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Preface

The finite element method (FEM) is one of the numerical methods for solving
differential equations that describe many engineering problems. The FEM, origi-
nated in the area of structural mechanics, has been extended to other areas of solid
mechanics and later to other fields such as heat transfer, fluid dynamics, and
electromagnetism. In fact, FEM has been recognized as a powerful tool for solving
partial differential equations and integrodifferential equations, and in the near
future, it may become the numerical method of choice in many engineering and
applied science areas. One of the reasons for FEM’s popularity is that the method
results in computer programs versatile in nature that can solve many practical
problems with least amount of training.

The availability of undergraduate- and advanced graduate- level FEM courses in
engineering schools has increased in response to the growing popularity of the FEM
in industry. In the case of linear structural systems, the methods of modeling and
solution procedure are well established. Nonlinear systems, however, take different
modeling and solution procedures based on the characteristics of the problems.
Accordingly, the modeling and solution procedures are much more complicated
than that of linear systems, although there are advanced topics in linear systems
such as complex shell formulations.

Researchers who have studied and applied the linear FEM cannot apply the
linearized method to more complicated nonlinear problems such as elastoplastic or
contact problems. However, many textbooks in the nonlinear FEMs strongly
emphasize complicated theoretical parts or advanced topics. These advanced text-
books are mainly helpful to students seeking to develop additional nonlinear FEMs.
However, the advanced textbooks are oftentimes too difficult for students and
researchers who are learning the nonlinear FEM for the first time.

One of the biggest challenges to the instructor is finding a textbook appropriate
to the level of the students. The objective of this textbook is to simply introduce the
nonlinear finite element analysis procedure and to clearly explain the solution
procedure to the reader. In contrast to the traditional textbooks which treat a vast
amount of nonlinear theories comprehensively, this textbook only addresses the
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viii Preface

representative problems, detailed theories, solution procedures, and the computer
implementation of the nonlinear FEM. Especially by using the MATLAB program-
ming language to introduce the nonlinear solution procedure, those readers who are
not familiar with FORTRAN or C++ programming languages can easily understand
and add his/her own modules to the nonlinear analysis program.

The textbook is organized into five chapters. The objective of Chap. 1 is to
introduce basic concepts that will be used for developing nonlinear finite element
formulations in the following chapters. Depending on the level of the students or
prerequisites for the course, this chapter or a part of it can be skipped. Basic
concepts in this chapter include vector and tensor calculus in Sect. 1.2, definition
of stress and strain in Sect. 1.3, mechanics of continuous bodies in Sect. 1.4, and
linear finite element formulation in Sect. 1.5. A MATLAB code for three-
dimensional finite element analysis with solid elements will reinforce mathematical
understanding.

Chapter 2 introduces nonlinear systems of solid mechanics. In Sect. 2.1, funda-
mental characteristics of nonlinear problems are explained in contrast to linear
problems, followed by four types of nonlinearities in solid mechanics: material,
geometry, boundary, and force nonlinearities. Section 2.2 presents different methods
of solving a nonlinear system of equations. Discussions on convergence aspects,
computational costs, load increment, and force-controlled vs. displacement-controlled
methods are provided. In Sect. 2.3, step-by-step procedures in solving nonlinear finite
element analysis are presented. Section 2.4 introduces NLFEA, a MATLAB code for
solving nonlinear finite element equations. NLFEA can handle different material
models, such as elastic, hyperelastic, and elastoplastic materials, as well as large
deformation. Section 2.5 summarizes how commercial finite element analysis pro-
grams control nonlinear solution procedures. This section covers Abaqus, ANSYS,
and NEi Nastran programs.

Chapter 3 presents theoretical and numerical formulations of nonlinear elastic
materials. Since nonlinear elastic material normally experiences a large deforma-
tion, Sect. 3.2 discusses stress and strain measures under large deformation.
Section 3.3 shows two different formulations in representing large deformation
problems: total Lagrangian and updated Lagrangian. In particular, it is shown that
these two formulations are mathematically identical but different in computer
implementation and interpreting material behaviors. Critical load analysis is intro-
duced in Sect. 3.4, followed by hyperelastic materials in Sect. 3.5. Different ways of
representing incompressibility of elastic materials are discussed. The continuum
form of the nonlinear variational equation is discretized in Sect. 3.6, followed by a
MATLAB code for a hyperelastic material model in Sect. 3.7. Section 3.8 summa-
rizes the usage of commercial finite element analysis programs to solve nonlinear
elastic problems, particularly for hyperelastic materials. In hyperelastic materials, it
is important to identify material parameters. Section 3.9 presents curve-fitting
methods to identify hyperelastic material parameters using test data.

Different from elastic materials, some materials, such as steels or aluminum
alloys, show permanent deformation when a force larger than a certain limit
(elastic limit) is applied and removed. This behavior of materials is called plasticity.
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When the total strain is small (infinitesimal deformation), it is possible to assume
that the total strain can be additively decomposed into elastic and plastic strains.
Sections 4.2 and 4.3 are based on infinitesimal elastoplasticity. In a large structure,
even if the strain is small, the structure may undergo a large rigid-body motion due
to accumulated deformation. In such a case, it is possible to modify infinitesimal
elastoplasticity to accommodate stress calculation with the effect of rigid-body
motion. Since the rate of Cauchy stress is not independent of rigid-body motion,
different types of rates, called objective stress rates, are used in the constitutive
relation, which is discussed in Sect. 4.4. When deformation is large, the assumption
of additive decomposition of elastic and plastic strains is no longer valid.
A hyperelasticity-based elastoplasticity is discussed in Sect. 4.5, in which the
deformation gradient is multiplicatively decomposed into elastic and plastic parts
and the stress—strain relation is given in the principal directions. This model can
represent both geometric and material nonlinearities during large elastoplastic
deformation. Section 4.6 is supplementary to Sect. 4.5, as it derives several expres-
sions used in Sect. 4.5. Section 4.7 summarizes the usage of commercial finite
element analysis programs to solve elastoplastic problems.

When two or more bodies collide, contact occurs between two surfaces of the
bodies so that they cannot overlap in space. Metal formation, vehicle crash,
projectile penetration, various seal designs, and bushing and gear systems are
only a few examples of contact phenomena. In Sect. 5.2, simple one-point contact
examples are presented in order to show the characteristics of contact phenomena
and possible solution strategies. In Sect. 5.3, a general formulation of contact is
presented based on the variational formulation. Section 5.4 focuses on finite
element discretization and numerical integration of the contact variational form.
Three-dimensional contact formulation is presented in Sect. 5.5. From the finite
element point of view, all formulations involve use of some form of a constraint
equation. Because of the highly nonlinear and discontinuous nature of contact
problems, great care and trial and error are necessary to obtain solutions to practical
problems. Section 5.6 presents modeling issues related to contact analysis, such as
selecting slave and master bodies, removing rigid-body motions, etc.

This textbook details how the nonlinear equations are solved using practical
computer programs and may be considered an essential course for those who intend
to develop more complicated nonlinear finite elements. Usage of commercial FEA
programs is summarized at the end of each chapter. It includes various examples in
the text using Abaqus, ANSYS, NEi Nastran, and MATLAB program. Depending
on availability and experience of the instructor, any program can be used as part of
homework assignments and projects. The textbook website will maintain up-to-date
examples with the most recent version of the commercial programs. Each chapter
contains a comprehensive set of homework problems, some of which require
commercial FEA programs.

Prospective readers or users of the text are graduate students in mechanical, civil,
aerospace, biomedical, and industrial engineering and engineering mechanics as well
as researchers and design engineers from the aforementioned fields.
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Chapter 1
Preliminary Concepts

1.1 Introduction

The finite element method (FEM) is one of the numerical methods for solving
differential equations that describe many engineering problems. The FEM originated
from the structural mechanics discipline and has since been extended to other areas
of solid mechanics as well as heat transfer, fluid dynamics, and electromagnetism.
In fact, FEM has been recognized as a powerful tool for solving partial differential
equations and integrodifferential equations, and in the near future, it may become the
numerical method of choice in many engineering and applied science areas. One of
the many reasons for the popularity of the FEM is that a minimal amount of training
is required to solve many practical problems with the aid of versatile computer
programs.

The availability of undergraduate- and advanced graduate-level FEM courses in
engineering schools has increased in response to the growing popularity of the FEM
in industry. In the case of linear structural systems, the methods of modeling and
solution procedure are well established. Nonlinear systems, however, take different
modeling and solution procedures based on the characteristics of the problems.
Accordingly, the modeling and solution procedures are much more complicated
than that of linear systems, although there are advanced topics in linear systems
such as complex shell formulations.

Researchers who have studied and applied the linear FEM cannot apply the
linearized method to more complicated nonlinear problems such as elastoplastic or
contact problems. However, many textbooks in the nonlinear FEMs strongly
emphasize complicated theoretical parts or advanced topics. These advanced text-
books are mainly helpful to researchers seeking to develop additional nonlinear
FEMs. However, the advanced textbooks are oftentimes too difficult for students
and researchers who are learning the nonlinear FEM for the first time.

The objective of this textbook is to simply introduce the nonlinear finite element
analysis procedure and to clearly explain the solution procedure to the reader.

© Springer Science+Business Media New York 2015 1
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2 1 Preliminary Concepts

In contrast to the traditional textbooks which treat a vast amount of nonlinear
theories comprehensively, this textbook only addresses the representative problems,
detailed theories, solution procedures, and the computer implementation of the
nonlinear FEM. Especially by using the MATLAB programming language to
introduce the nonlinear solution procedure, those readers who are not familiar
with FORTRAN or C++ programming languages can easily understand and add
his/her own modules to the nonlinear analysis program. This textbook details how
the nonlinear equations are solved using practical computer programs and may be
considered an essential course for those who intend to develop more complicated
nonlinear finite elements.

The objective of this chapter is to introduce basic concepts that will be used for
developing nonlinear finite element formulations in the following chapters. Basic
concepts in this chapter include vector and tensor calculus in Sect. 1.2, definition of
stress and strain in Sect. 1.3, mechanics of continuous bodies in Sect. 1.4, and linear
finite element formulation in Sect. 1.5. Technical contents in this chapter are by no
means rigorous or complete. The readers are referred to advanced textbooks for
detailed explanations and rigorous derivations.

A relatively simple theory is introduced in Sect. 1.4 that can formulate the
structural equilibrium using the energy principle. Since all conservative systems
have potential energy, the energy principle may be applied to find the structural
equilibrium. Structural equilibrium, by the principle of minimum total potential
energy, is considered to be a stationary configuration in which the potential energy
of the structural system is minimized. Since the potential energy of many structural
problems is the positive definite quadratic function of a state variable, such as
displacement, the stationary condition yields a unique global minimum solution.
The stationary condition is further developed to a variational method for a conser-
vative system. An important result is then shown, namely, that if the solution for a
differential equation exists, then that solution is the minimizing solution of the total
potential energy. In addition, the structural problem may have a natural solution
that minimizes the total potential energy even if the structural differential problem
does not have a solution. The energy principles presented in Sect. 1.4 will be
restricted to small strains and displacements so that strain—displacement relation-
ships can be expressed in terms of linear equations; such displacements and
corresponding strains obviously have additive properties. A nonlinear elastic
stress—strain relationship will be discussed in Chap. 3 of this text.

The energy-based formulation of the potential problem is generalized to the
principle of virtual work, which can handle arbitrary constitutive relations.
The principle of virtual work is the equilibrium of the work done by both internal
and external forces with the small, arbitrary, virtual displacements that satisfy
kinematic constraints. For a conservative system, the same results are obtained as
with the principle of minimum total potential energy. The unified approach to
various structural problems is made possible by introducing energy-bilinear and
load-linear forms. As long as energy-bilinear and load-linear forms share the same
properties, then all structural problems in this text can be treated in the same manner,
even structural problems with different differential operators. The existence and
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uniqueness of a solution can be shown through rigorous mathematical proofs.
The concept of Sobolev space and the bounded property of an energy-bilinear
form are required in the proof. However, in this text, such rigorous mathematical
proofs are avoided and corresponding references are cited.

1.2 Vector and Tensor Calculus

Since vector and tensor calculus are extensively used in computational mechanics,
it is worth reviewing some fundamental concepts and recalling some important
results that will be used in this book. A brief summary of concepts and results
pertinent to the development of the subject is provided within Sect. 1.2 of the text
for the convenience of students. For a thorough understanding of the mathematical
concepts, readers are advised to refer to standard textbooks, e.g., Kreyszig [1] and
Strang [2].

1.2.1 Vector and Tensor

Cartesian vector: In general, a vector is defined as a collection of scalars.
A Cartesian vector is a Euclidean vector defined using Cartesian coordinates.
Each vector, in this text, is considered to be a column vector unless otherwise
specified. A Cartesian vector in two- or three-dimensional space is denoted by a
bold typeface:

u "
u:{ 1} or u=< u o, (L.1)
up

where u,, u,, and u3 are components of the vector u in the x-, y-, and z-coordinates,
respectively, as shown in Fig. 1.1. To save space, the above column vector
u can be written as u = {uy, Uy, Us }T, in which {e }T denotes the transpose of a vector.

Fig. 1.1 Three-
dimensional Cartesian
vector




4 1 Preliminary Concepts

The above three-dimensional Cartesian vector can also be denoted using a unit
vector in each coordinate direction. Let ;= {1, 0, 0}%, e;=1{0, 1, 0}T, and
e;=1{0,0,1 }T be the unit vectors in the x-, y-, and z-direction, respectively. Then,

u = uje; + urey + uzes.

In the above equation, ey, e,, and e5 are called basis vectors. Any vector in the three-
dimensional space V can be represented by a linear combination of the basis
vectors, e.g., W=we; +wye,+wszez, for all we V. For notational convenience,
the following summation notation will be used throughout the text:

u= ujej,

where j =1, 2, and 3 for three dimensions or j = 1 and 2 for two dimensions. In this
notation, the summation is specified over the range of the repeated index, j. Note
that an index can only be repeated once in a term; therefore, the term u;v;e; is an
improper instance of index notation. The repeated index is called a dummy index
because it disappears after summation; therefore, ue; = ue;.

Using the summation notation, the inner product of two Cartesian vectors can be
calculated by

u-v=(ue) - (ve))
= M,‘Vj(e,' . ej
= u,-vjé,-j
= U;v;.

(1.2)

In the above derivation, ¢;; is the Kronecker delta symbol, which is defined as

1=
5,—,-_{0 ity (1.3)

Using this property, it is straightforward to verify that v;6;; = v;; i.e., the Kronecker
delta symbol replaces the repeated index with the non-repeated one. Also note that
6;=2and §;;=3 for two and three dimensions, respectively, because summation is
specified by the repeated index j.

Cartesian components of a vector can be obtained by using the inner product
with the basis vectors, e.g.,

ej -V = ej . (v,-e,-) = Vjél'j = Vj.

Since this is equivalent to projecting the vector onto the axis of a coordinate, it is
also called a projection.
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The magnitude of a vector can be calculated by taking the square root of the
inner product of the vector itself as

IVl =¥ v. (1.4)

In general, the magnitude of a vector is called a norm.

Cartesian tensor: The component form of a vector in Eq. (1.1) has a single
index, i.e., u;. In general, it is possible to have multiple indices; for example, the
components of a matrix, a;;, have two indices. The notion of a Cartesian tensor is a
generalization of a vector; i.e., a vector is called a rank-1 tensor. Then, it is possible
to define a rank-2 tensor, a rank-3 tensor, etc. In addition, a scalar can be considered
as a rank-0 tensor. The rank of a tensor can be determined by the number of indices;
for example, the components of a rank-4 tensor have four indices, as Cyj;. A basic
rank-2 tensor is the identity tensor, which is defined by 1= [§;;]. In matrix notation,
the rank-2 identity tensor corresponds to a 3 x 3 identity matrix. In particular,
a rank-2 Cartesian tensor is often called a matrix. For example, a stress is a
rank-2 tensor, whose components are defined as

011 012 013
[oj] = |62 om0 . (1.5)
031 032 033

A Cartesian tensor can be represented by a component array in terms of a basis
(e;). For example, a rank-2 Cartesian tensor can be written as

T = T,~~e,~ X e, 1.6
7 7

where the symbol, ®, is called the dyadic product, which increases the rank by
1. A higher rank tensor can be defined by using multiple dyadic products. Since e; is
a rank-1 tensor, ¢;®e; and e;®e;®e,®e; yield a rank-2 and rank-4 tensor,
respectively. The transpose of T can be defined as T' = Tje; ®e;. Note that the
summation rule should be applied for the repeated indices. In this definition,
the stress tensor can be defined as 6 =o,¢; ® e, and the matrix in Eq. (1.5) is the
Cartesian components of the stress tensor. The following identities are a direct
consequence of the definition of the dyadic product:

uRvvRu,

(au) @ V=a(u®v),

U (V4+w)=ulv+ulw, (1.7)
(u®vVv) -w=(v-wu,

u-(vaw)=(u-v)w.

Note that the inner product is applied to the closest two vectors. The inner product
between rank-m and rank-n tensors yields a rank-(m +n — 2) tensor; therefore, the



6 1 Preliminary Concepts

Table 1.1 Comparison of different notations

Direct tensor notation | Tensor component notation | Matrix notation
a=a-b a=ab; a=a'b
A=a®b Ay=ab; A=ab"
b=A-a bi=A;a; b=Aa
b=a-A bi=aA; b'=a"A

inner product reduces the rank by 2. Table 1.1 compares three different notations
used in this text. For convenience, the symbol “-” can often be omitted for the inner
product, i.e., A-B=AB.

Example 1.1 (Inner product of two tensors) Consider the inner product of two
rank-2 tensors: C = A - B. Using the dyadic representation method as in Eq. (1.6),
calculate the Cartesian components of C in terms of that of A and B.

Solution In the dyadic representation, the two tensors can be written as
A=A;e;®e; and B=Bye,® e, Therefore, the inner product between them can
be expressed as

C=A B
= (Aje; ® €)) - (Buer ® €)
= A;Buoje; ® ¢
= AiBue @ e.

Therefore, the components of C become C;; =A;By;. Note that the same compo-
nents of C can be obtained by matrix multiplication between the components of
A and B. [ ]

Symmetric and skew tensors: Rank-2 symmetric and skew tensors can be defined
as

— Symmetric tensor:
S=s". (1.8)
— Skew tensor:
wW=-W (1.9)

It is noted that every rank-2 tensor can be uniquely decomposed into a symmetric
and a skew tensor, as

T=S+W, (1.10)
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where
S:l(TJrTT) (1.11)
2 ’ '
1
W=_(T-T"). 112
ST —17) (1.12)
Note that the skew tensor W has zero diagonal components and W;;=—W;.

The symmetric part of a tensor is often written as S =sym(T), while the skew
part is written as W = skew(T).

Example 1.2 (Symmetric and skew part of displacement gradient) A displacement
gradient, Vu, is a rank-2 tensor. Calculate the symmetric and skew part of the
displacement gradient.

Solution The components of the displacement gradient can be defined as

aul aul am

u 175) up us

Vo= |—|=|——= = =
" |:aX:| axl aX2 5x3
Ous Ous Ous

ax1 8x2 6)@

Then, the symmetric and skew parts can be obtained as

% Ouy L) Ouy 1/0u; L) Ous
ox 2\0x,  0x) 2\0x;  Ox
B ou; Oup Ouy Ouy Ous
Sym(VU) o <ax2 + 8x1> ai)fz (8)@ + 8x2> ’
L(0m | Ous) 1(0w  Ous us
2 a)C3 ax1 2 8x3 aXQ 8x3
0 1(0m 0w 10w Ous
8x2 axl 8)@ axl
o au2 aul auz 8143
% 0w\ 10w 0w
axl 8x3 8)(2 aX3

Note that sym(Vu) is called the strain tensor, while skew(Vu) is called the spin

tensor.
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Contraction and trace: The contraction operator is defined between two tensors
and can be considered as a double inner product. For two rank-2 tensors, the
contraction is defined as

a:b=a;b; =anby + anbiy + -+ anby + aszbs;. (1.13)

Note that the result becomes a scalar. In general, the contraction operator reduces
four ranks from the sum of ranks of two tensors. Similar to the magnitude of a
vector, the magnitude (or, norm) of a rank-2 tensor can be defined using the
contraction operator as

Jall = va+a. (1.14)

In solid mechanics, the constitutive equation of an elastic material is often given
as a linear relationship between stress and strain. Since stress and strain are rank-2
tensors, the elastic modulus must be defined in terms of rank-4 tensors as

6 =D:e, o0j = Djuen, (1.15)

where D, is a rank-4 tensor that represents the elastic modulus.
The trace of a tensor is part of the contraction operator in which a pair of indices
is under the inner product. In the case of a rank-2 tensor, the trace can be defined as

r(A) = A = A+ Ap + Az, (1.16)
where tr(-) stands for the trace operator. In the tensor notation, the trace can be
written as r(A)=A:1=1:A.

Example 1.3 (Contraction of a symmetric tensor) Let A be a rank-2 symmetric
tensor. Show that A:W =0 and A: T=A:S, where T is a rank-2 nonsymmetric
tensor, whose symmetric and skew parts are, respectively, S and W.

Solution The contraction between a symmetric and a skew tensor becomes
A: W= A,’jW,’j = —A,'joi = —Aj,'Wj,' =—A:W.

In the second equality, the definition of a skew tensor is used, while the definition of
a symmetric tensor is used in the third equality. From the above relation, it is
obvious that A : W =0.

For a nonsymmetric tensor, T, it can be decomposed into a symmetric and a
skew part:

A:T=A:(S+W)=A:S.

Note that A: W =0 is used. m
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Fig. 1.2 Representation of
a vector in two coordinate
systems

Orthogonal tensor: An important rank-2 tensor is an orthogonal tensor, which
represents the rotation of a vector or coordinate system. Consider a vector, u, in
Fig. 1.2 with two different coordinate systems. The vector can be represented by the
bases of each of the two coordinate systems as

— we; = u'e’
u=ue; =ue;.

Then, using the two bases, an orthogonal tensor, § = [ﬂ,-j], can be defined as

This orthogonal tensor represents the rotational relation between the two coordinate
systems. It is straightforward to show that (no sum on j)

Biej = (ef ©e) e =e.

In a similar way, ;= §;¢;. Then, using an easy calculation, it is possible to show
that

u* = fu,

1.1
u=pu*. (1.18)
In the above equation, the inner product symbol “” is omitted, which will be
commonly excluded from this book. Using the above relation, it is easy to show
that p'p = PP = 1, which is the property of an orthogonal tensor. The coordinate
transformation of a rank-2 tensor can be written as

T = TB', T} = uTuby- (1.19)

Note that the above equation is not a rotation of a tensor but a rotation of the
coordinate system.
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Permutation: The permutation symbol has three indices, but it is not a tensor.
It is used to

1 if ijk are an even permutation : 123, 231, 312
ejr = —1 if ijk are an odd permutation : 132, 213, 321
0 otherwise

Note that the permutation is zero when any of two indices have the same value.
The permutation symbol will be used for several important derivations. The following
identity can be useful in deriving the determinant of a tensor:

ejikeimk = 0ii0jm — Oim0ji- (1.20)

Another usage of the permutation symbol is for a vector product of two vectors,
U X V= e;ejjrlljVi. (1.21)
Note that the output of a vector product is another vector that is orthogonal to the

two vectors.

Dual vector of a skew tensor: A rank-2 skew tensor has only three independent
components. Therefore, it is possible that a skew tensor can be defined using a
vector with the permutation symbol as W;;= — e;;w;, where the components of
W and w are given as

0 W12 W13 *W23
W= —Wis 0 Wos = W= Wis
—W13 —W23 0 _W12

In addition, for any skew tensor, W, and vector, u, the following property can be
shown:

u-Wu=u-Wu=—u-Wu=0.

In the first equality, since (u-Wu) is a scalar, it is equivalent to its transpose
(u-WTu). The above relation reveals that Wu and u are orthogonal. Then, we
can obtain the following relation:

Wl'jl/tj = —e,-jkwkuj = €,'/<jwkuj.

Note that the last term is simply the definition of the vector product in Eq. (1.21).
Therefore, in tensor notation,

Wu=wxu. (1.22)



1.2 Vector and Tensor Calculus 11

In the above equation, w is called a dual vector of the skew tensor W. For a given
skew tensor, the dual vector can be obtained using w; = —le;3W ;. In practice, the
usage of the vector product is inconvenient because of the permutation symbol.
However, the above relation makes it possible to convert the vector product into the
inner product between a skew tensor and a vector.

1.2.2 Vector and Tensor Calculus

Gradient: Many governing equations of structural mechanics include the deriva-
tive of a field variable with respect to spatial coordinates. Here, a “field” means a
function in the space, such as a temperature or displacement of a structure. The field
variable can be a scalar, vector, or tensor. Therefore, it is a good idea to clearly
define the gradient operator using the tensor notation. The gradient operator is
defined as a vector (or, rank-1 tensor), as

0 0
V=—=—e: . 1.23
ox ' om (123)
For example, the gradient of a scalar field, ¢(x), can be written as
0
V¢ = gradgp = ei—¢, (1.24)
8x,~
which is a vector. The gradient of a vector field, u(x), can be defined as
0 Ou;
Vu= (ei a_xl) X (ujej) = a—xjei [029] €. (125)

Note that the gradient of a vector is a rank-2 tensor. For the purpose of notational
convenience, the subscribed comma will often be used for the gradient, i.e.,
v; j= 0v;/0x;. The following divergence is defined so that the gradient of a vector
produces a scalar quantity:

- . 8 N _aui_alﬂ au2 au3

The Laplace operator can be defined using the inner product of two gradient
operators as

2 2 2
vz:v.v:(@)( a) 0 2 a+a+a (1.27)

e — 6— | =——=—"—+——+——.
" Ox; ' Ox; Ox; Ox; Oxt 0x3 0x3
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Example 1.4 (Divergence of a stress tensor) Let ¢ be the stress tensor given in
Eq. (1.5). The force equilibrium of an infinitesimal component can be written as
V -6 =0. Write the force equilibrium equation in component form.

Solution By replacing the vector u in Eq. (1.26) with the stress tensor, the diver-
gence of the stress tensor becomes

_ oy

(V-6),= A

By expanding the above equation for all components, and by putting the divergence
equal to zero, we can obtain the following differential equation for equilibrium:

8611 6021 8631 o

axl * aX2 + 5x3 =0
8012 8022 8032 -0
T
013 023 033
8x1 + ax2 + 6x3 =0

It will be shown later that the stress tensor is symmetric. Therefore,
O12= 031,023 =03 and c13=03;. ]

1.2.3 Integral Theorems

Many equations in solid mechanics are expressed in terms of differential equations.
For example, the force equilibrium of an infinitesimal component can be expressed
in terms of partial differential equations. Since these differential equations are
satisfied at every point in the domain of a structure, they are integrated over the
entire domain; the result is an integral equation. In this section, several theorems
that are useful in deriving the integral equations of solid mechanics are introduced.
The proof of each theorem is out of the scope of this text. Interested readers are
referred to the text by Hildebrand [3].

Divergence theorem: The divergence theorem is a special case of Green’s theorem
for a tensor field. The divergence theorem relates a domain integral to a boundary
integral around the domain. Let Q be a domain bounded by I'. If a tensor, A, has
continuous partial derivatives in the domain, the integral of the divergence of
A over the domain can be converted into the integral over the boundary, as

//Qv AdQ = /rn-Adl", (1.28)
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where n is the outward unit normal vector of the boundary, I'. A variant of the
divergence theorem is the gradient theorem in which the inner product is replaced
with the dyadic product, as

/ VAdQ:/n@AdF.
Q r

Reynolds transport theorem: The Reynolds transport theorem is related to the
time derivative of an integral equation over a domain in which the integrand, as well
as the domain, varies as a function of time. Consider integrating f = f(x, ) over the
time-dependent domain, €(¢), that is bounded by I'(¢). Then, the time derivative of
the integral of f(x, #) over the domain, Q(7), can be expressed as

// fdQ = // dQ+/n«v)de, (1.29)

where n(x, ) is the outward unit normal vector to the boundary and v(x, f) is
the velocity of the boundary. The first term on the right-hand side (RHS) is
called the partial derivative, and the second term is called the convective term.
Note that the integral on the left-hand side (LHS) is solely a function of time, so that
the total derivative is used.

Integration-by-parts: Integration-by-parts is a theorem that relates the integral of a
product of functions to the integral of their derivative and antiderivative. In the
one-dimensional case, if #(x) and v(x) are two continuously differentiable functions
in the domain (a, b), then the integration-by-parts can be stated as

b b
/ u(x)v (x) dx = [u(x)v(x))? —/ u (x)v(x) dx.

The above relation can be extended to the two- or three-dimensional case. Let €2 be
the domain of integral with the boundary, I'. Then, the integration-by-parts can be

written as
// VdQ /uvnidr—// uﬁdQ
axl r Q axi

where n; is the components of the unit normal vector directed outward to the
boundary, I'. Replacing the scalar function, v, in the above formula with a vector,
v;, and summing over i give the following vector formula:

/ QVu-VdQ:/Fu(v-n)dr—//QuV-VdQ. (1.30)
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By replacing u with the constant 1 in the above formula, the divergence theorem in
Eq. (1.28) can be obtained. For the purpose of continuum mechanics, the following
Green’s identity can be obtained by replacing v with Vv in the above formula:

// Vu-Vde:/uV\wndF—// uVidQ. (1.31)
Q r Q

One of the important reasons for using integration-by-parts is to relax the
requirement of differentiability. In the above formula, for example, the RHS
requires that v(x) must be a twice differentiable function, while the LHS is well
defined with the first-order partial derivative of v(x). The additional requirement of
differentiability has been shifted to u(x).

Example 1.5 (Divergence theorem) Integrate [ gF-ndS, where F is a vector field
given as F=2xe, +y’e,+z%; and S is the area of the surface of unit sphere
()c2 + y2 +2= 1), whose unit normal vector is n.

Solution Using the divergence theorem,

/F~ndS:// V -FdQ
s Q

:2//9(1+y+z)d9

ff ] e
o

_sr
¥

In the above equation, the integral of odd functions is zero because of symmetry in
the domain. |

1.3 Stress and Strain

In the elementary mechanics of materials or physics courses, stress is defined as
force per unit area. While such a notion is useful and sufficient to analyze
one-dimensional structures under a uniaxial state of stress, a complete understand-
ing of the state of stress in a three-dimensional body requires a thorough under-
standing of the concept of stress at a point. Similarly, strain is defined as the change
in length per original length of a one-dimensional body. However, the concept
of strain at a point in a three-dimensional body is quite interesting and is required
for a complete understanding of the deformation a solid undergoes. While stresses
and strains are concepts developed by engineers for better understanding of the
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physics of deformation of a solid, the relation between stresses and strains is
phenomenological in the sense that it is something observed and described as a
simplified theory. Robert Hooke [4] was the first to establish the linear relation
between stresses and strains in an elastic body. Although he explained his theory for
one-dimensional objects, his theory later became the generalized Hooke’s law that
relates the stresses and strains in three-dimensional elastic bodies.

1.3.1 Stress

Surface traction: Consider a solid subjected to external forces and in static
equilibrium, as shown in Fig. 1.3. We are interested in the state of stress at a
point, P, in the interior of the solid. We cut the body of the solid into two halves by
passing an imaginary plane through P. The unit vector normal to the plane is
denoted by n [see Fig. 1.3b]. The left side of the body is in equilibrium because
of the external forces, f}, f,, and f3, and also the internal forces acting on the cut
surface. Surface traction is defined as the internal force per unit area or the force
intensity acting on the cut plane. In order to measure the intensity or traction,
specifically at P, we consider the force, AF, acting over a small area, AA, that

contains point, P. Then the surface traction, t™, acting at the point, P, is defined as
AF
m _ 1im

R Ve (1.32)

In Eq. (1.32), the right superscript (n), is used to denote the fact that this surface
traction is defined on a plane whose normal is n. It should be noted that at the same
point P, the traction vector, t, would be different on a different plane passing
through P. It is clear from Eq. (1.32) that the units of the traction vector are force

Fig. 1.3 Surface traction acting on a plane at a point
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Fig. 1.4 Equilibrium of a F +—( G—F
uniaxial bar under axial
force H
F— 9 ™
n
S
per unit area, the same as that of pressure. Since t™ is a vector, one can resolve it

into components and write it as
t<n> = e + ne + 1ze3. (133)

Example 1.6 (Stress in an inclined surface) Consider a uniaxial bar with the cross-
sectional area A =2 x 10~* m2, as shown in Fig. 1.4. If an axial force, F = 100 N, is
applied to the bar, determine the surface traction on the plane whose normal is at an
angle, 0, from the axial direction.

Solution To simplify the analysis, let us assume that the traction on the plane is
uniform; i.e., the stresses are equally distributed over the cross section of the bar.
In fact, this is the fundamental assumption in the analysis of bars. The force on the
inclined plane, S, can be obtained by integrating the constant surface traction, ™,
over the plane, S. In this simple example, direction of the surface traction, t("), must
be opposite to that of the force, F. Since the member is in static equilibrium, the
integral of the surface traction must be equal to the magnitude of the force, F:

A
F:// z<">dszz// ds = r——,
s s cos @
F N
C.t=—cos@ =500cosd —2:5000059 Pa.
A m

Note that the unit of traction is Pascal (Pa or N/mz). It is clear that the surface
traction depends on the direction of the normal to the plane. [ ]

Stress tensor and Cartesian components: Since the surface traction at a point
varies depending on the direction of the normal to the plane, one can obtain an
infinite number of traction vectors, t(“), and the corresponding normal and shear
stresses for a given state of stress at a point. Fortunately, the state of stress at a point
can be completely characterized by defining traction vectors on three mutually
perpendicular planes passing through the point. From the knowledge of t™ acting
on three orthogonal planes, one can determine t*™ on any arbitrary plane passing
through the same point. For convenience, these planes are taken as the three planes
that are normal to the x-, y-, and z-axes.
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Let us denote the traction vector on the yz-plane, which is normal to the x-axis, as
t“). The surface traction can be represented using its components that are parallel to
the coordinate directions as

t© = ey + ey +1es. (1.34)

It may be noted that tgx) in Eq. (1.34) is the normal stress and t(zx) and tgx) are the shear

stresses in the y- and z-directions, respectively. In contemporary solid mechanics,
the stress components in Eq. (1.34) are denoted by o1, 01, and o3, where o is the
normal stress and ¢, and o3 are components of shear stress. In this notation, the first
subscript denotes the plane on which the stress component acts—in this case the
plane normal to the x-axis or simply the x-plane—and the second subscript denotes
the direction of the stress component. We can repeat this exercise by passing two
more planes, normal to y- and z-axes, respectively, through the point, P. Thus, the
surface tractions acting on the plane normal to y-plane will be 651,02, and o5;.
The stresses acting on the z-plane can be written as 631,03, and o33. In solid
mechanics, the symbols, ¢ and 7, are often used for normal and shear stresses,
respectively. However, in this text, the same symbol, ¢, will be used for both normal
and shear stresses. The stresses can be distinguished using their indices.

