
    geom(n1,:) \(=[(\mathrm{i}-1) *\) dhx-X_origin, \((\mathrm{j}-1) *\) dhy-Y_origin \(] ;\)
    \(\mathrm{n} 2=\mathrm{j}+\mathrm{i}^{*}(\mathrm{NYE}+1)\);
    geom(n2,:) \(=\) [i*dhx-X_origin, (j-1)*dhy-Y_origin ];
    \(\mathrm{n} 3=\mathrm{n} 1+1\);
    geom(n3,:) \(=\left[(\mathrm{i}-1)^{*}\right.\) dhx-X_origin, \(\mathrm{j}^{*}\) dhy-Y_origin \(]\);
    \(\mathrm{n} 4=\mathrm{n} 2+1\);
    geom(n4,:) \(=\left[i^{*} d h x-X \_o r i g i n, j^{*}\right.\) dhy-Y_origin \(] ;\)
    nel \(=\mathrm{k}\);
    connec(nel,:) \(=[\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 4 \mathrm{n} 3]\);
    nnd \(=n 4\);
    end
end
```


Plane Stress Problem: Q4

8	is	${ }_{20}$	${ }_{35}$	4	3	8	\because	8	8	\because	${ }_{187}$	116	125	134	${ }_{18}$	132	161	19	19	${ }_{18}$	${ }_{18}$	286	2%	224
9	${ }_{6} 8$	25	3	83	32	$\%$	$\%$	7	8	8	${ }_{186}$	115	124	${ }^{183}$	18.	11_{1}	180	189	${ }_{18} 8$	${ }_{187}$	${ }_{188}$	285	24^{4}	223
8	i_{5}	24	33	8	3	8	${ }^{6}$	\%	8	$\%$	${ }^{185}$	14	123	182	$1{ }_{14}$	180	${ }_{189}$	188	17	${ }_{188}$	${ }_{185}$	284	273	22
\%	4	23	32	4	80	59	${ }^{8}$	ir	8	$\%_{5}$	${ }_{184}$	11_{3}	13	181	180	180	188	18	196	185	184	${ }^{28}$	22	221
\ddagger	\square_{1}	2	3	8	8	$\stackrel{\square}{8}$	9	\%	${ }_{8} 8$	$\stackrel{4}{4}$	${ }^{18}$	品	12	180	189	${ }^{180}$	187	180	175	${ }_{184}$	${ }_{18}$	202	$2 i 1$	220
§	i	21	ॐ	${ }_{3}$	${ }_{4}$	3	$\stackrel{\circ}{\circ}$	${ }_{7}$	${ }_{4}$	${ }_{3}$	${ }^{18}$	in	120	129	${ }^{188}$	${ }^{197}$	${ }^{186}$	195	114	${ }_{18} 18$	${ }_{192}$	$2{ }^{29}$	20	$2{ }^{29}$
		2	29	${ }^{\circ}$	${ }^{8}$	5	${ }_{6}$	4	${ }^{8}$	3	181	110	19	${ }^{188}$	187	${ }_{176}$	185	184	18	${ }_{18}$	19	220	29	29
		昌	${ }_{28} 8$		8			8		\%		189	$1{ }_{18}$	187	186	185	184	16	18	18	180	${ }^{89}$	28	$2{ }^{27}$

Plane Stress Problem: Q4

Interpolation

Four node Iso-parametric Element

$$
\begin{aligned}
& N_{1}(\xi, \eta)=0.25(1-\xi-\eta+\xi \eta) \\
& N_{2}(\xi, \eta)=0.25(1+\xi-\eta-\xi \eta) \\
& N_{3}(\xi, \eta)=0.25(1+\xi+\eta+\xi \eta) \\
& N_{4}(\xi, \eta)=0.25(1-\xi+\eta-\xi \eta)
\end{aligned}
$$

$$
u(s, n)=c_{0}+c_{1} \xi+c_{2} \eta+c_{3} \xi \eta
$$

$$
u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}+N_{4} u_{4}
$$

$$
u(-1,-1)=u_{0}
$$

$$
v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}+N_{4} v_{4}
$$

$$
u(1,1)=u_{3}
$$

Plane Stress Problem: Q4

Stiffness Matrix

Plane Stress Problem: Q4

Stiffness Matrix

$$
\begin{aligned}
& \left\{\begin{array}{l}
u \\
v \\
v
\end{array}\right\}=\left[\begin{array}{ccccccccccc}
N_{1} & 0 & 1 & N_{2} & 0 & \mid & N_{3} & 0 & 1 & N_{4} & 0 \\
0 & N_{1} & 1 & 0 & N_{2} & \mid & 0 & N_{3} & 1 & 0 & N_{4}
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
v_{2} \\
u_{3}
\end{array}\right\} \square\{U\}=[N]\{a\} \square\{\epsilon\}=[B]\{a\} \\
& \frac{\partial N_{i}}{\partial 3}=\frac{\partial x_{i}}{\partial x} \cdot \frac{\partial x}{\partial 3}+\frac{\partial N_{i}}{\partial y} \cdot \frac{\partial y}{\partial 3} \underset{x=x(3 \cdot n)}{ }\left[\begin{array}{l}
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right] \\
& R \\
& \left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \quad[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right] \\
& {[J]=\left[\begin{array}{cccc}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \cdots & \frac{\partial N_{4}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \cdots & \frac{\partial N_{4}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots \\
x_{4} & y_{4}
\end{array}\right]} \\
& \text { 4~ } x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}+N_{4} x_{4} \\
& y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}+N_{4} y_{4} \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
\end{aligned}
$$

Plane Stress Problem: Q4

Stiffness Matrix

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \quad[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right] \\
& x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}+N_{4} x_{4} \\
& y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}+N_{4} y_{4} \\
& \begin{array}{r}
{[J]=\frac{1}{4}\left[\begin{array}{cccc}
-(1-\eta) & (1-\eta) & (1+\eta) & -(1+\eta) \\
-(1-\xi) & -(1+\xi) & (1+\xi) & (1-\xi)
\end{array}\right]}
\end{array}\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right] \quad\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right.
\end{aligned}
$$

Plane Stress Problem: Q4

Stiffness Matrix

Plane Stress Problem: Q4

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element $\mathrm{i}=1$ to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)
i. Loop over the Gauss points $\mathrm{jg}=1$ to ngp
ii. Retrieve the weight wj as samp(jg, 2)
iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates, $\xi=\operatorname{samp}(\mathrm{ig}, 1)$ and $\eta=\operatorname{samp}(\mathrm{jg}, 1)$.
iv. Evaluate the Jacobian jac $=\operatorname{der} *$ coord v. Evaluate the determinant of the Jacobian as $d=\operatorname{det}(\mathrm{jac})$ vi. Compute the inverse of the Jacobian as jac1 $=\operatorname{inv}(\mathrm{jac})$
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv $=\mathrm{jac} 1 *$ der
viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke $=\mathrm{ke}+\mathrm{d} *$ thick * wi * wj * B * D * B
3. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q4

Force Vectors

Body Forces

$$
\int_{A_{e}}[N]^{T}\{b\} t d A=t \sum_{i=1}^{n g p} \sum_{j=1}^{n g p} W_{i} W_{j}\left[N\left(\xi_{i}, \eta_{j}\right]^{T}\left\{\begin{array}{c}
0 \\
-\rho g
\end{array}\right\} \operatorname{det}\left[J\left(\xi_{i}, \eta_{j}\right)\right]\right.
$$

Traction Forces

$q_{x}=q_{t} d L \cos \alpha-q_{n} d L \sin \alpha=q_{t} d x-q_{n} d y$

$$
q_{x}=\left(q_{t} \frac{\partial x}{\partial \xi}-q_{n} \frac{\partial y}{\partial \xi}\right) d \xi
$$

$q_{y}=q_{n} d L \cos \alpha+q_{t} d L \sin \alpha=q_{n} d x+q_{t} d y$
$q_{y}=\left(q_{n} \frac{\partial x}{\partial \xi}+q_{t} \frac{\partial y}{\partial \xi}\right) d \xi$

$\int_{A_{c}}[N]^{T}\left\{\begin{array}{l}q_{x} \\ q_{y}\end{array}\right\} d A=t \int_{L_{s \rightarrow-}}[N(\xi+1)]^{T}\left\{\begin{array}{l}q_{x} \\ q_{y}\end{array}\right\} d l$

$$
=t \sum_{i=1}^{n g p} W_{i}\left[N\left(\xi_{i},+1\right)\right]^{T}\left\{\begin{array}{l}
\left(q_{t} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}-q_{n} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right) \\
\left(q_{n} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}+q_{t} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right)
\end{array}\right\}
$$

Concentrated Forces $\quad \sum_{k=1}[N]_{x_{x=x}}\left\{P_{k}\right\}=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{c}0 \\ -P\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{c}2 P \\ 0\end{array}\right\}=\left\{\begin{array}{c}0 \\ -P \\ 2 P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right\}$

$$
\left[\begin{array}{ll}
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0
\end{array}\right] \quad\left[\begin{array}{l}
0
\end{array}\right.
$$

When the nodes of an element are numbered anticlockwise a tangential force, such as q_{t}, is positive if it acts anticlockwise. A normal force, such as q_{n}, is positive if it acts toward the interior of the element

In practice, when the loads are uniformly distributed they are replaced by equivalent nodal loads. The preceding development is to be used only if the shape of the loading is complicated.

Plane Stress Problem: Q4

Apply B.C's and Solve (free) Nodal Displacement

$$
\begin{aligned}
{\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right] }
\end{aligned}\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{gathered}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
0_{F P}^{0}
\end{gathered} \Rightarrow\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Plane Stress Problem: Q4

Calculation of the Element Resultants

SUPPORT REACTIONS
$\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad$ If $\left\{\delta_{p}\right\}=0 \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}$

Plane Stress Problem: Q4

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this we set ngp $=1$.

1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)
a. Loop over the Gauss points $\mathrm{ig}=1$ to ngp
b. Loop over the Gauss points $\mathrm{jg}=1$ to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local coordinates $\xi=\operatorname{samp}(\mathrm{ig}, 1)$ and $\eta=\operatorname{samp}(\mathrm{jg}, 1)$
d. Evaluate the Jacobian jac $=$ der $*$ coord
e. Evaluate the determinant of the Jacobian as $d=\operatorname{det}(j a c)$
f. Compute the inverse of the Jacobian as jac1 $=\operatorname{inv}(\mathrm{jac})$
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv $=\mathrm{jac} 1 * \operatorname{der}$
h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps $=$ bee $*$ eld
j. Compute the stresses as sigma $=$ dee $*$ eps
3. Store the stresses in the matrix SIGMA(nel, 3)

Plane Stress Problem: Q8

Problem Discerption

Plane Stress Problem: Q8

In reality all solids are three-dimensional. Fortunately, for many practical problems, some simplifying assumptions can be made regarding the stress or strain distributions.