The stress components acting on the three planes can be depicted using a cube, as
shown in Fig. 1.5. It must be noted that this cube is not a physical cube and, hence,
has no dimensions. The six faces of the cube represent the three pairs of planes
which are normal to the coordinate axes. The top face, for example, is the +z-plane
and then the bottom face is the —z-plane or whose normal is in the —z-direction.
Note that the three visible faces of the cube in Fig. 1.5 represent the three positive
planes, i.e., planes whose normal are the positive x-, y-, and z-axes. On these faces,
all tractions are shown in the positive direction. For example, the stress component,
073, 1S the traction on the y-plane acting in the positive z-direction. By using these
Cartesian stress components, the rank-2 stress tensor can be defined as

6 =o€ X e, (135)

where ¢;; represents the Cartesian components of a stress tensor, which is defined in
the matrix form in Eq. (1.5). The stress tensor in Eq. (1.35) completely characterizes
the state of stress at a given point.

The sign convention of stress is different from that of regular force vectors. Stress
components, in addition to disclosing the direction of the force, contain information
of the surface on which they are defined. A stress component is positive when both
the surface normal and the stress component are either in the positive or in the
negative coordinate direction. For example, if the surface normal is in the positive
direction and the stress component is in the negative direction, then the stress
component has a negative sign. Positive and negative normal stresses are called
tensile and compressive stresses, respectively. The shear stress is positive when it is
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Fig. 1.5 Stress components 033

in Cartesian coordinate Ax

system

Az
z
O11 o022
Ay
X Yy

acting in the positive coordinate direction upon a positive face of the stress cube.
The positive directions of all the stress components are shown in Fig. 1.5.

Symmetry of stress tensor: The nine components of the stress tensor can be
reduced to six components using the symmetry property of the stress tensor.
Consider the infinitesimal cube in Fig. 1.5, which is in equilibrium. In contrast to
the previous section, let us assume that the cube has a very small finite dimension.
The direction of the shear stress, 15, on the positive x-plane is in the positive
y-direction, while on the positive y-plane, the direction of the shear stress, 051, is in
the positive x-direction. As the body is in static equilibrium, the sum of the
moments about the z-axis must be equal to zero; this implies that the shear stresses
012 and o,; must be equal to each other. The same is true for the moment
equilibrium on x- and y-axes:

012 = 021, 023 =03, 013 = 03].

Therefore, the components of the stress tensor in Eq. (1.5) are revised using
symmetry as

011 012 013
[Gij] = 012 022 023 |. (136)
013 023 033

Thus, we need only six components to fully represent the stress at a point. In some
instances, stress at a point is written as a 6 x 1 pseudo vector as shown below:

o11
022

{o} = ¢ 07 0. (1.37)
12

023
013
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Fig. 1.6 Surface traction %
and stress components
acting on faces of an
infinitesimal tetrahedron, at
a given point P

Cauchy’s Lemma: Knowledge of the six stress components is necessary in order to
determine the components of the surface traction, t™, acting on an arbitrary plane
with a normal vector, n. Let n be the unit normal vector of the plane on which we
want to determine the surface traction. For convenience, we choose P as the origin
of the coordinate system, as shown in Fig. 1.6, and consider a plane parallel to the
intended plane which passes at an infinitesimally small distance, /, away from P.
Note that the normal to the face, ABC, is also n. We will calculate the tractions on
the plane formed by ABC and then take the limit, as 4 approaches zero. We will
consider the equilibrium of the tetrahedron, PABC. If A is the area of the triangle,
ABC, then the areas of triangles PAB, PBC, and PAC are given by An,, An,, and
An,, respectively. Let t™ = Ve, + Ve, + 1"
the face, ABC.

From the definition of surface traction in Eq. (1.32), the force on the surface can
be calculated by multiplying the stresses with the surface area. Since the tetrahe-
dron should be in equilibrium, the sum of the forces acting on its surfaces should be

equal to zero. The force balance in the x-direction yields

e3 be the surface traction acting on

ZFI = 1"VA — 611An — 6231An; — 631An3 = 0.

In the above equation, we have assumed that the stresses acting on a surface are
uniform; this will not be true if the size of the tetrahedron is not small. However, the
tetrahedron is infinitesimally small, which is the case as h approaches zero.
By dividing the above equation by A, we obtain the following relation:

(n)
t,’ =onn + ox1ny + 03113

Similarly, the force balance in the y- and z-directions yields

té“)
(n

2

= o + onny + onng,
)
= 013N + 023N) -+ 03313.
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From the above equations, it is clear that the surface traction acting on the surface
whose normal is n can be determined if the six stress components are available.
By using tensor notation, we can write the above equations as

t" =n.o. (1.38)

Due to the symmetry of the stress tensor, the above relation is equivalent to
t™ =¢-n. The surface traction, t(“), remains unchanged for all surfaces which
pass through the point, P, and have the same normal vector, n, at P; i.e., surfaces
which have a common tangent at P will have the same surface traction. This means
that the stress vector is only a function of the normal vector, n, and is not influenced
by the curvature of the internal surfaces. From this observation, Cauchy’s Lemma
[S], also called the Cauchy reciprocal theorem, states that the surface tractions
acting on opposite sides of the same surface are equal in magnitude and opposite in
direction, i.e.,

t) = ¢, (1.39)

which can easily be shown using Eq. (1.38).

Normal stress and shear stress: The surface traction, t™, defined by Eq. (1.38)
does not generally act in the direction of n; i.e., t™ and n are not necessarily parallel
to each other. Thus, we can decompose the surface traction into two components,
one parallel to n and the other perpendicular to n, which will lie on the plane. The
component normal to the plane or parallel to n is called the normal stress and is
denoted by o,,. The other component parallel to the plane or perpendicular to n is
called the shear stress and is denoted by ,,.

The normal stress can be obtained from the inner product of t™ and n (see
Fig. 1.7) as

6,=t".n=n-c-n (1.40)

and shear stress can be calculated from the relation

tn =/ [tV - o2. (1.41)
t
4 (7)1
n
é P

Fig. 1.7 Normal and shear
stresses at a point P
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Example 1.7 (Normal and shear stresses on a plate) The state of stress at a
particular point in the xyz coordinate system is given by the following stress
components:

37 -7
c=(7 4 0
-7 0 2

Determine the normal and shear stresses on a surface passing through the point and
parallel to the plane given by the equation 4x — 4y +2z=2.

Solution To determine the surface traction, t™, it is necessary to determine the unit
vector normal to the plane. From solid geometry, the normal to the plane is found to
be in the direction of d = {4, —4, 2} with a magnitude of ||d|| = 6. Thus, the unit
normal vector becomes

The surface traction can be obtained as

3 7 =7 2 -5
t<“>=<;-n=3 7 4 0|4 -2y={2
-7 0 2 1 4

By using Egs. (1.40) and (1.41), the normal and shear stresses can be obtained as

2 2 1
—t) .= _ Z_ Z_ I _
o, =t n 5><3 2><3 4><3 6,

[t = 5> + 22 4+ 42 = 45,

2=/t - & = 3.
|

Mean stress and stress deviator: The stress in Eq. (1.36) can be decomposed into
hydrostatic pressure and deviatoric stress. The former is related to the change in
volume, while the latter is related to the change in shape. The hydrostatic pressure,
often called the mean stress, can be defined using the trace of the stress tensor as

1 1
p = op :gl‘}"(ﬁ) :§(611 +622+633). (142)

Note that the hydrostatic pressure is invariant on coordinate transformation in
Eq. (1.19), that is, for ¢ in xyz coordinates and ¢’ for x'y'z’ coordinates, tr(6)=
tr(¢’). Therefore, the mean stress has the property of frame indifference.
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On the other hand, the stress deviator is defined by subtracting the mean stress
from the original stress tensor as

011 — Om 012 013
S=06— (le = o112 02 — Oy 023 . (143)
013 023 033 — Op

Note that #r(s) =0. Therefore, the stress deviator is called trace-free. The mean
stress and stress deviator are important in representing the plastic behavior of a
material beyond the yield point.

For a formal definition, the stress deviator can be defined by contracting the
original stress with the unit deviatoric tensor of rank-4:

S = Idev 1 0,
where 1., is defined as

L = 13101, (1.44)

where I is a unit symmetric tensor of rank-4, which is defined as
L= (61 + 610;1)/2. Note that since I, is trace-free, it is easy to show that
Igev : 1=0. In addition, the unit deviatoric tensor preserves a deviatoric tensor,
that is, L4, : s =s for a deviatoric rank-2 tensor s.

Principal stresses: The normal and shear stresses acting on a plane, which passes
through a given point in a solid, change as the orientation of the plane is changed.
Then a natural question is: Is there a plane on which the normal stress becomes the
maximum? Similarly, we would also like to find the plane on which the shear stress
attains a maximum. These questions have significance in predicting the failure of
the material at a point. In the following, we will provide some answers to the above
questions, without furnishing the proofs. The interested reader is referred to books
on continuum mechanics, e.g., Malvern [6] or Boresi [7] for a more detailed
treatment of the subject.

It can be shown that, at every point in a solid, there are at least three mutually
perpendicular planes on which the normal stress attains an extremum (maximum or
minimum) value. On all of these planes, the shear stresses vanish. Thus, the traction
vector, t("), will be parallel to the normal vector, n, on these planes, i.e., W= o,n.
Of these three planes, one plane corresponds to the global maximum value of the
normal stress and another corresponds to the global minimum. The third plane will
carry the intermediate normal stress. These special normal stresses are called the
principal stresses at that point, the planes on which they act are called the principal
stress planes and the corresponding normal vectors are called the principal stress
directions. The principal stresses are denoted by o7, 6,, and o3, such that
01> 0,2 03.
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Based on the above observations, the principal stresses can be calculated, as
follows. When the normal direction to a plane is the principal direction, the surface
normal and the surface traction are in the same direction, i.e., (t(“) [l m). Thus, the
surface traction on a plane can be represented by the product of the normal stress,
0, and the normal vector, n, as

t" = 5,n. (1.45)
By combining Eq. (1.45) with Eq. (1.38) for the surface traction, we obtain
6N =oc,N. (1.46)

Equation (1.46) represents the eigenvalue problem, where o, is the eigenvalue and
n is the corresponding eigenvector. Equation (1.46) can be rearranged as

(6 —0,1) -n = 0. (1.47)

In the component form, the above equation can be written as

O11 — Oy o12 013 ny 0
o1 02 — 0y 03 np p =40 (1.48)
013 023 033 — Oy n3 0

Note that a solution, n = 0, is not only a trivial solution to the above equation, but
also not physically possible as IInll must be equal to unity. The above set of linear
simultaneous equations will have a nontrivial physically meaningful solution if and
only if the determinant of the coefficient matrix is zero, i.e.,

011 — Oy o012 013
012 022 — Oy 023 = 0 (149)
013 023 033 — Oy

By expanding this determinant, we obtain the following cubic equation in terms of
o

3 2
o, —Ilio,+106,—13=0, (1.50)
where
Iy = 011 + 02 + 033,
I, = o111 012 022 023 011 013
C12 022 023 033 013 033 (1.51)
_ 2 2 2
= 011022 + 022033 + 033011 — 0], — 053 — 073,

_ _ 2 2 2
I3 = |6]| = 611022033 + 2012023013 — 011633 — 022673 — 03307,-
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In the above equation, Iy, I5, and I3 are the three invariants of the stress, which can
be shown to be independent of the coordinate system. The three roots of the cubic
equation (1.50) correspond to the three principal stresses. We will denote them by
61, 65, and o3 in the order of 6; > 6, > o3.

Once the principal stresses have been computed, we can substitute them, one at
a time, into Eq. (1.48) to obtain n. We will get a principal direction that will
be denoted as n', n2, and n’ , which each corresponds to a principal value.
Note that n is a unit vector, and hence its components must satisfy the following

relation:
0] = (n])* + (n))* + (n))* =1,  i=1,2,3. (1.52)
It can be shown that the planes on which the principal stresses act are mutually
perpendicular. Let us consider any two principal directions n’ and 1/, with i # . If ;

and o; are the corresponding principal stresses, then they satisfy the following
equations:

(1.53)

By multiplying the first equation by 1 and the second equation by n’, we obtain

co-n=o1 -1,

n.-c- nl—a]n . (1.54)

Con51der1ng the symmetry of ¢ and the rule for inner product, one can show that
n.6-n'=n'-6-n. Then subtracting the first equation from the second in
Eq. (1.54), we obtain

(ai—aj)ni-nf:O. (lSS)
This implies that if the principal stresses are distinct, i.e., 6, # o}, then
n-n =0, (1.56)

which means that n’ and 1’ are orthogonal. The three planes, on which the principal
stresses act, are mutually perpendicular.
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There are three different possibilities for principal stresses and directions:

(a) o1, 02, and o3 are distinct = principal stress directions are three unique
mutually orthogonal unit vectors.

(b) ©,=0,7# 063= 1" is a unique principal stress direction, and any two orthog-
onal directions on the plane that is perpendicular to n® are the other
principal directions.

(¢) o01=0,=03=any three orthogonal directions are principal stress direc-
tions. This state of stress is called hydrostatic or isotropic state of stress.

Example 1.8 (Principal stresses and principal directions) For the Cartesian stress
components given below, determine the principal stresses and principal directions.

31 1
= (1 0 2
1 20

Solution Setting the determinant of the coefficient matrix to zero yields

3 —oy, 1 1
1 -0, 2 |=0
1 2 —0oy,

By expanding the determinant, we obtain the following characteristic equation:
(3- 0,1)(6121 —4) = (=0, —2)+ 2+ 04) = —(64 +2)(65 — 1)(c, —4) = 0.

Three roots of the above equation are the principal stresses. They are
o1 =4, oy =1, o3 = —2.

For the case when ¢, = 63 = —2, we may obtain the following simultaneous equa-
tions, by using the form of Eq. (1.48):

Sny+ny+n, =0,
ny +2ny +2n; =0,
ny +2n, +2n, = 0.

We note that the three equations are not independent; in fact, the second and third
equations are identical. From the first two equations, we can obtain the following

ratios between components:

ng:nyg:in,=0:—1:1
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By using Eq. (1.52), a unique solution of the following form can be obtained:

1 0
3 =
n®=—{ 1

V2|

The same process can be repeated for o, and o, to obtain the following two
principal directions:

n=_—"7 _1 @) ]

= , n\“Y =
Vel - V3| o

Note that all principal directions are mutually perpendicular. ]

1.3.2 Strain

When a solid is subjected to forces, it deforms. A measure of the deformation is
provided by strains. Imagine an infinitesimal line segment in an arbitrary direction
which passes through a point in a solid. As the solid deforms, the length of the line
segment changes. The strain, specifically the normal strain, in the original direction
of the line segment is defined as the change in length divided by the original length.
However, the strain at the same point will be different in different directions. In the
following, the concept of strain in a three-dimensional body is developed.

Figure 1.8 shows a body before and after deformation. Let the points, P, Q, and
R, in the undeformed body move to P, Q’, and R’, respectively, after deformation.
For the convenience of notation, the three coordinate directions are denoted by

X2

Fig. 1.8 Deformation of

line segments X3
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X1X2x3 coordinates instead of using the xyz coordinates. The displacement of P can
be represented by three displacement components, u;, u,, and u5 in the x;-, x,-, and
xs-directions. Thus, the coordinates of P’ are (x| + u;, X» + U, X3 + u3). The functions
u1(X1,%2,X3), Up(X1,X2,x3), and uz(x1,x,,x3) are components of a vector field that is
referred to as the deformation field or the displacement field. The displacements of
the point, Q, will be slightly different from that of P. They can be written as

Ou
MIQ =u; —|——1Ax1,

aX]
ou
ug =u +a—szxl, (1.57)
1
qu = u3 —|—a—z3Ax1.
1

Similarly, displacements of the point, R, are

0
uf = u +a—zlAXz,
Ouy
ull = uy + %sz, (1.58)
2
uf =u3 + a—JL?sz.
2

The coordinates of P, Q, and R before and after deformation are as follows:

P: (XI,X27X3),
0 : (x1 + Axy,x2,x3),
R/: (x1,x1 + Axp, x3),
P (x1 +ul xo +ub x3 + u3P) = (x1 + U, X2 + Uz, x3 + u3),
Ql : ()q + Axy + ulQ,xz + M2Q,X3 + u3Q)
ou ou
=x1+Ax; +uy +—1AX1,X2 + up +—2
axl axl
R : (1 + uf,xo + Axy 4 ul, x5 4 uf)

ou
Axy,x3 + uz + = AX1>,
axl

u Ouy
LAYy, X0 + Axy + 1y + %—

_<x1+ul+axz a

Ous
AX2,X3 +uz +=— ax sz)
X2

The length of the line segment P’Q’ can be calculated as

. , I\ 2 , /N 2 ’ N 2
Po :\/(xz; ) () (5 ) as)
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By substituting for the coordinates of P’ and Q’, we obtain

/A am 2 Buz 2 E)u; 2
PO = axyf(1489) + (32) + (3)
2 2 2\ /2
Ou Ou Ou Ou
:Ax1<l+27\,:+(a—x:) +(3) + (%) ) (1.60)
aul 1 aul 2 1 al/lz 2 1 8143 2
rAg(1+=—+=5— —| =— - =— .
x1< +ax1+2(ax1> +2<ax1> +2<ax1>

It may be noted that we have used a two-term binomial expansion in deriving an
approximate expression for the change in length. In this chapter, we will consider
only small deformations such that all deformation gradients are very small when

compared to unity, e.g., Ou;/0x; < 1, Ous/Ox; < 1. Then we can neglect the
higher-order terms in Eq. (1.60) to obtain

8u1

PO zA)q(l—l—a—XI). (1.61)

Now we invoke the definition of normal strain as the ratio of the change in length to
the original length in order to derive the expression for strain as

PO -PO Ou
€11 —T—a—xl (162)

Thus, the normal strain, €}y, at a point can be defined as the change in length per unit

length of an infinitesimally long line segment, originally parallel to the x;-axis.
Similarly, we can derive normal strains in the x,- and x3-directions as

8u2 5143
==, == 1.63
;= & s (1.63)
The shear strain, say yi,, is defined as the change in angle between a pair of
infinitesimal line segments that were originally parallel to the x;- and x;-axes. From
Fig. 1.8, the angle between PQ and P'Q’ can be derived as

o _ o
X3 —x Ouy
g, =2 1 _ 712 1.64
: Ax1 8x1 ( )

Similarly, the angle between PR and P'R’ is

K xR ou,
g, =11 " 1.65
2 Axy 0x ( )
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Using the aforementioned definition of shear strain,

ou; Oup
Yio=01+6 o + o, (1.66)

Similarly, we can derive shear strains in the x,x3- and x3x,-planes as

y _au2+8u3
BT 0x  Ox’

ou ou (1.67)
713—8—)61 8—x3

The shear strains, y1,, 723, and 3, are called engineering shear strains. From the
definition in Eq. (1.66), it is clear that y,, = y,;. We define tensorial shear strains as

_1(om  om
812_2 aXQ 5x1 ’
_l 8142 au3
823_5(5_)(3—’_5_)62)’ (1.68)

_ (0w om
813_2 5x1 8x3 ’

It may be noted that the tensorial shear strains are one-half of the corresponding
engineering shear strains. It can be shown that the normal strains and the tensorial
shear strains transform from one coordinate system to another by following the
tensor transformation rule in Eq. (1.19).

In the general three-dimensional case, the strain tensor can be defined using the
dyadic product, as

€ =¢je Qe (1.69>
where the components of the strain tensor are defined as

€11 €12 €13
[8] = | €12 &2 €23 |. (170)
€13 €23 €33

As is clear from the definition in Eq. (1.68), the strain tensor is symmetric. Similar
to the stress tensor, the symmetric strain tensor can be represented as a pseudo
vector

€11 €11
€2 €2
€33 £33
{e} 2eqp 712 (1.71)
2e73 Y23

2e13 Y13
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Fig. 1.9 Volume change of Z3
a unit cube

7

The six components of strain completely define the deformation at a point. Since
strain is a tensor, it has properties similar to the stress tensor. For example, the
normal strain in any arbitrary direction at that point and also the shear strain in any
arbitrary plane passing through the point can be calculated using the same process
as in the stress tensor. Similarly, the transformation of strain, principal strains, and
corresponding principal strain directions can be determined using the procedures
we described for stresses.

Decomposition of strain: The strain tensor can be decomposed into a volumetric
and a distortional part. The former changes the volume of an infinitesimal element,
while the latter changes the shape of the element. For volumetric strain, consider a
unit cube in Fig. 1.9, which undergoes three normal strains (&1, €35, and €33). Since
there is no shape change, all shear strains are zero, for now. Then, the deformed
volume

V-V
Ey ZV—OZ (1 +811)(1 +822)(1 +833) —1 ~ €11 + &€ + €33.
0

Since the magnitudes of strain components are small, the higher-order terms may be
ignored. Therefore, the volumetric strain can be defined as

ey = ¢e11 +en + €33 = e (1.72)

Or, in tensor notation, ey = 1 : €, with 1 being the rank-2 identity tensor. Note that
the volumetric strain is a scalar that is three times the value of the average normal
strain.

The deviatoric part of strain can be defined by subtracting the average normal
strain from the diagonal components of the original strain. The deviatoric strain
tensor can be defined as

1
e—=¢— gevl,
1 (1.73)

58\/5,*]'.

ejj = €;j —

For a formal definition, the deviatoric strain can be defined by contracting the
original strain with the unit deviatoric tensor of rank-4.
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€ :Idev B2

where I, is the unit deviatoric tensor of rank-4, defined in Eq. (1.44).

1.3.3 Stress—Strain Relationship

Finding a relationship between the loads acting on a structure and its deflection has
been of great interest to scientists since the seventeenth century [8]. Robert Hooke,
Jacob Bernoulli, and Leonard Euler are some of the pioneers who developed
various theories to explain the bending of beams and stretching of bars. Forces
applied to a solid create stresses within the body in order to satisfy equilibrium.
These stresses also cause deformation or strains. Accumulation of strains over the
volume of a body manifests as deflections or a gross deformation of the body.
Hence, it is clear that a fundamental knowledge of the relationship between stresses
and strains is necessary in order to understand the global behavior. Navier tried to
explain deformations considering the forces between neighboring particles in a
body, as they tend to separate and come closer. Later this approach was abandoned
in favor of Cauchy’s stresses and strains. Robert Hooke was the first one to propose
the linear uniaxial stress—strain relation, which states that the stress is proportional
to strain. Later, the general relation between the six components of strains and
stresses called the generalized Hooke’s law was developed. The generalized
Hooke’s law states that each component of stress is a linear combination of strains.
It should be mentioned that stress—strain relations are called phenomenological
models or theories as they are based on commonly observed behavior of materials
which may be verified through experimentation. Only recently, with the advance-
ment of computers and computational techniques, have we started to model the
behavior of materials based on the first principles or based on the fundamentals of
atomistic behavior. This new field of study is called computational materials, and it
involves techniques such as molecular dynamic simulations and multiscale model-
ing. Stress—strain relations are also called constitutive relations as they describe the
constitution of the material.

A cylindrical test specimen is loaded along its axis as shown in Fig. 1.10. This
type of loading ensures that the specimen is subjected to a uniaxial state of stress. If
the stress—strain relation of the uniaxial tension test in Fig. 1.10 is plotted, then a
typical ductile material may show a behavior as in Fig. 1.11. The explanation of the
terms in the figure is summarized in Table 1.2.

After the material yields, the shape of the structure permanently changes. Hence,
many engineering structures are designed such that the maximum stress is smaller
than the yield stress of the material. Under this range of the stress, the stress—strain

F e (>—F

Fig. 1.10 Uniaxial tension test
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Fig. 1.11 Stress—strain
diagram for a typical ductile
material in tension

Ultimate —— -~~~ ~"~"""""" 2
stress

Yield stress

| i
! :
Proportional E |
limit Young’s ! i
modulus ! i
1 »
le [ "¢
[Strain Necking |
hardening
Table 1.2 Explanations of uniaxial tension test
Terms Explanation
Proportional The greatest stress for which the stress is still proportional to the strain
limit
Elastic limit The greatest stress without resulting in any permanent strain on release of
stress
Young’s Slope of the linear portion of the stress—strain curve
modulus
Yield stress The stress required to produce 0.2 % plastic strain
Strain hardening | A region where more stress is required to deform the material
Ultimate stress The maximum stress the material can resist
Necking Cross section of the specimen reduces during deformation

relation can be linearly approximated. The main interest of this text is to study the
behavior of materials beyond the linear relation. However, in this and the following
sections, we will focus on the linear relationship between stress and strain.

Stress—strain relationship for isotropic material: The one-dimensional stress—
strain relation can be extended to the three-dimensional state of stress. The linear
elastic material means the relationship between the stress and strain is linear. Since
both stress and strain tensors are rank-2, the relationship between them requires a
rank-4 tensor. For a general linear elastic material, the stress—strain relationship can
be written as

c=D: g, 0= D,'j/dé’k[. (174)

The rank-4 tensor, D, is called the elasticity tensor. A general rank-4 tensor in three
dimensions has 81 components. Since the stress and strain tensors are symmetric,
it can be shown that D must be symmetricl; hence, the number of independent
coefficients or elastic constants for an anisotropic material is only 21.

! More specifically, D has major and minor symmetry.
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Many composite materials that are naturally occurring, such as wood or bone, and
man-made materials, such as fiber-reinforced composites, can be modeled as an
orthotropic material with nine independent elastic constants. Some composites
are transversely isotropic and require only five independent elastic constants.
For isotropic materials, the 21 constants in the elasticity tensor can be expressed in
terms of two independent constants called engineering elastic constants. Therefore,
the elasticity tensor for an isotropic material can be written as

D=1®1+2ul, (1.75)

where 1 and p are Lame’s constants. In fact, u is also called the shear modulus. The
Lame’s constants are related to the nominal engineering elastic constants: Young’s
modulus, E, and Poisson’s ratio, v, as

. A E_/,t(3/1+2,u)
C2(A+p)  Atu
h i (1.76)

+v)(1-20) "~ 20+,

Using index notation, the components of the rank-4 elasticity tensor can be
written as Dy = Ad;;0x; + (0101 + 6;101). As the stress and strain tensors are
decomposed into volumetric and deviatoric parts, the elasticity tensor can also
be decomposed as

D= (,1+§ﬂ)1®1+2,41dev, (1.77)

where L., is the unit deviatoric tensor of rank-4 (see Eq. (1.44)). The advantage of
decomposing volumetric and deviatoric parts is that it is possible to make the
stress—strain relationship from the decomposed parts:

1 2
p= 3tr((f) = (A + 5,u) tr(e), (1.78)
s = 2ulyey : € = 2ue. (1.79)

Stress—strain relationship using vector notation: Although the tensor notation is
clear, it can be sometimes cumbersome, especially when implementing it in a
computer code. Therefore, it would be desirable to express the stress—strain rela-
tionship using the pseudo vectors of stress and strain in Egs. (1.37) and (1.71).
When the stress—strain relation is linear, the relationship can be written in the
matrix form as

{c} = D] - {e}, (1.80)
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where [D] is the elasticity matrix, defined as

—_
\
S
S
oo o

E
(I4+v)(1—-2v)

(=i e)

D] = (1.81)

=

S O |
[l eNeleNe]

1
27V |
0 E*U

Soov

Plane stress and plane strain: The general three-dimensional stress—strain rela-
tions in Eq. (1.74) can be simplified for certain special situations that often occur in
practice. The two-dimensional stress—strain relations can be categorized into two
cases: plane stress and plane strain.

Many practical structures consist of thin plate-like components in order to be
efficient. Assume that a thin plate is parallel to the xy-plane. If we assume that the
top and bottom surfaces of the plate are not subjected to any significant forces in the
z-direction, i.e., the plate is subjected to forces in its plane only, then the transverse
stresses (stresses with a z subscript) vanish on the top and bottom surfaces, i.e.,
013 =03 =033 =0 on the top and bottom surfaces. If the thickness is small
compared to the lateral dimensions of the plate, then we can assume that the
aforementioned transverse stresses are approximately zero through the entire thick-
ness. The plate is then said to be in a state of plane stress where all stresses are
parallel to the xy-plane and normal to the z-axis. In order to derive the stress—strain
relations for the state of plane stress, we set 613 = 0,3 = 033 =0 to obtain

011 E L v 0 €11

{6} =4 0 p = v 1 0 &€ . (182)
=210 0 la-u

o2 B 712

Similar to plane stress, one can define a state of plane strain in which the strains
with a z subscript are all equal to zero. This situation corresponds to a structure
whose deformation in the z-direction is constrained (i.e., uz=0), so that the
following relation holds: &3 = &3 = €33 =0. Plane strain can also be used if the
structure is infinitely long in the z-direction. In order to derive the stress—strain
relations for the state of plane strain, we set €3 = €53 = £33 =0 to obtain

011 E 1 —v v 8 €11
{fo}=Qon p=———F——~| v 1-v en p. (1.83)
1 1-2 1
012 (+U)( y) 0 0 E_V 712

Note that the normal stress, o33, is not zero in the plane-strain problem, but can be
calculated from &, and &5,:

Ev

m(ell + 622). (1.84)

033 =



1.3 Stress and Strain 35

Fig. 1.12 Cantilever beam Ay

bending problem Z L P
I
Z
%

Although the plane-stress and plane-strain problems are quite different in the
engineering perspective, they are not much different from the viewpoint of a
computer program. Both problems have only three components of stress and strain.
The only difference is the elasticity matrix in Eqs. (1.82) and (1.83). Therefore,
most computer programs do not distinguish between plane-stress and plane-strain
problems. They use the same code, but with different elasticity matrix.

Example 1.9 (Stress distribution of a cantilevered beam) The displacement field
for the thin beam, shown in Fig. 1.12, only considers bending

P x? vP
= — L _—— —_——
u(x,y) EI( 2>y il

—vP P(L? X
v(x,y) = E(L —x)y’ - E(T - €>7

where P is the applied force at the tip, / is the area moment of inertia about the
bending axis, and L is the length of the beam. For an isotropic material with Young’s
modulus, £, and Poisson’s ratio, v, determine the entire stress field.

Solution Since the thickness of the beam is small, we can assume the plane-stress
condition along the z-direction. From the definition of strain,

ou P
Exx = ? = E(L 7x)y7
v —uP
=gy = g L

_@4_@— yPyz_ﬂ Lx_x_z
Tw = ox "0y | 261 EI 2
P X2 vPy?
- L)y - —0.
+[EI< 2>y ZEJ

Substituting into Eq. (1.82) yields the stress field

E [P VP P
= ——— | (L — x)y — —— (L — x)y| = =(L — x)y,
i (USRI AA RN AT
E vP vP
W= 2 {_EI(L —x)y+ E(L - x)y] =0,

Ty = 0.

Since the normal stress, o,,, changes linearly in the y-direction, the stress field
represents the bending of a beam. |
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1.4 Mechanics of Continuous Bodies

Mathematical models of many structural problems are formulated as differential
equations that are satisfied at every point in the domain. These differential equa-
tions are usually obtained from the three fundamental laws of mechanics: conser-
vation of mass, conservation of linear momentum, and conservation of angular
momentum. The conservation of mass can be easily satisfied for a Lagrangian
description of the problem, and the conservation of an angular momentum results
in the symmetry of the stress tensor. Thus, the conservation of linear momentum,
which is a differential equation used to satisfy the force equilibrium, is the major
consideration in the structural problem.

Force equilibrium is imposed on an arbitrary infinitesimal element of a structure
in order to obtain a boundary-valued problem. The smoothness of the solution in
the boundary-valued problem depends on the order of the differential equation.
For example, truss and continuum problems require continuous second-order deriv-
atives of the solution, while beam and plate bending problems require continuous
fourth-order derivatives. However, this section will show that these orders of
differentiability are not necessary in order to represent many types of mechanical
behaviors. In contrast, the variational approach reduces the solution’s smoothness
requirements and provides a general interpretation of the solution. The variational
formulation that has been mathematically obtained can be rigorously related to a
virtual work or energy principle in mechanics.

A complete mathematical theory related to the existence and uniqueness of the
solution was developed by Aubin [9] and Fichera [10] using the Sobolev space and
the properties of a bounded elliptic linear operator. However, the mathematical
comprehension of this functional analysis requires a good deal of effort, with some
physical insights. By contrast, a relatively simple theory is available that can
formulate the structural problem using the energy principle. If the structural system
is conservative, then it has a potential energy. Structural equilibrium is considered
by the principle of minimum potential energy to be a stationary configuration of
the potential energy. Since the potential energy of many structural problems is the
positive definite quadratic function of a state variable (i.e., displacement), the
stationary condition yields a unique global minimum solution.

In Sect. 1.4.2, the principle of minimum potential energy and a variational
method are developed for a conservative structural system. An important result is
then shown; namely, that if the solution for a structural differential equation exists,
then that solution is the minimizing solution of the potential energy. In addition,
even if the structural differential problem does not have a solution, the solution that
minimizes the potential energy may exist and would provide a natural solution to the
structural problem. The energy principles presented here will be restricted to small
strains and displacements so that strain—displacement relationships can be expressed
in linear equations; such displacements and corresponding strains, obviously,
have additive properties. A nonlinear elastic stress—strain relationship will be
discussed in Chap. 3.


http://dx.doi.org/10.1007/978-1-4419-1746-1_3
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The energy-based formulation of the structural problem in Sect. 1.4.2 is
generalized to the principle of virtual work in Sect. 1.4.3, which can handle
arbitrary constitutive relations. The principle of virtual work is the equilibrium of
the work done by both internal and external forces with the small arbitrary virtual
displacements that satisfy kinematic constraints. For a conservative system, the
results obtained from the principle of virtual work are the same as the results
obtained using the principle of minimum potential energy in Sect. 1.4.2.

1.4.1 Boundary-Valued Problem

Balance of linear momentum: A body in Fig. 1.13 is in static equilibrium under
the applied body force, f°, and the surface traction, t™. The domain, inside of the
body, is denoted by €, whose boundary is I'. The balance of the linear moment can

be stated as
// f”dg+/t<n>dr=0. (1.85)
Q r

Using the property in Eq. (1.38) and the divergence theorem in Eq. (1.28), the
second term in the forgoing equation can be converted into the integral over the

domain as
// fbdQ:—/n~GdF:—// V - 6dQ.
Q r Q

Since both integrals are written over the same domain, they can be combined as

//Q(v-a+fb)dg:0.

X3 1—*3‘

X2

Fig. 1.13 Deformable

body under equilibrium X1
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Therefore, the balance of the linear momentum can be written at every point in the
domain as

V.o+f'=0, xecQ (1.86)

The equilibrium state (solution) of the body must satisfy the local momentum
balance equation in Eq. (1.86) as well as boundary conditions. Note that the balance
of the angular momentum becomes identical to the symmetry of the stress tensor,
which is similar to the process in Eq. (1.36).

Boundary-valued problem: Consider the linear elastic structure in Fig. 1.13
under the applied surface-traction t on the boundary, I'*, and under the body force,
g , in the domain. The whole boundary, I', is decomposed into F:FhUI“' and
r NI’ = Q. The motion of the structure is fixed (or prescribed) on the essential
boundary, I'". The purpose of the boundary-valued problem is to find a displace-
ment that satisfies

V.ou)+f'=0, xeQ,
u=20, XGFh, (187>
c-n=t xecl¥

where n is an outward unit normal vector to the surface, I'’. A constitutive relation
is required, such as the one in Eq. (1.74), in order to make the boundary-valued
problem complete. The boundary condition on I is called the displacement
boundary condition, whereas the boundary condition on I is called the traction
boundary condition. Equation (1.87) is often called the strong form because the
differential equation must be satisfied at every point, x € Q, and the solution, u,
must be smooth enough such that its second-order derivatives are continuous, i.e.,
ue [CHQ). Although Eq. (1.87) only includes a divergence operator, which is a
first-order derivative, the problem has second-order derivatives because strain
contains derivatives of displacements.

In order to solve for the strong form in Eq. (1.87), the first step is to construct
trial solutions that automatically satisfy a part of the boundary-valued problem, and
then, the solution that satisfies the remaining conditions is found. For example, the
trial solutions that satisfy the differential equation and traction boundary condition
are called the statically admissible stress field. The trial solutions that satisfy the
displacement boundary condition are called the kinematically admissible displace-
ment field. Since the admissible stress field is difficult to construct, the admissible
displacement field is often used to solve for the strong form.

1.4.2 Principle of Minimum Potential Energy

Principle of minimum potential energy: Due to the applied load, the elastic
structure experiences deformation (or displacement), as described by u(x)=
{uq, u», usz }T for x € Q. The structure resists any deformation by generating internal



1.4 Mechanics of Continuous Bodies 39

forces. In general, each internal force is proportional to the amount of deformation.
For a given applied load, if the internal force is smaller than the applied force, then
the structure continues to deform in order to equilibrate the two forces. Many
structural problems consist of computing the displacement due to force equilibrium
conditions between the applied load and internal forces.

If the concept of structural force equilibrium is extended to the energy formu-
lation, then a good deal of physical insight can be obtained. Let the displacements
be used as state variables of the problem being considered. The internal force,
generated during deformation, can be thought of as the energy that is stored in the
structure. As the structure deforms, not only does the internal force increase, but the
energy of the structure also increases. This stored energy is called the strain energy
of the structure, which is defined as

Ulu) = % / / o(u) - e(u)de (1.88)

where the components of the strain tensor are defined as

1/0u; Ou; 1
ei(w) = E(ax;' - 5x:> - E(ui’j 1), (1.89)

and the constitutive relation for an elastic material in Eq. (1.74) is assumed.
In Eq. (1.89), the subscribed comma represents the derivative with respect to the
spatial coordinate, i.e., u; j= Ou;/Ox;. The strain energy, U(u), is the energy required
to produce the displacement, u. For elastic problems, since U(u) does not depend on
the path chosen for deformation, U(u) is a function of the displacement, u, only.

If forces are applied to the structure and the structure deforms in the direction of
the applied forces, then work is done by the applied forces. The work done by the
applied load can be defined as

W(u) = //Qu~f”d52+/pu-tdl“. (1.90)

The first integral in Eq. (1.90) represents the work done by the body force, f*, while
the second integral is the work done by the surface traction, t. The integrals are
evaluated over the whole domain, Q, and over the traction boundary, I'*. If any
concentrated force, f, is applied externally, then the surface traction term in
Eq. (1.90) may include the Dirac delta measure. Note that U(u) is a quadratic
function of u, while W(u) is a linear function of u.

Since the strain energy, U(u), is independent of the deformation path, it is the
potential energy that is stored in the structure. If the applied force in Eq. (1.90) is
conservative, then Eq. (1.90) defines the negative value of the potential energy
generated by the applied loads. The applied load is considered to be conservative if
it is independent of deformation, such that the work done by a system of applied
forces in traversing any closed path in the displacement space has to be zero.
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The potential energy of the structure is the difference between the strain energy and
the work done by the applied loads, written as

I(u) = i](u) — W(u) (191)
:5//Qc(u):e(u)dQ—//Qu~f”d§2—/xu~tdl“. '

The principle of minimum potential energy is as follows: for all displacements
that satisfy the boundary conditions, known as kinematically admissible displace-
ments, those which satisfy the boundary-valued problem in Eq. (1.87), if they exist,
make the total potential energy in Eq. (1.91) stationary on

Dy = {u €[] lu=0on xel 6-n=tonxe r} (1.92)

The principle of minimum total potential energy provides a generalized solution
to the differential equation. For the generalized solution that minimizes the total
potential energy in Eq. (1.91), the solution space, D4, of Eq. (1.92) has to be
extended so that the potential energy in Eq. (1.91) can be well defined. This
space is called the space of finite energy or the space of kinematically admissible
displacements, defined as

Z= {ue [HI(Q)]3|u:0 on XEFh}, (1.93)

where H'(Q) is the Sobolev space of order 1.> The generalized solution belongs to
the space, Z. It is important to point out that the traction boundary condition is not
required to define the space of kinematically admissible displacements because it is
included in the work done by the applied load in Eq. (1.91). Thus, it is easier to
construct the space of kinematically admissible displacements than it is to construct
D,. Generally, if we let the order of differential equation equal 2m, then the
boundary conditions that contain (m — 1)th-order derivatives are called the essential
boundary conditions and derivatives of a higher order than (m — 1) are called the
natural boundary conditions.

Example 1.10 (Equilibrium of a bar) The bar in Fig. 1.14 has length, L; Young’s
modulus, E; and cross-sectional area, A. Assume that displacement is in the form of
u(x) = c1x + ¢p; calculate the displacement (1) by solving the governing differential
equation and (2) by using the stationary condition of the potential energy.

Solution It is important to identify boundary conditions first. Since the bar is fixed
at the left end, it has zero displacement at x =0, which corresponds to the
displacement boundary condition. On the other hand, a force is applied at the

2 H™(Q) is the Sobolev space of the order m, whose functions are continuously differentiable up to
m — 1, and mth partial derivatives are integrable.
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Fig. 1.14 Equilibrium %
of a bar

right end of the bar. In the view of Eq. (1.87), the force can be considered as an
integral of a constant surface traction, 7. In addition, using the relation of
F =tA=Ac,, =EAe;, = EAu/'(L), the differential equation and boundary condi-
tions can be written as

EAu' =0 x€|0,L],
u=0 x=0,
EAuU(L)=F x=L.
In the above equations, ' and ” are used for the first-order and second-order
derivative with respect to x. At x=L, the unit normal is n= {1, 0, O}T and the
stress tensor only has the ¢;; component.

(1) The governing differential equation is integrated twice to obtain
FAu(x) = c1x + c3.

After applying the two boundary conditions, we have ¢; = F and ¢, = 0. There-
fore, the displacement becomes

Fx

u(x) = EA

(2) To construct kinematically admissible displacements, the candidates must

satisfy the displacement boundary condition, #(0) = 0. Therefore, the candidate

displacements become u(x) =cx. The objective is to find a value of ¢; that

makes the potential energy of the bar stationary. By considering only ¢, and

€17 for the bar, the strain energy and the work done by the applied load,
respectively, become

1 [k N2 1
U:f/ EA(u) dx = = EALC?,
2/, 2

W = Fu(L) = FLc,.

The potential energy can be obtained from IT = U — W. The stationary condition
of the potential energy can be obtained by differentiating the potential energy
with respect to ¢; and making the result equal to zero:

dair  d

— =—(U—-W) =EALc, —FL =0
dC1 dCl( ) ‘1 ’
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which yields the unknown coefficient, ¢, that minimizes the potential energy,

as
. F S ouy) = Fx
AT T " T
Note that the solution of (2) is identical to that of (1). [

Virtual displacement: The virtual displacement, or the variation of u, is a small
arbitrary perturbation of the real displacement u in Z. Let the virtual displacement
be n(x) with a small scalar, 7, so that the perturbed state is u+7mn. Since the
perturbed state has to be in Z, the perturbation 1(x) has to vanish at its essential
boundary; i.e., n(x) satisfies all homogeneous essential boundary conditions (see
Fig. 1.15). Therefore, n(x) also belongs to the space, Z. The function, n(x), can be
thought of as a variation of the displacement, u. In order to show this, consider u
+ 71 that is defined on Z. For a sufficiently small z, the variation of the displacement
can be defined as

su=lim futm) (] = S| =m=u  (194)

Since the variation, n, is related to the displacement, u, the notation, u, is used
instead of du to denote the variation of the displacement, u, in this text. This
notational system is preferred in order to avoid an excessive usage of §, which
typically denotes the Dirac delta measure as well as the Kronecker delta symbol.
An important property of the variation is that it is independent of the differen-
tiation with respect to space coordinates. For example, consider the variation of

strain:
5 du _ d(éu)
dx)  dx

Variational equation: The principle of minimum potential energy, discussed
in the previous section, requires obtaining a stationary condition for the total
potential energy. This principle is closely related to the variational formulation.

Fig. 1.15 Virtual
displacement as a
perturbation of real
displacement
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Let displacement, u € Z, be the solution to the structural problem that uniquely
minimizes [1(u). Consider a functional I1 that is defined in Z. For a sufficiently small
7, if the limit

oT1(u; ) = lim {M1(u + 78) — MI(u)) = dirI(u + 7u) (1.95)
=07 T 7=0

exists, then it is called the first variation of IT at u in the direction of u. If this limit
exists foreveryu € Z, I1is said to be differentiable (i.e., Fréchet differentiable) at u.

If a functional has a first variation, then quantitative criteria can be defined for its
minimization. The focus here is on the necessary conditions for the extrema of the
functional. Presume that u is such that

I(u) < II(w), (1.96)

for all w in Z; then u is said to minimize IT over Z. If Eq. (1.96) holds for all w in Z
that satisfy llw —ull <d, for some d >0, II is said to have a relative minimum
value at u.

From Eq. (1.96), for anyu € Z and for any sufficiently small 7, if IT has a relative
minimum at u, then

I(u) = mTin II(u + 7u) = M(u + 7a)|,_,, (1.97)

that is, for fixed u and u, the real value function, IT(u + 7u), of the real parameter, z,
is @ minimum at 7= 0. If the functional has a first variation, then IT(u + 7u) is a
differentiable function of 7, and a necessary condition for a minimum of IT at u is

d
Sl(u;m) = afl(u + 7u) =0, (1.98)
=0

for allw € Z. The notation, 5TI(u; @), represents a variation of IT at u in the direction
of u. Thus, the principle of minimum potential energy is equivalent to the condition
of Eq. (1.98) for all kinematically admissible u.

The potential energy in Eq. (1.91) is composed of the strain energy and the work
done by the applied load. Thus, a variational formulation of the structural problem
can be written, using the first variation of I1(u), as

S (u;u) = 8U(u;u) — 6W(u;u) =0, (1.99)
for all w in Z. Equation (1.99) is called the variational equation of the structural

problem under consideration. The first term in Eq. (1.99) is obtained from the
definition of U(u) in Eq. (1.88) and the stress—strain relation in Eq. (1.74) as

8U(w;u) = //Qs(ﬁ) :D:e(u)dQ = a(u, ), (1.100)
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where a(u, 1) is called the energy-bilinear form since it is bilinear with respect to its
two arguments u and U. Note that ¢;(@) is made the same as g;j(w) in Eq. (1.89) by
substituting u into u. Thus, the energy-bilinear form is symmetric with respect to its
arguments. The variation of the work done by the applied load can be written as

5W(u;ﬁ):// ﬁ-f”dg+/ﬁ~tdrzé(ﬁ), (1.101)
Q re

where £(t) is called the load-linear form. Only conservative loads are considered
such that £(m@) is independent of displacement. Thus, the variational formulation of
the structural problem in Eq. (1.99) can be written as

a(u,@) = (), VieZ, (1.102)

where Vu € Z represents “for all win Z.” If the load-linear form on the right-hand
side of Eq. (1.102) is continuous in the space, Z, and if the energy-bilinear form
on the left-hand side of Eq. (1.102) is positive definite on Z, then Eq. (1.102) has a
unique solution, u € Z.

If a solution exists to the differential equation, then it is also the solution to the
variational equation, Eq. (1.102). However, a solution to Eq. (1.87) may not exist if
the distributed function t is a Dirac delta measure, which means that t is the applied
point load. Nevertheless, the variational equation, Eq. (1.102), still has a solution in
this case, which is called a generalized solution.

Example 1.11 (Equilibrium of a spring) Consider a spring component, which is
fixed at one end and under an applied force, f, at the other end. Calculate the
displacement, u, at the load application point.

Solution The potential energy of the spring can be written as
L
M(u) = Eku — fu.

If the displacement is perturbed by u + 7u, the perturbed potential energy can be
written as

(1 + i) = %k(u + i) — f(u + 700).

Then the variation of the potential energy can be obtained by differentiating the
potential energy with respect to 7, as

%[H(u + )] = k(u + «0)u — fu.

Now, if the variation of potential energy is evaluated at the original state, i.e.,
at 7=0,
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g[H(u +m)]| =kuu—fu=0.
dr =0

Since the displacement variation, u, is arbitrary, the above variational equation
yields

ku=f

which is the same as the equilibrium of the spring component. |

Example 1.12 (Equilibrium of a bar) For the bar in Example 1.10, calculate the
displacement, u(x), using the principle of minimum potential energy. Assume that
the virtual displacement is in the same form as the displacement.

Solution As with Example 1.10, the displacement can be assumed to be u(x) = cx.
In this form of displacement, the coefficient, ¢, is the only unknown; that is, the
solution is sought only from linear functions. Obtaining a solution, u(x), is equiv-
alent to determining the coefficient, c. Since the virtual displacement shares the
same property with the displacement, it is natural to assume that the virtual
displacement has the following form: 7(x) = ¢x, where ¢ is the coefficient of virtual
displacement. Therefore, the arbitrary virtual displacements, u, imply that the
coefficient, c, is arbitrary.
The variation of strain energy can be obtained

df1 [t 2
5U_dr{2/0 EA[(qum)} dx}
1k "
:—/ 2EA(u+ 7u) u dx

2Jo

L 1!
:/ EAu dx.
0

After substituting u(x) = cx and(x) = cxinto the above expression, the variation of
strain energy becomes

=0

=0

oU = EALcc.
In the case of the work done by applied load, the variation becomes

oW = %[F(u(L) +7u(L))]—o
= Fu(L)
= FlLc.

Therefore, the necessary condition in Eq. (1.98) can be written as

8T = 8U — 6W = ¢(EALc — FL) = 0
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for all ¢ € R, with R being the space of real numbers. Therefore, the unknown
coefficient, ¢, can be solved from the above variational equation. Finally, the
displacement can be expressed by

u(x) = o=

which is identical to that of Example 1.10. [ |

1.4.3 Principle of Virtual Work

The variational formulation provided by Eq. (1.102), obtained from the principle of
minimum potential energy, is limited in solving elastic problems. In the principle of
virtual work, the constitutive relations, including the elastoplasticity, can be quite
general since we are not assuming that potential energy exists. Let the differential
problem in Eq. (1.87) be satisfied and let the integration-by-parts be justified.
Consider a virtual displacement, u, that satisfies the displacement boundary condi-
tion, i.e.,u = Oon . Note that the displacement variation, u, in Eq. (1.94) is related
to the displacement, u. Even if the same notation, u, is used here, the virtual
displacement is considered a small arbitrary continuous field that satisfies the
problem’s kinematic constraints, while the applied load is kept constant. Since
the differential equation (1.87) is satisfied in the domain, €, by multiplying u on
both sides of the differential equation and integrating it, we have

// (V-6 +f)dQ=0, (1.103)

for any uin Z. In Eq. (1.103), equilibrium of the structural problem is sought in the
sense of integration. The point-wise requirement of differential equations has no
meaning in the variational approach. Since the differential equation, Eq. (1.87), is
obtained from the force equilibrium relation, the term, V - ¢+’ , represents the
unbalanced force, and Eq. (1.103) represents the virtual work done by the system
during virtual displacement. Thus, structural equilibrium is considered a vanishing
condition of the virtual work. After integrating by parts, the principle of virtual
work is obtained by using the symmetric property of the stress tensor, o; the
boundary conditions of Eq. (1.87); and the constitutive relation in Eq. (1.74) as

// (V-6 +1)do
—// Vﬁ:ch—i—// ﬁ-fbdQ+/ u-o-ndl’
Q Q r'urs

u 6dQ+// a-f?dQ+ [ u-tdl
Q N

/AL
// )d9+//gﬁ-f”dsz+/ﬁ.tdr
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where 6-n=t on I". By using definitions of the energy-bilinear form and the
load-linear form, the principle of virtual work can be stated as

a(u,u) = {(mw), YueZ. (1.104)

Equation (1.104) is the same as the variational formulation in Eq. (1.102). In the
principle of virtual work, the left side of Eq. (1.104) is interpreted as the virtual
work done by internal force, while the right side is seen as virtual work done by the
external applied force. Thus, Eq. (1.104) states that the structure is in equilibrium
when internal and external virtual works are equal during all virtual displacements.

In the derivation of the principle of virtual work in Eq. (1.103), it is assumed that
the differential equation is satisfied at every point within the structure, which is an
unnecessary requirement. Further, consider a virtual work,

5W:// ﬁ-f”dg+/ﬁ-tdr. (1.105)
Q r

Since W = 0 on I, the whole boundary I' =T" | JT* is used instead of I"*. Using the
relation of t=06-n and Gauss’ theorem, the virtual work in Eq. (1.105) can be
extended to

a-f?dQ+ [u-tdl = a-(f’+V.0)dQ

J] jgovaes [wwar= Jf w @
+ 6 : e(u)dQ 1.106
// (@)dQ, (1.106)

where, again, the symmetric property of the stress tensor is used. The first integral
on the RHS of the above equation is the same as in Eq. (1.103), which vanishes.
Thus, the same principle of virtual work as in Eq. (1.104) is obtained. A subtle
difference in this approach is that it is unnecessary to assume a point-wise satis-
faction of the differential equation. As long as the first integral on the RHS
vanishes, the principle of virtual work is well defined.

The difference between the variational formulation and the principle of virtual
work cannot be clearly seen from the conservative system or from the linear elastic
structural problem. However, in developing the variational formulation, we
assumed that potential energy existed in the structure. Thus, the variational formu-
lation is limited to elastic problems. For most of the problems discussed in Chap. 4,
the potential energy of the structural problem does not exist. For those problems,
the principle of virtual work has to be used. However, proving the existence and
uniqueness of a solution in Eq. (1.104) is a difficult procedure that goes beyond the
scope of this text. For a proof of the existence and uniqueness of a solution, the
reader is referred to the articles of Aubin [9] and Fichera [11].


http://dx.doi.org/10.1007/978-1-4419-1746-1_4
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Fig. 1.16 Two-
dimensional heat transfer
problem

Example 1.13 (Heat transfer problem) Consider a two-dimensional heat transfer
problem in Fig. 1.16 under the heat source, Q, over the domain, the heat flux, ¢g,,, on
the boundary, S,, and the prescribed temperature, T, on the boundary, S;.
The governing differential equation of the steady-state heat transfer problem is

0 oT 0 oT

with the following boundary conditions:

{ T = To(prescribed) on Sy (1.108)

g, = —fne —fyny on S,

where Fourier law of heat transfer is given as

or
fx: 7kx§’
fy: —kYa—y

Using the principle of virtual work, calculate the variational equation of the steady-
state heat transfer problem.

Solution We associate the above differential equation with test functions
(or “virtual temperatures”) in the space Z that satisfies the essential boundary
condition on S7. where

Z = {T e HV(Q)|T(x) =0, ¥x e ST}. (1.109)

By multiplying Eq. (1.107) with an arbitrary element of Z and then integrating over
the domain, Q, we obtain



1.4 Mechanics of Continuous Bodies 49

0 oT 0 oT - =
/Jﬁ(k‘§> 5 (kya—y> +Q}T i@ =0, VTez,

where the LHS of the equation can be integrated by parts; in addition, we can use
the property that 7 = 0 on S7. Thus, in the variational formulation of the steady-
state heat flow problem, the generalized solution, 7, must satisfy the following
equation:

/ Lo, orer dQ:/TQdQ+/Tq,,dSq, VT € Z. (1.110)
o\ ~ Ox Ox Jdy Oy o s, -

Example 1.14 (Beam problem) The governing differential equation of the beam
component is

d4
Elé:f(x), xeo,L], (1.111)

where f{(x) is the distributed load. In the case of a cantilevered beam, the boundary
condition can be given by

Vv 2V 3V
v(O):%(O):%(L):%(L):O. (1.112)

Using the principle of virtual work, derive the variational equation.

Solution By multiplying the governing differential equation by a virtual displace-
ment, v € Z, and integrating over the domain, we obtain

/EI—_dx /fvdx Vv e Z,

where Z is the space of kinematically admissible displacements that satisfy the
essential boundary conditions:

Z:{VGH(Z)[O,LHV(O):g(O):O}. (1.113)

Since the order of the differential equation is 4, integration-by-parts is performed
twice to make the order of differentiation between the displacement, v, and the
virtual displacement, v, the same. Now we have

L

d*v d*v
d frdy, WweZ

&y
EI dx + [EI ]

d>v dv} L B
, Al ae e

dx? dx

g

0 0
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Using the boundary conditions in Eq. (1.112) and the virtual displacement in
Eq. (1.113), the two boundary terms in the above equation vanish. Thus, the final
expression of the variational equation becomes

L 2= 12 L
d“v d°v
El— —dx= fvdx, VYveZ. 1.114
0 dx? dx? /0 Y Ve ( -)

1.5 Finite Element Method

In general, it is difficult to find an analytic solution that satisfies the variational
equation in the previous section. Instead, the FEM divides the entire domain into a
set of simple sub-domains or finite elements. The finite elements are connected with
adjacent elements by sharing their nodes. Then within each finite element, the
solution is approximated in a simple polynomial form.

FEM:s for structural analysis require knowledge of the behavior of each element
in the structure. In this section, a structural analysis based on the finite element
approach is introduced using three-dimensional solid elements. Finite element for-
mulations for other structural elements, such as bars, beams, and plates, can be
found in many textbooks, such as Bathe [12] or Hughes [13]. Apart from the more
intricate algebra that is required for more complex elements, the basic approach for
deriving element equations is identical to the process illustrated in this section.
Once each element is described, the governing equations of the entire structure may
then be derived.

1.5.1 Finite Element Approximation

Differential equations and variational equations, introduced in the previous section,
are difficult to solve, except for a handful of simple cases. When the geometry is
complicated, it is not trivial to solve for u(x) analytically. Since the solution that
satisfies the differential equation and boundary conditions can have a complicated
expression, an infinite series solution may need to be employed. In the FEM, instead
of solving the variational equation analytically, an approximate solution is sought.
The approximate solution u(x) is expressed as a sum of a number of functions that
are called trial functions:

n

u(x) =3 cihi(x), (1.115)

i=1
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where n is the number of terms used, ¢;(x) are known trial functions, and c; are
coefficients to be determined by minimizing error between the true and the approxi-
mate solution. Since the approximate solution is a linear combination of the trial
functions, the accuracy of approximation depends on them.

The trial functions and coefficients are chosen such that u(x) must satisfy the
essential boundary conditions of the problem; that is, u(x) must belong to the
space of kinematically admissible displacements, Z. Therefore, if the solution to
the variational equation is approximated by a series of functions in the entire domain
of the problem, it is difficult to obtain the trial functions that satisfy the essential
boundary conditions. An important idea of the FEM is to divide the entire domain
into a set of simple sub-domains or finite elements and then to apply the approxi-
mation in Eq. (1.115) on the element level. Then, it is unnecessary to build the trial
functions that satisfy the essential boundary conditions. Instead, only those elements
that include the essential boundary conditions need to have a special treatment.
The finite elements are connected with adjacent elements by sharing their nodes.
Then within each finite element, the solution is approximated using a simple
polynomial form. For example, let us assume that the domain is one-dimensional
and the exact solution is given as a dashed curve in Fig. 1.17. When the entire domain
is divided into sub-domains (finite elements), it is possible to approximate the
solution using piecewise continuous linear polynomials as shown in Fig. 1.17.
Within each element, the approximate solution is linear. Two adjacent elements
have the same solution value at the shared node. As can be seen in the figure, when
more numbers of elements are used, the approximate piecewise linear solution will
converge to the exact solution. In addition, the approximation can be more accurate
if higher-order polynomials are used in each element.

Various types of finite elements can be used, depending on the domain that needs
to be discretized and the order of polynomials that are used to approximate the
solution. Table 1.3 illustrates several types of finite elements that are often used in
one-, two-, and three-dimensional problems.

After dividing the domain into finite elements, the integrations in the variational
equations are performed over each element. For example, let us assume that the
one-dimensional domain (0, 1) is divided into ten equal-sized finite elements. Then,
the integral can be written as a summation of integrals over each element:

ﬁ]lDdx - nf(‘)OlDdx * j;)OIQDdx Tt ‘foi)Dd‘T

where [] is the integrand.

u(x) -
= S Nodes Approximate solution

\/ / X
a
~ N v

Finite elements il "\

Fig. 1.17 Piecewise linear approximation of the solution for one-dimensional problem

Exact solution



52 1 Preliminary Concepts

Table 1.3 Different types of
finite elements

Element Name

1D linear element

2D triangular element

2D rectangular element

3D tetrahedron element

3D hexahedron element

Fig. 1.18 Domain 1 2 n—1 n
discretization of 1 2 3 ;; 1 e+l

— n
one-dimensional problem &n
)

After the domain is divided into a set of simple-shaped elements, the solution
within an element is approximated in the form of simple polynomials. Let us
consider a one-dimensional case in which the domain is discretized by n number
of elements, as shown in Fig. 1.18. For this specific example, each element is
composed of two end nodes. The trial solution is constructed in the element using
the solution values at these nodes.

For example, element e connects two nodes at x =x; and x = x;,;. If we want to
interpolate the solution using two nodal values, then the linear polynomial is
the appropriate choice because it has two unknowns. Thus, the solution is approxi-
mated by

u(x) =ao +aix, x; <x< Xy (1.116)

Note that the trial solution in the above equation is only defined within element e.
Although we can determine two coefficients, ay and a;, they do not have a physical
meaning. Instead, the unknown coefficients, ay and a;, in Eq. (1.116) will be
expressed in terms of the nodal solutions, u(x;) and u(x;.;). Although we do not
know these nodal solutions yet, they will be determined later. By substituting these
two nodal values, we have

I/{(Xl‘) =U; =4ap + a1 X
u(Xip1) = uiy1 = do + a1xiy
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where u; and u;,; are the solution values at the two end nodes. Then, by solving the
above equation, the two unknown coefficients, ag and a;, can be represented by the
nodal solution, u; and u;, ;. After substituting the two coefficients into Eq. (1.116),
the approximate solution can be expressed in terms of the nodal solutions as

_ Xipp — X X=X
M(x) - L(e> ui + L(e> Uit1,
——
Ny () Ny (v)

where L =Xx;y1 — X; is the length of element e. Now, the approximate solution for
u(x) in Eq. (1.116) can be rewritten as

M()C) ZN](X)Mi+N2(X)Mi+1, Xi SXSXHJ’ (1117)

where the functions N(x) and N,(x) are called interpolation functions for obvious
reasons. The expression in Eq. (1.117) shows that the solution, u(x), is interpolated
using its nodal values, u; and u;,,. At x=x;, N;(x) =1, and at x=x;,{, N;(x) =0,
while at x=x;,1, No(x) =1 and at x =x;, N,(x) =0. Interpolation functions N(x)
and N,(x) are also called shape functions, a term used in solid mechanics, as the
functions describe the deformed shape of a solid or structure.

Note that the approximate solution in Eq. (1.117) is similar to that of Eq. (1.115).
In this case, the interpolation function corresponds to the trial function.
The difference is that the approximation in Eq. (1.117) is written in terms of
solution values at nodes, whereas the coefficients ¢; in the approximation in
Eq. (1.115) do not have any physical meanings. In addition, the interpolation in
Eq. (1.117) is limited to the current element, while the approximation in Eq. (1.115)
is over the entire domain.

In order to explain the accuracy of the approximation, the interpolated solution
and its gradients for two continuous elements are illustrated in Fig. 1.19. Note that in
this particular interpolation, the solution is approximated by a piecewise linear
function and its gradient is constant within an element. Accordingly, the gradients
are not continuous at the element interface. In structural problems, the solution, u(x),
often represents displacement of the structure and its gradient is stress or strain.
Thus, the approximation yields a continuous displacement, but discontinuous stress
and strain between elements. Many commercial finite element programs provide the
stress values at nodes and display a smooth change of stresses across elements.
However, users must be careful because these nodal stress values are the average of
values for different elements connected to a node.

u Uisy du
Uu; e

Ujr] dx
’ Xi Xi+1 Xi+2

v

Xi Xi+1 Xi+2

Fig. 1.19 Interpolated solution and its gradient
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1.5.2 Finite Element Equations for a One-Dimensional
Problem

Once the finite element approximation is available using interpolation functions, it
can be used to solve for variational equations. For the sake of explanation, a
one-dimensional problem is discussed in this section. Many engineering problems,
such as the deformation of a beam and heat conduction in a solid, can be described
using a differential equation. The differential equation along with boundary condi-
tions is called the boundary-valued problem. A simple, one-dimensional example
of a boundary-valued problem is

d2
FTe) +px) =0, 0<x<1,
u(0) =0 (1.118)
du Boundary conditions.
G (=0 ’

The above differential equation describes the displacements in a uniaxial bar
subjected to a distributed force p(x) along its axis. The first boundary condition
prescribes the value of the solution at a given point and is called the essential
boundary condition. The term displacement boundary condition or kinematic
boundary condition is also used in the context of solid mechanics. On the other
hand, the second boundary condition prescribes the value of derivative, du/dx, at
x=1, and is called the natural boundary condition. In solid mechanics, the term
force boundary condition or stress boundary condition is also used.

As with the previous section, the principle of virtual work can be used by
multiplying the differential equation with a virtual displacement, 7(x), and inte-
grating over the domain as

The virtual displacement belongs to the space of kinematically admissible displace-
ments, defined as

7= {ﬁ e HM[o, 1][a(0) = o}. (1.119)
Since the function p(x) is known, we will take the term containing it to the RHS and

then use integration-by-parts to the term on the LHS to reduce the order of
differentiation of u(x):

du d !
/—”—”dx_—/ piidx. (1.120)
0




1.5 Finite Element Method 55

Fig. 1.20 One-dimensional Ni(x) N,(x)
finite element with
interpolation functions

r—Element e
.
x .

=

— X

1©

The boundary terms on the LHS of the above equation can be simplified by using
the property that #(0) = 0 at x=0 and the boundary condition of du(1)/dx=0 at
x = 1. Note that the above variational equation is also satisfied in the element level,
in which the boundary terms are the values at the element boundary.

Now, finite element approximation is introduced to solve for the above varia-
tional equation. We apply the approximation to one element at a time. Let us
consider a general element, say element e, in Fig. 1.20 which has two nodes, say
iandi+1.

The approximate solution within element e is given by

ul(x) = ;N1 (x) + uis N2 (x) = N . d©, (1.121)

where d = [u;, u;,,]" is the vector of nodal solutions, and N =[N, N,] is the
vector of interpolation functions for element e from Eq. (1.117). One can also verify
that the above interpolation functions yield

) (x;) = w;,
ul®) (Xit1) = uit1,

where u; and u;, are nodal solutions at nodes i and i + 1, respectively. The above
equation is an important property of interpolation.

Since the solution, u’(x), and the virtual displacement, 7®) (x), belongs to the
same space, Z, it is natural to use the same interpolation functions to approximate
the virtual displacement:

79 (x) = TN, (x) + T Na(x) = N© @, (1.122)

where a“) = [, EH_I]T is the vector of virtual displacements for element e.
From Eq. (1.121) the derivative of u(e)(x) is obtained as

du) _ ANy dVy
dx - 'dx i+1 dx
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The above equation can be written in a matrix form as

st(“) dN1 sz Uu; 1 1 u;
— | Y A2 L L =B@.d@ (1.123
dx { dx  dx J {Mf+1 } { L L(e)J { Uit } | )

where L' denotes the length of the element. The same equation can be used to
approximate the derivatives of virtual displacement by replacing the nodal dis-
placements with the nodal virtual displacements.

Now, we apply the finite element approximation into the variational equation on
the element level. By substituting Eqgs. (1.122) and (1.123) into Eq. (1.120), we
obtain

du
=T [V He)Tr(e) @ _ =T [V T ST ) 7 dx ()
d [/ BB ax|a = d [ N pyar+d g

i +a (Xit1)

The above variational equation must be satisfied for all virtual displacements,
u® (x). Since element e does not belong to any boundary, the virtual displacements
can be any function with the smoothness requirement in Eq. (1.119). In the view of
the interpolation scheme in Eq. (1.122), arbitrary virtual displacements can be
represented by selecting arbitrary nodal values of %; and u;,;. Therefore, if the
above equation is rearranged by u;A 4 u; 1B =0, then A and B must vanish
individually, from which we can get the following equation for element e:

du ()
X X —— (X
[ / B©'B© dx] d© = / N p(x) dx + ai
N x" T (xi41)
The above equation can be written in matrix form as
du
— 4 W)
ko] {ae} = frey @™ L (1.124)
T (Xir1)

where the coefficient matrix [k] and the vector {f} are defined as

e o )T n(e 1 1 -1
{k< )szz/ B© B()dx:(e)[l ) } (1.125)
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and

{f(e)} _ ij+1p(x){xigig }dx. (1.126)

In solid mechanics, the coefficient matrix in Eq. (1.125) is called the element
stiffness matrix and the vector in Eq. (1.126) the element force vector. One can
derive an equation similar to Eq. (1.124) for each element e=1,2, ..., Ng, where
Ng is the number of elements.

The RHS of these equations contain terms that are derivatives at the nodes
du(x;)/dx and du(x;,;)/dx, which are not generally known. However, the second
equation for element e can be added to the first equation of element e+ 1 to
eliminate this derivative term. To illustrate this point, consider the equations for
elements 1 and 2. Two element matrix equations are

ki ki W u | fu W _a(xl)
[km kzz} {Mz}{fz} + 9 (1.127)

and

du

[kn k12:|<2){”2}:{f2}(2)+ —éa(xz) . (1.128)
kop  kx u3 f3 +£(x3)

We want to combine these two matrix equations into one, which is called the
assembly process. The assembled matrix equation will have three unknowns: u;,
u,, and uz. Therefore, the assembled coefficient matrix will be 3 x 3. Equation
(1.127) will be added to the first two rows, while Eq. (1.128) will be added to the
last two rows. When the second equation in Eq. (1.127) and the first equation in
Eq. (1.128) are added together, the boundary term, du(x,)/dx, is canceled. Thus, the
assembled matrix equation becomes

du

Y &) 0] (u £V — @)

e O L R R e e T (1.129)
d

o &) ]l i + 52 (os)
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This process can be continued for successive elements, and the 2 x Ny equations for
the N elements will reduce to Ng+ 1 equations. In fact Nz + 1 = Np, which is equal
to the number of nodes. The Ny equations will take the form

PR 15 0 .0 n
ol @ o |
. TUNEER I I
0 0 0 i 4@ | Ly
(NDXND) 21 22 (NDXI)
0 _%(x ) (1.130)
W) dx
fa +1 0
= 2 3
Ry
(Ii/E) du
. +— (xw)
(V1) dx

(Npx1)

In compact form, the above equation is written as
[K[{d} = {F}. (1.131)

In general, the global matrix [K], will be singular and hence the equations cannot be
solved directly. However, the matrix will be nonsingular after implementing the
boundary conditions. It may be noted that there are Np unknowns in the Np
equations. At the boundaries (x=0 and x=1), either u (the essential boundary
condition) or du/dx (the natural boundary condition) will be specified. We will
illustrate the method in the following example.