Such as Plane Stress, Plane Strain, and axisymmetric (symmetry of revolution in both geometry and loading) Problems
Plane stress
Plane strain

$$
\begin{gathered}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{(1-v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x z}
\end{array}\right\} \quad\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & -v & 0 \\
-v & 1-v & 0 \\
0 & 0 & \frac{(1-2 v)}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\sigma_{z z}=0 \text { and } \varepsilon_{z z} \neq 0
\end{gathered}
$$

Plane Stress Problem: Q8

The infinitesimal strain displacements relations for both theories

$$
\begin{aligned}
& \epsilon_{x x}=\frac{\partial u}{\partial x} \\
& \epsilon_{y y}=\frac{\partial v}{\partial y} \\
& \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{aligned} \quad\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\} \quad \square \quad\{\epsilon\}=[L] U
$$

$\{U\}=[N] a$

Plane Stress Problem: Q8

By substitution

$$
\begin{aligned}
\{\boldsymbol{\varepsilon}\} & =[\boldsymbol{L}]\{\boldsymbol{U}\} \\
\{\boldsymbol{U}\} & =[\boldsymbol{N}]\{\boldsymbol{a}\}
\end{aligned}
$$

$$
\{\boldsymbol{\varepsilon}\}=[\boldsymbol{L}][\boldsymbol{N}]\{\boldsymbol{a}\}=[\boldsymbol{B}]\{\boldsymbol{a}\} \quad[B]=\left[\begin{array}{cccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right]
$$

Plane Stress Problem: Q8

Variational Approach

$$
\int_{V_{e}} \delta\{\epsilon\}^{T}\{\sigma\} d V=\int_{V_{e}} \delta\{U\}^{T}\{b\} d V+\int_{\Gamma_{e}} \delta\{U\}^{T}\{t\} d \Gamma+\sum_{i} \delta\{U\}_{(\{x\}=\{\bar{x})}^{T}\{P\}_{i}
$$

$$
\{\delta \epsilon\}=\delta([B]\{a\})=[B]\{\delta a\}
$$

$$
\{\delta U\}=\delta([N]\{a\})=[N]\{\delta a\}
$$

$$
\{\sigma\}=[D]\{\epsilon\}=[D][B]\{a\}
$$

$$
\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]\{a\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\bar{x})}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]=\left[\int_{A_{e}}[B]^{T}[D][B] t d A\right]
$$

$$
\left\{f_{e}\right\}=\int_{A_{e}}[N]^{T}\{b\} t d A+\int_{L_{e}}[N]^{T}\{t\} t d l+\sum_{i}\left[N_{(\{x\}=\{\bar{x}\})}\right]^{T}\{P\}_{i}
$$

$$
\left[K_{e}\right]\{a\}=f_{e}
$$

Plane Stress Problem: Q8

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading

```
                                    geom(nnd, 2)
```

```
connec(nel, nne)
```

$$
E=4 \times 10^{4} \mathrm{MPa} \quad v=0.17
$$

nf(nnd, nodof)

The force in the global force vector fg

Plane Stress Problem: Q8

Discretization: Mesh Generation


```
nnd \(=0\);
\(\mathrm{k}=0\);
for \(i=1\) :NXE
    for \(\mathrm{j}=1\) :NYE
        \(\mathrm{k}=\mathrm{k}+1\);
        \(\mathrm{n} 1=(\mathrm{i}-1)^{*}\left(3^{*} \mathrm{NYE}+2\right)+2 * \mathrm{j}-1\);
        \(\mathrm{n} 2=\mathrm{i}^{*}\left(3^{*}\right.\) NYE +2\()+\mathrm{j}-\) NYE -1 ;
        \(\mathrm{n} 3=\mathrm{i}^{*}\left(3^{*} \mathrm{NYE}+2\right)+2^{*} \mathrm{j}-1\);
        \(\mathrm{n} 4=\mathrm{n} 3+1 ; \quad \mathrm{n} 5=\mathrm{n} 3+2 ; \quad \mathrm{n} 6=\mathrm{n} 2+1 ;\)
        \(\mathrm{n} 7=\mathrm{n} 1+2 ; \quad \mathrm{n} 8=\mathrm{n} 1+1\);
    geom(n1,:) \(=[(\mathrm{i}-1) * \text { dhx-X_origin, ( } \mathrm{j}-1)^{*}\) dhy-Y_origin \(]\);
    geom(n3,:) \(=\left[\mathrm{i}^{*}\right.\) dhx - X_origin, \(\quad(\mathrm{j}-1)^{*}\) dhy-Y_origin \(]\);
    geom(n5,:) \(=\left[i^{*}\right.\) dhx-X_origin, \(\quad j^{*}\) dhy - Y_origin \(] ;\)
    geom(n7,:) \(=\left[(\mathrm{i}-1)^{*}\right.\) dhx - X_origin, \(\mathrm{j}^{*}\) dhy \(-\mathrm{Y}_{-}\)origin \(]\);
    geom \((\mathrm{n} 2,:)=[(\operatorname{geom}(\mathrm{n} 1,1)+\operatorname{geom}(\mathrm{n} 3,1)) / 2,(\operatorname{geom}(\mathrm{n} 1,2)+\) geom \((\mathrm{n} 3,2)) / 2] ;\)
    geom(n4,:) \(=[(\operatorname{geom}(\mathrm{n} 3,1)+\operatorname{geom}(\mathrm{n} 5,1)) / 2(\operatorname{geom}(\mathrm{n} 3,2)+\operatorname{geom}(\mathrm{n} 5,2)) / 2] ;\)
    geom \((\mathrm{n} 6,:)=[(\operatorname{geom}(\mathrm{n} 5,1)+\operatorname{geom}(\mathrm{n} 7,1)) / 2(\operatorname{geom}(\mathrm{n} 5,2)+\operatorname{geom}(\mathrm{n} 7,2)) / 2] ;\)
    geom \((\mathrm{n} 8,:)=[(\operatorname{geom}(\mathrm{n} 1,1)+\operatorname{geom}(\mathrm{n} 7,1)) / 2(\) geom \((\mathrm{n} 1,2)+\operatorname{geom}(\mathrm{n} 7,2)) / 2] ;\)
    nel \(=\mathrm{k}\);
    \(\mathrm{nnd}=\mathrm{n} 5\);
    connec (k,: \()=[\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \mathrm{n} 4 \mathrm{n} 5 \mathrm{n} 6 \mathrm{n} 7 \mathrm{n} 8]\);
end
end
```


Plane Stress Problem: Q8

NYE = 4 NKE $=8$

Plane Stress Problem: Q8

Eight-noded Iso-parametric Element
$\left\{\begin{array}{l}N_{1}(\xi, \eta) \\ N_{2}(\xi, \eta) \\ N_{3}(\xi, \eta) \\ N_{4}(\xi, \eta) \\ N_{5}(\xi, \eta) \\ N_{6}(\xi, \eta) \\ N_{7}(\xi, \eta) \\ N_{8}(\xi, \eta)\end{array}\right\}=\left\{\begin{array}{c}-0.25(1-\xi)(1-\eta)(1+\xi+\eta) \\ 0.50\left(1-\xi^{2}\right)(1-\eta) \\ -0.25(1+\xi)(1-\eta)(1-\xi+\eta) \\ 0.50(1+\xi)\left(1-\eta^{2}\right) \\ -0.25(1+\xi)(1+\eta)(1-\xi-\eta) \\ 0.50\left(1-\xi^{2}\right)(1+\eta) \\ -0.25(1-\xi)(1+\eta)(1+\xi-\eta) \\ 0.50(1-\xi)\left(1-\eta^{2}\right)\end{array}\right\}$

Interpolation

$$
\begin{aligned}
& u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}+N_{4} u_{4}+N_{5} u_{5}+N_{6} u_{6}+N_{7} u_{7}+N_{8} u_{8} \\
& v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}+N_{4} v_{4}+N_{5} v_{5}+N_{6} v_{6}+N_{7} v_{7}+N_{8} v_{8}
\end{aligned}
$$

Plane Stress Problem: Q8

Stiffness Matrix

$$
\begin{aligned}
& \left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{cccccccccc}
N_{1} & 0 & \mid & N_{2} & 0 & \mid & \ldots & \ldots & \mid & N_{8} \\
0 & N_{1} & \mid & 0 & N_{2} & \mid & \ldots & \ldots & \mid & 0
\end{array} N_{8}\right]\left[\begin{array}{c}
u_{2} \\
v_{2} \\
\vdots
\end{array}\right\} \quad \square\{U\}=[N]\{a\} \quad \square\{\epsilon\}=[B]\{a\} \\
& M(x, y) \quad \frac{\partial N}{\partial 3}=\frac{\partial y}{\partial x}\left(\frac{\partial x}{\gamma_{3}}\right)+\frac{\partial N}{\partial y}\left(\frac{\partial y}{\partial \xi}\right) \quad\left(\begin{array}{c}
\vdots \\
u_{8} \\
v_{8}
\end{array}\right) \\
& \left\{\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
\vdots
\end{array}\right\} \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \quad[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cl}
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right] \\
& {[J]=\left[\begin{array}{llll}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \cdots & \frac{\partial N_{8}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \cdots & \frac{\partial N_{8}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots \\
x_{8} & y_{8}
\end{array}\right]} \\
& x=\sum N_{;} x ; \quad\left\{\begin{array}{l}
x=N_{1} x_{1}+N_{2} x_{2}+\cdots+N_{8} x_{8} \\
y=N_{1} y_{1}+N_{2} y_{2}+\cdots+N_{8} y_{8}
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\} \text { der }
\end{aligned}
$$

> Plane Stress Problem: Q8
> Stiffness Matrix

Plane Stress Problem: Q8 Stiffness Matrix

Plane Stress Problem: Q8

Numerical Integration of the Stiffness Matrix

Integration of the Stiffness Matrix for each element is evaluated as follows:

1. For every element $\mathrm{i}=1$ to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)
i. Loop over the Gauss points $\mathrm{jg}=1$ to ngp
ii. Retrieve the weight wj as samp (jg, 2)
iii. Use the function fmlin.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates, $\xi=\operatorname{samp}(\mathrm{ig}, 1)$ and $\eta=\operatorname{samp}(\mathrm{jg}, 1)$.
iv. Evaluate the Jacobian jac $=\operatorname{der} *$ coord v. Evaluate the determinant of the Jacobian as $d=\operatorname{det}(\mathrm{jac})$ vi. Compute the inverse of the Jacobian as jac1 $=\operatorname{inv}(\mathrm{jac})$
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv $=\mathrm{jac} 1 *$ der
viii. Use the function formbee.m to form the strain matrix bee ix. Compute the stiffness matrix as ke $=\mathrm{ke}+\mathrm{d} *$ thick * wi * wj * B * D * B
3. Assemble the stiffness matrix ke into the global matrix kk

Plane Stress Problem: Q8

Force Vectors

Body Forces

$$
\int_{A_{e}}[N]^{T}\{b\} t d A=t \sum_{i=1}^{n g p} \sum_{j=1}^{n g p} W_{i} W_{j}\left[N\left(\xi_{i}, \eta_{j}\right]^{T}\left\{\begin{array}{c}
0 \\
-\rho g
\end{array}\right\} \operatorname{det}\left[J\left(\xi_{i}, \eta_{j}\right)\right]\right.
$$

Traction Forces

$$
\begin{aligned}
& q_{x}=q_{t} d L \cos \alpha-q_{n} d L \sin \alpha=q_{t} d x-q_{n} d y \\
& q_{y}=q_{n} d L \cos \alpha+q_{t} d L \sin \alpha=q_{n} d x+q_{t} d y \\
& \int_{A_{e}}[N]^{T}\left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\} d A=t \int_{L_{3-4}}[N(\xi,+1)]^{T}\left\{\begin{array}{c}
q_{x} \\
q_{y}
\end{array}\right\} d l
\end{aligned}
$$

$$
q_{x}=\left(q_{t} \frac{\partial x}{\partial \xi}-q_{n} \frac{\partial y}{\partial \xi}\right) d \xi
$$

$$
q_{y}=\left(q_{n} \frac{\partial x}{\partial \xi}+q_{t} \frac{\partial y}{\partial \xi}\right) d \xi
$$

When the nodes of an element are numbered anticlockwise a tangential force, such as q_{t}, is positive if it acts anticlockwise. A normal force, such as q_{n}, is positive if it acts toward the interior of the element

$$
=t \sum_{i=1}^{n g p} W_{i}\left[N\left(\xi_{i},+1\right)\right]^{T}\left\{\begin{array}{l}
\left(q_{t} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}-q_{n} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right) \\
\left(q_{n} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}+q_{t} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right)
\end{array}\right\}
$$

Concentrated Forces

In practice, when the loads are uniformly distributed they are replaced by equivalent nodal loads. The preceding development is to be used only if the shape of the loading is complicated.

> Plane Stress Problem: Q8
> Apply B.C's and Solve (free) Nodal Displacement

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Plane Stress Problem: Q8

Calculation of the Element Resultants

SUPPORT REACTIONS

$\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad$ If $\left\{\delta_{p}\right\}=0 \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}$

Plane Stress Problem: Q8

Calculation of the Element Resultants

Once the global system of equations is solved, we will compute the stresses at the centroid of the elements. For this we set ngp $=1$.