Example 1.15 (Three-element solution of a differential equation) Using three
elements of equal length, solve the differential equation given below for p(x) =x.

d’u

g2 TP =0, 0<x<1,

u(0) =0 .
u(1) =0 } Boundary conditions.

Solution Since the elements are of equal length, each element has the length of

L) = 1. Substituting in Eq. (1.125) the element stiffness matrices for the three
elements can be derived as

171 -1 3 -3
@ __ L _ B
[k sz L(E){—l 1 ] [_3 3 } (e =1,2,3).
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Note that the element stiffness matrices for the three elements are identical.
Now the variable in p(x) = x is substituted in Eq. (1.126) to calculate the element
force vectors for the three elements and can be derived as

{1} - / p(x){xig; }dx
S AR T

Xi | Xit1
) 3 6 _
:L( ) ﬁ+xl‘+1 N (e = 1,2, 3).
6 3

Substituting for the element lengths and nodal coordinates

2 3
s (Rt = {)-260)
f 541 2 13 5415 fs 541 8
Now, the global matrix, [K], and vector, {F}, can be assembled using
Eq. (1.130) as

Element 1
/ \‘
0 (%

(T |
3 -3 0 54
R S e IR Froeoe 2
B3 3F3 L3 0w 5 —Element 2
0+ 3¢ 33 7T -3|u| |7]
0 0 T -3 i 3 Uy 584
' ' ' "
Element 2 \ /‘ﬂ
Element 3

In the view of the variational equation, the virtual displacements at the essential
boundary should be zero, which correspond to the first and last rows in this
example, that is, u#; = uy = 0. Therefore, the first and last rows of the above
assembled matrix equation are unnecessary. In practice, we discard the first and
last rows, as we do not know the RHS of these equations (striking-the-rows).
Furthermore, we note that u; =u,=0. Thus, these two variables are removed,
and the first and last columns of matrix [K] are deleted (striking-the-columns).
Then, the four global equations reduce to two equations

o et -3{a)
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Solving the above matrix equation, we obtain u, =4/18 and u3 =5/18. Then using
the interpolation functions in Eq. (1.121), the approximate solution at each element
can be expressed as

4 1
EX, OS)CSg
4 1 1\ 1 2
u(x) = 8_1+E<x_§)’ ggxﬁg (1.132)
5 5 2\ 2
ﬁ‘ﬁ(x_§)’ gsrsl

The exact solution can be obtained by integrating the governing differential
equation twice and applying the two essential boundary conditions to solve for the
constants:

u(x) :%x(l —x%). (1.133)

The exact and approximate solutions are plotted in Fig. 1.21. The value of the
approximate solution at nodes 2 and 3 coincides with that of the exact solution,
but it is actually a coincidence. Otherwise, one can note that the three-element
solution is a poor approximation of the exact solution, and more elements are
needed to obtain a more accurate solution. This is because the finite element
solution is a linear function between nodes, whereas the exact solution is a cubic

polynomial in x. [ ]
0.08
— — u-approx.
u-exact
0.06 - g -~
- \
= \
\
\
0.02 ~ \
\
Fig. 1.21 Comparison 0 T T v v
of exact and approximate 0 0.2 0.4 0.6 0.8 1

solution for Example 3.6 X
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Fig. 1.22 FEight-node three-dimensional isoparametric solid element. (a) Finite element.
(b) Reference element

1.5.3 Finite Element Equations for 3D Solid Element

Isoparametric mapping: There are many ways to interpolate a solid component
using finite elements. Here, only the eight-node isoparametric hexahedral element
is taken as an example. For a more detailed discussion of solid elements, refer to
the additional literature on this topic by Zienkiewicz [14], Hughes [15], and
Bathe [16]. Figure 1.22 depicts a three-dimensional, eight-node, isoparametric
solid element. The element consists of eight nodes and three DOFs at each node.
The sequence of node numbers should be given in the same order with the one given
in Fig. 1.22a. Since different elements have different shapes, it would not be a
trivial task to develop the interpolation functions for individual elements. Instead,
the concept of mapping to the reference element will be used. The physical element
in Fig. 1.22a will be mapped into the reference element shown in Fig. 1.22b.
The physical element is defined in x;—x,—x3 coordinates, while the reference
element is defined in £&—#—{ coordinates. The reference element is a cube with the
length of each edge being 2 and has the center at the origin. Although the physical
element can have the first node at any corner, the reference element always has the
first node at (—1,—1,—1).

The interpolation functions are defined in the reference element so that different
elements have the same interpolation function. The only difference is the mapping
relation between the two elements. Let w; = [u;, U, u,3]T be the displacement
vector atnode I=1, ..., 8 and let &, =[&;, i, 1]T be the corresponding reference
coordinate. For the isoparametric element, the coordinate and the displacement of
the element can be expressed by

8
x(&) => Ni(&)x (1.134)
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and

u€) = > Ni(&u, (1.135)

M-

where X; is the nodal coordinate and N,(§) is the isoparametric shape function,
defined as

Ni®) = 51+ E)(1 +m)(1 +¢5), (1.136)

where (&, ny, £;) are the values of the reference coordinate corresponding to node
I, whose values are £1, as shown in Fig. 1.22. Since the above shape functions
are Lagrange interpolation functions, they satisfy the same properties as that of
the one-dimensional element, that is, V; is equal to 1 at node 1 and O at other nodes.

The solid element is defined by the coordinates of eight corner nodes: xy, X, . . .,
xg. These eight corner nodes are mapped into the eight corner nodes of the
reference element. In addition, every point in the physical element is also
mapped into a point in the reference element. The mapping relation is one to
one such that every point in the reference element also has a mapped point in
the physical element. This mapping relation is called an isoparametric mapping
because the same shape functions are used for interpolating geometry as well as
displacements. The above mapping relation is explicit in terms of x;, x,, and x3,
which means that when &, 5, and { are given, x;, x,, and x3 can be calculated
explicitly from Eq. (1.134). The reverse relation is not straightforward.

Jacobian of mapping: The idea of using the reference element is convenient
because it is unnecessary to build different shape functions for different elements.
The same shape functions can be used for all elements. However, it has its own
drawbacks. The strain energy requires the derivative of displacement, i.e., strains.
As can be seen in Eq. (1.89), the strains are defined as derivatives of displacements
in the physical coordinates. Since displacements are interpolated using shape
functions, it is necessary to differentiate the shape functions with respect to
physical coordinates. Since the shape functions are defined in the reference coor-
dinates, differentiation with respect to the physical coordinates is not straightfor-
ward. In this case, we use a Jacobian relation and the chain rule of differentiation for
that purpose.

The transformation from physical to reference elements can be defined using a
mapping relation. The Jacobian matrix of the mapping can be obtained by taking
the derivative of Eq. (1.134) as

L 0x . ONg(®)
J3x3 —a_é—lgl:xla—g- (1.137)
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Note that ON;/0€ is a (1 x 3) row vector. The Jacobian matrix is used to relate the
derivatives of shape functions between physical and reference coordinates. From
the fact that & = &(xy, x5, Xx3), # = n(xy, X2, X3), and = {(xy, x,, X3), we can write the
derivatives of N; as follows:

ONi _ ONidn | ONjdx, | ON:dx
0  Ox; 06  Oxp OE  Ox3 OE°
ON; _ ON;2xy | N Ox | ONidw
On 0Ox; Oy Ox, On  Ox3 On’
ON _ ONiOn | ONjdx, | ON:Ox
0  0x; 0  Ox, O  Ox3 O

Using the matrix form, the above equation can be written as

06 0On 0¢
(o o o) _fon o am) o on o
06 onp 0 ) | 0x; Ox» Oxs 06 on 0O¢
LoE oy 0OC
or
on, _on,
0&  0Ox

By using the inverse relation of the above relation, the spatial derivatives of
shape functions can be obtained as

%:%-J—l. (1.138)
ox  0¢

As seen from the above equation, the derivative of the shape function cannot be
obtained if the Jacobian is zero anywhere in the element. In fact, the mapping
relation between (x, x5, x3) and (&, #, {) is not valid if the Jacobian is zero or
negative anywhere in the element (—1<¢&, , { <1). The Jacobian plays an
important role in evaluating the validity of mapping as well as the quality of the
quadrilateral element. The fundamental requirement is that every point in the
reference element should be mapped into the interior of the physical element
and vice versa. When an interior point in the (&, 5, {) coordinates is mapped into
an exterior point in the (xy, x, x3) coordinates, the Jacobian becomes negative.
If multiple points in (&, 17, {) coordinates are mapped into a single point in (xy, x5, x3)
coordinates, the Jacobian becomes zero at that point. Thus, it is important to
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maintain the element shape so that the Jacobian is positive everywhere in the
element.

Displacement-strain relation: Using the spatial derivatives of shape functions,
the strain vector can be obtained in the following form:

8
ll) = ZB]U/, (1139)
=1
where
N 0 0]
0 N 0
0 0 Nis
B = (1.140)
Nip» Nii O
0 Nis Npo
[Ni3 0 Ny

is the discrete displacement—strain matrix of a solid element. In the above equation,
Ny is the spatial derivative of the shape function in Eq. (1.138). The approximation
of the strain variation, £(u), can be obtained in a similar way by replacing the nodal
displacements with nodal virtual displacements.

Element stiffness matrix and element force vector: Note that all variables in the
physical element are mapped into the reference element. Thus, it would be helpful if
the integration over element domain, Q@ can be converted into integration over
the reference element, which can be achieved using the following relation:

/// g(«)dg(E) - /_ll /_11 /_11 |J|dédnd.

In order to derive the element stiffness matrix, it is assumed that the entire structural
domain is discretized by a set of finite elements. The energy-bilinear form in
Eq. (1.100) is constructed for each element, and then, they will be assembled to
construct the global stiffness matrix. The energy-bilinear form of the element in
Eq. (1.100) can be approximated as

Zﬁ U // B DB, |J| dédnd¢ [u, = {d}' [K]{d}, (1.141)

8
I=1 J=1

where {d} = [u1, U1, U3, Unis Usd, Uns, - - ., Ug, Usgo, Ugs] is the vector of nodal
displacements, {H} is the vector of nodal virtual displacements, and [Kk] is the
24 x 24 element stiffness matrix. Instead of having the summation over all eight
nodes in the above equation, it is possible for the displacement—strain matrix to

be augmented for all nodes by [B] =[B, B, .. ., Bg]. Then, the above equation can
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be written without having the summation. The MATLAB code in the following
section will use this convention.

The load form in Eq. (1.101) contains the body force term and the surface
traction term. For simplicity, we only consider the case with the body force.
The load form is discretized without the traction force by

8

1 1 1
fw=>ur [ [ [ wirilena = (@) (0). (1.142)

1=1

By equating the above two equations, the discrete variational equation of a solid
element can be obtained as

{d} ' K{a} = (@} (£}, v{d} ez, (1.143)

where Z, C R** is the discrete space of kinematically admissible displacements.

Numerical integration: The finite element formulation requires integration over
the domain or over the boundary during the construction of the element stiffness
matrix and element force vector. Analytical integration is limited to simple
one-dimensional problems. Most integrals cannot be evaluated explicitly, and it is
often faster to integrate them numerically rather than to evaluate them analytically.
Among many numerical integration methods that have been proposed, a Gauss
integration rule is commonly used in the finite element formulation due to its
simplicity and accuracy. In this section, a brief introduction to the Gauss integration
rule is provided. A rigorous study of numerical integration, including error esti-
mates, can be found in Chap. 5 of Atkinson [17].

Consider one-dimensional integration of a function f{¢) over the interval [—1, 1].
Although the integration interval can be arbitrary, the interval [—1, 1], is used
without the loss of generality because it is convenient to apply the interval to the
reference element in the finite element formulation. A general form of Gauss
integration can be written as

1 NG
Lf(é) dé ~ wa(g,-), (1.144)

where NG is the number of integration points, &; is the integration point, and w; is
the nonnegative integration weight. The integration points and weights are chosen
such that the right side of Eq. (1.144) approximates the left side polynomials, f(¢),
as accurately as possible. In general, an NG-point Gauss integration method inte-
grates (2NG — 1)-order polynomials, exactly. This method is extremely accurate in
most cases, and is the one that is the most frequently used in modern finite element
formulations. Table 1.4 summarizes the integration points and weights for Gauss
integration.
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Table 1.4 Gauss integration  “ng Integration points (&;) Weights (w;)
points and weights
1 0.0 2.0
2 +0.5773502692 1.0
3 +0.7745966692 0.5555555556
0.0 0.8888888889
4 +0.8611363116 0.3478546451
+0.3399810436 0.6521451549
5 +0.9061798459 0.2369268851
+0.5384693101 0.4786286705
0.0 0.5688888889
a Uy b 7 A ¢ 7 A
X X X
3 % % é < x x é

Fig. 1.23 Gauss integration points in two-dimensional reference elements. (a) 1 x 1. (b) 2 x 2. (¢)
3x3

A multidimensional integration can be constructed by employing the
one-dimensional integration rule on each coordinate separately. In two- and
three-dimensional domains, the Gauss integration rule can be written as

NG NG
//ff, )aean =33 o0y (En) (1.145)

and

Lopetopl NG NG NG
/l/l/lf(é,n,C)dafdndC:ZZZwimjwkf(gi,nj,gk), (1.146)
T i=1 j=1 k=1

respectively. Figure 1.23 illustrates the integration points in two-dimensional
reference elements. The computational cost of Gauss integration is proportional
to (NG)? for two-dimensional problems and (NG)? for three-dimensional problems.
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1.5.4 A MATLAB Code for Finite Element Analysis

In Chap. 2, a MATLAB code, NLFEA.m, will be introduced, which solves for
nonlinear problems using eight-node hexahedral elements. Detailed usage of
NLFEA.m will be explained in Chap. 2. In general, a nonlinear finite element
analysis code can also solve for linear problems. In this section, MATLAB codes,
SHAPEL.m and ELAST3D.m, are introduced that can solve for linear structural
problems using NLFEA.m. The first code, SHAPEL.m, calculates the shape func-
tions, their derivatives, and determinant of Jacobian of an eight-node hexahedral
element. It takes two input variables, XI and ELXY. The vector, XI, of the
reference coordinates, (&, 7, {), is the location where the shape functions and their
derivatives are calculated, and ELXY is the 3 x 8 matrix that contains the nodal
coordinates of eight nodes of the element. Since shape functions are normally
calculated at Gauss integration points, XI often contains the (&, 7, {) coordinates
of the Gauss integration points. The SHAPEL function returns with three variables:
SF array, (8 x 1), contains shape functions; GDSF array, (3 x 8), contains the
derivative of shape functions; and DET is the Jacobian of the mapping. The user
can check the validity of the mapping using the Jacobian. In the code, GJ array
stores the 3 x 3 Jacobian matrix, and XNODE array stores the reference coordinates
(&1, ny, €p) of the eight corner nodes that are used in Eq. (1.136).

The second code, ELAST3D.m, assembles the element stiffness matrices to the
global stiffness matrix. It has several input variables, whose meanings are summa-
rized in Table 1.5. Note that the two logical variables, UPDATE and LTAN, are
introduced to make the program more efficient. When UPDATE is true, then
ELAST3D.m will calculate stresses at each integration point and store them into
the global array, STGMA. This process is necessary when stress values are printed
out by NLFEA.m. When LTAN is true, then the global stiffness matrix is assembled.
In linear analysis, LTAN should be true all the time. ELAST3D.m calls SHAPEL.m
to calculate the shape functions and their derivatives at each integration point. As
explained in Eq. (1.139), the strain is calculated by multiplying nodal displace-
ments with the derivatives of shape functions as

Table 1.5 Input variables for ELAST3D.m

Variable Array size Meaning

ETAN (6,6) Elastic stiffness matrix Eq. (1.81)
UPDATE Logical variable If true, save stress values

LTAN Logical variable If true, calculate the global stiffness matrix
NE Integer Total number of elements

NDOF Integer Dimension of problem (3)

XYZ (3,NNODE) Coordinates of all nodes

LE (8,NE) Element connectivity
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% Strain
DEPS=DSP*SHPD' ;
DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) ...
DEPS(1,2)+DEPS(2,1) DEPS(2,3)+DEPS(3,2) DEPS(1,3)+DEPS(3,1)1";

Then, stress can be obtained by multiplying the elastic stiffness matrix with the
strain as

% Stress
STRESS = ETAN*DDEPS;

One thing that is uncommon for linear analysis is the residual force array,
FORCE, which is different from the external applied force. The FORCE array is
required because the linear problem is solved as a nonlinear problem. A detailed
explanation of residual force will be provided in Chap. 2. In order to assemble the
local stiffness matrix into the global stiffness matrix, the IDOF array is used to store
the location of the global DOFs corresponding to the local 24 DOFs. The XG and
WGT arrays store one-dimensional integration points and corresponding weights, as
in Table 1.4. In this implementation, only two-point integration is used for each
coordinate direction.

function [SF, GDSF, DET] = SHAPEL (XI, ELXY)
%*************************************~k*******‘k********‘k*************
% Compute shape function, derivatives, and determinant of hexahedral
element

Qhkkhkkkhkhhkhhhhhhhhhhhhhhhhkhhhhhhhkhkhhhhhkhkhhkhhkhkhkhkkkkkhkhkkk*

%%

XNODE=[-1 1 1-1-1 1 1-1;
-1-1 1 1-1-11 1;
-1-1-1-1 1 11 17];

QUAR = 0.125;
SF=zeros(8,1);
DSF=zeros(3,8) ;
for I=1:8
XP =XNODE(1,1I);
YP = XNODE (2, 1) ;
ZP = XNODE(3,1I) ;

2

]

XI0 = [1+XI(1)*XP 1+XI(2)*YP 1+XI(3)*ZP];

%

SF(I) = QUAR*XIO (1)*XIO0(2)*XI0(3);

DSF(1,I) = QUAR*XP*XIO0(2)*XIO0(3);

DSF(2,I) = QUAR*YP*XIO0 (1) *XIO0(3);

DSF(3,I) = QUAR*ZP*XI0 (1) *XI0(2);
end
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GJ = DSF*ELXY;

DET = det (GJ) ;

GJINV=1inv (GJ) ;

GDSF=GJINV*DSF;
end

69

function ELAST3D (ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)

%****‘k‘k‘k*‘k‘k***‘k‘k‘k*‘k‘k************‘k‘k******************************

o0

linear elasticmaterial model.

o0 o

4
o0

global DISPTD FORCE GKF SIGMA
% Integration points and weights (2-point integration)
XG=[-0.57735026918963D0, 0.57735026918963D0] ;
WGT=[1.00000000000000D0O, 1.00000000000000D0] ;

%
% Stress storage index (No. of integration points)
INTN=0;

% Loop over elements, this ismain loop for computing K and F
for IE=1:NE

% Element nodal coordinates

ELXY=XYZ (LE(IE, :),:);

% Local to global mapping

IDOF=zeros(1,24);

for I=1:8

ITI=(I-1)*NDOF+1;

IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1: (LE(IE,I)-1)*NDOF+3;

end

DSP=DISPTD (IDOF) ;

DSP=reshape (DSP, NDOF, 8) ;

%

% Loop over integration points

for LX=1:2, forLY=1:2, for LZz=1:2
E1=XG (LX) ; E2=XG(LY) ; E3=XG(LZ) ;
INTN = INTN + 1;

%
% Determinant and shape function derivatives
[~, SHPD, DET] = SHAPEL([E1l E2 E3], ELXY) ;
FAC=WGT (LX) *WGT (LY) *WGT (LZ) *DET;

% Strain
DEPS=DSP*SHPD' ;
DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) ..

Main program computing global stiffness matrix and residual force for

KhkKk Kk Kk kKhK KRRk kkhkhkkh Ak hkhkhkhhhhhhkhhhhhhhkhkhhhhhhhhhhhhhhhhkhkhdhkhk k k kx*x%

DEPS(1,2)+DEPS(2,1) DEPS(2,3)+DEPS(3,2) DEPS(1,3)+DEPS(3,1)]1";

o
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% Stress
STRESS = ETAN*DDEPS;
%
% Update stress (Store stress)
if UPDATE
SIGMA (:, INTN)=STRESS;
continue;
end
%
% Add residual force and stiffness matrix
BM=zeros (6,24) ;

for I=1:8
COL=(I-1)*3+1:(I-1)*3+3;
BM(:,COL)=[SHPD(1,I) O 0;
0 SHPD(2,I) 0;
0 0 SHPD(3,1I);
SHPD(2,I) SHPD(1,I) O;
0 SHPD(3,I) SHPD(2,I);
SHPD(3,I) O SHPD(1,I)];
end
%

% Residual forces
FORCE (IDOF) = FORCE (IDOF) - FAC*BM' *STRESS;
%
% Tangent stiffness
if LTAN
EKF = BM' *ETAN*BM;
GKF (IDOF, IDOF) =GKF (IDOF, IDOF) +FAC*EKF;
end
end, end, end
end
end

Example 1.16 (Uniaxial tension of a cube) Using NLFEA.m in Chap. 2, calculate
displacement and stress of a three-dimensional brick element under uniaxial tension
as shown in Fig. 1.24. Assume an isotropic material with the two Lame’s constants
of A=110.7 GPa and 1=80.2 GPa.

Solution NLFEA.m can be called with appropriate model definitions as presented
in Chap. 2. A nodal force of 10 kN is applied at the four nodes on the top, while the
bottom four nodes are fixed in such a way that the uniaxial tension condition can be
met, that is, wuy,=u,=u,=ury=u.=uz.=uy.;=0. Nodal coordinates are
defined in XYZ array, and element connectivity is in LE array. EXTFORCE stores
externally applied force, and SDISPT stores prescribed displacements. These two
arrays are given in the format such that each row includes [Node, DOF, Value]
format. For linear elastic material, MID = 0 is used with two material constants in
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Fig. 1.24 A brick element X3
under uniaxial tension T
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PROP array, that is, two Lame’s constants PROP = [LAMBDA, MU]. Load
increment array, TIMS, and program parameters are mainly designed for nonlinear

analysis; therefore, they will be discussed in Chap. 2.

o0

% One element example

o0

% Nodal coordinates
XYyz=[000;100;110;010;001;101;111;0117;
o

% Element connectivity
LE=[123456738];

% External forces [Node, DOF, Value]
EXTFORCE=[53 10.0E3; 6 310.0E3; 73 10.0E3; 83 10.0E3];

% Prescribed displacements [Node, DOF, Value]
SDISPT=[110;120;130;220;230;330;410;4301;

e

% Material properties

% MID:0 (Linear elastic) PROP=[LAMBDA NU]
MID=0;

PROP=[110.747E3 80.1938E3];

o
s

% Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.01.01.00.01.0]";

o
s

% Set program parameters
ITRA=30; ATOL=1.0E5; NTOL=6; TOL=1E-6;

% Callingmain function
NOUT = fopen ('output.txt’,’'w’);

NLFEA (ITRA, TOL, ATOL, NTOL, TIMS, NOUT, MID, PROP, EXTFORCE, SDISPT, XYZ, LE) ;

fclose (NOUT) ;
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Even if the problem is linear, NLFEA.m will solve it as if it is a nonlinear
problem. However, due to linear relationship between the applied load and dis-
placement, the Newton—Raphson iteration will converge in the first iteration. The
following shows the command-line output after calling NLFEA.m.

Time Time step Iter Residual
1.00000 1.000e+00 2 5.45697e-12

The details of Time and Time step will be discussed in Chap. 2. It shows
Iter = 2 because NLFEA.m calculates the internal and external forces at ITter =
1, and then checks the convergence at Tter = 2. Therefore, even if it shows Iter
= 2, the actual Newton—Raphson iteration is equal to 1. Residual is the maxi-
mum norm of the difference between the internal and external loads. The conver-
gence is determined based on the magnitude of the residual.

NLFEA.m stores analysis results in output.txt file, which includes nodal dis-
placements and element stress at all integration points. Below is the contents of
output.txt file:

TIME = 1.000e+00

Nodal Displacements

Node Ul U2 U3

1 0.000e+00 0.000e+00 0.000e+00

2 -5.607e-08 0.000e+00 0.000e+00

3 -5.607e-08 -5.607e-08 0.000e+00

4 0.000e+00 -5.607e-08 0.000e+00

5 -5.494e-23 1.830e-23 1.933e-07

6 -5.607e-08 4.061e-23 1.933e-07

7 -5.607e-08 -5.607e-08 1.933e-07

8 -8.032e-23 -5.607e-08 1.933e-07
Element Stress

S11 S22 S33 s12 S23 S13
Element 1
0.000e+00 1.091e-11 4.000e+04 -2.322e-13 6.633e-13 -3.317e-12
0.000e+00 0.000e+00 4.000e+04 -3.980e-13 1.327e-13 -9.287e-13
-3.638e-12 7.276e-12 4.000e+04 -1.592e-12 -2.123e-12 -3.317e-12
0.000e+00 0.000e+00 4.000e+04 2.653e-13 -2.123e-12 5.307e-13
0.000e+00 0.000e+00 4.000e+04 5.638e-13 3.449e-12 -1.327e-12
0.000e+00 0.000e+00 4.000e+04 -1.194e-12 4.776e-12 1.061le-12
0.000e+00 0.000e+00 4.000e+04 -7.960e-13 2.919e-12 -3.449e-12
3.638e-12 3.638e-12 4.000e+04 -5.307e-13 3.715e-12 1.061le-12
*

** Successful end of program ***

Since the applied load and boundary conditions are such that the stress of the
cube is in the uniaxial tension in the z-coordinate direction. As expected, the cube is
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extended in z-coordinate direction (us, = ug, = 7, = ug. = 1.933e — 07) based on
nodal displacements. Due to Poisson’s effect, there is lateral contraction
(uy=u,=—5.607¢ — 08). It is noted that the displacements of those degrees-of-
freedom whose displacement is prescribed in SDISPT array exactly satisfy the
prescribed displacements. However, for other degrees-of-freedom whose values are
not prescribed but supposed to be zero have a very small value, such as
usy, =1.830e — 23 due to numerical error. These values should be interpreted as
zero. Among the six components of stress, only S33 = 4.000e+04N is the only
nonzero stress component; all other components are effectively zero within numer-
ical error. Note that this value of stress is expected as the applied load is 40 kN and
the area is 1. ]

1.6 Exercises

P1.1 Using Cartesian bases, show that (u ®v) - (W ®X) =(v-w)u ® X where u, v,
w, and x are rank-1 tensors.

P1.2 Any rank-2 tensor T can be decomposed by T=S+ W, where S is the
symmetric part of T and W is the skew part of T. Let A be a symmetric
rank-2 tensor. Show A:W=0and A: T=A:S.

P1.3 For a symmetric rank-2 tensor, E, using the index notation, show that
I:E=E, where I = ![5,8; + 56| is a symmetric unit tensor of rank-4.

P1.4 The deviator of a symmetric rank-2 tensor is defined as Ag., =A — A1,
where A™ = 1(A; + Az + As3). Find the rank-4 deviatoric identity tensor,
Ly, that satisfies Agey = Lgey : A.

P1.5 The norm of a rank-2 tensor is defined as ||A|| = v/A : A. Calculate the
following derivative, 0||A||/OA. What is the rank of the derivative?

P1.6 A rank-2 unit tensor in the direction of rank-2 tensor A can be defined as
N=A/||A|. Show that ON/OA = [I— N ® NJ/||A]|.

P1.7 Through direct calculation of a rank-2 tensor, show that the following
identity e, det[A] = e;A; A Ak 18 true.

P1.8 For a vector, r = x;€; +x,€, +x3e3, and its norm, r =Irl, prove V - (rr) = 4r.

P1.9 A velocity gradient is decomposed into symmetric and skew parts,
Vv =d + w, where

d*l a\),‘+a\/j 71 av,-iavj
) Oxj 0x;)’ @i=5 a—xj Oxi)’
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Show that

(a) For a symmetric stress tensor, 6: Vv=oc:d.
Vi

(b) Wi = Jeijkemn e

P1.10 A symmetric rank-4 tensor is defined by D =11 ® 1+ 2ul, where 1 = [§;] isa
unit tensor of rank-2 and I = %[6l~k6ﬂ + 6,»1§,~k} is a symmetric unit tensor of
rank-4. When E is an arbitrary symmetric rank-2 tensor, calculate S=D: E
in terms of E.

P1.11 Using integration-by-parts, calculate / = [ x cos(x) dx.
P1.12 Using integration-by-parts, calculate / = f ¢”* cos(x) dx.

P1.13 Calculate the surface integral of the vector function, F = xe; + ye,, over the
portion of the surface of the unit sphere, S:x*>+y*+2z> =1, above the xy-

plane, i.e., z>0.
/F -ndsS.
S

P1.14 Evaluate the surface integral of a vector, F = xe; + ye, + zes3, over the closed
surface of the cube bounded by the planes, x==+1,y==+1,z==1, using
the divergence theorem.

/ F - ndS.
s

P1.15 Consider a unit-depth (in z-axis) infinitesimal element as shown in the figure.
Using force equilibrium, derive the governing differential equation in two
dimensions (equilibrium in x- and y-directions). Assume that the uniform
body forces, £ =[f?, f5], are applied to the infinitesimal element.

(o253 | ﬁ%

| 721|y+%
Y Tio|,
2
Oy X_d‘<—l I—»O-HLJ’X
2

B X
T |x,ﬁ
2

2} | -
2

Oy | D
2

Fig. P1.15

P1.16 In the above unit-depth (in z-axis), infinitesimal element, show that the stress
tensor is symmetric using moment equilibrium.
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P1.17 The principal stresses at a point in a body are given by o, =4,0,=2
and o3 =1, and the principal directions of the first two principal stresses
are given byn(!) = 50,1, = 1) andn® = 75(0, 1, 1). Determine the state of
stress at the point, i.e., the six components of a stress tensor.

P1.18 Find the principal stresses and the corresponding principal stress directions
for the following cases of plane stress:

(a) o1, =40 MPa, 65, =0 MPa, ¢,, =80 MPa.
(b) 6,1 =140 MPa, 65, =20 MPa, 61, = —60 MPa.
(C) o011 = —120 MPa, 622:50 MPa, 01— 100 MPa.

P.1.19 Determine the principal stresses and their associated directions, when the
stress matrix at a point is given by

1 1
[6]=1]1 1 2|MPa.
2 1

P1.20 Let the x'y’z’ coordinate system be defined using the three principal direc-
tions obtained from Problem P1.19. Determine the transformed stress
matrix, [6]y,, in the new coordinate system.

P1.21 The stress—strain relationship for a three-dimensional isotropic solid is given
asoj;; = [Ké,-jékl + 2u (§ik§ﬂ — %5,-,—5;{/)] &, Where K is the bulk modulus and u
is the shear modulus. In practice, stress and strain are written in the vector
forms such that {6} = {611, 072, 033, 012, 023, Glz}T and {€} = {811, €22,
€33, V12> V23 ylz}T. Then, the stress—strain can be written as {6} = [D]{e}.
Write the expression of a 6 x 6 elasticity matrix, [D], in terms of K and p.

P1.22 For steel, the following material data are applicable: Young’s modulus,
E =207 GPa, and shear modulus, G =80 GPa. For the strain matrix at a
point, shown below, determine the symmetric 3 X 3 stress matrix.

0.003 0  —0.006
=] 0  —0001 0.003
~0.006  0.003  0.0015

P1.23 A strain rosette consisting of three strain gages was used to measure the
strains at a point in a thin-walled plate. The measured strains in the three
gages are €4 = 0.001, e = —0.0006, and ec =0.0007. Note that gage C is at
45° with respect to the x-axis.

(a) Determine the complete state of strains and stresses (all six components)
at that point. Assume that £ =70 GPa, and v =0.3.

(b) What are the principal strains and their directions?

(c) What are the principal stresses and their directions?

(d) Show that the principal strains and stresses satisfy the stress—strain relations.
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e

Fig. P1.23

P1.24 A rectangular plastic specimen of size 100 x 100 x 10 mm? is placed in a
rectangular metal cavity. The dimensions of the cavity are
101 x 101 x 9 mm®. The plastic is compressed by a rigid punch until it is
completely inside the cavity. Due to the Poisson’s effect, the plastic also
expands in the x- and y-directions and fills the cavity. Calculate all stress and
strain components and the force exerted by the punch. Assume that there is
no friction between all contacting surfaces. The metal cavity is rigid. Elastic
constants of the plastic are £ =10 GPa and v =0.3.

Rigid punch Rigid punch

Plastic

Rigid die

I-
7

Rigid die

L |

Fig. P1.24

P1.25 Repeat Problem P1.24 with the elastic constants of the plastic defined as
E =10 GPa and v =0.485.

P1.26 The strain energy and work done by applied loads are given in the following
equations. When the solution is expressed by u(x) =cx+ 6'2)(2, calculate the
solution using the principle of minimum potential energy.

1

11 N2
U:7/ (u) d, W= [ udc+ul).
2 0 0

P1.27 The governing differential equation for the bar component in the figure is
given as
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where the subscribed comma denotes the differentiation with respect to the
spatial coordinate, i.e., u; = du/dx. Derive the weak form using the principle
of virtual work.

. E, A(x)

Fig. P1.27

P1.28 Derive the weak form of a two-dimensional, steady-state heat transfer problem.
P1.29 Derive the weak form of a simply supported beam problem.

P1.30 When the potential energy of P1.29 is given, derive the variational equation
using the principle of minimum potential energy.

= /OL (%El(v,“f —fv> dx.

P1.31 Derive the principle of virtual work for the simply supported Kirchhoff plate
element from the governing equation:

[D(u,11 +vu2)] ) + [D(up +vun)] p +2(1 —v)[Dug] 1, =f.

P1.32 Consider a bar element as shown in the figure. The cross-sectional areas are
Aj and A, at nodes 1 and 2, respectively, and vary linearly. In addition, the
gravitational acceleration is applied along the axial direction of the bar, such
that the distributed load per unit length is f(x) =pgA(x), where p is the
density and g is the gravitational acceleration. Construct the discrete varia-
tional equation for the element.

a b

= E, A(x) =
. | ¢
= /& _+ ? N
k L

+1
|
|

Finite Element Reference Element

Fig. P1.32
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P1.33 For the Euler beam element shown in the figure, derive the interpolation
functions, N;(&), stiffness matrix, K, and nodal force vector, f. Assume that
the uniformly distributed load is f(x) =f. Note that the reference element is
defined in the domain, £ =[—1, 1].

" @) uz b
AN sand T
I ! |
X1 X2
Finite Element Reference Element
Fig. P1.33

P1.34 Below is the governing differential equation of one-dimensional bar under
uniformly distributed load. Using one bar element, calculate the displace-
ment at x =L andx = IL. Compare these displacements with that of the exact
calculation. (Note: the exact solution can be calculated by integrating the
differential equation twice.)

7EAL£,11 :f, X € (O,L),
u(0) =0,
u,l(L) =0.

P1.35 An Euler beam element shown in the figure is under a uniformly distributed
couple, C. Calculate the equivalent nodal forces. Using a simply supported
beam under a uniform couple, show that the reaction forces are equal and
opposite in directions with the equivalent nodal forces

C
SEaaaaaaaaaaaS
(= ESEEE2EEEDD:)
) L |

Fig. P1.35

P1.36 Integrate the following function using one-point and two-point numerical
integration (Gauss quadrature). Explain how to integrate it. The exact inte-
gral is equal to 2. Compare the accuracy of the numerical integration with the
exact one.

I:/Oﬂ sin (x) dx.
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Chapter 2
Nonlinear Finite Element Analysis Procedure

2.1 Introduction to Nonlinear Systems in Solid Mechanics

In order to explain nonlinear systems, it is necessary to define linear systems first.
A linear system is defined such that the relationship between input and output is
linear. Specifically, in structural mechanics, the relationship between applied
loads (input) and displacements (output) is linear. When an applied load is
doubled, the displacement will also be doubled. Thus, it is unnecessary to solve
the linear system again when a different magnitude of load is applied. This
property makes it possible to use the method of superposition. Mathematically,
linearity can be explained using a linear operator. A general operator, A, is called
linear when it satisfies A(au + pw)=aA(u)+ pA(w) for any u and w in D, and
for any scalars a and 8. Even if it is abstract, nonlinear systems are defined as
everything else that is not linear. Therefore, it is important to understand charac-
teristics of linear systems in order to understand that of nonlinear systems.

Figure 2.1 shows a linear relationship between input x and output y. In structural
mechanics, input x represents applied loads or applied heat, while output
y symbolizes displacements, stresses, or temperatures. For example, let x; and x,
be transverse loads applied at two different locations of a beam, and let y be the
reaction moment at the wall. Let the reaction moment at the wall be y; when only x;
is applied, vice versa, y, is the reaction when only x, is applied. Then, when a
combined load 2x; + 3x, is applied to the beam, there is no need to solve the system
again. Because of linearity, the reaction moment under the combined load becomes
2y, + 3y,, which is basically the principle of superposition. This is very useful,
especially when the magnitude of load varies frequently.

In order to understand linear structural systems further, consider the diagram in
Fig. 2.2, which illustrates the flow of physical quantities in structural systems. First,
when loads are applied to the system, it generates local stresses in order to
equilibrate against the globally applied loads. In an elastic system, stresses are
generated by deforming its shape, during which strains are generated. Strains at
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Fig. 2.2 Linearity in structural systems

every point are accumulated (or integrated) to yield displacements in the global
level. In such a case, the structural system is called linear when all relationships
among loads, stresses, strains, and displacements are linear. If any of them is not
linear, then the structural system becomes nonlinear.

Then, let us consider a simple example of uniaxial tension of a bar in order to
understand the linear relationship among the abovementioned physical quantities.
First, when a load, F, is applied as shown in Fig. 2.2a, the bar elongates. In addition,
because of Poisson’s effect, the original cross-sectional area, Ao, of the bar shrinks
to A. Then, the stress generated by the load, F, can be calculated by dividing the
load by the cross-sectional area, A, i.e., 6 = F//A. However, the cross-sectional area
depends on the load; as the load increases, the area decreases. Therefore, the
relationship, ¢ = F/A(F), is nonlinear between ¢ and F. However, if the load is
small enough so that the difference between Ag and A is ignorable, then it is possible
to approximate the stress as o =F/Ay. Based on this approximation, now the
relationship between load and stress becomes linear. This approximation becomes
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invalid if the elongation increases significantly such that the change in cross section
cannot be ignorable.

Next, consider the relationship between stress and strain. For general metallic
materials, such as aluminum or steel, Fig. 2.2b illustrates the stress—strain curve that
can normally be obtained from uniaxial tension tests. Initially, the stress is
increased linearly proportional to the strain. In this region, the stress and strain
relationship is linear and reversible; that is, if the stress varies, the strain also varies
along the straight line. The slope of this straight line corresponds to Young’s
modulus. Therefore the relation between stress and strain is linear, i.e., 6 = Ee.
When the stress reaches a threshold, called the yield strength, the relationship
becomes nonlinear and its behavior is irreversible. Therefore, in order to be a linear
relationship between stress and strain, the stress must be less than the yield strength.

Lastly, the relationship between strain and displacement must be linear. Con-
sider the elongation of the bar, again, in Fig. 2.2c. The original length, L, of the bar
is increased by 6L and ends up as the final length of L. In this case, 6L is called the
displacements or deformation. Then, the strain is defined as the change in length,
i.e., e=0L/L. However, since the deformed length, L, already includes the dis-
placement, 5L, the relationship becomes nonlinear. Similar to the case of force and
stress, if the displacement is small, then the definition of strain can be approximated
by € = 6L/L so that the relationship between displacement and strain can be linear.
This approximation is only valid when the displacement is small compared to the
length of the bar.

As discussed above, many phenomena in physics show nonlinear behaviors, and
linear systems are approximation of nonlinear systems under limited conditions.
For example, the relation between the deflection of a beam and applied load at its tip
is linear when the deflection is small. This includes small strain, small displace-
ment, and small rotation in solid mechanics. However, as the deflection becomes
large, the relation becomes nonlinear. In this sense, a linear system is an approx-
imation of a nonlinear one. Many engineering applications can be solved by
considering them as linear. For example, it is not expected to have large deflections
in bridges or buildings. In such cases, linear analysis works well for estimating
deflections and stresses. In fact, the same system can be solved using nonlinear
analysis, but the result will not be much different.

In addition, solving linear systems has several advantages compared to solving
nonlinear ones. First, linear systems are easier to solve. All the linear systems in the
previous chapter can be solved using the system of linear equations in the form of
[KI{Q} = {F}. Nonlinear systems, on the other hand, cannot be solved in such a
simple form. In fact, nonlinear systems are often solved using a sequence of linear
analyses. Thus, the computational cost of a linear analysis is usually much less than
that of a nonlinear analysis. Second, once the problem is well posed, the solution of
a linear system always exists and it is unique. However, there is no guarantee that a
nonlinear system has a unique solution. In addition, as described before, solutions
from linear systems can be superimposed onto each other to produce a solution to
other linear systems.
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If a structural system is solved using the linearity assumption, the results may
end up physically erroneous. For example, consider a cantilevered beam under a
couple at the tip as shown in Fig. 2.3. The magnitude of the couple is big enough so
that the beam undergoes a large deformation. In reality, it is not difficult to imagine
that the beam will go through deformation as shown in Fig. 2.3a. In this case, the
length of the neutral axis remains constant even if the beam goes through a large
deformation. However, if a linear assumption is used, then the beam will deform as
shown in Fig. 2.3b, which elongates the length of the beam, significantly. This
happens because the assumption of linearity ignores the effect of bending moments
on the rotation of the neutral axis. Because of that, in linear systems, the length
of the beam is always measured in the undeformed geometry. In such a case,
the assumption of linearity is obviously not valid, and linear analysis leads to
erroneous results.

The assumption of linearity can also cause a difficulty that should not happen in
practice. For example, consider two trusses that are connected through pin-joints as
shown in Fig. 2.4. Since a truss is a two-force member, it can only support an axial
force. When a vertical load, F, is applied at the center joint, the two trusses will
rotate until they find equilibrium against the load. In that case, the vertical compo-
nent of axial forces in the two trusses is in equilibrium with the vertical load. Due to
the assumption of linearity, however, linear analysis uses the undeformed geometry
as a reference, and these two-force members cannot support the vertical load.
Therefore, linear analysis will fail to solve the system.

Although linear systems are easy to solve, many engineering applications cannot
be modeled as a linear system. In solid mechanics, such a situation usually occurs
when the deformation is large, material response is complex, boundary conditions

b

Real beam Linear beam

Fig. 2.3 Deformation of a beam under a couple

Fig. 2.4 Deformation of trusses under a vertical load
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Fig. 2.5 Nonlinearities in solid mechanics

vary, etc. For example, a stamping process of sheet metals involves a large
deformation of the blank, complex contact conditions between the blank and die,
and permanent deformation of the material. It is clear that such a complex problem
cannot be solved using linear analysis. Unfortunately, there is no easy criterion for
when a problem can be modeled as linear or nonlinear. The choice of linear or
nonlinear analysis often depends on the purpose of the analysis and the level of
allowable errors. An important objective of this text is to address when an engi-
neering problem should be modeled as a nonlinear system.

Although there are many different ways of categorizing different nonlinearities, it
is generally accepted that four different sources of nonlinearity exist in solid mechan-
ics. Figure 2.5 illustrates the occurrence of these nonlinearities in their relations
among applied loads, stresses, strains, displacements, and boundary conditions.

2.1.1 Geometric Nonlinearity

Geometric nonlinearities, in general, represent the cases when the relations among
kinematic quantities (i.e., displacement, rotation, and strains) are nonlinear. Such
nonlinearities often occur when deformation is large. Figure 2.6a shows an example
of geometric nonlinearity when a couple is applied at the tip of a cantilevered beam.
Due to the large rotation, linear analysis cannot be used to accurately represent the
deformation. It is clear that the relation between the applied couple and the tip
displacement is nonlinear, as shown in Fig. 2.6b.

For the linear problems in the previous chapter, the relation between strain and
displacement is linear. For example, in the case of a one-dimensional bar element,
this relation can be written as

(2.1)

If the displacement is doubled, the strain will also be doubled, which is a funda-
mental property of linear problems. Note that the above relation is valid only when
displacement and its gradient are infinitesimal. As these quantities become large,
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the above relation is not accurate, and the following definition of strain needs to be
introduced:

E(x) = % + %GEM) } (2.2)

Note that a higher-order term exists in the definition of strain. Due to this higher-
order term, the relation between displacement and strain becomes nonlinear. It can
be easily observed that when (du/dx) < 1, the two strains become identical, i.e.,
&(x) = E(x). In fact, Eq. (2.1) is an approximation of Eq. (2.2) under the condition of
infinitesimal deformation. As shown in Fig. 2.7, however, the difference between
the two strains becomes larger as the magnitude of strain increases. At 5 % strain,
for example, the error between the two strains is 2.5 %, while the error becomes
15 % at 30 % strain.
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In general, structural equilibrium is written in the form of an integral equation.
Although it is not clearly mentioned in the previous chapter, one of the most
important assumptions of linear systems is that, due to infinitesimal deformation,
the difference between the deformed and undeformed domains is ignored. Thus, the
integration is performed over the undeformed domain in linear systems. In the
precise sense, however, this equilibrium should be satisfied in the deformed
domain—the structure is in equilibrium after deformation. Then, a dilemma occurs
when the deformed domain is used for integration. The equilibrium equation,
written in integral form over the deformed domain, solves for an unknown dis-
placement, and this displacement determines the deformed domain. Such a depen-
dency between the displacement and the deformed domain is an important criterion
to identify geometric nonlinearities. In Chap. 3, detailed discussions of how to
consider the effect of a deformed domain will be presented.

2.1.2 Material Nonlinearity

Material nonlinearity represents the case when the relation between stress and strain
is not linear. This relation is often referred to as the constitutive relation. In linear
systems, this relation is written as

{o} = [D}{e}, (2.3)

where [D] is the elastic modulus matrix. Since [D] is constant, the relation between
stress and strain is linear—if the strain is doubled, the stress will also be doubled.
This relation represents a general behavior of elastic materials under an infinites-
imal deformation. When the stress—strain relation cannot be represented by a
constant matrix, [D], it is called a nonlinear material. In such a material, the elastic
modulus matrix depends on the current status of deformation. In some cases, it also
depends on the past history of deformation. In Chap. 3, nonlinear elastic and
hyperelastic materials are discussed. These materials are fundamentally elastic—
deformation disappears upon removing applied loads. Thus, there exists a strain
energy density that depends on deformation. Figure 2.8a illustrates the linear and
nonlinear elastic responses using a one-dimensional spring device. Assuming that
both the length and cross-sectional area of the device are unitary, displacement
becomes strain and applied load becomes stress. In the case of linear springs, the
strain energy density is a quadratic form of strain, defined as'

! Here the symbol E is used for the elastic modulus of a material, while E(x) in Eq. (2.2) represents
nonlinear strain.
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Fig. 2.8 Material nonlinearity models. (a) Linear and nonlinear elastic spring models. (b) Elasto-
plastic spring model. (¢) Visco-elastic spring model
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U= EESZ (2.4)

and the stress—strain relation can be defined by differentiating the strain energy
density as

dU
o= = Ee. (2.5)
In the case of nonlinear springs, the strain energy density is a more complex form
than that of Eq. (2.4), and the stress—strain relation becomes nonlinear.

Another important type of material nonlinearity is the plastic behavior of
materials. This is a common behavior of metal-type materials in which the material
deforms elastically up to a certain limit. After that, the material shows permanent
deformation, which remains upon removing applied loads. Figure 2.8b illustrates
the plastic behavior of a material using a one-dimensional spring and a friction
device. The friction device does not slip until the stress reaches a limit value, called
the yield stress, oy. When the stress is less than the yield strength, the displacement
increases in the same way as a linear spring with slope, E. When the stress
reaches the yield strength, the displacement increases without requiring a further
increase in stress. The device cannot support stress higher than the yield strength.
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Upon removal of the stress, the displacement reduces with the same slope, E.
As can be found in Fig. 2.8b, a permanent deformation remains after completely
removing the applied stress. As is clear in the above explanation, the stress—strain
relation depends on the past history of deformation. In addition, it is difficult
to express the stress—strain relation in a simple form. Rather, the relation
is determined at an instance of the deformation path. Thus, in general, the stress—
strain relation is given in the form of stress rate vs. strain rate. This material
behavior is called elastoplasticity. In Chap. 4, detailed discussions on elastoplastic
material will be presented.

Another popular material nonlinearity is viscoelasticity, described in Fig. 2.8c.
Mathematically it can be modeled using a spring and a dash pot. This material
shows a time-dependent behavior. For example, when strain ¢ is applied instantly at
time =0 and remains constant, the stress responds as a linear spring initially and
gradually decreases as a function of time. This behavior is common for human
tissues, polymers, glasses, etc.

2.1.3 Kinematic Nonlinearity

Kinematic nonlinearity is also called boundary nonlinearity, as the displacement
boundary conditions depend on the deformations of the structure. In general,
structural equations solve for unknown displacements in the domain with given
applied loads and prescribed displacement boundary conditions. When the bound-
ary conditions change as a function of displacements, both the displacements and
boundary conditions are unknown. In such a case, it is difficult to solve the
structural equations as both sides of [K]{Q} = {F} have unknown terms. In gen-
eral, there are two possible cases for kinematic nonlinearity. The first one is when
the location on the boundary where boundary conditions are applied is known, but
the values are unknown. Diffusion in porous media is an example in which the
amount of diffusion on the boundary is a part of the solution. The determination of
the boundary conditions is a key part of the solution process. The second case is that
both the location on the boundary where boundary conditions are applied and the
values on the boundary conditions are unknown. The most common example is the
contact constraint between two bodies. As two bodies are in contact, the displace-
ments on the contact boundary are limited such that they cannot penetrate each
other. At the same time, it is usually unknown which part of the boundary will be
in contact. This kind of problem is more difficult than the first type. Figure 2.9
shows the deformation of a rubber cylinder through contact with a rigid wall.
Initially, the contact occurs at a point. As the cylinder deforms, however, the size
of the contact boundary increases. As expected, the relation between vertical
displacement and applied force is also nonlinear. In Chap. 5, detailed discussions
on contact problems are presented.
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Fig. 2.9 Deformation of a rubber cylinder through a contact with rigid walls
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Fig. 2.10 Follow-up pressure load of a beam under large deformation

2.1.4 Force Nonlinearity

Similar to kinematic nonlinearity, force nonlinearity occurs when the applied forces
depend on deformation. Since force is a vector, its magnitude and/or direction can
change according to the deformation of a structure. Force nonlinearity is often
accompanied by geometric nonlinearity. The most common example in solid
mechanics is pressure loads of fluids. In the deployment of an airbag, for example,
the direction and magnitude of pressure loads vary according to the deployment
shape of the airbag. Although the contact condition is considered as boundary
nonlinearity, the contact force can also be considered as force nonlinearity. As
contact boundary varies, the contact force on the boundary also varies. Thus, in the
contact problem, both the contact boundary and contact forces are unknown.
Figure 2.10 shows a cantilevered beam under a pressure load that follows the
deformation of the beam. In this case, the magnitude of the pressure load remains
constant, but its direction changes according to the deflection of the beam. This type
of load is called a follower load.

The most general case is when all four nonlinearities are present in a single
problem. However, this may result in a very complex formulation, and the compu-
tational cost could be prohibitive. In practical problems, usually only one or two
types of nonlinearities are considered at the same time. In the following chapters,
different nonlinearities will be discussed.

Example 2.1 (Cup-drawing process) For the cup-drawing process as shown in
Fig. 2.11, identify all nonlinearities.
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Fig. 2.11 Illustration of cup-drawing process

Solution The cup-drawing process in Fig. 2.11 starts from a circular blank made of
a thin metallic plate, such as aluminum or steel. The blank is placed between a die
and a blank-holder. The die is fixed and a vertical load is applied to the blank-
holder. After that, a punch moves down to make a cup shape out of the blank.
During this process, the blank will go through plastic deformation and have a
permanent shape change. Once the punch moves down to the maximum depth,
the punch and blank-holder are removed. At this point, the blank will recover some
part of the plastic deformation through the process called springback. The process
objective is to produce a specific shape after springback by controlling the applied
load at the blank-holder and fillet radii of punch and die.

First, since the blank will go through a permanent deformation, material
nonlinearity exists, similar to the elastoplastic material in Fig. 2.8b. In this process,
it is important to control the maximum plastic strain so that it is less than the limit
plastic strain in order to prevent tearing of material. Second, the geometry of the
deformed blank will be significantly different from that of the initial one. Therefore,
geometric nonlinearity exists in the process. In this particular process, the blank will
experience not only a large strain but also a large rotation. Therefore, it is important
to distinguish the difference between deformed and undeformed geometries. Lastly,
kinematic nonlinearity exists between the blank and other parts, such as the punch,
the die, and the blank-holder. Since the blank will gradually slide on the die and
blank-holder, the contact region will gradually change. In addition, the contact
between the punch and the blank is the main driver for the drawing process. Since
three nonlinearities simultaneously exist in a single analysis, the cup-drawing
process is particularly difficult to solve. m

2.2 Solution Procedures for Nonlinear Algebraic Equations

Before discussing the finite element formulation for nonlinear problems, it is
important to understand some of the solution procedures that are commonly
employed to solve the system of nonlinear equations. The solution procedure may
even influence the formulation of the problem.
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Consider the following system of nonlinear equations:

P(u) =f, (2.6)
where u={uy, u,, ..., u,,}T is a vector of unknowns, f= {f}, />, ... ,fn}T is a vector
of known quantities, and P(u) = {P,(u), P»(u),...,P,(u) }T is a vector of nonlinear

functions of u. In structural applications, u is often the displacement vector, f is the
applied force vector, and P(u) is the internal force vector. Thus, Eq. (2.6) is the
equilibrium between internal and applied forces. In the linear problems in Chap. 1,
the internal force vector is a linear function of u such that P(u) = K - u with K being
a constant stiffness matrix. Then, solving a system of linear equations is equivalent
to calculating the inverse matrix of K and multiplying it with the vector,
f. In practice, instead of calculating the inverse matrix, different matrix solution
techniques are used, such as LU-decomposition [1].

Since P(u) is a nonlinear function of u, nonlinear analysis focuses on how to
solve Eq. (2.6) accurately and effectively. The solution methods applicable to
general nonlinear functions are all iterative. Starting from an initial estimate, uO,
the increment, Au, of the solution is obtained by solving a system of linear
equations. Linearization is involved in this process. After obtaining the increment,
the solution is iteratively updated until a specified convergence criterion is satisfied.
Different methods are available according to the way to calculate the increment,
Au; several of these will be discussed in the following subsections.

Example 2.2 (System of nonlinear springs) Consider two serially
connected nonlinear springs, as shown in Fig. 2.12. The stiffness of both springs
depends on the elongation of springs such that k; =50+ 500u [N/m] and k, = 100
+200u [N/m] with u being the elongation of the spring. The equation for a spring

element is
k —k|{fuw | _[fi
-k k w1 f)’
where u; and u, are nodal displacements at the two nodes. When a force of

F =100 N is applied at the tip, construct the system of nonlinear equations in the
form of Eq. (2.6) using the two spring elements.

Solution Since spring 1 is fixed on the wall, its elongation is equivalent to u,, while
for spring 2, the elongation is u,—u;. In the normal assembly process, the wall is
considered as an additional DOF and it is deleted when the displacement boundary
condition is applied. However, it is also possible that the fixed DOF is deleted

7 ky ky
; - %—’\I\N\N‘ ANNNNN F
Fig. 2.12 Two nonlinear
springs |—>u1 |—>U2
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before assembly and only free DOFs are used for assembly. Using the given
stiffness of springs, the assembled matrix equation becomes

50 + 500u; + 100 + 200(uy — u;)  —100 — 200(up — uy) | [ us [0

—100 — 200(uy — uy) 100 + 200(uy — uy) wf \F
Note that the above equations are not linear as the stiffness matrix contains
unknown variables. After multiplying the stiffness matrix and the vector of
unknowns, the following system of nonlinear equations is obtained:

30002 + 400u, 1, — 200u2 + 150u; — 100, = 0

20012 — 400uuy + 20013 — 100u; + 100u; = 100 @7
Figure 2.13 shows the two nonlinear functions along with contour lines
whose values correspond to zero. The constant value on the right-hand side of
the second equation is moved to the left-hand side in the figure. Then, the
solution of the system of nonlinear equations becomes the intersection point of
these contour lines. Since multiple contour lines exist, it is possible that multiple
solutions may exist. In addition, it is also possible that no solution exists in a certain
situation. In general, there is no analytical way of finding the solution of a system
of nonlinear equations unless the equations are very simple. In the following
subsections, several methods of solving the system of nonlinear equations are
discussed. =

2.2.1 Newton—Raphson Method

This method is popular in numerical analysis to find the roots of nonlinear
equations. Basically, most numerical methods for solving a system of nonlinear
equations assume an initial estimate, uo, and find its increment, Au, so that the
new estimate, u’+ Au, is close to the solution to Eq. (2.6). In order to find the

1000 -

Fig. 2.13 Surface plots of the system of nonlinear equations with zero-level contour
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increment, the nonlinear equations are locally approximated by linear ones. This
process is repeated until the original nonlinear equations are satisfied. Suppose an
approximate solution at the ith iteration is known and is designated by u’. The
solution at the next iteration can be approximated using the first-order Taylor series
as follows:

P(u™) ~ P(u') + Ki(uv') - Au’ =T, (2.8)

where K;(ui) E(@P/au)i is the Jacobian matrix at the ith iteration, commonly
known as the tangent stiffness matrix in structural applications and Au’ is
the solution increment. The goal is to calculate Au’ and iteratively update the
solution, u’*'. After rearranging the terms, the system of linearized equations can
be obtained as

KjAu' =f —P(u'). (2.9)

Equation (2.9) is similar to the matrix equation of linear systems, except that (1) the
coefficient matrix, KiT(ui), is not constant, but a function of u’; (2) the equation
solves for the increment, Aui, not the total solution, u; and (3) the right-hand side is
not the applied force, but rather the difference between the applied force and
internal force. This difference is often referred to as a residual. After solving for
the displacement increment, Aw’, a new approximate solution is obtained as
follows:

ut =u + Ad'. (2.10)

In general, this solution will not satisfy the system of nonlinear equations exactly
and there will be some residual or unbalance force defined as follows:

R =f—P(u). (2.11)

If the unbalance force is smaller than a given tolerance, the solution, u™*!, can be
accepted as the accurate solution, and the process stops. Otherwise, the process is
repeated until this residual becomes very small. The termination criterion is
expressed in the normalized form as follows:

n N2
S (R

cony = ————~ (2.12)

1+Zz‘n=1 (f/)z.

A constant, 1, is added to the denominator to avoid division by zero when there are
no applied loads. The iterations are terminated when the convergence parameter,
conv, becomes less than a given tolerance (say 0.01). Sometimes, different criteria
can be applied to determine the convergence of the iterative procedure. One is
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based on the solution increment. When the increment of the solution is much
smaller than the initial increment, then it is assumed that the solution is converged.
The solution-based termination criterion becomes

(2.13)

However, this criterion can be plausible when the convergence is merely slow.
Since stresses or forces are derivatives from displacements in structural problems, it
is easy to make the displacement converge rather than the force. In practice, many
commercial programs monitor both criteria to determine whether the solution has
converged or not. More detailed convergence criteria will be discussed later.
Instead of the sum of squares in the above two convergence criteria, it is also
possible to use the maximum absolute value.

The algorithm of Newton—Raphson method is as follows:

. Set tolerance = 0.001, k=0, max_iter = 20, and initial estimate u—= u’
. Calculate residual R =f-P(u)

. Calculate conv in Eq. (2.12). If conv < tolerance, stop

If k> max_iter, stop with error message

. Calculate Jacobian matrix Ky in Eq. (2.8)

. If the determinant of K7 is zero, stop with error message

Calculate solution increment Au by solving Eq. (2.9)

. Update solution by u=u+ Au

. Setk=k+1

. Go to Step 2

SO XU A WN—

—_—

Two iterations of the procedure for a system with a single DOF are illustrated
graphically in Fig. 2.14. In the case of a single DOF, the Jacobian matrix becomes

P(u)

Solution

Fig. 2.14 Newton—
Raphson method for 7 -
nonlinear equation P(u) =f u u u u u

s
hat
T
N
v
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the slope of the nonlinear function, P(«). The solution converges rapidly when the
starting point is close to the solution. When the current iteration is close to the
solution, this method shows a quadratic convergence. Let u..,. be the exact
solution, and u,, and u,,; be the two consecutive approximations of the solution
from the Newton—Raphson method. Then, the method converges quadratically
when there exists a constant ¢ > 0 such that

‘Mexact - un+1| § C|uexact - un‘2~ (214)

Since the left-hand side is the error at the (n+ 1)th iteration and the right-hand side
is the square of the error at the nth iteration, errors in the Newton—Raphson method
reduce very quickly. In practice, since the exact solution is usually unknown, the
solution at the converged iteration is often considered as iexac.- In order to show that
a numerical algorithm has a quadratic convergence, it is required to show that the
following ratio approaches a constant value c:

lim [texace — thn1| _ c. (2.15)

=00 |Mexact - un|2

In practice, it is often enough to show that the convergence criterion in Eq. (2.12)
reduces quadratically at each iteration.

Example 2.3 (Roots of a system of nonlinear equations) Find the two nodal
displacements of the nonlinear springs in Example 2.2 using the Newton—Raphson
method. Use the convergence tolerance of 1 x 1075, and the initial estimate,
u’= {0, O}T. Also, estimate the convergence rate.

Solution In order to solve the system of nonlinear equations in Eq. (2.7), it is
necessary to calculate the Jacobian matrix first. By differentiating Eq. (2.7), the
Jacobian matrix can be written as

1600w, + 400u; + 150  400(u; — up) — 100

K- — 6P1/8u1 8P1/5u2
r= | 400(uy —up) — 100 400(uz — uy) + 100 |°

8P2/8u1 8P2/8u2

It can be shown that the Jacobian matrix is positive definite when the two nodal
displacements satisfy the following relation:

u —up + 0.25 > 0.

Physically, if a positive force is applied, u, will always be larger than u,, and the
system should be stable. Below is the MATLAB program that solves the nonlinear
spring problem.
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e

% Example 2.3 Two nonlinear springs (Newton-Raphson method)

o°

tol=1.0e-5; iter=0; c=0;

u=[0;0];
uold =u;
£f=1[0; 100];

P=[300*u(l)"2+400*u(l)*u(2)-200*u(2)"2+150*u(1l)-100*u(2)
200*u(1)"2-400*u(l) *u(2)+200*u(2)~2-100*u(1l)+100*u(2)];
R=f-P;
conv= (R(1)"2+R(2)"2)/(1+£(1)"2+£(2)"2);
fprintf (’'\niter ul u2 conv c’);
fprintf (’\n %3d %$7.5f %7.5f %$12.3e%7.5f'",iter,u(l),u(2),conv,c);
while conv > tol && iter < 20
Kt = [600*u(1)+400*u(2)+150 400* (u(l)-u(2))-100
400* (u(l)-u(2))-100 400*u(2)-400*u(l)+10017;
delu = Kt\R;
u =uold + delu;
P=[300*u(l)"2+400*u(1l)*u(2)-200*u(2)"2+150*u(l)-100*u(2);
200*u(1)72-400*u(l)*u(2)+200*u(2)72-100*u(1l)+100*u(2)1];
R=f -P;
conv= (R(1)"2+R(2)"2)/(1+£(1)"2+£(2)"2);
c=abs(0.9-u(2))/abs(0.9-uo0ld(2))"2;
uold =u;
iter=iter +1;
fprintf(’'\n %$3d %$7.5f %7.5f %12.3e%7.5f’,iter,u(l),u(2),conv,c);
end

Table 2.1 shows the convergence iteration history from the Newton—Raphson
method. Note that the algorithm converges at the sixth iteration at which the
convergence criterion in Eq. (2.12) becomes smaller than the tolerance. Since the
initial slope of the Jacobian matrix is small, the initially predicted displacements
are much larger than the actual displacements. As the MATLAB program iterates,
the displacements converge to the accurate values, which is Wexaer = {0.4, 0.9}T.
The last column of Table 2.1 shows the constant, ¢, in Eq. (2.15), which converges
to the value of 1.1. Thus, the algorithm has a quadratic convergence rate. Note that
the residual reduction is also approximately quadratic. Figure 2.15 shows the force—
displacement curves of the nonlinear springs. The stiffness of the springs gradually
increases as the displacements increase. =

Table 2.1 Convergence Tteration
history of two nonlinear
springs using the Newton—
Raphson method

Uy U conv c
0.0000 0.0000 9.999E-01 -
2.0000 3.0000 3.280E+02 -
1.0244 1.6244 1.981E+01 0.164
0.5814 1.0873 9.282E—-01 0.357
0.4261 0.9261 1.455E—-02 0.744
0.4007 0.9007 1.033E-05 1.048
0.4000 0.9000 6.462E—12 1.109

AN ||V |~ O
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The Newton—Raphson method does not always guarantee convergence to the
accurate solution. First, it assumes that the solution increment in Eq. (2.9) is
relatively small. As the number of iterations increases, Au becomes smaller and
eventually approaches zero at the accurate solution. However, this assumption is
violated when the Jacobian matrix becomes singular, or the determinant of matrix
K7 is zero. In such a case, Au becomes infinite and the solution diverges (see Step
6 in the algorithm). This means, in a single DOF system, that the slope of P(u)
becomes zero and the residual cannot be reduced. Numerically, similar behavior
can be observed when the matrix is nearly singular.

Second, as shown in Fig. 2.16, the method may diverge or oscillate between two
points if the starting point is too far away from the exact solution. This also happens
when the curvature of the P(u) curve changes its sign between two consecutive
iterations. In such a case, it is possible that the Newton—Raphson algorithm may
result in an infinite loop. In order to prevent an infinite loop, the maximum number of
iterations is set and the algorithm stops with an error message when the number of
iterations reaches the maximum number of iterations (see Step 4 in the algorithm).

Example 2.4 (Divergence of the Newton—Raphson method) Find a root of the
following nonlinear equation using the Newton—Raphson method:
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P(u) = u+ tan ' (5u). (2.16)

Use the convergence tolerance of 1 x 10> and the initial estimate u° =0.5.

Solution Since the problem has a single variable, the problem becomes a nonlinear
algebraic equation. It is trivial that the exact solution will be # = 0. The derivative
of P(u) with respect to u becomes

dpP
— =1+ 5cos?(tan ~'(5u)).
o + cos(an (u))

Below is the list of MATLAB program that solves the above nonlinear equation for
up to 20 iterations.

o°

% Example 2.4 Divergence of the Newton-Raphson method.

xdata=zeros (40,1);
ydata=zeros (40,1) ;
tol =1.0e-5;

iter=0;
u=0.5;

uold =u;

c=0;

P =u+atan(5*u) ;
R=-P;

conv=R"2;
xdata(1l)=u;
ydata(l)=P;
while conv > tol && iter < 20
Kt = 1+5* (cos (atan(5*u)))"2;
delu = R/Kt;
u =uold + delu;
P =u+atan(5*u) ;
R=-P;
conv=R"2;
uold =u;
iter =iter +1;
xdata (2*iter)=u; ydata(2*iter)=0;
xdata(2*iter+1)=u; ydata (2*iter+1)=P;
end

o°

plot (xdata,ydata) ;
holdon;
x=[-1:0.1:17];
yv=x+atan (5*x) ;
plot(x,y)
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Figure 2.17 shows the convergence history of the Newton—Raphson method for
up to 20 iterations. In this case, the approximate solution moves away from the
exact one as the number of iterations increases, and eventually, the method
diverges. The initial estimate of u’=+.4990807536 will make the algorithm
oscillate between the two points. The method will converge quickly if the initial
estimate is less than that. ]

When the system of nonlinear equations has multiple solutions, this method may
converge to different solutions depending on the initial estimate. This does not
occur often in structural problems because, in most cases, the starting point is u =0.

The Jacobian matrix of structural mechanics problems is normally positive
definite. Physically, this means that in order to increase the displacement, the
applied force should increase. However, in some cases, the displacement may
increase without the applied force increasing. Or, displacement continuously
increases while the applied force decreases. This causes structural instability.
Common examples are bifurcation and snap-through behaviors. Figure 2.18
shows the snap-through behavior of elastic inclined slender beams. Both ends are
clamped. The plot shows the relation between the applied force and the vertical
displacement at the force application point. Initially, the applied force increases
along with the tip displacement (region AC). In this region, the beams are stable,
and the Jacobian matrix is positive definite. When they reach point C, the Jacobian
matrix becomes singular, and the force cannot increase beyond F. Between points
C and E, the tip displacement continuously increases while the force decreases. The
system is unstable in this region. Beyond E, the beams become stable again with a
positive definite Jacobian matrix. When the Newton—Raphson method is used, it
can only solve for the response in the region, AC. For example, for a given force,
Fg, it always yields point B, not point D. Special techniques are required to follow
the force—displacement curve.
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Fig. 2.18 Snap-through behavior of inclined slender beams

2.2.2 Modified Newton-Raphson Method

The Newton—Raphson method requires that at each iteration, the Jacobian matrix
should be formed and the system of linearized equations should be solved for the
increment of the solution. Computationally, these are expensive tasks. In the finite
element framework, building the tangent stiffness matrix and solving the matrix
equation are the two most computationally intensive procedures. The modified
Newton—-Raphson method is an attempt to make these procedures less expensive.
Instead of formulating a new tangent stiffness matrix at each iteration, the initial
tangent stiffness matrix is repeatedly used for all iterations. This obviously avoids
the need to reformulate the tangent stiffness matrix at each iteration. In addition,
this can also reduce the computational time required for solving the matrix equa-
tion. In solving a matrix equation, the matrix is first decomposed into lower- and
upper-triangular forms (LU-decomposition). After that, the vector on the right-hand
side is used to solve for the solution (forward and backward substitutions). The
LU-decomposition procedure is computationally expensive, while the forward and
backward substitutions are relatively inexpensive. For example, if the dimension of
the matrix is N x N, the computational cost for the LU-decomposition procedure is
proportional to N, while the forward and backward substitutions are proportional
to N. When the modified Newton—Raphson method is used, the LU-decomposed
matrix is kept and only the forward and backward substitutions are used with
different residuals at each iteration. As illustrated in Fig. 2.19, the method usually
requires a greater number of iterations for convergence than that of the regular
Newton—-Raphson method. However, the overall computational cost to obtain the
solution can be made less because each iteration is much faster than that of the
regular Newton—Raphson method. The method is also a little more stable and is not
prone to divergence.