1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q4.m 3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)
a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points $\mathrm{jg}=1$ to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local derivatives, der, at the local coordinates $\xi=\operatorname{samp}(\mathrm{ig}, 1)$ and $\eta=\operatorname{samp}(\mathrm{jg}, 1)$
d. Evaluate the Jacobian jac $=$ der $*$ coord
e. Evaluate the determinant of the Jacobian as $d=\operatorname{det}(j a c)$
f. Compute the inverse of the Jacobian as jac1 $=\operatorname{inv}(\mathrm{jac})$
g. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv $=\mathrm{jac} 1 * \operatorname{der}$
h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps $=\mathrm{B} *$ eld
j. Compute the stresses as sigma $=\mathrm{D} * \mathrm{eps}$
3. Store the stresses in the matrix SIGMA(nel, 3)

Axisymmetric Problem

Problem Discerption

Axisymmetric Problem

LENGTH	MASS	TIME	FORCE	STRESS	ENERGY	VELOCITY	ACCELERATION
mm	ton	S	N	MPa	mJ	1e-03 m/s	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}^{2}$
mm	kg	ms	kN	GPa	$1 \mathrm{e}+03 \mathrm{~mJ}$	m / s	$1 \mathrm{e}+03 \mathrm{~m} / \mathrm{s}^{2}$
mm	g	ms	N	MPa	mJ	m / s	$1 \mathrm{e}+03 \mathrm{~m} / \mathrm{s}^{2}$
mm	kg	S	mN	kPa	$1 \mathrm{e}-03 \mathrm{~mJ}$	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}^{2}$
mm	g	S	$1 \mathrm{e}-06 \mathrm{~N}$	Pa	$1 \mathrm{e}-06 \mathrm{~mJ}$	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}^{2}$
mm	kgf-s ${ }^{2} / \mathrm{mm}$	S	kgf	$\mathrm{kgf} / \mathrm{mm}^{2}$	kgf-mm	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}-03 \mathrm{~m} / \mathrm{s}^{2}$
m	kg	S	N	---"---"		- m/s.a.s	
cm	kg	S	$1 \mathrm{e}-02 \mathrm{~N}$	$1 \mathrm{e}+02 \mathrm{~Pa}$	1e-04.J	$1 \mathrm{e}-02 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}-02 \mathrm{~m} / \mathrm{s}^{2}$
cm	kg	ms	$1 \mathrm{e}+04 \mathrm{~N}$	$1 \mathrm{e}+08 \mathrm{~Pa}$	$1 \mathrm{e}+02 \mathrm{~J}$	$1 \mathrm{e}+01 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}+04 \mathrm{~m} / \mathrm{s}^{2}$
cm	kg	us	$1 \mathrm{e}+10 \mathrm{~N}$	$1 \mathrm{e}+14 \mathrm{~Pa}$	$1 \mathrm{e}+08 \mathrm{~J}$	$1 \mathrm{e}+04 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}+10 \mathrm{~m} / \mathrm{s}^{2}$
cm	g	S	dyne	dyne/cm ${ }^{2}$	erg	$1 \mathrm{e}-02 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}-02 \mathrm{~m} / \mathrm{s}^{2}$
cm	g	ms	$1 \mathrm{e}+01 \mathrm{~N}$	bar	$1 \mathrm{e}-01 \mathrm{~J}$	$1 \mathrm{e}+01 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}+04 \mathrm{~m} / \mathrm{s}^{2}$
cm	g	us	$1 \mathrm{e}+07 \mathrm{~N}$	Mbar	$1 \mathrm{e}+05 \mathrm{~J}$	$1 \mathrm{e}+04 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{e}+10 \mathrm{~m} / \mathrm{s}^{2}$
in	$\mathrm{lbf}-\mathrm{s}^{2} /$ in	S	lbf	psi	lbf-in	in/s	$\mathrm{in} / \mathrm{s}^{2}$
ft	slug	S	lbf	psf	lbf-ft	ft / s	$\mathrm{ft} / \mathrm{s}^{2}$

Axisymmetric Problem

An axisymmetric problem is a three-dimensional problem that can be solved using a two-dimensional model provided that it posses a symmetry of revolution in both geometry, material properties and loading, and it can lend itself to a cylindrical coordinate.

The only displacements required to define its behavior are the ones in the r and z directions, denoted by u and v, respectively. They are not a function of θ.

Axisymmetric Problem

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading
geom(nnd, dim=2)
connec(nel, nne=8)

$$
E=10^{5} \mathrm{kPa} \quad v=0.35
$$

nf(nnd, nodof)

The force in the global force vector \mathbf{F}

Axisymmetric Problem
 Discretization: Mesh Generation


```
nnd=0;
k=0;
for i=1:NXE
    for j=1:NYE
        k=k+1;
        n1=(i-1)*(3*NYE+2)+2*j - 1;
        n2=i* (3*NYE+2)+j - NYE - 1;
    n3=i*(3*NYE+2)+2*j-1;
    n4=n3 + 1; n5=n3 + 2; n
    n7=n1 + 2; }\quadn8=n1+1
    geom(n1,:)=[(i-1)*dhx-X_origin, (j-1)*dhy-Y_origin];
    geom(n3,:)=[i*dhx - X_origin, (j-1)*dhy-Y_origin];
    geom(n5,:)=[i*dhx-X_origin, j*dhy - Y_origin];
    geom(n7,:)=[(i-1)*dhx - X_origin, j*dhy - Y_origin];
    geom(n2,:)=[(geom(n1,1)+geom(n3,1))/2,(geom(n1,2)+geom(n3,2))/2];
    geom(n4,:)=[(geom(n3,1)+ geom(n5,1))/2(geom(n3,2)+\operatorname{geom(n5,2))/2];}
    geom(n6,:)=[(geom(n5,1)+\operatorname{geom}(n7,1))/2(geom(n5,2)+\operatorname{geom}(n7,2))/2];
    geom(n8,:)=[(geom(n1,1)+ geom(n7,1))/2(geom(n1,2)+ geom(n7,2))/2];
    nel = k;
    nnd = n5;
    connec(k,:)=[n1 n2 n3 n4 n5 n6 n7 n8];
end
end
```


Axisymmetric Problem

Discretization: Mesh Generation

Axisymmetric Problem

Interpolation

For an element having n nodes, the components of the displacement vector are interpolated using nodal approximations
$\left\{\begin{array}{l}u=N_{1} u_{1}+N_{2} u_{2}+\cdots+N_{n} u_{n} \\ v=N_{1} v_{1}+N_{2} v_{2}+\cdots+N_{n} v_{n}\end{array}\right\rangle$
$\left\{\begin{array}{l}u \\ v \\ v\end{array}\right\}=\left[\begin{array}{ccccc|c|cc}N_{1} & 0 & \mid & N_{2} & 0 & \mid & \ldots & N_{n} \\ 0 & N_{1} & \mid & 0 & N_{2} & \mid & \ldots & 0 \\ 0\end{array}\right]\left[\begin{array}{c}u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ \vdots \\ u_{n} \\ v_{n}\end{array}\right\}$

$$
\{U\}=[N]\{a\}
$$

Axisymmetric Problem

Interpolation

Eight-nodded Iso-parametric Element
$\left\{\begin{array}{l}N_{1}(\xi, \eta) \\ N_{2}(\xi, \eta) \\ N_{3}(\xi, \eta) \\ N_{4}(\xi, \eta) \\ N_{5}(\xi, \eta) \\ N_{6}(\xi, \eta) \\ N_{7}(\xi, \eta) \\ N_{8}(\xi, \eta)\end{array}\right\}=\left\{\begin{array}{c}-0.25(1-\xi)(1-\eta)(1+\xi+\eta) \\ 0.50\left(1-\xi^{2}\right)(1-\eta) \\ -0.25(1+\xi)(1-\eta)(1-\xi+\eta) \\ 0.50(1+\xi)\left(1-\eta^{2}\right) \\ -0.25(1+\xi)(1+\eta)(1-\xi-\eta) \\ 0.50\left(1-\xi^{2}\right)(1+\eta) \\ -0.25(1-\xi)(1+\eta)(1+\xi-\eta) \\ 0.50(1-\xi)\left(1-\eta^{2}\right)\end{array}\right\}$

$$
u(\xi=-1, \eta=-1)=u_{1}
$$

$$
u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}+N_{4} u_{4}+N_{5} u_{5}+N_{6} u_{6}+N_{7} u_{7}+N_{8} u_{8}
$$

$$
v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}+N_{4} v_{4}+N_{5} v_{5}+N_{6} v_{6}+N_{7} v_{7}+N_{8} v_{8}
$$

Axisymmetric Problem

Strain-Displacement Relations

The infinitesimal strain displacements relations for axisymmetric problems

$$
\begin{aligned}
& \int \epsilon_{r r}=\frac{\partial u}{\partial r} \\
& \epsilon_{\theta}=\frac{(r+u) d \theta-r d \theta}{r d \theta}=\frac{u}{r} \\
& \left\{\epsilon_{z z}=\frac{\partial v}{\partial z}\right. \\
& \gamma_{r z}=\frac{\partial u}{\partial z}+\frac{\partial v}{\partial r} \\
& \left\{\begin{array}{l}
\epsilon_{r r} \\
\epsilon_{z z} \\
\epsilon_{\theta} \\
\gamma_{r z}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
1 / r & 0 \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\} \\
& \{\epsilon\}=[L] U \\
& \{v\}=[n]\{a\} \\
& \longrightarrow\{\varepsilon\}=\underbrace{L L][N]\}}_{[B]}\{a\}
\end{aligned}
$$

Axisymmetric Problem

Strain-Displacement Relations

By substitution

$$
\left\{\begin{array}{l}
\{\boldsymbol{\varepsilon}\}=[\boldsymbol{L}]\{\boldsymbol{U}\} \\
\{\boldsymbol{U}\}=[\boldsymbol{N}]\{\boldsymbol{a}\}
\end{array}\right.
$$

$$
[B]=\left[\begin{array}{cccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} \\
\frac{N_{1}}{r} & 0 & \mid & \frac{N_{2}}{r} & 0 & \mid & \ldots & \mid & \frac{N_{n}}{r} & 0 \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right]
$$

Axisymmetric Problem

Stress-Strain Relations

In an axisymmetric problem, the shear strains $\gamma_{r \theta}$ and $\gamma_{z \theta}$ and the shear stresses $\tau_{r \theta}$ and $\tau_{z \theta}$ all vanish because of the radial symmetry.

$$
\left\{\begin{array}{c}
\sigma_{r r} \\
\sigma_{z z} \\
\sigma_{\theta} \\
\tau_{r z}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccc}
1-v & v & v & 0 \\
\nu & 1-v & v & 0 \\
\nu & v & 1-v & 0 \\
0 & 0 & 0 & \frac{(1-2 v)}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{r r} \\
\epsilon_{z z} \\
\epsilon_{\theta} \\
\gamma_{r z}
\end{array}\right\}
$$

Axisymmetric Problem

Stiffness Matrix + Force Vectors

$$
\begin{aligned}
& \left(\iiint_{V}\{B\}^{T}[D]\{B\} d V\right)\{a\}=\iiint_{V}\{B\}^{T}[D]\left\{\varepsilon_{0}\right\} d V-\iiint_{V}\{B\}^{T}\left\{\sigma_{0}\right\} d V+\iiint_{V}\{N\}^{T}\left\{F_{b}\right\} d V+\iint_{S}\{N\}^{T}\{T\} d S+\sum_{i=1}^{n}\{N\}^{T}\left\{F_{p}\right\} \\
& {\left[K_{e}\right]=\left[\int_{v_{e}}[B]^{T}[D][B] d v\right]=\left[\iiint_{V_{e}}[B]^{T}[D][B] r d r d \theta d z\right]} \\
& \left\{f_{b}\right\}=\iint_{A_{e}}[N]^{T}\left\{\begin{array}{l}
b_{r} \\
b_{z}
\end{array}\right\} r d r d z \\
& \left\{f_{s}\right\}=\int_{L}[N]^{T}\left\{\begin{array}{c}
t_{r} \\
t_{z}
\end{array}\right\} r d l \\
& \begin{array}{l}
F_{1}=\frac{r_{1}-r_{0}}{6}\left(2 r_{0}+r_{1}\right) \\
F_{2}=\frac{r_{1}-r_{0}}{6}\left(r_{0}+2 r_{1}\right)
\end{array} \\
& F_{1}=\frac{r_{1}-r_{0}}{6} r_{0} \\
& F_{2}=\frac{r_{1}-r_{0}}{3}\left(r_{0}+r_{1}\right) \\
& F_{3}=\frac{r_{1}-r_{0}}{6} r_{1} \\
& \left\{f_{c}\right\}=\Sigma_{i}[N]^{T} r_{i}\left\{\begin{array}{l}
P_{r} \\
P_{z}
\end{array}\right\}
\end{aligned}
$$

Axisymmetric Problem

Stiffness Matrix

$$
\begin{gathered}
\left\{\begin{array}{l}
u \\
v \\
v
\end{array}\right\}=\left[\begin{array}{ccccccccc}
N_{1} & 0 & \mid & N_{2} & 0 & \mid & \ldots & \ldots & \mid \\
0 \\
0 & N_{1} & \mid & 0 & N_{8} & 0 \\
N_{2} & \ldots & \ldots & \mid & 0 & N_{8}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
\vdots \\
\vdots \\
u_{8} \\
v_{8}
\end{array}\right\} \\
{[B]=\left[\begin{array}{ccccccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \mid & \frac{\partial N_{2}}{\partial x} & 0 & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial x} \\
0 & \frac{\partial N_{1}}{\partial y} & \mid & 0 & \frac{\partial N_{2}}{\partial y} & \mid & \ldots & \mid & 0 \\
\frac{\partial N_{n}}{\partial y} \\
\frac{N_{1}}{r} & 0 & \mid & \frac{N_{2}}{r} & 0 & \mid & \ldots & \mid & \frac{N_{n}}{r} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \mid & \ldots & \mid & \frac{\partial N_{n}}{\partial y} \\
\frac{\partial N_{n}}{\partial x}
\end{array}\right]}
\end{gathered}
$$

Axisymmetric Problem

Stiffness Matrix

$$
\begin{aligned}
& \left.\begin{array}{r}
\left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{ccccccccccc}
N_{1} & 0 & 1 & N_{2} & 0 & \mid & \ldots & \ldots & \mid & N_{8} & 0 \\
0 & N_{1} & \mid & 0 & N_{2} & \mid & \ldots & \ldots & \mid & 0 & N_{8}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
u_{2} \\
v_{2} \\
\vdots \\
\vdots \\
\frac{\partial N}{\partial \xi}
\end{array}\right\} \\
u_{8} \\
v_{8}
\end{array}\right\} \\
& \{U\}=[N]\{a\} \\
& \square\{\epsilon\}=[B]\{a\} \\
& \left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \\
& {[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]} \\
& {[J]=\left[\begin{array}{cccc}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \cdots & \frac{\partial N_{8}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \cdots & \frac{\partial N_{8}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots \\
x_{8} & y_{8}
\end{array}\right]} \\
& \begin{array}{l}
x=\left[N_{i} X_{i}\right. \\
\frac{\partial x}{\partial S}=\left\{\frac{\lambda_{i} x_{i}}{\partial J}\right.
\end{array} \\
& x=N_{1} x_{1}+N_{2} x_{2}+\cdots+N_{8} x_{8} \\
& y=N_{1} y_{1}+N_{2} y_{2}+\cdots+N_{8} y_{8} \\
& r=N_{1} x_{1}+N_{2} x_{2}+\cdots+N_{8} x_{8} \\
& \text { Deriv }\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
\end{aligned}
$$

Axisymmetric Problem

Numerical Integration of the Stiffness Matrix

$$
\begin{aligned}
{\left[K_{e}\right] } & =\int_{-1}^{+1} \int_{-1}^{+1}[B(\xi, \eta)]^{T}[D][B(\xi, \eta)] r(\xi, \eta) \operatorname{det}[J(\xi, \eta)] d \eta d \xi \\
& =\sum_{i=1}^{n g p} \sum_{j=1}^{n g D} W_{i} W_{j}\left[B\left(\xi_{i}, \eta_{j}\right)\right]^{T}[D]\left[B\left(\xi_{i}, \eta_{j}\right)\right] r\left(\xi_{i}, \eta_{j}\right) \operatorname{det}\left[J\left(\xi_{i}, \eta_{j}\right)\right]
\end{aligned}
$$

For each element, it is evaluated as follows:

1. For every element $\mathrm{i}=1$ to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using the function elem_Q8.m
3. Initialize the stiffness matrix to zero a. Loop over the Gauss points ig = 1 to ngp b. Retrieve the weight wi as samp(ig, 2)
i. Loop over the Gauss points $\mathrm{jg}=1$ to ngp
ii. Retrieve the weight wj as $\operatorname{samp}(\mathrm{jg}, 2)$
iii. Use the function fmquad.m to compute the shape functions, vector fun, and their derivatives, matrix der, in local coordinates,
$\xi=\operatorname{samp}(\mathrm{ig}, 1)$ and $\eta=\operatorname{samp}(\mathrm{jg}, 1)$.
iv. Evaluate the Jacobian jac = der $*$ coord
v. Evaluate the determinant of the Jacobian as $d=\operatorname{det}(\mathrm{jac})$
vi. Compute the inverse of the Jacobian as jac1 $=\operatorname{inv}(\mathrm{jac})$
vii. Compute the derivatives of the shape functions with respect to the global coordinates x and y as deriv $=\mathrm{jac} 1 * \operatorname{der}$
viii. Use the function formbee_axi to form the strain matrix bee and calculate the radius r at the integration point as $\mathrm{r}=\sum_{j}^{n n e} N_{j} x_{j}$ ix. Compute the stiffness matrix as $\quad k e=k e+d * w i * w j * B^{T} * D * B * r$
4. Assemble the stiffness matrix ke into the global matrix kk

Axisymmetric Problem

Force Vectors
Body Forces
$\left\{f_{b}\right\}=\iint_{A_{e}}[N]^{T}\left\{\begin{array}{l}b_{r} \\ b_{z}\end{array}\right\} r d r d z$

Traction Forces

$$
\left\{f_{s}\right\}=\int_{L}[N]^{T}\left[\begin{array}{l}
t_{r} \\
t_{z}
\end{array}\right\} r d l
$$

Concentrated Forces

$\left\{f_{c}\right\}=\Sigma_{i}[N]^{T} r_{i}\left\{\begin{array}{l}P_{r} \\ P_{z}\end{array}\right\}_{i}$

Axisymmetric Problem

Discretization: Mesh Generation

$\left\{f_{s}\right\}=\int_{L}[N]^{T}\left\{\begin{array}{l}t_{r} \\ t_{z}\end{array}\right\} r d l$
$\left\{f_{s}\right\}=\int_{L}\left[\begin{array}{cc}N_{1} & 0 \\ 0 & N_{1} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ N_{8} & 0 \\ 0 & N_{8}\end{array}\right]\left\{63662\left(N / m^{2}\right)\right\} r d l$

$F_{1}=\frac{r_{1}-r_{0}}{6}\left(2 r_{0}+r_{1}\right)$
$F_{1}=\frac{r_{1}-r_{0}}{6} r_{0}$
$F_{2}=\frac{r_{1}-r_{0}}{6}\left(r_{0}+2 r_{1}\right)$

$$
F_{2}=\frac{r_{1}-r_{0}}{3}\left(r_{0}+r_{1}\right)
$$

$$
F_{3}=\frac{r_{1}-r_{0}}{6} r_{1}
$$

Axisymmetric Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
{\left[K_{F P}\right]\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array} \Rightarrow\left\{\delta_{F}\right\}=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}}
\end{array}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Axisymmetric Problem

Calculation of the Element Resultants

SUPPORT REACTIONS

$$
\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad \text { If }\left\{\delta_{p}\right\}=0 \Rightarrow \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}
$$

Axisymmetric Problem

Calculation of the Element Resultants

Element Displacement

Problem: Transient Thermal Analysis

$$
\begin{aligned}
& Q=100 \frac{\mathrm{~kW}}{\mathrm{~m}^{3}} \\
& c=400 \quad \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}} \\
& k=40 \quad \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \\
& \rho=7800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& T(x, y, 0)=50^{\circ} \mathrm{C}
\end{aligned}
$$

$$
E:(0,0) \quad D:(80,0) \quad A:(70,90) \quad F:(0,90) \quad \mathrm{mm}
$$

Problem: Transient Thermal Analysis

Finite Element Method = Space Discretization + Interpolation

Dynamic Problem (PDEs)

System of ODEs (Linear or Non-linear)
$w(x, t)+\frac{\partial}{\partial x}\left(A E \frac{\partial u(x, t)}{\partial x}\right)=\rho \frac{\partial^{2} u(x, t)}{\partial t^{2}}$

$$
\begin{array}{r}
{[M]\{\ddot{a}(t)\}+[K]\{a(t)\}=F(t) \xrightarrow{\text { Time Discretization }}\{a\}} \\
\left\{a\left(t_{i}\right)\right\}=\left\{a_{i}\right\} \\
\left\{a\left(t_{i}+\Delta t\right)\right\}=\left\{a_{i+1}\right\}
\end{array}
$$

Time-Discretization

Solution at $t+\Delta t$ is obtained by quantities at t
Equilibrium eq.s are not satisfied precisely
Shorter time increments are needed to reach convergence

Solution at $t+\Delta t$ is obtained by quantities at $t+\Delta t$ Equilibrium eq.s are satisfied precisely The solution is unconditionally stable

Newmark-Beta Method

Wilson-Theta Method

Problem: Transient Thermal Analysis

Implicit Integration

$$
\begin{gathered}
{[M]\left\{x^{\prime \prime}\right\}+[C]\left\{x^{\prime}\right\}+[K]\{x\}=\{f\}} \\
{[K]\{x\}=\{f\}-\left([M]\left\{x^{\prime \prime}\right\}+[C]\left\{x^{\prime}\right\}\right)} \\
{[K]^{-1}[K]\{x\}=[K]^{-1}\left(\{f\}-\left([M]\left\{x^{\prime \prime}\right\}+[C]\left\{x^{\prime}\right\}\right)\right)} \\
\{x\}=[K]^{-1}\left(\{f\}-\left([M]\left\{x^{\prime \prime}\right\}+[C]\left\{x^{\prime}\right\}\right)\right)
\end{gathered}
$$

vs.
Explicit Integration

$$
\begin{gathered}
{[M]\left\{x^{\prime}\right\}+[C]\left\{x^{\prime}\right\}+[K]\{x\}=\{f\}} \\
{[M]\left\{x^{\prime}\right\}=\{f\}-\left([C]\left\{x^{\prime}\right\}+[K]\{x\}\right)} \\
{[M]^{-1}[M]\left\{x^{\prime}\right\}=[M]^{-1}\left(\{f\}-\left([C]\left\{x^{\prime}\right\}+[K]\{x\}\right)\right)} \\
\left\{x^{\prime}\right\}=[M]^{-1}\left(\{f\}-\left([C]\left\{x^{\prime}\right\}+[K]\{x\}\right)\right)
\end{gathered}
$$

Problem: Transient Thermal Analysis

Explicit Method: Central Difference Method

$$
\begin{aligned}
& {\left[[M]\left\{\ddot{d}_{i}\right\}+[K]\left\{d_{i}\right\}=\left\{F_{i}\right\}\right.} \\
& \left\{\left\{\begin{array}{l}
\left\{\dot{d}_{i}\right\}=\frac{\left\{d_{i+1}\right\}-\left\{d_{i-1}\right\}}{2(\Delta t)} \\
\left\{\ddot{\ddot{a}}_{i}\right\}=\frac{\left\{\dot{d}_{i+1}\right\}-\left\{\dot{d}_{i-1}\right\}}{2(\Delta t)}
\end{array} \Rightarrow\left\{\ddot{d}_{i}\right\}=\frac{\left\{d_{i+1}\right\}-2\left\{d_{i}\right\}+\left\{d_{i-1}\right\}}{(\Delta t)^{2}}\right.\right. \\
& {[M]\left\{d_{i+1}\right\}=(\Delta t)^{2}\left\{F_{i}\right\}+\left[2[M]-(\Delta t)^{2}[K]\right]\left\{d_{i}\right\}-[M]\left\{d_{i-1}\right\}} \\
& \longrightarrow \quad\left\{\begin{array}{c}
\left.d_{i-1}\right\} \\
d_{-1}
\end{array}\right)=\left\{d_{i}\right\}-(\Delta t)\left\{\dot{d}_{i}\right\}+\frac{(\Delta t)^{2}}{2}\left\{\ddot{d}_{i}\right\} \quad{ }^{d_{0}} \quad \underset{i=0}{ } \quad \text { tayler expansion }
\end{aligned}
$$

Problem: Transient Thermal Analysis

Step 1

Given: $\left\{d_{0}\right\},\left\{\dot{d}_{0}\right\}$, and $\{F(t)\}$.

Step 2

If $\left\{\ddot{d}_{0}\right\}$ is not initially given, solve $\left\{\ddot{d}_{0}\right\}=[M]^{-1}\left(\left\{F_{0}\right\}-[K]\left\{d_{0}\right\}\right)$ at $t=0$ for $\left\{\ddot{d}_{0}\right\}$

Step 3

By using Taylor expansion, obtain is $\left\{d_{-1}\right\}$; that is,
$\left\{d_{-1}\right\}=\left\{d_{0}\right\}-(\Delta t)\left\{\dot{d}_{0}\right\}+\frac{(\Delta t)^{2}}{2}\left\{\ddot{d}_{0}\right\}$

Step 4

now solve equation for $\left\{d_{1}\right\}$
$\left\{d_{1}\right\}=[M]^{-1}\left\{(\Delta t)^{2}\left\{F_{0}\right\}+\left[2[M]-(\Delta t)^{2}[K]\right]\left\{d_{0}\right\}-[M]\left\{d_{-1}\right\}\right\}$
Step 5
solve for $\left\{\ddot{d}_{1}\right\}$ as
$\left\{\ddot{d}_{1}\right\}=[M]^{-1}\left(\left\{F_{1}\right\}-[K]\left\{d_{1}\right\}\right)$

Problem: Transient Thermal Analysis

Step 6

With $\left\{d_{0}\right\}$ initially given, and $\left\{d_{1}\right\}$ determined from step 4, use Eq. below to obtain $\left\{d_{2}\right\}$
$\left\{d_{2}\right\}=[M]^{-1}\left\{(\Delta t)^{2}\left\{F_{1}\right\}+\left[2[M]-(\Delta t)^{2}[K]\right]\left\{d_{1}\right\}-[M]\left\{d_{0}\right\}\right\}$

Step 7

Using the result of step 5 and initial condition $\left\{d_{0}\right\}$ given in step 1, determine the velocity at the first time step by Eq below
$\left\{\dot{d}_{1}\right\}=\frac{\left\{d_{2}\right\}-\left\{d_{0}\right\}}{2(\Delta t)}$

Step 8

Use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and velocity for all other time steps.