To improve convergence, it is possible to develop a hybrid scheme in which a
few iterations are performed with the initial tangent stiffness matrix, after which a
new tangent stiffness is formed. The only drawback of this scheme is that it is
difficult to decide how many constant tangent stiffness iterations to perform before
reformulating a new tangent stiffness matrix.
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Example 2.5 (Nonlinear springs [modified Newton—Raphson method]) Using the
modified Newton—Raphson method, solve the displacements of the two nonlinear
springs in Example 2.2. Use the initial estimate, u’ = {0.3 0.6}". Compare the
number of iterations with that of Example 2.3. Also, check the convergence rate.

Solution Below is the MATLAB program for solving the problem. Note that the
tangent stiffness matrix is calculated only once before the convergence loop.

tol=1.0e-5;

iter =0;

u=1[0.3;0.6];

uold =u;

c=0;

£=1[0;100];

P=[300*u(l)72+400*u(1l)*u(2)-200*u(2)"2+150*u(1l)-100*u(2)
200*u(1)72-400*u(l)*u(2)+200*u(2)72-100*u(1l)+100*u(2)1;

R=f-P;

conv= (R(1)"2+R(2)"2)/(1+£(1)"2+£(2)"2);

fprintf(’'\n iter ul u?2 conv c’);

fprintf ('\n %$3d %7.5f 7.5£%12.3e%7.5f’,iter,u(l),u(2),conv,c);

Kt = [600*u(1)+400*u(2)+150 -400*u(2)+400*u(1)-100
400*u(1)-400*u(2)-100 400*u(2)-400*u(1l)+1007;

while conv > tol && iter < 20

delu = Kt\R;

u =uold + delu;

P=[300*u(l)"2+400*u(l)*u(2)-200*u(2)"2+150*u(1)-100*u(2);
200*u (1) "2-400*u (1) *u(2)+200*u(2)"2-100*u(1)+100*u(2)];

R=f -P;

conv= (R(1)"2+R(2)"2)/(1+£(1)"2+£(2)"2);

c=abs(0.9-u(2))/abs(0.9-uold(2))"2;

uold =u;

iter=iter +1;

fprintf (’'\n %3d %7.5f£ %7.5f£%12.3e%7.5f’,iter,u(l),u(2),conv,c);

end
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Table 2.2 Convergence Tteration u "y conv c
history of two nonlinear
springs using the modified 0 0.3000 0.6000 2.848E-01 -
Newton—Raphson method 1 0.4143 0.9507 1.464E-02 -
2 0.3956 0.8812 2.378E-03 0.563
3 0.4012 0.9063 3.260E-04 7.328
4 0.3997 0.8978 4.711E-05 17.77
5 0.4001 0.9008 6.561E-06 158.03

Since the tangent stiffness matrix changes significantly as the displacements vary,
the algorithm will diverge with the initial estimate of u’ = {0, 0}". However, that
does not mean that the modified Newton—Raphson method is less stable than the
regular Newton—Raphson method. Table 2.2 shows the convergence history of the
modified Newton—Raphson algorithm. Although it converges in the sixth iteration,
this happens because the initial estimate is close to the exact solution. In fact, the
convergence criterion, conv, reduces slower than that of the regular Newton—
Raphson method. The last column shows the constant in Eq. (2.15). It is clear that
the method does not provide a convergent constant, which indicates that the algo-
rithm does not have a quadratic convergence. m

2.2.3 Incremental Secant Method

In the regular Newton—Raphson method, the tangent stiffness matrix is calculated at
every iteration, while the modified Newton—Raphson method requires calculating it
once or after a certain number of iterations. As discussed before, constructing this
matrix and solving the matrix equation are the two main sources of computational
cost. Although the modified Newton—Raphson method is computationally efficient,
it can cause problems as it uses the fixed tangent stiffness matrix (e.g., refer to
Example 2.5 with initial estimate, = {0, O}T). The main purpose of the incre-
mental secant method is to remove these two tasks so that the computational cost
can be reduced, while achieving a certain level of convergence rate that is greater
than one. The role of the tangent stiffness matrix is to make the equation converge
quickly, while that of the residual is to monitor the accuracy. The algorithms iterate
until the residual vanishes, which means that the system of nonlinear equations is
satisfied within the range of the tolerance. If the tangent stiffness matrix is not
accurate, then the algorithm converges slower. As long as the solution increments
are in the right direction, the algorithm will eventually converge to the right
solution after performing more iterations. The idea of the incremental secant
method is to approximate the tangent stiffness matrix without high computational
costs. This is achieved by progressively updating the tangent stiffness matrix using
the secant direction between two consecutive solutions. An important aspect, while
approximating the tangent stiffness matrix, is that it maintains the positive definite
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property. In addition, computational cost can be further reduced if the inverse of the
tangent stiffness matrix is approximated directly.

The main idea of the incremental secant method can be explained clearly using a
single variable example. In Eq. (2.9), the Jacobian matrix is defined as the deriv-
ative of the nonlinear function, P(u), with respect to the unknown variable, u. The
secant matrix can be obtained by using the finite difference method in approximat-
ing the Jacobian matrix as

P(u) — P(ui=1) .

i_
K= ui — yi—1

N

(2.17)
Note that as u'~ ' approaches i, the secant stiffness approaches the tangent stiffness
of the Newton—Raphson method. For the first iteration, the secant method uses the
same tangent stiffness matrix with the Newton—Raphson method. After the first
iteration, secant stiffness is used in the subsequent iterations instead of the tangent
stiffness. The procedure is illustrated in Fig. 2.20. In the case of a single variable

problem, the secant direction is the one that connects the two consecutive solutions.
The solution increment for the ith iteration is expressed as follows:

M—M

Au’:P(u)—w](f P(u')). (2.18)

The convergence rate of the secant method is 1.618, which is the golden
ratio. Considering that the Newton—Raphson method has a quadratic convergence,
it is faster than the secant method. However, the Newton—Raphson method requires
the evaluation of both P(u) and its derivative, K7(u), at every iteration, while
the secant method only requires the evaluation of P(u). Thus, each iteration
of the secant method is much faster than that of the Newton—Raphson method.
Those methods that approximate the Jacobian matrix are called quasi-Newton
methods. They are less expensive than the Newton—Raphson method as they do
not require calculating the Jacobian, but they converge slower than the Newton—
Raphson method.
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Example 2.6 (Nonlinear algebraic equation [secant method]) Using the secant
method, find a root of the nonlinear equation in Example 2.4. Use the initial
estimate, u0:2.0, and convergence tolerance of 1 X 107, Check the
convergence rate.

Solution Below is the MATLAB program for solving the nonlinear equation. Note
that the exact Jacobian is used at the first iteration and the secant Jacobian for the
following iterations:

o0 o

Example 2.6 Nonlinear algebraic equation (secant method)

e

tol=1.0e-5; iter=0; c=0;

u=2.0; uold =u;

P =u+atan(5*u); Pold =P;

R=-P; conv=R"2;

fprintf ('\niter u conv c’);

fprintf (’\n %3d %$7.5f %12.3e %7.5f’,iter,u,conv,c);
Ks = 1+5* (cos (atan(5*u))) "2;

while conv > tol && iter < 20
delu = R/Ks;
u =uold + delu;
P =u+atan(5*u) ;
R=-P;
conv=R"2;
c = abs (u) /abs (uold) *2;
Ks = (P - Pold)/ (u -uold) ;
uold =u;
Pold =P;
iter =iter + 1;
fprintf(’\n %$3d %7.5f %$12.3e%7.5f’,iter,u,conv,c);
end

Using the Newton—Raphson method, the nonlinear algebraic equation in
Eq. (2.16) diverges when the initial estimate is larger than 0.5. However, the secant
method is able to converge even if the initial estimate is 2.0. When the initial
estimate of 0.5 is used, the method converges in two iterations. Table 2.3 shows the
convergence history of the secant method. It is clear that the secant method is more
stable than the Newton—Raphson method and does not diverge because the secant
stiffness at the first iteration is adjusted toward the exact solution. The method does
not show a quadratic convergence because the ratio in Eq. (2.15) does not approach
a constant value (refer to the last column of Table 2.3). However, the convergence
criterion reduces faster than that of the modified Newton—Raphson method.
Figure 2.21 shows the convergence history of the secant method. =

Although it is clear how the secant matrix is constructed in the one variable case,
multivariable cases are less straightforward. One of the first methods in solving for
multivariable nonlinear equations is the one proposed by Broyden [2]. The idea is
that the Jacobian matrix is calculated only at the first iteration, and after that, it is
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Table 2.3 Convergence

Iteration Uy conv c
history of nonlinear algebraic
equation using the secant 0 2.0000 1.205E+01 -
method 1 —1.3074 7.433E+00 0.327
2 0.1476 6.136E—01 0.086
3 —0.1771 8.136E—01 8.133
4 —0.0033 4.025E—04 0.107
5 0.0006 1.338E—05 54.511
6 0.0000 5.393E—14 0.104
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updated at every iteration using the rank-one update. The solution increment for the
ith iteration is expressed as follows:

K/Au' = —R/, (2.19)

where Ki is the secant stiffness matrix and Ri:P(ui) —f is the vector of the
residual at the ith iteration. Note that the sign in the definition of the residual is
intentionally changed from that in Eq. (2.11) in order to make the following
algorithm simpler. Using the solutions at two consecutive iterations, u'~ ' and u’,
the secant stiffness matrix is updated. The updated matrix then needs to satisfy the
following secant equation:

K- (u—u")=R(d) —R(u"). (2.20)

Thus, the objective of the secant method is to update the secant stiffness matrix with
the known increments in the solution and the known terms on the right-hand side.
Unfortunately, this process is not unique and many different matrices satisfy the
relationship. Broyden initially suggested updating the stiffness matrix by taking the
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solution to the secant equation that modifies the matrix minimally. The Broyden’s
method results in the following form of a rank-one update:

AR—K'Au,

K =K+ u', (2.21)

S S ||AllH2

where AR =R(u’) — R’ ~ ') and Au=u’ —u’ ~'. Once the secant stiffness matrix
is updated, Eq. (2.19) is used to solve for the new increment. Then, the new
approximate solution is updated according to

ut =u + A (2.22)

Now, the process moves to the next iteration, and it is repeated until the residual
satisfies the convergence criterion in Eq. (2.12).

The above updating formula can save computational time on calculating the stiffness
matrix at every iteration, while Eq. (2.19) still needs to be solved at each iteration.
Instead of updating the secant stiffness matrix, it is possible to update the inverse of
the secant stiffness matrix directly to save computational cost in solving the matrix
equation. For example, Eq. (2.19) can be rewritten as

Au' = — [KS’] R'=-HR'. (2.23)
Thus, the inverse matrix, Hf;, is updated directly, starting from the initial inverse of

the stiffness matrix. Broyden used the Sherman—Morrison formula to update the
inverse of the secant stiffness matrix as

i i1
B gt or M AR ((au)"H). (2.24)
(Au’)"H," AR
In general, the stiffness matrix for solid mechanics is symmetric and positive
definite. However, the updated secant matrix in Eq. (2.21) and its inverse in
Eq. (2.24) are not symmetric. In order to make the updated matrix symmetric and
positive definite, additional constraints are required. The BFGS (Broyden, Fletcher,
Goldfarb, and Shanno) method [3] satisfies these properties and is the most widely
and successfully used for unconstrained optimization and very useful for finite
element analysis. The main drawback of this method is that it may become unstable
when the number of iterations increases. In practice, the secant stiffness matrix is
reset to the stiffness matrix of the Newton—Raphson method after a certain number
of iterations. The procedure can also be implemented carefully to maintain the
sparsity of the stiffness matrix.

Example 2.7 (Nonlinear springs [secant method]) Using the Broyden’s method,
solve the displacements of the two nonlinear springs in Example 2.2. Use the initial
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estimate, w’= {0.1, 0.1 }T. Compare the number of iterations with that of Example
2.3. Also, check the convergence rate.

Solution Below is the MATLAB program for solving the nonlinear equation. The
initial estimate is set to u®=1{0.1, 0.1}7 because if it starts with {0, 0}7, it
converges to a different solution.

o oP

Example 2.7 Two nonlinear springs (Secant method)

o°

tol=1.0e-5; iter=0; c=0;

u=[0.1; 0.1]; uold=u;

£f=1[0;100];

P=[300*u(1l)72+400*u(1l)*u(2)-200*u(2)"2+150*u(1l)-100*u(2)
200*u(1)72-400*u(l)*u(2)+200*u(2)72-100*u(1l)+100*u(2)];

R=P-f; Rold=R;

conv= (R(1)"2+R(2)72)/(1+£(1)"2+£(2)"2);

fprintf(’'\n iter ul u2 conv c’);

fprintf ('\n %3d %7.5f %7.5f£ %$12.3e%7.5f’,iter,u(l),u(2),conv,c);

Ks = [600*u(1)+400*u(2)+150 -400*u(2)+400*u(1)-100
400*u (1) -400*u(2)-100 400*u(2)-400*u(1l)+1007;

while conv > tol && iter < 20

delu = -Ks\R;

u =uold + delu;

P=[300*u(l)"2+400*u(1l)*u(2)-200*u(2)"2+150*u(1)-100*u(2);
200*u (1) "2-400*u (1) *u(2)+200*u(2)~2-100*u(1)+100*u(2)1;

R=P-£f;

conv= (R(1)"2+R(2)"2)/(1+£(1)"2+£(2)"2);

c=abs(0.9-u(2))/abs(0.9-uo0ld(2))"2;

delR =R - Rold;

Ks =Ks + (delR-Ks*delu) *delu’ /norm(delu) "2;

uold =u; Rold=R;

iter=iter +1;

fprintf ('\n %3d %7.5f %7.5f %$12.3e%7.5f’,iter,u(l),u(2),conv,c);

end

Table 2.4 shows the convergence history of the Broyden’s method. The algo-
rithm converges in the fifth iteration. Note that the algorithm does not provide a
converging constant, ¢, in Eq. (2.12). Thus, the convergence rate is less than two.
But, it can be easily verified that the convergence rate is greater than one. This is
common for most quasi-Newton methods in which the convergence rate is between
one and two. m
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Table 2.4 Convergence Tteration u "y conv c

history of nonlinear springs

using the Broyden’s method 0 0.1000 0.1000 1.010E+00 -
1 0.7000 1.7000 4.040E+00 1.250
2 0.3000 0.6333 1.995E—01 0.417
3 0.3727 0.8273 1.766E—02 1.023
4 0.4035 0.9094 3.170E—-04 1.779
5 0.3999 0.8997 3.046E—07 3.307

2.2.4 Incremental Force Method

Among practically available numerical methods for solving systems of nonlinear
equations, the Newton—Raphson method is the fastest with a quadratic conver-
gence, which is achieved when the initial estimate is close to the solution. Most
other methods also have a similar trend. Thus, choosing an initial estimate close to
the solution is an important strategy for helping the methods to converge faster.

In solid mechanics problems, the initial estimate is usually set to the undeformed
shape of the structure; i.e., all displacements are initially zero. In a stable system,
the magnitude of displacement is proportional to the applied load. In linear struc-
tures, for example, when the applied load is doubled, displacements are
also doubled. In nonlinear structures, this proportionality is generally true even
if the relation between the applied load and displacement is nonlinear; i.e., a
small magnitude of displacement is expected when the applied load is
small. Since the initial estimate usually starts from zero displacement, the Newton—
Raphson method converges quickly to the solution when the applied load is small.
The convergence difficulty occurs with large applied loads that cause a large
magnitude of displacement.

The idea of the incremental force method is to apply the load in increments.
Within each load increment, the procedure is the same as the standard Newton—
Raphson method. The next load increment is applied after the solution
corresponding to the previous load increment has converged. The converged
solution at each increment is then used as an initial estimate of the next increment.
Figure 2.22 illustrates the procedure for a single degree-of-freedom case. In the first
increment, the nonlinear equation is solved assuming that the applied load is Afj,
starting from the initial estimate of u’=0. The magnitude of this increment is
chosen such that the numerical method can converge quickly to the solution, . In
the second increment, the applied load increases to Afj+Af,, and the initial
estimate of u' is used, i.e., the converged solution from the previous increment.
Again, the magnitude of the increment, Af, is chosen such that the numerical
method can converge quickly to the solution, u*. The above procedure is repeated
until the applied load increment reaches the full magnitude. Note that the solutions
at the end of each load increment are all valid ones; they are the response of the
system at the given level of load.
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Fig. 2.22 Incremental f A
force method P(u)
b L AN
T T : 1Solution
Af i E !
St v u" u

The load increments do not have to be uniform, especially when the
nonlinearity of the system is not uniform throughout the entire load increments.
Many systems are often mildly nonlinear at most load increments, but are
highly nonlinear at others. For example, in the elastoplastic material, the response
is mildly nonlinear when the material state is either elastic or plastic, but it
becomes highly nonlinear when the material state changes from elastic to plastic.
In such a case, the highly nonlinear portion will control the size of the
load increments if a uniform increment is used. This is an unnecessary and
wasteful use of computational resources. It is possible to divide the load into
three regions—elastic, elastic—plastic, and plastic regions—and a relatively large
load increment is used for the first and last regions, while a small load increment is
used for the elastic—plastic region.

Even if the solution at the last load increment is the goal, it is often important to
calculate the solutions in the intermediate load increments. First, the history of the
response can provide insight into the problem, such as the relation between the
applied load and displacement. In addition, when a structure has instability before
reaching the final load step, such as bifurcation or snap through, the solutions in the
intermediate load steps play an important role in estimating the bifurcation point or
the critical load. Path dependence is another important reason to divide the entire
load by a number of load steps. In the path-dependent problem, load increments
greatly affect the accuracy of the results. For example, in plasticity, excessively
large load steps may allow the stress to stay out of the yield surface or may not catch
the change of the material state from elastic to plastic.

2.2.4.1 Load Increment in Commercial Software

In commercial finite element programs, the load increment is often referred to as a
load step or time step. The term “time step” is sometimes used because most
commercial software uses the same program for solving both the static and dynamic
problems. In solving a static problem, the term time should be understood as
“pseudo-time,” not physical time. In order to solve nonlinear structural problems
using a finite element method, it is necessary to specify the starting time, ending
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time, and time increment. In static analysis, the time interval controls how the
applied load increases. At the starting time (7T.,), the applied load is zero, and it
increases proportionally until the ending time (7,,q) at which the full magnitude is
applied. Thus, at the nth increment, the applied load is calculated by

T — T@tart
Fl=—— " p p—=1,...,N, 2.25
Tend - Tslart ( )

where F is the full magnitude of the applied load, and 7" is the time at the nth
increment, which is calculated by

T" = n x AT < Tepg, (2.26)

where AT is the time increment. The last time step N is determined such that Ty is
less than or equal to Tenq. If Ty is less than 7,4, an additional time increment is
performed at T.,4. In most cases, the time starts at zero, i.e., T, = 0, except for the
case where multiple loads are applied in a sequence. For example, in order to
calculate a permanent deformation of a bar, a force that can cause plastic deforma-
tion is applied in the first load, and then it is reduced to zero in the second load. In
such a case, the starting time of the second load is the ending time of the first load.

2.2.4.2 Automatic Time Stepping

In many cases, it is not trivial to estimate appropriate time steps. Time steps that are
too small can help convergence, but it will take quite an amount of computational
cost to finish solving the entire load increment. On the other hand, if the time step is
too large, the numerical method may not converge, and the iteration will stop when
it reaches the maximum allowed iterations. There is no good guideline of how to
choose an appropriate time step. It depends on the level of nonlinearity of the
system. The best way of checking if the load step used is too small or too large is to
count the number of iterations. When the standard Newton—Raphson method is
used, the load step is considered to be appropriate if the solution converges in the
fifth or sixth iteration. If the solution converges faster than that, the load step can be
considered too small and can be increased without reducing the convergence much.
On the other hand, if the convergence occurs beyond the tenth iteration, the load
step is too large and it would be better if a smaller load step is used. Many
commercial programs have the capability of adaptively adjusting the size of time
steps by monitoring the number of convergence iterations.

Although adaptive time stepping is a useful tool to gradually control the size of
time steps, it is possible that the iteration may not converge if nonlinearity is
suddenly introduced. For example, in a contact problem, two bodies are discon-
nected in one load increment and then in contact in the following increment. Thus,
the two bodies suddenly experience a contact force in the interface. The time step
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needs to be small enough in order to capture this sudden change in contact force.
Let us assume that the current time step is large enough so that the iteration does not
converge. In such a case, it is possible to go back to the previously converged time
and to reduce the size of the time step by half. If the iteration does not converge with
the new time step, it is further reduced by half. This reduction can be repeated until
the iteration converges. Once the iteration converges with the reduced time step, a
regular adaptive time stepping can be resumed in the following increments. If the
formulation or physics of the problem has a fundamental difficulty, the solution
may not converge, no matter how many reductions are done. In order to prevent the
situation when the time step approaches zero, most commercial programs have the
maximum allowed number of reductions and the programs stop with an error
message when this number is reached.

2.2.4.3 Force Control vs. Displacement Control

So far, the solution of nonlinear equations for structural problems is explained as
equilibrium under applied loads. The objective of the nonlinear spring examples is to
find the displacements of the springs for the load at the end. Referring to Fig. 2.23a,
the force-controlled solution procedure finds the displacements, u, us, . . . , u,, when
the force increases to F'y, F», ..., F,. Since a one-to-one relation exists between the
force and displacement, the opposite procedure also works well: finding the reaction
forces Fy, Fy, ..., F,, when displacement increases to uy, U, . . ., 4,. This is called a
displacement-controlled solution procedure. Mathematically, these two procedures
are equivalent, but practically, the displacement-controlled procedure can be more
stable than the force-controlled one. Consider the load—displacement curve in
Fig. 2.23b. The load starts reducing after it reaches the maximum point at C. This
type of softening behavior occurs in elastoplastic material due to necking. If the
force-controlled procedure is employed, it is not easy to reach point D in the curve as
the structure reaches equilibrium at B with the given load Fg. However, in the

P(u)

Fig. 2.23 Displacement controlled solution procedure
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displacement-controlled procedure, it is possible to reach point D by gradually
increasing the displacement and finding the reaction force. Another important aspect
of nonlinear problems is that the behavior of the system is unknown in advance.
Thus, if a load that is greater than F is applied, then the iteration will not converge
as no solution exists. However, in the displacement-controlled procedure, the
solution can be converged in a broader range of displacements.

Example 2.8 (Displacement-controlled solution procedure) For the nonlinear
springs in Example 2.2, plot the force—displacement curve by increasing the
displacement, u,, from zero to 0.9 with nine increments.

Solution The system of nonlinear equations for the two springs is written below

{ 300u? + 400u; 1y — 200u3 + 150u; — 100u = 0 (227)

200u% — 400u uy + 200u5 — 100u; + 100u; = F°

Since the displacement, u5, is controlled, the applied force, F', and displacement, i,
are unknown now. In such a case, it is possible to solve the first equation for u#; and
then, to use the second equation to solve for F. Thus, the problem becomes a
nonlinear algebraic equation. Below is the MATLAB program that solves for the
nonlinear equation.

o°

% Example 2.8 Displacement controlled procedure

o0

tol=1.0e-5; conv=0; ul =0; ulold=ul;
fprintf ('\n step ul u2 F');
% Displacement increment loop
for i=1:9
u2=0.1*%1i;
P=300*ul"2+400*ul*u2-200*u272+150*ul-100*u2;
R=-P;
conv =R"2;
% Convergence loop
iter=0;
while conv > tol && iter < 20
Kt = 600*ul+400*u2+150;
delul = R/Kt;
ul =ulold + delul;
P=300*ul”"2+400*ul*u2-200*u2°2+150*ul-100*u2;

R=-P;
conv=R"2;
ulold =ul;

iter=iter +1;
end
F=200*ul”2-400*ul*u2+200*u2~2-100*ul+100*u2;
fprintf (’\n %34 %$7.5f %7.5f£%7.3f’,1,ul,u2,F);
end
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Fig. 2.24 Force—
displacement curves for two
nonlinear springs
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The program has two loops: the outer loop is for load increments and the inner
loop is for convergence iterations. Each increment requires about two or three
iterations. Once the iteration is converged, the reaction force is calculated from the
second equation in Eq. (2.27). Figure 2.24 shows the force—displacement curve for
the nonlinear springs. It is identical with Fig. 2.15 that is created using the force-
controlled procedure. ]

2.3 Steps in the Solution of Nonlinear Finite Element
Analysis

As discussed in the previous sections, there are several aspects in which the solution
procedure of nonlinear problems is different from that of linear problems. Although
different procedures are required for different types of nonlinear problems, the
basic steps for nonlinear static problems are outlined in this section.

In structural finite element analysis, unknown variables are usually nodal dis-
placements. In iterative algorithms, the displacement increments are calculated at
each iteration and the total displacements are updated using the increments until
they converge. Thus, the most important step in the solution process is calculating
the incremental displacements. In the following, it is assumed that the k — 1th
iteration is completed, which means that all states at the k — 1th iteration are
available and the displacement vector, d*, is given.

2.3.1 State Determination

For the given displacement vector, d*, it is necessary to calculate the current states
of the system, such as strains and stresses for structural problems. In order to
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simplify the following explanations, the entire structure is modeled by one finite
element, and the solution of the structure is approximated by a vector, d* = {d,,
ds,. .. ,d,,}T, of the nodal displacements. Accordingly, it is also assumed that there
is a suitable vector of interpolation functions, N(x) = {N, N,, . .. ,N,}T. Then, the
displacement at a point X in the structure can be approximated by

uf(x) = N(x) - d* (2.28)

It is noted that the interpolation function, N(x), is often given in the reference
coordinate (see Sect. 1.5). The element strain vector can be computed by appropri-
ate differentiation as follows:

e =B-d, (2.29)

where B is the strain—displacement matrix. In general, stress is a function of strain.
For nonlinear problems, this relation can be written in the following form:

o' =f(¢"). (2.30)

When the material is linear elastic, the above relation is equivalent to Eq. (2.3).
In some materials, the above stress calculation involves the entire history of
deformation.

2.3.2 Residual Calculation

Once the state of the structure is determined, the next step is to check if the structure
is in equilibrium or not. If it is in equilibrium, the nodal forces due to internal
stresses must be equal and opposite in direction to the applied nodal forces. More
specifically, the weak form of structural equilibrium can be written as

/// Qs(ﬁ)ngQ = //r ﬁTtdF-s-///QﬁbedQ’ (231)

K

which must be satisfied for all virtual displacements, u, that satisfy the essential
boundary conditions. In the Galerkin approximation method, the virtual displace-
ment is interpolated using a similar form as in Eq. (2.28), and thus, the virtual strain,
e(), as in Eq. (2.29). By substituting these into the weak form, we have

([ wesa- f o f o) e


http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec14

116 2 Nonlinear Finite Element Analysis Procedure

Since (2.32) must be satisfied for arbitrary virtual displacements, d, it is equivalent
to the following equation:

///QBTch://F NTtdI“_i_///QNTfth' (233)

s

The left-hand side represents the equivalent nodal forces due to internal stresses,
while the right-hand side represents equivalent nodal forces due to applied forces. If
the above equation is satisfied for the given displacements, then the structure is in
equilibrium. However, when the structure is not in equilibrium, the difference
between them is defined as a vector of residuals as

Rf = .//F NTtdF+/// QNTf”dQ— /// QBTdeQ‘ (2.34)

The superscript, k, is used to denote that the structure is not in equilibrium at the kth
iteration. In practice, the integrals in the residual are calculated using numerical
integration, such as Gauss quadrature in Sect. 1.5.

2.3.3 Convergence Check

The purpose of nonlinear finite element analysis is to satisfy the equilibrium
equation, such as the one in Eq. (2.31), which is equivalent to making the vector
of residuals in Eq. (2.34) to vanish. The iteration stops when the magnitude of the
residual vector is less than a specific tolerance. In that case, the iteration converges
and the solution is the current displacement. However, the iterations may not
converge in some cases no matter how many iterations are conducted. In order to
prevent an infinite loop of the convergence iteration, the program usually stops
when the iteration counter reaches the maximum allowed number of iterations. In
that case, the algorithm stops with an error message. In order to prevent stopping the
algorithm with errors, the force can be halved and the convergence is tried again,
which is called the bisection method. The bisection method can be repeated
until either the iteration converges or the maximum allowed number of bisections
is reached.

2.3.4 Linearization

Linearization is one of the most important steps in solving nonlinear equations.
In this step, the Jacobian matrix is calculated for the Newton—Raphson method, or


http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec14

2.3 Steps in the Solution of Nonlinear Finite Element Analysis 117

the previous Jacobian matrix is updated in the secant method. In structural prob-
lems, the Jacobian matrix is often called the tangent stiffness matrix because it is a
tangent line of the force—displacement curve in a single DOF case. For practical
applications, the structural equations from the finite element method are not given
in the form of simple polynomials as in Example 2.2. Thus, linearization is the most
complicated procedure, theoretically and computationally. In the following chap-
ters, linearization of different nonlinearities will be discussed in detail. It is noted
that errors in the tangent stiffness can cause slow convergence or sometimes
divergence. The accuracy of the solution is controlled by residuals.

2.3.5 Solution

Once the tangent stiffness matrix and the vector of residuals are calculated, the
following system of linear equations is solved for incremental displacement:

K; - Ad" = R, (2.35)

where Ad" is the vector of incremental displacements. In order to have a unique
solution to the above equation, the tangent stiffness matrix must be positive definite.
Then, the total displacement is updated by

d“! = d* + Ad-. (2.36)
Now, the kth iteration is completed and the procedure is repeated for the (k+ 1)th

iteration.

Example 2.9 (Nonlinear bar) A rubber bar of length L = 1 m is under an axial force,
F =10 kN, as shown in Fig. 2.25. The material has the following nonlinear stress—
strain relation: o =FE -tanfl(ms), where the material constants £ =100 MPa
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Fig. 2.25 Newton—Raphson iteration of a nonlinear bar
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and m=40. A uniform stress distribution is assumed over the cross
section, A = 1074 mz, and the axial force is also assumed uniformly distributed.
Assuming an infinitesimal deformation, perform the first two Newton—Raphson
iterations to find the strain, stress, and displacement at the tip (node 2) of the
element.

Solution The discrete weak form of the bar element can be written as
—r [E —T
d / B'6Adx=d F,
0

where d =[d,, dz]T is the vector of nodal displacements, d is the vector of virtual
nodal displacements, B'= [—1, 1]/L is the displacement—strain matrix, and F =
[F1, F>]" is the vector of applied forces. In order to simplify the following steps, the
essential boundary condition can be applied in advance, i.e., d; = d; = 0. For
simplicity of notation, d =d, and F = F, will be used in the following derivations.
Then, the above discrete weak form becomes a scalar equation. The residual now
becomes

L
R:F—/ oA 4
o L
= R=F —o(d)A.

Note that the residual is nothing but the equilibrium between external and internal
forces: P(d)=F. Due to the nonlinear stress—strain relation, the Newton—Raphson
method is used to find the displacement, d, to eliminate the residual. The Jacobian
becomes

dP _do(d) , _ do de
dd =~ dd = dedd

The first derivative on the right-hand side can be calculated by differentiating the
stress—strain relation and the second derivative from the displacement—strain rela-
tion. Using these relations, we have

P 1 2(0
FYi ZmAE cos (E)

Then, the Newton—Raphson equation at the kth iteration becomes

1 2 o' k k
—mAEcos“ | — | |Ad" = F — ¢"A.
L E
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Iteration 1: =& =¢6"=0. Then, the above equation becomes

mAE

Ad’ =F,
L

which yields Ad° = 0.025. Then, all variables are updated at the new configuration,
as

d' =d° + Ad° = 0.025 m,
e =d'/L =0.025,
o! = Etan ~!(me') = 78.5 MPa.

Iteration 2: The Newton—Raphson equation becomes

AE !
[m cos? (0—)} Ad' =F — 6'A,

L E

which yields Ad' =0.0107. Then, all variables are updated at the new configura-
tion, as

d* =d' + Ad' = 0.0357 m,
e =d?/L = 0.0357,
0? = Etan ! (me?) = 96 MPa.