$$
\begin{align*}
& \left\{d_{i-1}\right\}=\left\{d_{i}\right\}-(\Delta t)\left\{\dot{d}_{i}\right\}+\frac{(\Delta t)^{2}}{2}\left\{\ddot{d}_{i}\right\} \tag{16.3.8}\\
& {[M]\left\{d_{i+1}\right\}=(\Delta t)^{2}\left\{F_{i}\right\}+\left[2[M]-(\Delta t)^{2}[K]\right]\left\{d_{i}\right\}-[M]\left\{d_{i-1}\right\}} \tag{16.3.7}
\end{align*}
$$

$$
[M]\left\{d_{i+1}\right\}=(\Delta t)^{2}\left\{F_{i}\right\}+\left[2[M]-(\Delta t)^{2}[K]\right]\left\{d_{i}\right\}-[M]\left\{d_{i-1}\right\}
$$

$$
\begin{align*}
\left\{\ddot{d}_{i}\right\} & =[M]^{-1}\left(\left\{F_{i}\right\}-[K]\left\{d_{i}\right\}\right) \tag{16.3.5}\\
\left\{\dot{d}_{i}\right\} & =\frac{\left\{d_{i+1}\right\}-\left\{d_{i-1}\right\}}{2(\Delta t)} \tag{16.3.1}
\end{align*}
$$

Problem: Transient Thermal Analysis

Implicit Method: Newmark's Method

$$
\begin{aligned}
& {[M]\left\{\ddot{d}_{i}\right\}+[K]\left\{d_{i}\right\}=\left\{F_{i}\right\} \longrightarrow[M]\left\{\ddot{d}_{i+1}\right\}=\left\{F_{i+1}\right\}-[K]\left\{d_{i+1}\right\}} \\
& \left\{\begin{array}{l}
\left\{\dot{d}_{i+1}\right\}=\left\{\dot{d}_{i}\right\}+(\Delta t)\left[(1-\gamma)\left\{\ddot{d}_{i}\right\}+\gamma\left\{\ddot{d}_{i+1}\right\}\right] \\
\text { The parameter } \beta \text { is generally chosen between } 0 \text { and } \frac{1}{4} \text {, and } \gamma \text { is often taken to be } \frac{1}{2} .
\end{array}\right. \\
& \left\{d_{i+1}\right\}=\left\{d_{i}\right\}+(\Delta t)\left\{\dot{d}_{i}\right\}+(\Delta t)^{2}\left[\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i}\right\}+\beta\left\{\ddot{d}_{i+1}\right\}\right] \times[M] \Rightarrow \\
& {[M]\left\{d_{i+1}\right\}=[M]\left\{d_{i}\right\}+(\Delta t)[M]\left\{\dot{d}_{i}\right\}+(\Delta t)^{2}[M]\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i}\right\}+\beta(\Delta t)^{2}\left[\left\{F_{i+1}\right\}-[K]\left\{d_{i+1}\right\}\right]} \\
& \left([M]+\beta(\Delta t)^{2}[K]\right)\left\{d_{i+1}\right\}=\beta(\Delta t)^{2}\left\{F_{i+1}\right\}+[M]\left\{d_{i}\right\}+(\Delta t)[M]\left\{\dot{d}_{i}\right\}+(\Delta t)^{2}[M]\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i}\right\} \\
& \underbrace{\left(\frac{[M]}{\beta(\Delta t)^{2}}+[K]\right)}\left\{d_{i+1}\right\}=\underbrace{\left\{F_{i+1}\right\}+\frac{[M]}{\beta(\Delta t)^{2}}\left\{d_{i}\right\}+\frac{[M]}{\beta(\Delta t)}\left\{\dot{d}_{i}\right\}+\frac{[M]}{\beta}\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i}\right\}} \\
& \text { [} K^{\prime} \text {] } \\
& \left\{F_{i+1}^{\prime}\right\} \\
& {\left[K^{\prime}\right]\left\{d_{i+1}\right\}=\left\{F_{i+1}^{\prime}\right\} \quad \Rightarrow}
\end{aligned}
$$

Problem: Transient Thermal Analysis

Step 1

Starting at time $t=0,\left\{d_{0}\right\}$ and $\left\{\dot{d}_{0}\right\}$ is known from the given initial conditions.

Step 2

Solve Eq. below at $t=0$ for $\left\{\ddot{d}_{0}\right\}$; that is,

$$
\left\{\ddot{d}_{0}\right\}=[M]^{-1}\left(\left\{F_{0}\right\}-[K]\left\{d_{0}\right\}\right)
$$

Step 3

Solve Eq. below for $\left\{d_{1}\right\}$, because $\left\{F_{i+1}^{\prime}\right\}$ is known for all time steps and $\left\{d_{0}\right\},\left\{\dot{d}_{0}\right\}$, and $\left\{\ddot{d}_{0}\right\}$ are now known from steps 1 and 2 .

$$
\left[K^{\prime}\right]\left\{d_{i+1}\right\}=\left\{F_{i+1}^{\prime}\right\}
$$

Step 4
Use Eq. below to solve for $\left\{\ddot{d}_{1}\right\}$ as

$$
\left\{\ddot{d}_{1}\right\}=\frac{1}{\beta(\Delta t)^{2}}\left[\left\{d_{1}\right\}-\left\{d_{0}\right\}-(\Delta t)\left\{\dot{d}_{0}\right\}-(\Delta t)^{2}\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{0}\right\}\right]
$$

Step 5

Solve Eq. below directly for $\left\{\dot{d}_{1}\right\}$

$$
\left\{\dot{d}_{i+1}\right\}=\left\{\dot{d}_{i}\right\}+(\Delta t)\left[(1-\gamma)\left\{\ddot{d}_{i}\right\}+\gamma\left\{\ddot{d}_{i+1}\right\}\right]
$$

Step 6

Using the results of steps 4 and 5 , go back to step 3 to solve for $\left\{d_{2}\right\}$ and then to steps 4 and 5 to solve for $\left\{\ddot{d}_{2}\right\}$ and $\left\{\dot{d}_{2}\right\}$. Use steps $3-5$ repeatedly to solve for $\left\{d_{i+1}\right\},\left\{\dot{d}_{i+1}\right\}$, and $\left\{\ddot{d}_{i+1}\right\}$

Problem: Transient Thermal Analysis

$$
\begin{gather*}
{\left[K^{\prime}\right]\left\{d_{i+1}\right\}=\left\{F_{i+1}^{\prime}\right\}} \\
{\left[K^{\prime}\right]} \\
\left(\frac{[M]}{\beta(\Delta t)^{2}}+[K]\right)\left\{d_{i+1}\right\}=\left\{F_{i+1}\right\}+\frac{[M]}{\beta(\Delta t)^{2}}\left\{d_{i}\right\}+\frac{[M]}{\beta(\Delta t)}\left\{\dot{d}_{i}\right\}+\frac{[M]}{\beta}\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i+1}^{\prime}\right\} \tag{16.3.9}\\
\left\{\dot{d}_{i+1}\right\}=\left\{\dot{d}_{i}\right\}+(\Delta t)\left[(1-\gamma)\left\{\ddot{d}_{i}\right\}+\gamma\left\{\ddot{d}_{i+1}\right\}\right] \tag{16.3.10}\\
\left\{d_{i+1}\right\}=\left\{d_{i}\right\}+(\Delta t)\left\{\dot{d}_{i}\right\}+(\Delta t)^{2}\left[\left(\frac{1}{2}-\beta\right)\left\{\ddot{d}_{i}\right\}+\beta\left\{\ddot{d}_{i+1}\right\}\right]
\end{gather*}
$$

Problem: Transient Thermal Analysis

Governing Differential Equation

$$
\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+Q=\rho c \frac{\partial T}{\partial t}
$$

$$
T(x, y, t)=c_{1}(t)+c_{2}(t) x+c_{3}(t) y
$$

$T_{i}=c_{1}+c_{2} x_{i}+c_{3} y_{i}$

$$
T=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{l}
c_{1}(t) \\
c_{2}(t) \\
c_{3}(t)
\end{array}\right]
$$

$T_{j}=c_{1}+c_{2} x_{j}+c_{3} y_{j}$

$$
\left[\begin{array}{c}
T_{i}(t) \\
T_{j}(t) \\
T_{k}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right]\left[\begin{array}{l}
c_{1}(t) \\
c_{2}(t) \\
c_{3}(t)
\end{array}\right] \quad T(x, y, t)=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right]^{-1}\left[\begin{array}{c}
T_{i}(t) \\
T_{j}(t) \\
T_{k}(t)
\end{array}\right]
$$

$$
T_{k}=c_{1}+c_{2} x_{k}+c_{3} y_{k}
$$

$$
\begin{gathered}
T(x, y, t)=N_{i}(x, y) T_{i}(t)+N_{j}(x, y) T_{j}(t)+N_{k}(x, y) T_{k}(t) \\
\{T(t)\}=\left[\begin{array}{lll}
T_{1}(t) & T_{2}(t) & T_{3}(t)
\end{array}\right]^{T} \\
{[N]=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& N_{i}(x, y)=m_{11}+m_{21} x+m_{31} y \\
& N_{j}(x, y)=m_{12}+m_{22} x+m_{32} y \\
& N_{k}(x, y)=m_{13}+m_{23} x+m_{33} y
\end{aligned}
$$

Problem: Transient Thermal Analysis

$$
\begin{aligned}
& T(x, y, t)=N_{i}(x, y) T_{i}(t)+N_{j}(x, y) T_{j}(t)+N_{k}(x, y) T_{k}(t) \\
& \{T(t)\}=\left[\begin{array}{lll}
T_{1}(t) & T_{2}(t) & T_{3}(t)
\end{array}\right]^{T} \quad[N]=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right] \\
& N_{i}(x, y)=m_{11}+m_{21} x+m_{31} y \\
& N_{j}(x, y)=m_{12}+m_{22} x+m_{32} y \\
& N_{k}(x, y)=m_{13}+m_{23} x+m_{33} y \\
& m_{11}=\left(x_{j} y_{k}-x_{k} y_{i}\right) / 2 A \\
& m_{21}=\left(y_{j}-y_{k}\right) / 2 A \quad m_{31}=\left(x_{k}-x_{j}\right) / 2 A \\
& m_{12}=\left(x_{k} y_{i}-x_{i} y_{k}\right) / 2 A \\
& m_{22}=\left(y_{k}-y_{i}\right) / 2 A \quad m_{32}=\left(x_{i}-x_{k}\right) / 2 A \\
& m_{13}=\left(x_{i} y_{j}-x_{j} y_{i}\right) / 2 A \quad m_{23}=\left(y_{i}-y_{j}\right) / 2 A \quad m_{31}=\left(x_{j}-x_{i}\right) / 2 A \\
& A=\frac{1}{2} \operatorname{det}\left(\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right]\right)
\end{aligned}
$$

Problem: Transient Thermal Analysis

Weighted Residual Approach

$$
\begin{aligned}
& \iint_{A^{e}} \mathbf{N}^{T}\left[\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y} \underline{\left(k \frac{\partial T}{\partial y}\right)}+Q-\rho c \frac{\partial T}{\partial t}\right] d x d y=0 \\
& \int_{C^{e}} \mathbf{N}^{T} k \frac{\partial T}{\partial x} n_{x} d C-\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} d x d y+\int_{C^{e}} \mathbf{N}^{T} k \frac{\partial T}{\partial y} n_{y} d C-\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial T}{\partial y} d x d y+\iint_{A^{e}} \mathbf{N}^{T} Q d x d y-\iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} d x d y=0 \\
& \iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial T}{\partial y} d x d y=\iint_{A^{e}} \mathbf{N}^{T} Q d x d y-\int_{C^{e}} \mathbf{N}^{T} q_{n} d C \\
& \\
& \int_{C^{e}} \mathbf{N}^{T} q_{n} d C=\int_{F A} \mathbf{N}^{T} h_{F A}\left(T-T_{a_{F A}}\right) d C+\int_{A D} \mathbf{N}^{T} h_{A D}\left(T-T_{a_{A D}}\right) d C
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial T}{\partial y} d x d y+\left.\int_{F A} \mathbf{N}^{T} h_{F A} T\right|_{F A} d C+\left.\int_{A D} \mathbf{N}^{T} h_{A D} T\right|_{A D} d C \\
& =\iint_{A^{e}} \mathbf{N}^{T} Q d x d y+\int_{F A} \mathbf{N}^{T} h_{F A} T_{a_{F A}} d C+\int_{A D} \mathbf{N}^{T} h_{A D} T_{a_{A D}} d C
\end{aligned}
$$

Problem: Transient Thermal Analysis

$$
\begin{aligned}
& \iint_{A^{e}} \mathbf{N}^{T} \rho c \frac{\partial T}{\partial t} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial T}{\partial x} d x d y+\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial T}{\partial y} d x d y+\left.\int_{F A} \mathbf{N}^{T} h_{F A} T\right|_{F A} d C+\left.\int_{A D} \mathbf{N}^{T} h_{A D} T\right|_{A D} d C \quad \text { V } \\
& =\iint_{A^{e}} \mathbf{N}^{T} Q d x d y+\int_{F A} \mathbf{N}^{T} h_{F A} T_{a_{F A}} d C+\int_{A D} \mathbf{N}^{T} h_{A D} T_{a_{A D}} d C
\end{aligned}
$$

$$
\mathbf{C}^{e} \dot{\boldsymbol{a}}^{e}+\mathbf{K}^{e} \boldsymbol{a}^{e}=\mathbf{f}^{e}
$$

$$
\begin{array}{ll}
\mathbf{K}^{e}=\mathbf{K}_{x x}^{e}+\mathbf{K}_{y y}^{e}+\mathbf{K}_{c v B}^{e} & \overbrace{\mathbf{K}_{x x}^{e}=\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial \mathbf{N}}{\partial x} d x d y}^{\mathbf{C}^{e}=\iint_{A^{e}} \mathbf{N}^{T} \rho c \mathbf{N} d x d y} \\
\mathbf{K}_{y y}^{e}=\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial \mathbf{N}}{\partial y} d x d y & \mathbf{f}^{e}=\mathbf{f}_{\mathbf{Q}}^{e}+\mathbf{f}_{\mathbf{q}}^{e}+\mathbf{f}_{c v \boldsymbol{B}}^{e} \\
\mathbf{C}_{c v B}^{e}=\iint_{A^{e}} \mathbf{N}^{T} Q d x d y \\
\int_{F}^{A} \mathbf{N}^{T} h_{F A} \mathbf{N} d C+\int_{D}^{A} \mathbf{N}^{T} h_{A D} \mathbf{N} d C
\end{array}
$$

Problem: Transient Thermal Analysis

$$
\begin{aligned}
& \mathbf{C}^{\boldsymbol{e}}=\iint_{A^{e}} \mathbf{N}^{T} \rho c \mathbf{N} d x d y=\iint_{A^{e}}\left[\begin{array}{c}
L_{i} \\
L_{j} \\
L_{k}
\end{array}\right] \rho c\left[\begin{array}{lll}
L_{i} & L_{j} & L_{k}
\end{array}\right] d x d y=\rho c \iint_{A^{e}}\left[\begin{array}{ccc}
L_{i}^{2} & L_{i} L_{j} & L_{i} L_{k} \\
L_{j} L_{i} & L_{j}^{2} & L_{j} L_{k} \\
L_{k} L_{i} & L_{k} L_{j} & L_{k}^{2}
\end{array}\right] d x d y=\frac{\rho c}{12} A_{e}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \mathbf{K}_{x x}^{\boldsymbol{e}}=\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial x} k \frac{\partial \mathbf{N}}{\partial x} d x d y=\iint_{A^{e}}\left[\begin{array}{l}
m_{21} \\
m_{22} \\
m_{23}
\end{array}\right] k\left[\begin{array}{lll}
m_{21} & m_{22} & m_{23}
\end{array}\right] d x d y=k A_{e}\left[\begin{array}{ccc}
m_{21}^{2} & m_{21} m_{22} & m_{21} m_{23} \\
m_{22} m_{21} & m_{22}^{2} & m_{22} m_{23} \\
m_{23} m_{21} & m_{23} m_{22} & m_{23}^{2}
\end{array}\right] \\
& \mathbf{K}_{y y}^{\boldsymbol{e}}=\iint_{A^{e}} \frac{\partial \mathbf{N}^{T}}{\partial y} k \frac{\partial \mathbf{N}}{\partial y} d x d y=\iint_{A^{e}}\left[\begin{array}{l}
m_{31} \\
m_{32} \\
m_{33}
\end{array}\right] k\left[\begin{array}{lll}
m_{31} & m_{32} & m_{33}
\end{array}\right] d x d y=k A_{e}\left[\begin{array}{ccc}
m_{31}^{2} & m_{31} m_{32} & m_{31} m_{33} \\
m_{32} m_{31} & m_{32}^{2} & m_{32} m_{33} \\
m_{33} m_{31} & m_{33} m_{32} & m_{33}^{2}
\end{array}\right] \\
& \mathbf{K}_{c v B}^{e}=\int_{F A} \mathbf{N}^{T} h_{F A} \mathbf{N} d C+\int_{A D} \mathbf{N}^{T} h_{A D} \mathbf{N} d C=\int_{C^{e}}\left[\begin{array}{c}
L_{i} \\
L_{j} \\
L_{k}
\end{array}\right] h_{B}\left[\begin{array}{lll}
L_{i} & L_{j} & L_{k}
\end{array}\right] d C=\int_{C^{e}} h_{B}\left[\begin{array}{ccc}
L_{i}^{2} & L_{i} L_{j} & 0 \\
L_{j} L_{i} & L_{j}^{2} & 0 \\
0 & 0 & 0
\end{array}\right] d C=\frac{h_{B} l_{i j}}{6}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{f}_{\mathbf{Q}}^{\boldsymbol{e}}=\iint_{A^{e}} \mathbf{N}^{T} Q d x d y=\frac{Q A_{e}}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \mathbf{f}_{\boldsymbol{c v B}}^{\boldsymbol{e}}=\int_{F}^{A} \mathbf{N}^{T} h_{F A} T_{a_{F A}} d C+\int_{A}^{D} \mathbf{N}^{T} h_{A D} T_{a_{A D}} d C=\frac{h_{B} l_{i j} T_{a B}}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Problem: Transient Thermal Analysis

$$
\bar{T}(x, y, t)=T(x, y, t)-350\left\{\begin{array}{l}
\bar{T}(x, y, t)=0 \quad @ F E \\
-k \frac{\partial \bar{T}}{\partial y}=h_{b 2}(\bar{T}(x, y, t)+350-80)=h_{b 2}(\bar{T}(x, y, t)+270) \quad @ F A \\
-k \frac{\partial \bar{T}}{\partial n}=h_{b 3}(\bar{T}(x, y, t)+350-60)=h_{b 2}(\bar{T}(x, y, t)+290) \quad @ A D \\
-k \frac{\partial \bar{T}}{\partial y}=0 \quad @ D E
\end{array}\right.
$$

Problem: Transient Thermal Analysis

$$
\begin{aligned}
& \bar{T}(x, y, t)=T(x, y, t)-350\left\{\begin{array}{l}
\bar{T}(x, y, t)=0 \quad @ F E \\
-k \frac{\partial \bar{T}}{\partial y}=h_{b 2}(\bar{T}(x, y, t)+350-80)=h_{b 2}(\bar{T}(x, y, t)+270) \quad @ F A
\end{array}\right. \\
& -k \frac{\partial \bar{T}}{\partial n}=h_{b 3}(\bar{T}(x, y, t)+350-60)=h_{b 2}(\bar{T}(x, y, t)+290) @ A D \\
& -k \frac{\partial \bar{T}}{\partial y}=0 @ D E
\end{aligned}
$$

$$
\begin{array}{ll}
{\left[\mathbf{C}_{P P}\right]\left\{\dot{\mathbf{T}}_{P}(t)\right\}+\left[\mathbf{C}_{\mathbf{P F}}\right]\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{P P}}\right]\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}+\left[\mathbf{K}_{\mathbf{P F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{P}}\right\}} \\
{\left[\mathbf{C}_{\mathbf{F P}}\right]\left\{\dot{\mathbf{T}}_{P}(t)\right\}+\left[\mathbf { C } _ { \mathbf { F F } } \left\{\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{F P}}\right]\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}+\left[\mathbf{K}_{\mathbf{F F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{F}}\right\}\right.\right.}
\end{array} \quad \begin{gathered}
\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}=0
\end{gathered} \quad \begin{aligned}
& {\left[\mathbf{C}_{\mathbf{F F}}\right]\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{F F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{F}}\right\}}
\end{aligned}
$$

Problem: Transient Thermal Analysis

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity
geom(nnd, 2)

```
connec(nel, nne)
```

$$
\begin{aligned}
& Q=10^{5}\left(\frac{W}{m^{3}}\right), \quad c=400\left(\frac{J}{\mathrm{kgC}}\right), \quad k=40\left(\frac{W}{\mathrm{mC}}\right) \\
& \rho=7800\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right), \quad \mathrm{T}(x, y, t=0)=50(C)
\end{aligned}
$$

Boundary Conditions
nf(nnd, nodof)

$$
\begin{array}{ll}
\bar{T}_{A D}=-290(C), & h_{A D}=100\left(\frac{W}{m^{2} C}\right) \\
\bar{T}_{A F}=-270(C), & h_{A D}=150\left(\frac{W}{m^{2} C}\right)
\end{array}
$$

Problem: Transient Thermal Analysis

Apply B.C's and Solve (free) Nodal Displacement

$$
\begin{aligned}
& {\left[\mathbf{C}_{P P}\right]\left\{\dot{\mathbf{T}}_{P}(t)\right\}+\left[\mathbf{C}_{\mathbf{P F}}\right]\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{P P}}\right]\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}+\left[\mathbf{K}_{\mathbf{P F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{P}}\right\} \quad\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}=0} \\
& {\left[\mathbf{C}_{\mathbf{F P}}\right]\left\{\dot{\mathbf{T}}_{P}(t)\right\}+\left[\mathbf{C}_{\mathbf{F F}}\right]\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{F P}}\right]\left\{\mathbf{T}_{\mathbf{P}}(t)\right\}+\left[\mathbf{K}_{\mathbf{F F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{F}}\right\}} \\
& {\left[\mathbf{C}_{\mathbf{F F}}\right]\left\{\dot{\mathbf{T}}_{F}(t)\right\}+\left[\mathbf{K}_{\mathbf{F F}}\right]\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}=\left\{\mathbf{F}_{\mathbf{F}}\right\}} \\
& \dot{x}=f(t, x) \quad\left\{\dot{T}_{F}\right\}=\operatorname{inv(c)f}\left(\left\{F_{F}\right\}-\left[k_{F F}\right\}\left\{T_{F}\right\}\right) \\
& \text { MATLAB ODE45 } \\
& \underset{\left\{\mathbf{T}_{\mathbf{F}}(t)\right\}}{ }
\end{aligned}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Thin Plate Problem

Problem Description

Plates are structural elements that are bound by two lateral surfaces.The dimensions of the lateral surfaces are very large compared to the thickness of the plate. A plate may be thought of as the two-dimensional equivalent of a beam. Plates are also generally subject to loads normal to their plane.

Thin Plate Problem

The small deflection theory of plates attributed to Kirchhoff is based on the following assumptions:

1. The $x-y$ plane coincides with the middle plane of the plate in the undeformed geometry.
2. The lateral dimension of the plate is at least 10 times its thickness.
3. The vertical displacement of any point of the plate can be taken equal to that of the point (below or above it) in the middle plane.
4. A vertical element of the plate before bending remains perpendicular to the middle surface of the plate after bending.

$$
\gamma_{x z}=\gamma_{y z}=0
$$

5. Strains are small: deflections are less than the order of $(1 / 100)$ of the span length.
6. The strain of the middle surface is zero or negligible.

Thin Plate Problem

Considering the plate element shown in Figure, the in-plane displacements u and v, respectively in the directions x and y, can be expressed as

The vector $\{\chi\}=\left[\begin{array}{lll}\chi_{x} & \chi_{y} & \chi_{x y}\end{array}\right]^{T}$ is called the vector of curvature or generalized strain

Thin Plate Problem

Internal stresses in a thin plate. Moments and shear forces due to internal stresses in a thin plate.