Iteration 3 will yield a stress value of 6 =99.7 MPa, which is only 0.3 % different
from the exact solution. m

2.4 MATLAB Code for a Nonlinear Finite Element
Analysis Procedure

Although the previous section summarized five important steps in a nonlinear
finite element analysis procedure, it is important to understand how these
steps are executed in sequence. Figure 2.26 shows a flowchart for a nonlinear
finite element analysis procedure. A MATLAB program, NLFEA, is also listed as
an example. The procedure assumes the incremental force method with
the Newton—Raphson method. The bisection method is used when the Newton—
Raphson method failed to converge. The modified Newton—Raphson method
and automatic time stepping method can easily be implemented by modifying
the current implementation.
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Fig. 2.26 Flowchart for nonlinear finite element procedure
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function NLFEA (ITRA, TOL,ATOL,NTOL, TIMS,NOUT,MID, PROP, EXTFORCE, SDISPT,

XYZ,LE)

PR EEELEREEERES SRS ESERESELERESEEESEREEEEEEESESEEEEEEESEEEEEEEE ]

% MAIN PROGRAM FOR HYPERELASTIC/ELASTOPLASTIC ANALYSIS

o°

o0
o°

global DISPDD DISPTD FORCE GKF
%

[NUMNP, NDOF] = size (XYZ) ;

NE = size(LE,1);

NEQ = NDOF *NUMNP;

o
s

DISPTD=zeros (NEQ, 1) ; DISPDD=zeros (NEQ, 1) ;

if MID >= 0, ETAN=PLSET (PROP, MID, NE) ; end

%
ITGZONE (XYZ, LE, NOUT) ;
%

ERE

%Global variables

% Analysis parameters

% Nodal displacement &
increment
% Initializematerial

properties

% Check element connectivity

% Load increments [Start End Increment InitialLoad FinalLoad]

NLOAD=size (TIMS, 2) ;
ILOAD=1;

TIMEF=TIMS (1, ILOAD) ;
TIMEI=TIMS (2, ILOAD) ;
DELTA=TIMS (3, ILOAD) ;
CUR1=TIMS (4, ILOAD) ;
CUR2=TIMS (5, ILOAD) ;
DELTAO = DELTA;

TIME = TIMEF;

TDELTA = TIMETI - TIMEF;

ITOL =1;
TARY=zeros (NTOL, 1) ;
%

% Load increment loop

ISTEP = -1; FLAG10 =1;
while (FLAG10 == 1)
FLAG10 = 0; FLAG11l = 1; FLAG20 = 1;

%

CDISP = DISPTD;

%
if (ITOL==1)
DELTA = DELTAOQ;
TARY (ITOL) = TIME + DELTA;
else
ITOL = ITOL-1;
DELTA = TARY (ITOL) -TARY (ITOL+1) ;

First load increment

o

op

Starting time
Ending time

o0 oP

Time increment

op

Starting load factor
Ending load factor

o0

o0

Saved time increment

op

Starting time

o0

Time interval for load step

o0

Bisection level
% Time stamps for bisections

% Solution has been converged

% Store converged

displacement

% No bisection

% Recover previous bisection

% Reduce the bisection level
% New time increment
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TARY (ITOL+1) =0;

ISTEP = ISTEP - 1;
end
TIMEO = TIME;

oe

% Update stresses and history variables

UPDATE=true; LTAN=false;

% Empty converged bisection
level

% Decrease load increment

% Save the current time

if MID ==0, ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;

elseif MID > 0, PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;
elseif MID < 0, HYPER3D (PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;

else fprintf (NOUT, '\t\t *** Wrong material ID ***\n'); return;

end

%

% Print results

1f (ISTEP>=0), PROUT(NOUT, TIME, NUMNP, NE, NDOF) ; end

%
TIME = TIME + DELTA;
ISTEP = ISTEP + 1;
%
% Check time and control bisection
while (FLAG1l ==1)
FLAG11 =0;
if ((TIME-TIMEI)>1E-10)
if ((TIMEI+DELTA-TIME)>1E-10)
DELTA=TIMEI+DELTA-TIME;
DELTAO=DELTA;
TIME=TIMET;
else
ILOAD=ILOAD+1;
if (ILOAD>NLOAD)
FLAG10 =0;
break;
else
TIME=TIME-DELTA;
DELTA=TIMS (3, ILOAD) ;
DELTAO=DELTA;
TIME = TIME + DELTA;
TIMEF = TIMS (1, ILOAD) ;
TIMEI = TIMS (2, ILOAD) ;
TDELTA = TIMET - TIMEF;
CUR1 = TIMS (4, ILOAD) ;
CUR2 = TIMS (5, ILOAD) ;
end
end
end

ao°

% Increase time

% Bisection loop start

% Time passed the end time
% One more at the end time

% Time increment to the end
% Saved time increment

% Current time is the end

% Progress to next load step
% Finished final load step

% Stop the program

% Next load step

% Load factor and prescribed displacements
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FACTOR = CUR1 + (TIME-TIMEF) /TDELTA* (CUR2-CUR1) ;
SDISP = DELTA*SDISPT(:,3)/TDELTA* (CUR2-CUR1) ;

]

% Start convergence iteration

ITER=0;
DISPDD = zeros (NEQ, 1) ;
while (FLAG20 == 1)
FLAG20 =0;
ITER=ITER+ 1;
% Check max iteration
1f (ITER>ITRA), error(’Iteration limit exceeds’); end

%

©

%
% Initialize global stiffness K and residual vector F
GKF = sparse (NEQ, NEQ) ;
FORCE = sparse (NEQ, 1) ;

o

% Assemble K and F
UPDATE=false; LTAN=true;
if MID ==0, ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;
elseif MID > 0, PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;
elseif MID < 0, HYPER3D (PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE) ;
end
%
% Increase external force
if size (EXTFORCE, 1) >0
LOC = NDOF* (EXTFORCE (:,1)-1)+EXTFORCE (:,2) ;
FORCE (LOC) = FORCE (LOC) + FACTOR*EXTFORCE(:,3);
end
%
% Prescribed displacement BC
NDISP=size (SDISPT, 1) ;
i1f NDISP~=0
FIXEDDOF=NDOF* (SDISPT(:,1)-1)+SDISPT(:,2);
GKF (FIXEDDOF, :)=zeros (NDISP,NEQ) ;
GKF (FIXEDDOF, FIXEDDOF) =PROP (1) *eye (NDISP) ;

%

FORCE (FIXEDDOF)=0;

if ITER==1, FORCE (FIXEDDOF) = PROP (1) *SDISP(:); end
end
% Check convergence
1f (ITER>1)

FIXEDDOF=NDOF* (SDISPT(:,1)-1)+SDISPT(:,2);
ALLDOF=1:NEQ;

FREEDOF=setdiff (ALLDOF, FIXEDDOF) ;

RESN=max (abs (FORCE (FREEDOF) ) ) ;

OUTPUT (1, ITER, RESN, TIME, DELTA)

o
°
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if (RESN<TOL)

FLAG10 =1;
break;
end
%
if ((RESN>ATOL) | | (ITER>=ITRA)) % Start bisection

ITOL = ITOL + 1;
if (ITOL<NTOL)
DELTA = 0.5*DELTA;
TIME = TIMEO + DELTA;
TARY (ITOL) = TIME;
DISPTD=CDISP;
fprintf (1, 'Not converged. Bisecting load increment $3d\n’, ITOL) ;
else
error ('Max No. of bisection’) ;
end
FLAG11 =1;
FLAG20 =1;
break;
end
end

o

% Solve the system equation
1f (FLAG11 == 0)
SOLN = GKF\FORCE;
DISPDD = DISPDD + SOLN;
DISPTD = DISPTD + SOLN;

FLAG20 =1;
else
FLAG20 =0;
end
1f(FLAG10 == 1), break; end
end %20 Convergence iteration
end %11 Bisection
end %10 Load increment

%

% Successful end of program

fprintf (NOUT, ' \t\t *** Successful end of program ***\n"’) ;
end

function OUTPUT (FLG, ITER, RESN, TIME, DELTA)

QR Ik h kA hhk kA hhkkhhkkh kA hhkkhhkkhkkhk kX hhkhkhhkkhhkkhhkhhkkhhkkhkkkhkk kK k%

% Print convergence iteration history
%********************************************************************
%%
if FLG ==

if ITER>2

fprintf (1, '%27d %14.5e \n’, ITER, full (RESN)) ;

else
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fprintf (1, '\n \t Time Time step Iter \t Residual \n’);
fprintf (1, ’%10.5f %$10.3e $5d %$14.5e \n’, TIME, DELTA, ITER, full (RESN) ) ;
end
end
end

function PROUT (NOUT, TIME, NUMNP, NE, NDOF)

%********************************************************************

Print converged displacements and stresses

%
%********************************************************************
o
%

o°

global SIGMA DISPTD

%

fprintf (NOUT, '\r\n\r\nTIME = %11.3e\r\n\r\nNodal Displacements\r\n’,
TIME) ;
fprintf (NOUT, ' \r\n Node Ul U2 Uu3’);
for I=1:NUMNP
II=NDOF* (I-1);
fprintf (NOUT, '\r\n%5d $11.3e %$11.3e%11.3e’,I,DISPTD(II+1:II+3));
end
fprintf (NOUT, ‘\r\n\r\nElement Stress\r\n’) ;

fprintf (NOUT, "\r\n S11 S22 S33 S12 S23 S137);
for I=1:NE

fprintf (NOUT, '\r\nElement $5d4',1I) ;

II=(I-1)*8;

fprintf (NOUT, '‘\r\n%11l.3e %$11.3e %$11.3e $11.3e %$11.3e %$11.3e’,SIGMA
(1:6,II+1:II+8));
end
fprintf (NOUT, '\r\n\r\n’) ;
end

function ETAN=PLSET (PROP, MID, NE)
%********************************************************************
% Initialize history variables and elastic stiffness matrix
% XQ : 1-6 =Back stress alpha, 7 = Effective plastic strain
% SIGMA : Stress for rate-formplasticity
% : Left Cauchy-Green tensor XB formultiplicative plasticity
% ETAN : Elastic stiffnessmatrix
%********************************************************************
%%

global SIGMA XQ

%
LAM=PROP(1) ;
MU=PROP (2) ;
%

N = 8*NE;

%

if MID > 30

SIGMA=zeros (12,N) ;
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XQ=zeros (4,N) ;

SIGMA(7:9,:)=1;
ETAN=[LAM+2*MU LAM LAM ;
LAM LAM+2*MU LAM ;
LAM LAM LAM+2*MU] ;
else

SIGMA=zeros (6,N) ;
XQ=zeros (7,N) ;

ETAN=[LAM+2 *MU LAM LAM 0 0 0;
LAM LAM+2*MU LAM 0 0 0;
LAM LAM LAM+2*MU 0 0 O;
0 0 0 MUO O;
0 0 0 0 MUO;
0 0 0 0 0 MU];

end
end

function VOLUME = ITGZONE (XYZ, LE, NOUT)

%********************************************************************

% Check element connectivity and calculate volume
%********************************************************************
%%
EPS=1E-7;
NE = size(LE, 1) ;
VOLUME=0;
for I=1:NE
ELXY=XYZ (LE(I,:),:);
[~, ~, DET] = SHAPEL ([0 0 0], ELXY) ;
DVOL = 8*DET;
if DVOL < EPS
fprintf (NOUT, '\n??? Negative Jacobian ???\nElement connectivity\n’) ;
fprintf (NOUT, %54’ ,LE(I, :));
fprintf (NOUT, ' \nNodal Coordinates\n’) ;
fprintf (NOUT, '$10.3e $10.3e %$10.3e\n’,ELXY"') ;
error ('Negative Jacobian’) ;
end
VOLUME = VOLUME + DVOL;
end
end

The analysis procedure is composed of three nested loops. The first one (loop 10)
is the loop for load steps and load increments. In general, the entire solution
procedure is composed of NLOAD load steps. Multiple load steps are useful when
cyclic loadings are applied. Each load step is composed of several load increments.
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This corresponds to the incremental force method in Sect. 2.2.4, in which the total
applied load is divided by a number of increments.

The second one (loop 11) is for bisection. As discussed before, the Newton—
Raphson method can have a difficulty in converging when the starting point is far
from the solution. Therefore, the convergence can be improved by reducing the
amount of the load increment. Whenever the convergence iteration fails to con-
verge, the load increment is halved, and then, loop 11 is repeated starting from the
previously converged point. Since the solution may not converge no matter how
small the load increment is, the bisection process stops after the maximum number
of bisections is reached. For the purpose of bisection, it is necessary to store the
previously converged displacement (CDISP).

The third, innermost loop (loop 20) is for convergence iteration. This
corresponds to the Newton—Raphson iteration. The major part of this loop is
devoted to calculating the residual vector, FORCE, and the tangent matrix, GKF.
If the residual becomes less than a threshold, it is considered that the iteration has
been converged. In such a case, the loop ends, and the procedure moves to the next
load increment. If iterations do not converge, then bisection is invoked by reducing
the load increment by half.

Since MATLAB copies variables when they are sent as an argument of a
function, it takes a lot of computer memory and time. Therefore, it is better to
define them as a global variable when the size of a variable is large. In the current
implementation, several variables are defined as global variables, as summarized in
Table 2.5.

During nonlinear analysis, NLFEA calls for four functions: OUTPUT, PROUT,
ETAN, and ITGZONE. OUTPUT function is used to print out iteration history to the
MATLAB screen, while PROUT prints out analysis results (displacements and
stresses) to the output file. Both ETAN and ITGZONE are called only once before
Newton—Raphson iteration starts. ETAN is to calculate the initial elastic stiffness for
linear elastic and elastoplastic materials, i.e., when MID >= (. ITGZONE checks
the determinant of element Jacobian matrix and stops NLFEA if the determinant is
negative, which indicates that either element has a negative volume or the element
connectivity is not correct.

The input data include nodal coordinates, element connectivity, force and dis-
placement boundary conditions, material parameters, and control parameters for the
solution procedure. The following sample input data are for one element under
z-directional extension. Note that at the end of input data file, NLFEA is called.

Table 2.5 Global arrays for NLFEA.m program

Name Dimension Contents

GKF NEQ x NEQ Tangent matrix

FORCE NEQ x 1 Residual vector

DISPTD NEQ x 1 Displacement vector

DISPDD NEQ x 1 Displacement increment

SIGMA 6 x 8 x NE Stress at each integration point

XQ 7x 8 x NE History variable at each integration point
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o o

Extension of single element example

o° oP

Nodal coordinates
XYz=[000;100;110;010;001;101;111;0117;
% Element connectivity
LE=[12345678];

% External forces [Node, DOF, Value]
EXTFORCE=[5310.0; 6310.0; 7310.0; 8310.01];
% Prescribed displacements [Node, DOF, Value]
SDISPT=[110;120;130;220;230;330;410;4301;
% Load increments [Start End Increment InitialFactor FinalFactor]
TIMS=[0.00.50.10.00.5; 0.51.00.10.51.0]";

° 0P

¥ Material properties

$PROP=[LAMBDA MU BETA H YO0]

MID=1;

PROP=[110.747, 80.1938, 0.0, 5., 35.01;
%

% Set program parameters

ITRA=20; ATOL=1.0E5; NTOL=5; TOL=1E-6;
%

% Callingmain function

NOUT = fopen (’output.txt’, 'w’);

NLFEA (ITRA, TOL, ATOL, NTOL, TIMS, NOUT, MID, PROP, EXTFORCE, SDISPT, XYZ, LE) ;
fclose (NOUT) ;

Nodal coordinates and element connectivity: The current implementation
assumes that the node numbers are in sequence. Then, the nodal coordinates are
defined using NNODE x 3 matrix XYZ. Since the current implementation only
supports eight-node hexahedral elements, element connectivity is defined using
NELEN x 8 matrix LE.

Applied forces and prescribed displacements: Both applied forces and pre-
scribed displacements are given in the format of [node, DOF, value]. DOF is the
coordinate direction: 1, 2, or 3. The external force, EXTFORCE, may not be
required, but the prescribed displacements, SDISPT, must be defined in order to
remove the rigid-body motion error in static problems.

Load steps and increments: The TIMS array is used to define load steps and
load increments. Each row of TIMS array represents a load step. Each load step has
the start time, end time, and increment, which is used for load increment. The initial
and final factors are the load factors that will vary during the current load step.
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For example, the following TIMS array has 10 increments during which the load
increases from 0 to 50 % of the total load.

TIMS=[0.0, 1.0, 0.1, 0.0, 0.5]

The end time of the previous load step and the start time of the following load
step must be the same. Otherwise, the program will not function properly. The same
is true for the load factors.

Material properties: The current implementation supports three types of
nonlinear materials: linear elastic material (MID=0), Mooney-Rivlin
hyperelasticity (MID=-1), and infinitesimal elastoplasticity (MID=1). For a
linear elastic material, two Lame’s constants are enough to define the material
properties: PROP = [LAMBDA, MU]. For hyperelasticity, material properties are
composed of two material constants, A10 and AOl, and a bulk modulus, D:
PROP = [A10, A01, D]. For elastoplasticity, the required material properties are
two Lame’s constants (4 and y), hardening type (/3), plastic modulus (H ), and initial
yield strength (Y). The meaning of these properties will be discussed in Chaps. 3
and 4.

Analysis control parameters: There are several parameters that control the
analysis procedure. ITRA is the maximum number of convergence iterations in the
Newton—-Raphson method. If the number of iterations reaches ITRA, it is consid-
ered that the analysis cannot converge, and the bisection is invoked. During the
convergence iteration, if the residual increases larger than ATOL, then it is consid-
ered that the solution is diverging, and the bisection process is invoked. The total
number of bisections is limited by NTOL. That is, if the convergence iterations do
not converge after NTOL consecutive bisections, the program stops with an error
message. The convergence iteration is considered converged when the norm of the
residual is less than TOL. Once the solution is converged at each load increment,
nodal displacements and stresses at integration points are printed to an output file
designated by NOUT.

Example 2.10 (Tension of an elastoplastic bar) An elastoplastic bar in the dimen-
sion of 1 cm x 1 cm x 2 cm is under axial load as shown in Fig. 2.27. Using two
eight-node finite elements, solve for displacements and stresses for both elements.
Assume material properties of 1 =110.7 GPa, u =280.2 GPa, 6y =400 MPa, and
H =100 MPa.

Solution Since the total applied load is 44 kN, it can be expected that the material
will be beyond its yield strength of 400 MPa. In order to capture the transition of
material states, the load steps are divided into two parts. In TIMS array,

TIMS=1[0.00.80.40.00.8;
0.81.10.10.81.1]1";

2n Chap. 4, different plasticity models can be used by changing MID =1, 2, and 31.
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The first load step is for elastic portion. Assuming that the exact load at yield is
unknown, 8 kN at each node is applied at the first load step with 4 kN increment.
Therefore, only two increments are performed in the first load step. In the second
load step, the applied load is increased between 8 and 11 kN with the increment of
1 kN. In order to show how the load factor is working, the input file intentionally
applied 10 kN at each node, and the load factor is increased by 1.1, so that the total
applied load is 11 kN at the end.

A nodal force of 10 kN is applied at the four nodes on the top, while the bottom
four nodes are fixed in such a way that the uniaxial tension condition can be met;
that is, uy, = Uy, = 1, = py = Up. = uz. = us. = 0. Nodal coordinates are defined in
XYZ array, and element connectivity is in LE array. EXTFORCE stores externally
applied force, and SDISPT stores prescribed displacements. These two arrays are
given in the format such that each row includes [Node, DOF, Value] format. For
elastoplastic material, MID =1 is used with five material constants in PROP array;
they are two Lame’s constants, LAMBDA and MU; hardening parameters, BETA
and H; and initial yield strength, Y0. Detailed explanation of elastoplastic material
properties will be presented in Chap. 4.

PROP=[110.7E9 80.2E9 0.0 1.E8 4.0E8]

The problem definition and calling NLFEA are listed as follows:

Two-element example

o0 o° of

% Nodal coordinates

XYZ=[000;100;110;010;
001;101;111;011;
002;102;112;0121*0.01;
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% Element connectivity
LE=[12345678;

56789101112];

o0

% External forces [Node, DOF, Value]
EXTFORCE=[9 310.0E3; 103 10.0E3; 113 10.0E3; 123 10.0E3];

% Prescribed displacements [Node, DOF, Value]
SDISPT=[110;120;130;220;230;330;410;4301;

2

of

% Load increments [Start End Increment InitialFactor FinalFactor]
TIMS=[0.00.80.40.00.8;0.81.10.10.81.11";

%

% Material properties PROP=[LAMDA MU BETA H YO]

MID=1;

PROP=[110.747E9 80.1938E9 0.0 1.E8 4.0E8];

0P  of

Set program parameters
ITRA=70; ATOL=1.0E5; NTOL=6; TOL=1E-6;

oF

% Callingmain function

NOUT = fopen ('output.txt’,’'w’);

NLFEA (ITRA, TOL, ATOL, NTOL, TIMS, NOUT, MID, PROP, EXTFORCE, SDISPT, XYZ, LE) ;
fclose (NOUT) ;

The Newton—Raphson iteration will be performed at each load increment of each
load step. The following output shows the iteration history:

Time Time step Iter Residual
0.40000 4.000e-01 2 3.80851e-12
Time Time step Iter Residual
0.80000 4.000e-01 2 4.32010e-12
Time Time step Iter Residual
0.90000 1.000e-01 2 3.97904e-12
Time Time step Iter Residual
1.00000 1.000e-01 2 3.63798e-12
Time Time step Iter Residual
1.10000 1.000e-01 2 6.66390e+02

3 1.67060e-09

During the first load step, since the stress is less than the yield strength, the
material behavior is identical to a linear elastic material. Therefore, the Newton—
Raphson iteration converges at the first iteration at Time = 0.4 and 0.8. During the
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Table 2.6 Displacements and stresses of elastoplastic bar

Load factor | us. Uy S33 Elem1 (MPa) | S3; Elem2 (MPa) | State

0.4 773%x107% [ 1.55%107° | 160 160 Elastic
0.8 1.55%x107° [3.09%x107° |320 320 Elastic
0.9 1.74%x107° [348x107° | 360 360 Elastic
1.0 1.93x 10> [3.87 x 10> | 400 400 Elastic
1.1 4.02%x 107 [8.04x 107> |440 440 Plastic

second load step, the material is still elastic at Time = 0.9 and 1.0, where they also
converge at the first iteration. At Time = 1.1, however, the material becomes plastic
and the iteration converges at the second iteration. The iteration converges very fast
in this case because both elements are under the uniform stress condition and the
plastic hardening model is linear.

The nodal displacements and element stresses are saved in output.txt file. These
results are stored at every load increment. Table 2.6 summarizes displacements and
stresses at each load increment. Since the two elements are in the same loading
condition, it is expected that both elements have the same constant stresses. Also,
the material is elastic until the load factor = 1.0, at which the material is in the
initial yield state. At load factor = 1.1, the material deforms plastically until it can
support the stress of 440 MPa. The stress after yielding continuously increases due
to plastic hardening modulus, H, albeit the slope is much smaller that the initial
stress—strain curve. That is why the displacements dramatically increase between
load factors 1.0 and 1.1. -

2.5 Nonlinear Solution Controls Using Commercial Finite
Element Programs

Although many commercial finite element analysis programs are available, only
three popular programs (Abaqus, ANSYS, and NEiNastran) are discussed in this
section. All three programs provide both a graphical user interface (GUI) and text
input file for defining the solution controls. Figure 2.28 shows the steps of defining
nonlinearity in the flow of nonlinear modeling and analysis using commercial
software. It is obvious that material nonlinearity is defined at the stage of defining
material properties and force nonlinearity at load conditions. Kinematic
nonlinearity, such as contact conditions, is defined at the stage of defining displace-
ment boundary conditions. However, many commercial programs consider contact
conditions separately from displacement boundary conditions, and they can be
defined separately. It is difficult to see how to define geometric nonlinearities at
the stage of defining a load case, but it is common for users to select the large
deformation option when a load case is defined. The detailed description of these
individual nonlinearities will be discussed in the following chapters.



2.5 Nonlinear Solution Controls Using Commercial Finite Element Programs 133

Geometric modeling

U

Material definition Material nonlinearity

U

Element properties

U

Mesh generation

U

Boundary conditions Kinematic nonlinearity
Load conditions Force nonlinearity
Load case Geometric nonlinearity

U

Launch solution

U

Post-processing

Fig. 2.28 Nonlinearity definition in the analysis flow

Since the input data through the GUI are eventually converted into a text input
file, the latter is used in the following explanations. The purpose is not to provide
complete usage instructions for the programs. Rather, it focuses on how to apply the
solution control methods in the previous sections. For detailed usage, the readers
are referred to the manual of the particular program.

2.5.1 Abaqus

The input file of Abaqus consists of keywords. For example, the keyword, *NODE,
defines nodal coordinates, and * ELEMENT defines element type and connectivity. The
keyword, * STEP, is used for the solution control of the current load. The definition of
*STEP ends with the *END STEP keyword. In * STEP, users can specify analysis
type, boundary conditions, applied loads, and output controls. This is different from
the time steps that are used in this textbook. It is similar to the load case in Nastran.

*STEP, INC=100 (default)
TITLE
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This keyword starts a new step. By default, the maximum allowable number of
increments is 100. The * STEP keyword is followed by the keyword defining the
analysis procedure.

*STATIC, DIRECT
DT, TEND, DTMIN, DTMAX

The *STATIC keyword specifies that the analysis type is nonlinear static. If the
parameter, DIRECT, is given, then a fixed time increment, DT, is used until the
ending time, TEND. If this parameter is omitted, automatic time stepping will be
used starting from the initial time increment DT. When the second line is omitted,
DT and TEND will be set to one, i.e., a single load increment. When the automatic
time stepping scheme is used, the time increment can reduce until DTMIN and can
increase up to DTMAX.

*END STEP

This command finishes defining the current analysis step. Abaqus can apply
multiple loads in sequence by defining the corresponding steps sequentially.

2.5.2 ANSYS

The input file of ANSYS consists of three sections for static analysis: preprocessing
(/PREP7), solution (/SOLU), and postprocessing (/POST1). The solution controls
are defined in the /SOLU phase.

SOLCONTROL, ON (default)/OFF

This command activates (ON) or deactivates (OFF) optimized defaults for a set
of commands applicable to nonlinear solutions. It is recommended to use the
default value (ON) for reliable and efficient default solution settings.
AUTOTS, ON(default) /OFF

This command determines if the time step is determined automatically by
ANSYS, or a fixed time step that is given in DETIM or NSUBST command is used.

Default: ANSYS determines time stepping when SOLCONTROL is ON. No
automatic time stepping occurs when SOLCONTROL is OFF.

TIME, TIME

This command specifies the time at the end of the current load. The starting time
is either zero (for the first load) or the end time of the previous load. Since it is not a
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physical time for static analysis, it is recommended that each load has a unit time;
1.€., the first load has TIME = 1, and the second load has TIME = 2.

DELTIM, DTIME, DTMIN, DTMAX

This command specifies the load increments (time steps) for the current load. If
both AUTOTS and SOLCONTROL are OFF, the fixed time step size DTIME is used.
The advantage is that the users can obtain the analysis results at the specific load
increments. However, the analysis may stop due to non-convergence if the
nonlinearity is high at any load increment section.

If AUTOTS is ON, the program uses DTIME as an initial time step, and the
following time steps are calculated according to automatic time stepping procedure,
which can reduce possible non-convergence problems. When SOLCONTROL is ON,
the program automatically sets up the minimum and maximum size of the time
steps. When it is OFF, users need to provide these values in DTMIN and DTMAX.

NSUBST, NSBSTP, NSBMX, NSBMN

This command plays the same role as the DELTIM command. Instead of speci-
fying the time step size, it provides the number of load increments in NSBSTP. If
TIME = 1, then the corresponding time step size can be calculated from 1/NSBSTP.
The same time stepping procedure is applied when AUTOTS=ON and/or
SOLCONTROL = ON. NSBMX and NSBMN correspond to DTMAX and DTMIN.

NEQIT, NEQIT

Specifies the maximum number of equilibrium iterations for nonlinear analyses.
If the number of iterations becomes NEQIT, the program will either stop with an
error message or cutback time step if AUTOTS is ON.

CNVTOL, Lab, VALUE, TOLER, NORM, MINREF

This command specifies convergence criteria for nonlinear analyses. For struc-
tural problems, Lab = U (displacements) or F (forces) are frequently used. VALUE
is a typical value of displacements or forces, and TOLER is the tolerance to
consider the nonlinear iteration convergence. The default value of TOLER is 0.05
(5 %) for Lab=1U, and 0.005 (0.5 %) for Lab=F. Since the displacements and
forces are vectors, their magnitudes are calculated using NORM and compared with
TOLER. The square root of the square sum (L,-norm) is used when NORM = 2
(default), while the sum of absolute values is used when NORM =1 (L;-norm).
ANSY'S monitors this convergence criterion and plots a graph during each iteration.

SOLVE

Once all solution controls are set, this command starts solving the system of
nonlinear equations.
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2.5.3 NEiNastran

There are several different variations of NASTRAN programs. In this textbook,
NEiNastran from NEi software is used. The model input file of NASTRAN consists
of two sections: case control and bulk data. The input file starts with the case control
section, which ends with the BEGIN BULK entry. The bulk data section starts with
the BEGIN BULK entry and ends with the ENDDATA entry. Definitions of nodes and
elements, boundary conditions, applied loads, and material properties are given in
the bulk data section. The case control section specifies how the loads and boundary
conditions will be used for a particular load case. It also controls outputs. The bulk
data entry is given in a fixed column format, where each parameter is specified in
8 columns.

SOL NLSTATIC

This command specifies that the solution type is nonlinear static. This is in the
case control section and usually the first entry in the input file.

NLPARM =1

This case control entry specifies that the NLPARM entry in the bulk data section
is used for the current load. It is possible that the users can define multiple NLPARM
entries with different identification numbers and use a particular one for the
current load.

BEGIN BULK

This entry shows that the case control section is over and the bulk data section
starts.

NLPARAM

This entry controls the solution procedure of nonlinear analysis. The parameters
of the NLPARM entry are as follows:

NLPARM | ID NINC KMETHOD |KSTEP |MAXITER |CONV | INTOUT
EPSU | EPSP | EPSW

ID is a unique identification number that can be activated by the NLPARM =D
entry in the case control section. The entire load is divided by NINC increments.
The parameter, KMETHOD (AUTO, SEMI, ITER), determines how often the
stiffness matrix should be calculated in the modified Newton—Raphson method.
AUTO: the program decides when to calculate stiffness matrix, SEMI: the stiffness
matrix is always calculated at the first iteration and follows the same procedure as
AUTO, and ITER: calculate the stiffness matrix at every KSTEP number of
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iterations. In each load increment, the number of iterations is limited by MAXITER.
The convergence criteria are specified in the CONV parameter using any combina-
tion of U (displacement), P (force), and W (work). The tolerances of these criteria
are given in EPSU, EPSP, and EPSW. If INTOUT is YES, the program will output
intermediate results.

ENDDATA

This entry shows that the bulk data section is over. This is usually the last entry
of the input file.

2.6 Summary

In this chapter, different types of nonlinearities in solid mechanics are introduced,
including geometric, material, kinematic, and force nonlinearities. Geometric
nonlinearity usually occurs when deformation is large, so that the undeformed and
deformed states are significantly different. Material nonlinearity occurs in the con-
stitutive relation, i.e., stress—strain relation. Hyperelastic, elastoplastic, or viscoelastic
materials are examples of nonlinear materials. Kinematic nonlinearity usually occurs
on the boundary of a structure by constraining deformation. The contact constraint is
the most common example of kinematic nonlinearity. Force nonlinearity occurs when
the applied force depends on deformation. A common example is when a pressure
load is applied to a surface that undergoes a large deformation.

General procedures for solving a system of nonlinear equations are introduced in
Sect. 2.2. The key concept is to reduce the magnitude of the residuals at every
iteration using the Jacobian matrix. The Newton—Raphson, modified Newton—
Raphson, and secant and incremental force methods are introduced. The Newton—
Raphson method shows a quadratic convergence when the initial estimate is close
to the solution. The convergence rates of all other methods are between one and
two. However, the Newton—Raphson method has the highest computational costs
because it calculates the Jacobian matrix at every iteration. The Newton—Raphson
method may have difficulty in convergence, or the solution may diverge if the
initial estimate is too far from the solution. In order to improve the convergence, the
incremental force method gradually increases the applied force and uses the
previously converged solution as an initial estimate for the following load incre-
ment. In commercial finite element programs, this incremental force method is
further improved by automatically adjusting the size of load increments such that
the Newton—Raphson iteration converges quickly. It is also discussed that the
displacement-controlled method is more stable than the force-controlled method
for nonlinear structural systems. The solution control commands for three different
commercial finite element programs are briefly introduced in Sect. 2.4.
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2.7

P2.1.

P2.2.

P2.3.

P2.4.

P2.5.

2 Nonlinear Finite Element Analysis Procedure
Exercises

Find the roots of the following nonlinear vector equations using the Newton—

Raphson method:
_Jutw | 3] _

Use the initial estimate uO:{l, 5}T and convergence tolerance = 1075,
Discuss the convergence rate.

Using the modified Newton—Raphson method, solve the nonlinear equations
in P2.1. Compare the convergence rate with the Newton—Raphson method.

Using the Broyden’s method, solve the nonlinear equations in P2.1. Compare
the convergence rate with the Newton—Raphson method.

Using the incremental force method, solve the equations in P2.1. Use five
equal-interval load steps.

Consider a uniform bar with a constant Young’s modulus, £ =100 MPa;
cross-sectional area, A =2 x 10 m?; and a unit length, L = 1 m. The applied
force F =10 kN is large enough such that the relation between displacement
and strain is nonlinear:

du 1/du)\>

Using a single two-node bar element, calculate the displacement at the tip and
strain of the element. Use an increment force method with 10 equal force
increments.

Hint: The virtual strain can be obtained through variation of the strain as

> F = 10kN

A
(-)
()

Fig. P2.5
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P2.6. Solve Problem P2.5 using the secant method. Do not use the incremental
force method. Discuss about the convergence rate.

P2.7. Consider a uniform bar with a cross-sectional area, A =2 X 10 m2, and a
unit length, L=1 m. The bar shows elastoplastic material behavior, as
depicted in the figure. The plastic deformation starts at yield stress
oy =400 MPa. In the elastic region, the Young’s modulus is £ =200 GPa,
while in the plastic region, the tangent stiffness is £t =20 GPa. When a
force, F =50 kN, is applied at the end, calculate the tip displacement and
stress of the element using one bar element. Use 10 equal-interval force
increments. Plot the force—displacement curve. Assume the displacement—
strain relation is linear.

Z 2
Z@ Qp—*
> x E
€
Fig. P2.7

P2.8. Consider the three nonlinear springs in the figure. The stiffness of each spring
is given by k; =500+ 50u, k, =200 + 100u, and k3 = 500 + 100u, where u is
the elongation of the spring. Solve the displacements at nodes 1 and 2 using
the Newton—Raphson method when F = 100.

ky
ks

kz —> F

>,

NNNANNNNNNNNY

F>u

Fig. P2.8

P2.9. Consider a uniform bar in the figure. The stress—strain relation and
displacement—strain relation are linear. However, the Young’s modulus of
the material varies according to the strain.

-=. EW :EQ<1—%).

When one element is used to model the bar, formulate the nonlinear equation
with the tip displacement being unknown. Solve the tip displacement using
the incremental force method with 10 equal-interval increments. Use
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Ey=1.0 GPa, A= 107 mz, and F =25 kN. Plot the force—displacement
curve. Test what happens when F =30 kN, and explain why.

/
é@ (2 )—> F=10kN
7/ IR
/ X
44— L=1m — >
Fig. P2.9
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Chapter 3
Finite Element Analysis for Nonlinear
Elastic Systems

3.1 Introduction

In the previous chapter, different nonlinearities are briefly discussed along with
solution procedures. In this and the following chapters, specific nonlinearities will
be discussed in detail. In general, nonlinear systems in solid mechanics can be
categorized by mild and rough nonlinearities. Mild nonlinearity has smooth, path-
independent nonlinear relations between stress and strain. Nonlinear elasticity,
geometric nonlinearity, and deformation-dependent loads belong to this category.
On the other hand, rough nonlinearity includes equality and/or inequality con-
straints in the constitutive relation or kinematic conditions. Elastoplasticity and
contact problems belong to this category. In this chapter, finite element formula-
tions for mild nonlinear systems are developed. Rough nonlinearity will be
discussed in the following chapters.

An important aspect of the problems in this chapter is that they undergo large
deformation, which includes large strain, displacement, and rotation. In linear
structural systems, it is assumed that the magnitude of deformation is infinitesimal
such that there is no significant difference between the deformed and undeformed
shapes. Thus, stress and strain are defined in the undeformed shape, and also the
weak form is integrated over the same shape. Under this assumption, the relation
between displacement and strain becomes linear. However, for large deformation,
the difference between the deformed and undeformed shapes is large enough that
they cannot be treated the same. Thus, the previous definitions of stress and strain
should be modified from the assumption of small deformation. In addition, in linear
structural systems, the relation between stress and strain is assumed linear when
strain is small. However, this relation becomes nonlinear as deformation increases.