$M_{x x}=\int_{-h / 2}^{h / 2} \sigma_{x x} z d z$

$$
Q_{x x}=\int_{-h / 2}^{h / 2} \sigma_{x x} d z
$$

$$
M_{y y}=\int_{-h / 2}^{h / 2} \sigma_{y y} z d z
$$

$$
Q_{y y}=\int_{-h / 2}^{h / 2} \sigma_{y y} d z
$$

$$
M_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} z d z
$$

Thin Plate Problem

Internal stresses in plates produce bending moments and shear forces as illustrated in Figures. The moments and shear forces are the resultants of the stresses and are defined as acting per unit length of plate. These internal actions are defined as

Assuming a state of plane stress conditions for plate bending
$\{\sigma\}=[D]\{\epsilon\}$

$$
\begin{aligned}
M_{x x} & =\int_{-h / 2}^{h / 2} \sigma_{x x} z d z \\
M_{y y} & =\int_{-h / 2}^{h / 2} \sigma_{y y} z d z \\
M_{x y} & =\int_{-h / 2}^{h / 2} \tau_{x y} z d z \\
Q_{x x} & =\int_{-h / 2}^{h / 2} \sigma_{x x} d z \\
Q_{y y} & =\int_{-h / 2}^{h / 2} \sigma_{y y} d z
\end{aligned}
$$

Thin Plate Problem

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling that Q_{x} represents force per unit length along the edge $d y$ and requiring force equilibrium in z direction results in
$-Q_{x} d y-Q_{y} d x+\left(Q_{x}+\frac{\partial Q_{x}}{\partial x} d x\right) d y+\left(Q_{y}+\frac{\partial Q_{y}}{\partial y} d y\right) d x+q(x, y) d x d y=0$

Moment equilibrium about the y-axis leads to

$$
\frac{\partial M_{x y}}{\partial y}+\frac{\partial M_{x x}}{\partial x}=Q_{x}
$$

$$
\frac{\partial^{2} M_{x x}}{\partial x^{2}}+\frac{\partial^{2} M_{x y}}{\partial x \partial y}+\frac{\partial^{2} M_{y y}}{\partial y^{2}}+q(x, y)=0
$$

GOVERNING EQUATION IN TERMS OF DISPLACEMENT VARIABLES

$$
\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial^{2} x \partial^{2} y}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{q(x, y)}{D_{r}} \quad \square \nabla^{4} w=\frac{q}{D_{r}} \quad D_{r}=\frac{E h^{3}}{12\left(1-v^{2}\right)}
$$

Thin Plate Problem

$$
\begin{array}{ll}
\{M\}=\frac{h^{3}}{12}[D]\{\chi\} & \\
D=\frac{E h^{3}}{12\left(1-v^{2}\right)} & U=\frac{1}{2}\{\chi\}^{T}[D]\{\chi\} d A
\end{array}
$$

Thin Plate Problem

Discretization: Mesh Generation

Thin Plate Problem

Rectangular Element: Interpolation

The element has four nodes and 12 DOF in total
A trial function will contain 12 parameters

$$
\begin{aligned}
& w(x, y)=\alpha_{1}+\alpha_{2} x+\alpha_{3} y+\alpha_{4} x^{2}+\alpha_{5} x y+\alpha_{6} y^{2}+\alpha_{7} x^{3}+\alpha_{8} x^{2} y+\alpha_{9} x y^{2}+\alpha_{10} y^{3}+\alpha_{11} x^{3} y+\alpha_{12} x y^{3} \\
& w\left(x_{1}, y_{1}\right)=w_{1} \\
& w\left(x_{2}, y_{2}\right)=w_{2} \\
& w\left(x_{3}, y_{3}\right)=w_{3} \\
& w\left(x_{4}, y_{4}\right)=w_{4} \\
& \theta_{x}(x, y)=\frac{\partial w}{\partial x}=\alpha_{2}+2 \alpha_{4} x+\alpha_{5} y+3 \alpha_{7} x^{2}+2 \alpha_{8} x y+\alpha_{9} y^{2}+3 \alpha_{11} x^{2} y+\alpha_{12} y \\
& \theta_{x}\left(x_{1}, y_{1}\right)=\theta_{x 1} \quad \theta_{x}\left(x_{3}, y_{3}\right)=\theta_{x 3} \\
& \theta_{x}\left(x_{2}, y_{2}\right)=\theta_{x 2} \quad \theta_{x}\left(x_{4}, y_{4}\right)=\theta_{x 4} \\
& \theta_{y}(x, y)=\frac{\partial w}{\partial y}=\alpha_{3}+\alpha_{5} x+2 \alpha_{6} y+\alpha_{8} x^{2}+2 \alpha_{9} x y+3 \alpha_{10} y^{2}+\alpha_{11} x^{3}+3 \alpha_{12} x y^{2} \\
& \theta_{y}\left(x_{1}, y_{1}\right)=\theta_{y 1} \quad \begin{array}{ll}
\theta_{y}\left(x_{3}, y_{3}\right)=\theta_{y 3} \\
\theta_{y}\left(x_{2}, y_{2}\right) & =\theta_{y 2} \quad \theta_{y}\left(x_{4}, y_{4}\right)=\theta_{y 4}
\end{array}
\end{aligned}
$$

Thick Plate Problem (Mindlin Plate Theory)

Thick Plate Problem

Consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	Ibf	Ibf
Mass	kg	tonne ($10^{3} \mathrm{~kg}$)	slug	lbf $\mathrm{s}^{2} / \mathrm{in}$
Time	s	s	s	s
Stress	$\mathrm{Pa}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	MPa ($\mathrm{N} / \mathrm{mm}^{2}$)	$\mathrm{lbf} / \mathrm{ft}{ }^{2}$	psi ($\mathrm{lbf} / \mathrm{in}^{2}$)
Energy	J	$\mathrm{mJ}\left(10^{-3} \mathrm{~J}\right)$	ft lbf	in lbf
Density	$\mathrm{kg} / \mathrm{m}^{3}$	tonne/mm ${ }^{3}$	slug/ft ${ }^{3}$	Ibf $\mathrm{s}^{2} / \mathrm{in}^{4}$

Thick Plate Problem

Data Preparation (Create Input file)

Nodes Coordinates

Element Connectivity

Material and Geometrical Properties

Boundary Conditions

Loading
geom(nnd, 2)

```
connec(nel, nne)
```

$$
E=30 \times 10^{6}(p s i) \quad v=0.3
$$

nf(nnd, nodof)

The force in the global force vector $\mathrm{F}_{-} f$

Thick Plate Problem

Discretization: Mesh Generation

$$
\mathrm{n} 1=(\mathrm{i}-1)^{*}\left(3^{*} \mathrm{NYE}+2\right)+2 * \mathrm{j}-1 ;
$$

$$
\begin{aligned}
& \mathrm{n} 8=\mathrm{n} 1+1 ; \\
& \mathrm{n} 6=\mathrm{n} 2+1 \\
& \mathrm{n} 4=\mathrm{n} 3+1
\end{aligned}
$$

$$
\mathrm{n} 7=\mathrm{n} 1+2 ;
$$

$$
n 2=i^{*}\left(3^{*} N Y E+2\right)+j-\text { NYE }-1 ;
$$

$$
n 3=i^{*}\left(3^{*} N Y E+2\right)+2^{*} j-1 ;
$$

n5 = n3 + 2;
\%
geom(n1,:) $=\left[(\mathrm{i}-1)^{*}\right.$ dhx - X_origin (j-1)*dhy - Y_origin $]$;
geom(n3,:) $=[$ i*dhx - X_origin (j-1)*dhy - Y_origin];
geom $(\mathrm{n} 2,:)=[($ geom $(\mathrm{n} 1,1)+\operatorname{geom}(\mathrm{n} 3,1)) / 2($ geom $(\mathrm{n} 1,2)+\operatorname{geom}(\mathrm{n} 3,2)) / 2]$; geom(n5,:) $=\left[\right.$ i* dhx- X_origin j*dhy - Y_origin $]$;
$\operatorname{geom}(\mathrm{n} 4,:)=[(\operatorname{geom}(\mathrm{n} 3,1)+\operatorname{geom}(\mathrm{n} 5,1)) / 2(\operatorname{geom}(\mathrm{n} 3,2)+\operatorname{geom}(\mathrm{n} 5,2)) / 2] ;$ geom(n7,:) $=\left[(\mathrm{i}-1)^{*}\right.$ dhx - X_origin j^{*} dhy - Y_origin $]$;
geom $(\mathrm{n} 6,:)=[(\operatorname{geom}(\mathrm{n} 5,1)+\operatorname{geom}(\mathrm{n} 7,1)) / 2(\operatorname{geom}(\mathrm{n} 5,2)+\operatorname{geom}(\mathrm{n} 7,2)) / 2] ;$ geom(n8,:) $=[(\operatorname{geom}(\mathrm{n} 1,1)+\operatorname{geom}(\mathrm{n} 7,1)) / 2($ geom(n1,2) $+\operatorname{geom}(\mathrm{n} 7,2)) / 2] ;$ \%
nel $=\mathrm{k}$;
nnd $=$ n5;
connec (k,:) $=[\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \mathrm{n} 4 \mathrm{n} 5 \mathrm{n} 6 \mathrm{n} 7 \mathrm{n} 8]$; end

Thick Plate Problem

In thick plates, the assumption that a vertical element of the plate before bending remains perpendicular to the middle surface of the plate after bending is relaxed. Transverse normal may rotate without remaining normal to the mid-plane. A line originally normal to the middle plane will develop rotation components θ_{x} relative to the middle plane after deformation as shown in Figure. A similar definition holds for θ_{y}. Hence, the displacement field becomes

These equations are the main equations of the Mindlin plate theory. The theory accounts for transverse shear deformations and is applicable for moderately thick plates. Unlike in thin plate theory, it is important to notice that the transverse displacement $w(x, y)$ and slopes θ_{x}, θ_{y} are independent. Notice also that the thick plate theory reduces to thin plate theory if $\theta_{x}=-\partial w / \partial x$ and $\theta_{y}=-\partial w / \partial y$.

Thick Plate Problem

Consider the equilibrium of the free body of the differential plate element shown in Figure Recalling that Q_{x} represents force per unit length along the edge $d y$ and requiring force equilibrium in z direction results in
$-Q_{x} d y-Q_{y} d x+\left(Q_{x}+\frac{\partial Q_{x}}{\partial x} d x\right) d y+\left(Q_{y}+\frac{\partial Q_{y}}{\partial y} d y\right) d x+q(x, y) d x d y=0$

Moment equilibrium about the y-axis leads to

$$
\frac{\partial M_{x y}}{\partial y}+\frac{\partial M_{x x}}{\partial x}=Q_{x}
$$

$$
\frac{\partial^{2} M_{x x}}{\partial x^{2}}+\frac{\partial^{2} M_{x y}}{\partial x \partial y}+\frac{\partial^{2} M_{y y}}{\partial y^{2}}+q(x, y)=0
$$

Thick Plate Problem
 STRESS-STRAIN RELATIONSHIP

Assuming the material is homogeneous and isotropic, the plane stresses $\sigma_{x x}, \sigma_{y y}$, and $\tau_{x y}$ are related to the strains through the elasticity matrix [D].The shear strains $\tau_{y z}$ and $\tau_{x z}$ are related to the shear strains $\gamma_{y z}$ and $\gamma_{x z}$ through

$$
\left.\int \sigma\right\}=\int[D]\{\epsilon\}
$$

$$
\begin{array}{ll}
\left.\{\sigma\}=\int D\right]\{\epsilon\} & \\
{[D]=\frac{E}{1-v^{2}}\left[\begin{array}{llc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{(1-v)}{2}
\end{array}\right] \quad \begin{array}{l}
M_{y y}=\int_{-h / 2}^{h / 2} \sigma_{y y} z d z \\
M_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} z d z
\end{array}}
\end{array}
$$

$$
\left\{\begin{array}{l}
\tau_{y z} \\
\tau_{x z}
\end{array}\right\}=\left[\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}
$$

$$
\begin{array}{ll}
M_{x x}= & \int_{-h / 2}^{h / 2} \sigma_{x x} z d z \\
M_{y y}= & \int_{-h / 2}^{h / 2} \sigma_{y y} z d z \\
M_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} z d z & \left\{\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y} \\
Q_{y} \\
Q_{x}
\end{array}\right\}=\left[\begin{array}{ccc}
D_{r} & v \times D_{r} & 0 \\
v \times D_{r} & D_{r} & 0 \\
0 & 0 & \frac{D_{r}(1-v)}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right. \\
Q_{x x}=\int_{-h / 2}^{h / 2} \sigma_{x x} d z \\
Q_{y y}=\int_{-h / 2}^{h / 2} \sigma_{y y} d z \\
D_{r}=\frac{E h^{3}}{12\left(1-v^{2}\right)}
\end{array}
$$

Thick Plate Problem

The Equation can be written more compactly as
$\{M\}=\left[D_{M}\right]\{\chi\}$
The total strain energy of the plate is given as
$U=\frac{1}{2} \int_{A}\{\chi\}^{T}\left[D_{M}\right]\{\chi\} d A \quad U=U_{B}+U_{S}=\frac{1}{2} \int_{A}\left\{\chi_{B}\right\}^{T}\left[D_{B}\right]\left\{\chi_{B}\right\} d A+\frac{\kappa}{2} \int_{A}^{T}\left\{\chi_{S}\right\}^{T}\left[D_{S}\right]\left\{\chi_{S}\right\} d A$
κ is the shear energy correction factor equal to $5 / 6$

$\left\{\chi_{B}\right\}=\left\{\begin{array}{c}\frac{\partial \theta_{x}}{\partial x} \\ \frac{\partial \theta_{y}}{\partial y} \\ \left(\frac{\partial \theta_{x}}{\partial y}+\frac{\partial \theta_{y}}{\partial x}\right)\end{array}\right\} \quad\left\{\chi_{s}\right\}=\left\{\begin{array}{l}\left(\theta_{y}-\frac{\partial w}{\partial y}\right) \\ \left(\theta_{x}-\frac{\partial w}{\partial x}\right)\end{array}\right\} \quad\left[D_{B}\right]=\frac{E h^{3}}{12\left(1-v^{2}\right)}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{(1-v)}{2}\end{array}\right] \quad\left[D_{S}\right]=G\left[\begin{array}{cc}h & 0 \\ 0 & h\end{array}\right]$

Thick Plate Problem

Rectangular Element: Interpolation

The element has 8 nodes and 24 DOF in total
C^{0} iso-parametric shape functions can be used for the thick plate element formulation

$$
\text { Eight-nodded Iso-parametric Element } \quad W(9,-1)=\quad=W_{1}
$$

$$
\begin{aligned}
& w=\sum_{i=1}^{n} N_{i}(\xi, \eta) w_{i} \\
& \theta_{x}=\sum_{i=1}^{n} N_{i}(\xi, \eta) \theta_{x i} \\
& \theta_{y}=\sum_{i=1}^{n} N_{i}(\xi, \eta) \theta_{y i}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
N_{1}(\xi, \eta) \\
N_{2}(\xi, \eta) \\
N_{3}(\xi, \eta) \\
N_{4}(\xi, \eta) \\
N_{5}(\xi, \eta) \\
N_{6}(\xi, \eta) \\
N_{7}(\xi, \eta) \\
N_{8}(\xi, \eta)
\end{array}\right\}=\left\{\begin{array}{c}
-0.25(1-\xi)(1-\eta)(1+\xi+\eta) \\
0.50\left(1-\xi^{2}\right)(1-\eta) \\
-0.25(1+\xi)(1-\eta)(1-\xi+\eta) \\
0.50(1+\xi)\left(1-\eta^{2}\right) \\
-0.25(1+\xi)(1+\eta)(1-\xi-\eta) \\
0.50\left(1-\xi^{2}\right)(1+\eta) \\
-0.25(1-\xi)(1+\eta)(1+\xi-\eta) \\
0.50(1-\xi)\left(1-\eta^{2}\right)
\end{array}\right\}
$$

$$
\begin{gathered}
w(x, y)=N_{1}(\xi, \eta) w_{1}+N_{3}(\xi, \eta) w_{2}+N_{3}(\xi, \eta) w_{3}+N_{4}(\xi, \eta) w_{4}+N_{5}(\xi, \eta) w_{5}+N_{6}(\xi, \eta) w_{6}+N_{7}(\xi, \eta) w_{7}+N_{8}(\xi, \eta) w_{8} \\
\theta_{x}(x, y)=N_{1}(\xi, \eta) \theta_{x 1}+N_{3}(\xi, \eta) \theta_{x 2}+N_{3}(\xi, \eta) \theta_{x 3}+N_{4}(\xi, \eta) \theta_{x 4}+N_{5}(\xi, \eta) \theta_{x 5}+N_{6}(\xi, \eta) \theta_{x 6}+N_{7}(\xi, \eta) \theta_{x 7}+N_{8}(\xi, \eta) \theta_{x 8} \\
\theta_{y}(x, y)=N_{1}(\xi, \eta) \theta_{y 1}+N_{3}(\xi, \eta) \theta_{y 2}+N_{3}(\xi, \eta) \theta_{y 3}+N_{4}(\xi, \eta) \theta_{y 4}+N_{5}(\xi, \eta) \theta_{y 5}+N_{6}(\xi, \eta) \theta_{y 6}+N_{7}(\xi, \eta) \theta_{y 7}+N_{8}(\xi, \eta) \theta_{y 8}
\end{gathered}
$$

Thick Plate Problem

Strain Energy: $U=U_{B}+U_{S}=\frac{1}{2} \int_{A}\left\{\chi_{B}\right\}^{T}\left[D_{B}\right]\left\{\chi_{B}\right\} d A+\frac{\kappa}{2} \int_{A}\left\{\chi_{S}\right\}^{T}\left[D_{S}\right]\left\{\chi_{S}\right\} d A \quad(\kappa=5 / 6)$
$\{\chi\}_{B}=\left[L_{B}\right][N]\{a\}=\left[B_{B}\right]\{a\}$
$\{a\}=\left[\begin{array}{lllllllllll}w_{1} & \theta_{x 1} & \theta_{y 1} & \mid & \ldots & \ldots & \ldots & \mid & w_{n} & \theta_{x n} & \theta_{y n}\end{array}\right]^{T}$
$\left[L_{B}\right]=\left[\begin{array}{ccc}0 & \frac{\partial}{\partial x} & 0 \\ 0 & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}\end{array}\right] \quad[N]=\left[\begin{array}{ccccccc:ccc}N_{1} & 0 & 0 & 1 & \ldots & \ldots & \ldots & N_{n} & 0 & 0 \\ 0 & N_{1} & 0 & 1 & \cdots & \cdots & \cdots & 0 & N_{n} & 0 \\ 0 & 0 & N_{1} & 1 & \cdots & \cdots & \cdots & 1 & 0 & 0\end{array} N_{n}\right] \quad\left[L_{s}\right]=\left[\begin{array}{ccc}-\frac{\partial}{\partial y} & 0 & 1 \\ -\frac{\partial}{\partial x} & 1 & 0\end{array}\right]$
$\left[B_{B}\right]=\left[\begin{array}{cccccccccc}0 & \frac{\partial N_{1}}{\partial x} & 0 & \mid & \ldots & \ldots & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial x} \\ 0 & 0 & \frac{\partial N_{1}}{\partial y} & \mid & \ldots & \ldots & \ldots & \mid & 0 & 0 \\ \frac{\partial N_{n}}{\partial y} \\ 0 & \frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & 1 & \ldots & \ldots & \ldots & 1 & 0 & \frac{\partial N_{n}}{\partial y} \\ \partial y & \frac{\partial N_{n}}{\partial x}\end{array}\right] \quad\left[B_{s}\right]=\left[\begin{array}{cccccccccccc}-\frac{\partial N_{1}}{\partial y} & 0 & N_{1} & \mid & \ldots & \ldots & \ldots & \mid & -\frac{\partial N_{n}}{\partial y} & 0 & N_{n} \\ -\frac{\partial N_{1}}{\partial x} & N_{1} & 0 & 1 & \ldots & \ldots & \ldots & \mid & -\frac{\partial N_{n}}{\partial x} & N_{n} & 0\end{array}\right]$

$$
\left[K_{e}\right]=\left[K_{B}\right]+\left[K_{S}\right]=\int_{A_{e}}\left[B_{B}\right]^{T}\left[D_{B}\right]\left[B_{B}\right] d A+\kappa \int_{A_{e}}\left[B_{S}\right]^{T}\left[D_{S}\right]\left[B_{S}\right] d A \quad(\kappa=5 / 6)
$$

Thick Plate Problem

Remark: It is important to note that the shear stiffness $\left[K_{S}\right]$ is a function of h since $\left[D_{S}\right]$ is a function of h, and the bending stiffness $\left[K_{B}\right]$ is a function of h^{3} since $\left[D_{B}\right]$ is a function of h^{3}. A consequence of this is that the shear energy dominates as the thickness of the plate becomes very small compared to its side length. This is called shear locking. One way of resolving this problem is to under integrate the shear energy term. For example, if the 8 node quadrilateral is used, then the bending energy is to be integrated with 3×3 Gauss points, while the shear energy is to be integrated only with a 2×2 rule.

$$
\begin{aligned}
& x(\xi ;) \quad \frac{\partial N}{\partial \xi}=\frac{\partial \&}{\partial \xi} \frac{\partial N}{\partial x}+\frac{\partial y}{\partial \xi} \frac{\partial N}{\partial y} \\
& \text { der } \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \\
& {[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{8} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]} \\
& {[J]=\left[\begin{array}{cccc}
\frac{\partial N_{1}}{\partial \xi} & \frac{\partial N_{2}}{\partial \xi} & \cdots & \frac{\partial N_{8}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \cdots & \frac{\partial N_{8}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots \\
x_{8} & y_{8}
\end{array}\right]} \\
& \left\{\begin{array}{l}
x=N_{1} x_{1}+N_{2} x_{2}+\cdots+N_{8} x_{8} \\
y=N_{1} y_{1}+N_{2} y_{2}+\cdots+N_{8} y_{8}
\end{array}\right. \\
& \text { Der } \leftarrow\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
\end{aligned}
$$

Thick Plate Problem

Stiffness Matrix

$$
\begin{aligned}
w & =\sum_{i=1}^{n} N_{i}(\xi, \eta) w_{i} \\
\theta_{x} & =\sum_{i=1}^{n} N_{i}(\xi, \eta) \theta_{x i} \\
\theta_{y} & =\sum_{i=1}^{n} N_{i}(\xi, \eta) \theta_{y i}
\end{aligned}
$$

$$
\left[B_{B}\right]=\left[\begin{array}{ccccccccccc}
0 & \frac{\partial N_{1}}{\partial x} & 0 & \mid & \ldots & \ldots & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial x} & 0 \\
0 & 0 & \frac{\partial N_{1}}{\partial y} & \mid & \ldots & \ldots & \ldots & \mid & 0 & 0 & \frac{\partial N_{n}}{\partial y} \\
0 & \frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \mid & \ldots & \ldots & \ldots & \mid & 0 & \frac{\partial N_{n}}{\partial y} & \frac{\partial N_{n}}{\partial x}
\end{array}\right] \quad\left[B_{S}\right]=\left[\begin{array}{ccccccccccc}
-\frac{\partial N_{1}}{\partial y} & 0 & N_{1} & \mid & \ldots & \ldots & \ldots & \mid & -\frac{\partial N_{n}}{\partial y} & 0 & N_{n} \\
-\frac{\partial N_{1}}{\partial x} & N_{1} & 0 & \mid & \ldots & \ldots & \ldots & \mid & -\frac{\partial N_{n}}{\partial x} & N_{n} & 0
\end{array}\right]
$$

Thick Plate Problem

Stiffness Matrix

$$
\begin{aligned}
& {\left[K_{e}\right]\{a\}=f_{e}} \\
& {\left[K_{e}\right]=\left[\int_{d_{e}}[B]^{T}[D][B] d A\right] \quad\left\{f_{e}\right\}=\int_{A_{e}}[N]^{T}\{b\} d A+\int_{L_{e}}[N]^{T}\{t\} d l+\sum_{i}\left[N_{(x f)=[x])}\right]^{T}\{P\}_{i}} \\
& \text { Next Slide } \\
& {\left[K_{e}\right]=\int_{-1}^{+1+1} \int_{-1}\left[B(\xi, \eta]^{T}[D][B(\xi, \eta)] d e t[J(\xi, \eta)] d \eta d \xi\right.} \\
& =\sum_{i=1}^{n g p_{j=1}^{n g p} W_{i} W_{j}\left[B\left(\xi_{i}, \eta_{j}\right]^{T}[D]\left[B\left(\xi_{i}, \eta_{j}\right)\right] \operatorname{det}\left[J\left(\xi_{i}, \eta_{j}\right)\right]\right.}
\end{aligned}
$$

Thick Plate Problem

Force vector

Body Forces $\quad \int_{A_{e}}[N]^{T}\{b\} d A=\sum_{i=1}^{n g p} \sum_{j=1}^{n g p} W_{i} W_{j}\left[N\left(\xi_{i}, \eta_{j}\right]^{T}\left\{\begin{array}{c}0 \\ -\rho g\end{array}\right\} \operatorname{det}\left[J\left(\xi_{i}, \eta_{j}\right)\right]\right.$
Traction Forces

$$
\begin{array}{ll}
\text { Traction Forces } & q_{x}=\left(q_{t} \frac{\partial x}{\partial \xi}-q_{n} \frac{\partial y}{\partial \xi}\right) d \xi \\
q_{x}=q_{t} d L \cos \alpha-q_{n} d L \sin \alpha=q_{t} d x-q_{n} d y & q_{y}=\left(q_{n} \frac{\partial x}{\partial \xi}+q_{t} \frac{\partial y}{\partial \xi}\right) d \xi
\end{array}
$$

$$
\int_{A_{e}}[N]^{T}\left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\} d A=\int_{L_{3-4}}\left[N\left(\xi_{\boldsymbol{g}}+1\right)\right]_{\eta=2}^{T}\left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\} d l
$$

$$
=\sum_{i=1}^{n g p} W_{i}\left[N\left(\xi_{i},+1\right)\right]^{T}\left\{\begin{array}{l}
\left(q_{t} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}-q_{n} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right) \\
\left(q_{n} \frac{\partial x\left(\xi_{i},+1\right)}{\partial \xi}+q_{t} \frac{\partial y\left(\xi_{i},+1\right)}{\partial \xi}\right)
\end{array}\right\}
$$

Concentrated Forces $\quad \sum_{k=1}[N]_{k=x_{k}}\left\{P_{k}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{c}0 \\ -P\}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left\{\begin{array}{c}2 P \\ 0\end{array}\right\}=\left\{\begin{array}{c}0 \\ -P \\ 2 P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right\}$

Thick Plate Problem

Apply B.C's and Solve (free) Nodal Displacement

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
{\left[K_{P P}\right]} & \vdots & {\left[K_{P F}\right]} \\
\cdots & \cdots & \cdots \\
{\left[K_{F P}\right]} & \vdots & {\left[K_{F F}\right]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\delta_{P}\right\} \\
\cdots \\
\left\{\delta_{F}\right\}
\end{array}\right\}=\left\{\begin{array}{c}
\left\{F_{P}\right\} \\
\cdots \\
\left\{F_{F}\right\}
\end{array}\right\} \longrightarrow \begin{array}{c}
{\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\}} \\
又^{0}
\end{array} \Rightarrow\left\{K_{F P}\right\}\left\{\delta_{P}\right\}+\left[K_{F F}\right]\left\{\delta_{F}\right\}=\left\{F_{F}\right\}}
\end{array}\right]=\left[K_{F F}\right]^{-1}\left\{\left\{F_{F}\right\}-\left[K_{F P}\right]\left\{\delta_{P}\right\}\right\}
$$

The subscripts P and F refer respectively to the prescribed and free degrees of freedom

Thick Plate Problem

Calculation of the Element Resultants

SUPPORT REACTIONS
$\left[K_{P P}\right]\left\{\delta_{P}\right\}+\left[K_{P F}\right]\left\{\delta_{F}\right\}=\left\{F_{P}\right\} \quad$ If $\left\{\delta_{p}\right\}=0 \quad\left\{F_{P}\right\}=\left[K_{P F}\right]\left\{\delta_{F}\right\}$

Thanks for attention

Milad Vahidian, Ph.D. Student