Even though several methods for solving nonlinear equations were introduced in
the previous chapter, most were based on the Newton—Raphson method, except
for the secant method. These solution procedures require calculating the residual
and tangent stiffness matrix at each iteration. The residual is calculated from the
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weak form of structural systems, and the tangent stiffness matrix is calculated by
differentiating it. This chapter will focus on how to calculate this residual and
tangent stiffness matrix for a given nonlinear elasticity model. Since the main
purpose of this chapter is to introduce the basic procedure of nonlinear elastic
structural systems, only parts of nonlinear elastic and hyperelastic models will be
introduced in this book. More detailed discussions on the topic can be found in the
books by Belytschko et al. [1] and Wriggers [2].

In general, the structural equilibrium equation—the weak form—is written based
on a frame of reference. The structural geometry at any stage of deformation can be a
frame of reference, but due to simplicity, either the initial, undeformed geometry or
current deformed geometry is often used as a frame of reference. In addition, proper
definitions of stress and strain must be used according to the frame of reference.
When the equilibrium equation is written at the undeformed geometry, it is called the
total Lagrangian formulation. On the other hand, when it is written at the deformed
geometry, it is called the updated Lagrangian formulation. Although these two
formulations refer to different frames of reference, they represent the same structural
equilibrium. Thus, these two formulations are theoretically identical [3]. However,
the numerical implementation of these two formulations becomes different as they
use different measures of stress and strain as well as different integration domains.

3.2 Stress and Strain Measures in Large Deformation

When deformation is infinitesimal, there is no noticeable difference between the
undeformed and deformed geometries. All quantities such as stresses, strains, and
displacements are referred to at the original undeformed geometry. However, in
reality, the structure is in equilibrium after deformation. Thus, to be precise, the
equilibrium equation must be written at the deformed geometry, but this difference
is ignored by the infinitesimal deformation assumption. In the case of large defor-
mation, however, the difference between undeformed and deformed geometries is
significant, and thus, is not ignorable. Thus, it is important to understand how to
represent a large deformation of a material and how to define stress and strain in
such a case. The behavior of material under deformation is studied in continuum
mechanics. This section presents a brief review of important continuum mechanics
concepts related to large displacement problems. For detailed discussions on
continuum mechanics, the readers are referred to the book by Malvern [4].

3.2.1 Deformation Gradient

Consider a general solid that is subjected to some forces and displacements so that
its geometry changes from the initial (or undeformed) to the current (or deformed)
state as shown in Fig. 3.1. This deformation is denoted by a mapping ®©(X,r) where
X =[X;, X5, X3] is a material point in the undeformed geometry and ¢ denotes the
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Fig. 3.1 Undeformed ()
and deformed (Q,)
geometries of a body

deformation process, with ¢ = 0 being the undeformed geometry. In continuum, this
mapping is one-to-one, and ® and @' are continuously differentiable. The points
in the initial geometry are denoted by vectors with uppercase letters and those in the
current geometry by lowercase letters. In particular consider a point P, identified by
vector X, in the initial undeformed geometry that is mapped to a point Q, identified
by vector X = [x], X,, x3], in the current deformed geometry. The description of the
mapping from initial to current geometry is symbolically written as follows:

xp = x1(X1,X2,X3)
X =x(X1,X2,X3),
x3 = x3(X1,X2,X3)

x = (X, 1). (3.1)

The above equation says that for a given point P in the undeformed geometry, a
unique point Q exists in the deformed geometry. Referring to Fig. 3.1, the above
mapping relation can be written as

x=0(X,r) =X+ulX,1), (3.2)

where u(X,?) is the displacement of point P.

In Fig. 3.1, neighboring points P’ and Q’ at infinitesimal distances from P and
Q are denoted by vectors dX and dx, respectively, in the two geometries. The vector
dX deforms to dx. Assuming continuous mapping, the relationship between differ-
ential elements dX and dx can be expressed as follows:

dx = aa—;dX ~ dx=FdX, (3.3)
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where F is known as the deformation gradient and is written explicitly as follows:

ax,‘
Fij==—. 34
Using the relation in Eq. (3.2), the deformation gradient can be written as
Ou
F=14+—=1+V 35
+tax = 1+ Vou, (3:5)

where the term Ou/0X is called the displacement gradient. For the notational
simplicity, V= 0/0X represents the gradient operator at the undeformed geome-
try, such that (Vou); = 0u;/0X;. If F =1, then dx = dX, which means that there is
no deformation. Even if an infinitesimal volume in the undeformed geometry can
increase or decrease its size, it cannot shrink to a point, i.e., a zero volume.
Mathematically, this means that the determinant of deformation gradient must be
positive:

detF =J > 0. (3.6)

This property is important to make a valid mapping of ®(X,f) during large
deformation.

Example 3.1 (Uniform extension) Consider a cube undergoing uniform extensions
in all three directions, so that

X1 =MX1, xX=01X: x3=1X;, (3.7)

where A; are the principal stretches. What is the condition of As to be a valid
mapping? Calculate the deformation gradient F. In addition, calculate the deformed
volume of an infinitesimal cube that has an initial volume of dV,=dX,;dX,dXs.
What is the requirement of preserving the volume?

Solution From the requirement of continuity in mapping, all stretches must be
positive, i.e., 4;>0. If A; are constants or functions of time ¢ only, then the
deformation is uniform. The deformation gradient may be found from Eq. (3.4) as

A0 0
F=({0 4 O
0 0 A3

If A, =1, = 43, the cube undergoes a uniform expansion or contraction in all direc-
tions and is referred to as a uniform dilatation. The volume of the cube is initially
dVO = XmdX2dX3 and is now dVX = dX]dde)C3 = /11/12/13dX1dX2dX3 = /11/12/13(1‘/0.
When there is no volume change, ;4,43 = 1. =
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3.2.2 Lagrangian and Eulerian Strains

Since undeformed and deformed geometries are different, the engineering strain from
infinitesimal deformation cannot be used for large deformation. In addition, since the
definition of strain includes derivative of displacement with respect to the coordinates
of reference frame, either undeformed or deformed geometry must be used as a
reference. Two different definitions of strain will be discussed in the following.

3.2.2.1 Lagrangian Strain

Lagrangian strain uses undeformed geometry as a reference. Consider the two
differential elements, dx and dX, in Fig. 3.1. The vector dX is deformed to dx.
The change in squares of length of these two vectors can be expressed as follows:

||dx||* — [|dX||* = dx"dx — dX"dX
= dX"FTFdX — dX"dX (3.8)
=dxT (FTF — l)dX,
where 1is a 3 x 3 identity tensor. Since dX"dX is the square of the length of vector
dX, the quantity in the parentheses, (F'F — 1), measures the change in squared

lengths with respect to the square of the initial length. The term F'F is an important
quantity and is defined as a right Cauchy—Green deformation tensor:

C=F'F. (3.9)
From the last relation in Eq. (3.8), the Lagrangian strain can be defined as

1
E=5(C-1). (3.10)

The factor 1/2 is used to make the definition identical to the engineering strains in
case of infinitesimal strains. When there is no deformation, F =1 and thus, E =0. In
terms of displacement gradient, the Lagrangian strain tensor can be written as

1/0u 0Ou’ Ou' Ou 1
Ei(a—x+a—x+a—xa—x>5(Vou+V0uT+VouTVOU>- (3.11)

It is obvious from the definition that the Lagrangian strain E is symmetric. In
addition, when the displacement gradient is small, then it approaches the following
infinitesimal strain tensor:

8:%(V0u+ Vou"). (3.12)
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However, physically, € cannot be an exact measure of deformation because it does
not remain constant in rigid-body rotations.

Example 3.2 (Strains in a rigid-body rotation) In a counterclockwise rigid-body
rotation through an angle a about the X3-axis, the transformation relation can be
given by

xy =Xjcosa—X,sina
x, =X;sina+ X;cosa, (3.13)
X3 :X3

Compare the infinitesimal strain € with the Lagrangian strain E.

Solution From the given transformation relation, the displacements can be calcu-
lated by

up = Xjcosa— Xpsina — X,
U =X sina+ Xcosa — X,
M3:0.

The infinitesimal strain in Eq. (3.12) can be written as

1 |:aI/l, auj:l cosa— 1 0 0

£== = 0 cosa—1 0
25Xj 0X; 0 0 0

In order to calculate the Lagrangian strain, the deformation gradient is calculated
first by differentiating the transformation relation as

) cosa sina 0

Xi .

F = {W} = | —sina cosa O
J 0 0 1

The Lagrangian strain in Eq. (3.10) can be written as

1 0
E=_(FFF-1)= |0
2 0

(=R
(=R e]

Note that the Lagrangian strain is not affected by the rigid-body rotation, but the
infinitesimal strain varies.

In the above example, € and &5, are not zero. However, if a is small, then these
quantities are small and may be neglected. Although the infinitesimal strain tensor
is not an exact measure of deformation, it is convenient for use in the applications
involving small strains. An advantage of this strain tensor is its linear relation with



3.2 Stress and Strain Measures in Large Deformation 147

respect to the displacement gradient. This allows for the application of the tech-
niques of linear analysis in solving boundary-value problems in the linear theory of
elasticity and helps keep the equations of the theory of plasticity simple. Neverthe-
less, using Eq. (3.12), it is necessary to keep in mind that the rigid-body rotation has
to be small.

3.2.2.2 Eulerian Strain

In Eq. (3.8), the change in length is expressed with respect to the undeformed
differential element dX. If the deformed differential element dx is used as a
reference, the change in squares of length of these two vectors can be expressed
as follows:

[|dx||* — [|dX||* = dx"dx — dX"dX
= dx"dx — dx"FTFldx

3.14
=dx"(1-F "F")dx (314)
=dx"(1-b")dx,
where the left Cauchy—Green deformation tensor b is defined as
b=FF". (3.15)

Using the left Cauchy—Green deformation tensor, the Eulerian strain tensor can be
defined as

e:%(l—b‘]). (3.16)

From a similar approach, it can be shown that

1/0u 0Ou' Ou' Ou 1

= (=t ) ==(V, Vaul —Vau'v 3.17
¢ 2<Z3xJr ox 0Ox ax) 2( Uty V), (3.17)
where V= 0/0x represents the gradient operator at the current geometry, such that
(V,w);= Ou;/0x;. As with the Lagrangian strain, the Eulerian strain is also sym-
metric and approaches the infinitesimal strain when the displacement gradient is
small.

Example 3.3 (Large displacement and rotation) A four-node element undergoes
large displacement and rotation in the XY plane, as shown in Fig. 3.2. The element is
rotated counterclockwise by 90°, its length is stretched to 2, and width is reduced to
0.7. Calculate the deformation gradient, Lagrangian strain, Eulerian strain, and
engineering strain.
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Fig. 3.2 Finite element Y 4
under large deformation and
rotation

Deformed element

B

2.0

1.0

Undeformed element

> X

0.7 1.5

Solution Using the bilinear shape function in the reference coordinate (s,f), the
mapping relation for the undeformed element can be written as

4
3
X ;Nl(s, Xy =(s+1)

4
1
Y= Ni(s,0)Y; ==(t+ 1
; 1(s,0)Yr =2(t+1)
and the mapping relation for the deformed element can be written as

x(s,t) = ﬁ:N,(s7 Hx; = 0.35(1 — 1)

I=1

4
Y(s,0) =Y Ni(s,0)y; =s+1
=1

For convenience of notation, let us define the following vectors: X = {X ,Y}T, X=
{x,y }T, s= {s,t}T. Then, using the chain rule of differentiation, we can calculate the
deformation gradient as

F_%_%ﬁ_ 0 —-35({4/3 0| | 0 —07
~0X 0s0X |1 0 0 2| |4/3 o0 |
It can be easily verified that the above deformation gradient transforms a vector
{1.5,0}" into {0,2}" and {0,1}" into {—0.7,0}".
From the definition of the Lagrangian strain in Eq. (3.10), E can be defined as
1, r 0.389 0
E_E(FF_I)_[ 0 —0.255]'
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Since the Lagrangian strain has only nonzero diagonal components, the original
rectangular shape is maintained. However, the length in the original X-direction
increases, whereas it decreases in the original Y-direction.

The Eulerian strain can be calculated from Eq. (3.16):

L [-052 0
e=y(1-FF )[ 0 0.22}

Note that since the Eulerian strain also has nonzero diagonal components, the
original rectangular shape maintains. However, since the frame of reference is
different from that of the Lagrangian strain, the magnitudes of diagonal components
are different.

In order to calculate engineering strain, it is first necessary to calculate the
displacements at each node. By subtracting the nodal coordinates between
the deformed and undeformed geometries, the following nodal displacement can
be obtained:

M1:0.7 M2:—0.8 M3:—1.5 M4:0.0
V1:0.0 V2:2.0 V3:1.0 V4:—1.O.

Then, the displacements of the element can be calculated using the shape functions
as

4
1
w=>» Ny = (-1.6=35—141)
=1

4
1
v= IZN,V, =2 +4s-2).

The displacement gradient can be calculated from the chain rule of differentiation as

o _duds 1 -3 14 %1 ol 1 Ig -2.8
0 = == — — —
00X 4|, Ll 2| 47

The engineering strain can be calculated from the definition in Eq. (3.12)
1 T -1 032
e =5(Vout Vou') = [0.32 —1 ]

Since the engineering strain cannot handle rigid-body rotation, the shear strain term
exists even if the deformed shape remains a rectangle. In addition, both normal
components show compression, even though the actual deformation is tension in
one side and compression in the other side. Thus, engineering strain is not appro-
priate for large deformation and rigid-body rotation. =
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3.2.3 Polar Decomposition

If the deformation gradient F is nonsingular, there exists a unique orthogonal tensor
Q and unique positive-definite symmetric tensors U and V such that

F=Q - U=V-Q, (3.18)

where Q is a rotation tensor (rigid-body rotation) and U and V are right and left
stretch tensors, respectively. Note that U and V have the same eigenvalues (prin-
cipal stretches) but different eigenvectors (principal axes of deformation). From
continuum mechanics, it can be further verified that the eigenvectors of U is the
same with those of C. In fact, the relationship between U and C is

U’=C, U=VC. (3.19)

This can be easily shown from the definition of C = F'F =UQ"QU = U?. Thus,
U will have the same eigenvectors with C, and its eigenvalues are square roots of
the eigenvalues of C. In practice, U can be calculated from eigenvectors and
eigenvalues of C. Let E;, E,, and E; be eigenvectors and A3, A3, and A3 be
eigenvalues of C, respectively. Then, the following two matrices can be
constructed:

A0 0
®=[E E, E;], A=|0 2 0]. (3.20)
0 0 i

From the spectral decomposition, the right Cauchy—Green deformation tensor can
be written as C =®A®", and the left stretch tensor can be calculated by

A0 0
U=®VA®", VA=|0 4 0]. (3.21)
0 0 i

If a new coordinate system is established using the three eigenvectors—the eigen-
vectors are mutually orthogonal—then A becomes the right Cauchy—Green
deformation tensor in that coordinate system.

In order to explain the polar decomposition physically, let us consider a general
deformation denoted by dx =F-dX + ¢, where ¢ represents the rigid-body transla-
tion. We can decompose the deformation into

dx=F-dX+c¢=Q -U-dX+c (3.22)
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Equation (3.22) shows that the current configuration can be obtained by
(1) stretching in the principal directions, (2) rigid-body rotation, and then (3) trans-
lation. Whereas, if the left stretch tensor is used, dx can be decomposed by

dx=F - dX+c¢=V-Q-dX+c (3.23)

Equation (3.23) shows that the deformed geometry can be obtained by (1) rigid-
body rotation, (2) stretching in the principal directions, and then (3) translation.

The above decomposition of deformation can further be explained using eigen-
vectors and eigenvalues. Let E; with i = 1,2,3 be the three eigenvectors of U and 4;
with i = 1,2,3 be the corresponding eigenvalues. In addition, let e; with i =1,2,3 be
the three eigenvectors of V. The deformation process is illustrated in Fig. 3.3. The
first path is to rotate the eigenvector E; to e; and then to stretch to 4; in the direction
of e;. This process is equivalent to Eq. (3.23) with ¢ =0. The second path is to
stretch to /; in the direction of E; and then to rotate the eigenvectors E; to e;. This
process corresponds to Eq. (3.22) with ¢ =0. It is clear that two process yields the
same deformation.

Example 3.4 (Simple shear deformation) Consider a simple shear problem
defined by

X1 :Xl —|—kX2, X2 :Xz, X3 :X3 (324)

where k = 2/ V3. (a) Find F, U, V, and Q. (b) Draw pictures showing the deformed
states of the initially rectangular element at each stage of deformation. Compare the
results obtained from the right stretch and left stretch tensors. (c) Study the
deformation of a diagonal of the initially rectangular element using X, = X;tanéd

Fig. 3.3 Polar decomposition of deformation
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with §=45° (d) Study the deformation of a circle in the initially rectangular
element using X? +X3 = a’.

Solution

(a) For a given deformation in Eq. (3.24), the deformation gradient and the right
Cauchy—Green deformation tensor can be calculated as

2
2 2
L2 L0

F=|o P of C=FF=|2 T

V3 3
0 01 0 0 1

After calculating eigenvalues and eigenvectors of C, the two matrices in
Eq. (3.20) can be calculated as

1 V3
- Y2
2 2 3(1)0
®=|3 1 0,A:0§0. (3.25)
2 2 0 0 1
0 0 1

It is easy to check that C=d®A®". Now, the right stretch tensor can be
calculated by

NI
= -0
2 2
U=dVAD" = 15 0
2 23
0o 0 1

The rotation tensor and the left stretch tensor can be calculated from Eq. (3.18) as

AN WA 1
2 2 6 2
Q:FUil: 71 3 O . V:FQT: 1 3 O
2 2 2 2
0 0 1 0 0 1

(b) The deformation stages are plotted using a square element, as shown in Fig. 3.4.
In the QU decomposition, the square is first stretched in its eigenvector
directions and then rotated by 30° in the clockwise direction. In the VQ
decomposition, the square is first rotated by 30° in the clockwise direction
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30°
QdX

Fig. 3.4 Polar decomposition of simple shear deformation

and then stretched in the eigenvector directions. However, both decompositions
yield the same final deformed geometry.

(c) Consider a straight line X, =X, tanf. From the deformation in Eq. (3.24), X,
and X, can be written in terms of deformed coordinates: X; = x; — kx», X5 = Xx».
Thus, the initially straight line deforms to

1 2
Xy = ()C] — kXQ) tanf = x; = <m+ﬁ)x2

Note that the initially straight line deforms to another straight line. For exam-
ple, let 8 =45°, and then this line will deform to another line with angle a:

1
tana:ﬁ:— = a~249°
X1 1+k

(d) The original equation of circle can be written in terms of deformed
coordinates as

X+xXi=d = (n-ku)l+32=d
x% — 2kx1xy + (1 + kz)xg =a*

Note that the original circle deforms to an ellipse. m
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3.2.4 Deformation of Surface and Volume
3.24.1 Volume Changes

The change in volume cannot be ignorable in large deformation. In addition, many
materials show different behaviors between volume-changing deformation (dilata-
tion) and volume-preserving deformation (distortion). Thus, it is important to
express the change in volume in terms of deformation. Consider an infinitesimal
volume element that is composed of three vectors in the undeformed geometry
dVy=dX"'(dX? x dX?), which is deformed to dV,=dx'-(dx* x dx>). Using the
definition of deformation gradient, i.e., dx =FdX, the relation between dV, and
dV, can be obtained as

dv, = Jdv,, (3.26)

where J=IFl=det(F) is the determinant of deformation gradient (see Problem
P3.2). Using the relationship in Eq. (3.26), we can calculate the volumetric strain by

=J—1 (3.27)

Note that if a material is incompressible, then J = 1. From the above relation, it is
clear that J must be positive because it is impossible for a deformed volume to be
zero or negative. In addition, the above relation can provide an important transfor-
mation in the integral of weak form. For example, if a function fis to be integrated
over the deformed domain, then using Eq. (3.26), the integral domain can be
changed to the undeformed geometry as

// Q\fdQ:// Qijdsz. (3.28)

The above relation yields a very convenient way of solving nonlinear equations. Since
the deformed geometry €, is unknown, it is difficult to perform integration on the left-
hand side. However, the integral on the right-hand side is performed over the known
initial geometry Q. The determinant J contains all the effects of changing geometry.

3.2.4.2 Area Changes

Similar to the change in volume, the change in the surface area can also be
expressed in terms of deformation. The change in surface area is especially impor-
tant when a pressure load is applied on the surface and is dependent on the surface
area. Let N be a unit normal vector on infinitesimal area dS, of the parallelogram
shown in Fig. 3.5, with two edges (dX! and dXz) on an undeformed surface S,. Let
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F(X)

Fig. 3.5 Differential surfaces in the undeformed and deformed configurations

n be a unit normal vector on an infinitesimal area dS, of deformed surface S,, with
edges dx' and dx>. The objective is to find a relationship between dS, and dS, when
both surfaces are smooth.

The edges dx' and dx? can be represented by using the deformation gradient and
the edges on the initial boundary as

dx! = Fdx!

) 3.29
dx? = Fdx? (3.29)

Since the mapping between dS, and dS, are one-to-one, the inverse mapping F~'
exists. Using F~ !, the inverse relations can be obtained as

dX!' = Fldx!

. 3.30
dX? = Fldx? (3.30)

Then, the infinitesimal areas of two boundaries can be denoted by using a vector
product as

NdS, = dX! x dX?

3.31
ndS, = dx! x dx? (3:31)

The above vector notation can be represented in Cartesian rectangular components
as

13yl

N,‘dSO = Efjkde ka

, (3.32)
n,dS, = ey dxldx?
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where ¢, is a permutation symbol, defined as

0  when any two indices are equal
ek = +1 when i,j,k are an even permutation of 1, 2, 3. (3.33)

—1 when i,j,k are an odd permutation of 1, 2, 3

From the first equation of Eq. (3.32), and by using Eq. (3.30),

0X; 0X;
N,‘dS() = e,:,y{—f k

x ox dx!da?. (3.34)

Multiplying both sides of Eq. (3.34) by 0X,/0x, and summing on i, the following
relation can be obtained:

aX,- aX,' an an

“ZINdS) = e At <
Ox; 0= €i Ox, Ox; Ox;

dx!da?. (3.35)

For any 3 x 3 matrix with elements a,,,, the following identity can be proved by
direct calculation:

erstdet [amn] = €jkAirAjsQy - (336)

Since the deformation gradient F has 0x/0X as elements, the following relations
hold:

0, 0x; Oy
0X; 0X; 0X,
0X; 0X; 0X;

-1
et |F ! = eijp m— =L ——
m‘ ‘ Y5 0x, Ox, Ox,

eijk‘F| = €rst
(3.37)

By substituting the second part of Eq. (3.37) into Eq. (3.35) and by recalling that
IF'I=IFI"", the following simplified form can be obtained:

0X;
a—x’N,-dSo = |F| 'e,qdx!dx!, (3.38)

which can be rewritten using Eq. (3.32) as

ndS, = JF~T - NdS,. (3.39)
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X,

—X —> 3
/ Ly " ho L h

Xy

Fig. 3.6 Extension of an incompressible bar

Thus, n is parallel to F~T"N. The explicit form of n can be obtained by normalizing
the right side of Eq. (3.39) as

F(x) 'N(X)

T Rx) TN

: (3.40)

where llall = (a"a)"/? is the Euclidean norm. By applying Eq. (3.40) to Eq. (3.39),

we finally obtain the desired relation between dI'y and dI', as
ds, = J||F(x)""N(X)]|dSo. (3.41)

Note that the deformed surface dS, depends on not only J but also the unit normal
vector of the undeformed surface.

Example 3.5 (Extension of an incompressible bar) Consider a bar under uniaxial
tension, as shown in Fig. 3.6. The initial length and cross-sectional area are L, and
Ao = hgo X hy, respectively. A force is applied at the tip such that the deformed length
and cross-sectional area of the bar become L and A =/ x h, respectively. When the
material is incompressible, calculate the deformed cross-sectional dimension /4 and area
A in terms of L, Ly, and /.

Solution Since the bar will maintain its rectangular shape, there is no shear
deformation. In addition, since both X, and X5 directions are unconstrained, and
the cross section remains a square; i.e., the principal stretches in these two direc-
tions will be the same. Thus, the relation between undeformed and deformed
geometries can be written as

x1=M4X1, x2=/0X2 x3=43X;.
From the given deformation, the principal stretches can be written as

L h
M=y do=A3=—,
1 2 3 hO

and the deformation gradient can be obtained as
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A1 0 0
F=|10 4 O
0 0 43

The determinant of the deformation gradient becomes

L
J=|F| = Aiods = <

n\*> LA
Lo

h) " Lods

[hus, from the incompressible condition
Ly Ly
J=1 = h=hy\/— A=Ar—.
O\/? 0 [ ]

3.2.5 Cauchy and Piola-Kirchhoff Stresses

Stress is one of the most important quantities in solid mechanics. It is used in the
equilibrium of a structure and also to determine the failure of a material. Similar to
strain, stress also depends on the frame of reference. Different stresses can be defined
based on the frame of reference used. In general, stress is defined by force acting on
an infinitesimal area. In linear analysis, it was unnecessary to distinguish the
deformed area from the undeformed area because of the infinitesimal deformation
assumption. However, when deformation is large, it is important to clarify what area
is used in defining stress. In fact, depending on the area used, the definition of stress
changes. Since the undeformed and deformed geometries are used as frames of
reference, the areas from these two geometries will be used in defining stresses.

Referring to Fig. 3.7, the stress vector at point Q in the current deformed
geometry can be written using the area of the differential element AS,, the force
Af acting on it, and the unit normal n of the area as

Initial geometry Current geometry

Fig. 3.7 Stress vectors in the initial and deformed geometries
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(o AF
= a5t AS,.

on, (3.42)

where o is known as the Cauchy stress tensor with a dimension of 3 x 3. The
Cauchy stress tensor refers to the current deformed geometry as a reference for both
the force and area, and therefore it is often called the true stress.

A different stress vector can be defined by considering the same force Af but the
differential area AS, and the unit normal N in the undeformed geometry as

Af
T= lim = P'N, (3.43)

where P is known as the first Piola-Kirchhoff stress tensor with a dimension of
3 x 3. Different from the Cauchy stress, the first P-K stress P is not symmetric. In
fact, ¢ refers to the current geometry for both force and area, whereas P refers to the
force in the current geometry and the area in the initial geometry.

Since a differential surface area in the current geometry with unit normal n is
related to its counterpart in the initial geometry through Eq. (3.39), the first Piola-
Kirchhoff stress is also related to the Cauchy stress. In order to develop this
relationship, the infinitesimal force is written in terms of two stresses as

df = ondS, = P"NdS,. (3.44)

Using the relation in Eq. (3.39), the following relationship between P and ¢ can be
obtained:

P=JF 6. (3.45)

The first Piola-Kirchhoff stress tensor has one undesirable property: it is not
symmetric. By post-multiplying P with the transpose of the inverse of the deformation
gradient, a symmetric tensor can be obtained. This pseudo stress tensor is called the
second Piola-Kirchhoff stress tensor and will be denoted by S. Thus, from definition,

S=PF "=JF'6F " (3.46)

If the second Piola-Kirchhoff stress tensor is known, the Cauchy stress tensor can be
obtained by inverting the relationship as follows:

1
G :jFSFT. (3.47)

In Eq. (3.47), the denominator J is related to the volume change between the
undeformed and deformed geometries. It is inconvenient to calculate stress with the
effect of the determinant because it also depends on the deformation. Thus, a new
stress measure can be defined that has a similar transformation relationship with
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Eq. (3.47), except for the determinant. This new stress is called Kirchhoff stress and
is defined as

1 =Jo = FSF". (3.48)

Referring to Eq. (3.28), the convenience of the Kirchhoff stress can be obvious. The
weak form of a structural system is in fact a balance between the internal virtual
work and the external virtual work. In large deformation systems, the internal
virtual work can be defined as

///Q\G:EdQ: ///Qotzédg. (3.49)

Thus, by using the Kirchhoff stress, the integral can be performed in the
undeformed geometry. The Kirchhoff stress tensor is exactly the same as the
Cauchy stress tensor, except that it refers to the undeformed domain.

It should be emphasized that the Piola-Kirchhoff stresses are just convenient
mathematical quantities. They are not directly related to the surface tractions in the
deformed geometry as are the Cauchy’s stresses. In linear analysis, the displace-
ments are assumed to be small and no distinction is made in the initial and deformed
geometries, and hence Piola-Kirchhoff and Cauchy stresses become identical, i.e.,
c~1t~P=~S.

The stresses produced in a body are related to material straining. Rigid-body
rotations and translations obviously do not cause any stresses regardless of their
magnitudes. Thus, the constitutive equations are valid for any stress and strain
measures which are invariant under rigid-body motions. It can be shown that the
second Piola-Kirchhoff stress and Lagrangian strain are invariant under large rigid-
body rotations and translations. Thus, the relationship between them can be written
using constitutive equations. In particular, if the material is assumed to remain
elastic, then the generalized Hooke’s law can be used to relate the stress and strain,
which will be discussed in the following section.

Example 3.6 (Cauchy stress and the second Piola-Kirchhoff stress) Consider the
uniaxial tension of a bar in Example 3.5. When the applied load at the end of the bar
is F, calculate the Cauchy stress and the first and second Piola-Kirchhoff stresses.
Assume that the applied force is uniformly distributed over the cross section.

Solution Since the applied force F is uniformly distributed over the cross section,
the Cauchy stress becomes

F/A

0
6 = 0
0

S O O

0
0
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Since all components are zero except for oy, only the first component will be
discussed in the following calculations. From the relation in Eq. (3.45), the first
Piola-Kirchhoff stress can be calculated by

F1 FA F
Py = (JF! == =
n=UF"e) = = = 4
Note that the first Piola-Kirchhoff stress is defined with respect to the undeformed
cross-sectional area Ag. Using Eq. (3.47), the second Piola-Kirchhoff stress can be
calculated as

_F1 FA* FA F

Sy=UF'.6-FT) =—=""=""—=_"_
11 ( c )11 A/ﬁ AAS A(z) Aoky

Note that the second Piola-Kirchhoff stress does not have clear physical meaning.
In the case of extension, i.e., 4 > 1, the magnitude of the three stresses is such that
011> P11 > 8. In the case of compression, i.e., A < 1,they are 61 <P;; < S1;. H

3.3 Nonlinear Elastic Analysis

As a first step toward formulating nonlinear structural systems, a simple elastic
system is introduced in this section. Among different nonlinearities in the previous
chapter, only geometric nonlinearity will be discussed. In other words, the structure
may experience large deformation, but the stress—strain relation is still linear. Of
course, the linear stress—strain relation does not indicate a linear system because
different measures of stress and strain are used for large deformation systems. Out
of various possible combinations, the second Piola-Kirchhoff stress and Lagrangian
strain will be used in the following derivations of nonlinear elastic systems.

One of the unique properties of elasticity is that a potential exists such that the
structure is in equilibrium under deformation at which the potential has a minimum
value. In such a case, the principle of minimum potential energy can be used to
derive the equilibrium equation of nonlinear elastic structures, and the strain energy
density can be differentiated with respect to strain in order to obtain stress.

The solution procedure usually requires a (incremental) linearization procedure,
such as the Newton—Raphson method in Chap. 2. Based on the reference frame used
for the linearization, two formulations will be introduced: the total Lagrangian
(material) and the updated Lagrangian (spatial). Through consistent linearization
and transformation, it will be shown that the two are equivalent.
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3.3.1 Nonlinear Static Analysis: Total Lagrangian
Formulation

In this section, a structural equilibrium equation and its linearization will be
developed for nonlinear elastic systems using undeformed geometry as a frame of
reference. Figure 3.8 shows the initial and deformed geometries of a structure. Even
if the goal is to find the final equilibrium geometry when the total force is applied to
the structure, the applied force is often incrementally increased and solved for
intermediate equilibrium. In Chap. 2, this incremental force was explained using a
load step or a time step. Let us consider a static system that is composed of N load
steps. Before reaching the final load step, the current load step is denoted by n. We
will denote the nth load as ¢,. For variables that depend on load steps, we will use a
left superscript to denote the variable at a specific load step. For example, *Q(X)
and "Q(x) represent the initial and current domains, respectively. In many cases, for
notational convenience, we will omit left superscript # unless needed for clarity.

In starting the nth load step, the applied load is increased and structural equilib-
rium is sought using iterative methods, such as the Newton—Raphson method. It is
further assumed that up to the kth iteration has been finished. The objective is to find
the incremental displacement at the (k+ 1)th iteration so that the residual force
vanishes. With this status at hand, a nonlinear equilibrium equation and incremental
solution procedure are developed in the following subsections.

Previously converged

Initial geometry geometry (known)
(known) : Current geometry

(unknown)

~

Iteration

Fig. 3.8 Configuration change during deformation
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3.3.1.1 Constitutive Relation

The constitutive theory, or stress—strain relation, describes the macroscopic behav-
ior of a material between deformation (strain) and internal force (stress) caused by
deformation. Since the behavior of real materials is in general very complex, it is
approximated using physical observations of the material’s response. This approx-
imation can be done separately for different material responses (e.g., elastic, plastic,
or viscoplastic).

A structural material is called elastic when a strain energy density W exists such
that the stress can be obtained by differentiating W with respect to strain. For this
approach, appropriate stress and strain measures must be used. For example, when
engineering strain is used in defining W, the Cauchy stress must be used as a stress
measure. In the same sense, the second Piola-Kirchhoff stress must be used when the
Lagrangian strain is used. Since the reference frame of the total Lagrangian formula-
tion is undeformed geometry, it is convenient to use the Lagrangian strain in defining
the strain energy density. Then, the second Piola-Kirchhoff stress can be obtained by
differentiating the strain energy density with respect to the Lagrangian strain.

Even if complex material responses can be introduced, such as hyperelastic
material models in Sect. 3.5, a simple form of constitutive relation is first intro-
duced. To take a simple example using St. Venant—Kirchhoff nonlinear elastic
material [5] , consider the following form of the strain energy density:

W(E) = %E :D:E, (3.50)

€,

where the notation “:” is the contraction operator of tensors, such that a:b =a;b;;,
with summation in repeated indices, and D is the fourth-order constitutive tensor for
isotropic materials, defined by

D=/11®1+2l

. (3.51)

Djji = 486 + p (303 + 50y )
This is basically the same as linear elastic materials. In Eq. (3.51), 4 and p are
Lame’s constants for isotropic materials, 1 is the second-order unit tensor, ® is the
symbol for the tensor product, and I is the fourth-order unit symmetric tensor
defined as Iy, = (66 + 8;101)/2. Two Lame’s constants in the above equation can
be expressed using regular elastic constants for the isotropic material as

vE E

() R T )

(+o)(1 =20 (3:52)

where E is Young’s modulus and v is Poisson’s ratio. Among four constants, only
two are independent for an isotropic material.
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The constitutive relation can be obtained by differentiating Eq. (3.50) with
respect to the Lagrangian strain E, to obtain

oW (E)

S=—3k

=D:E=At(E)1+ 2uE, (3.53)

where S is the second Piola-Kirchhoff stress. Note that the relation between stress
S and strain E is linear. In practice, not many materials will show the linear stress—
strain relation as in Eq. (3.53) when the strain is large. Thus, the constitutive
relation in Eq. (3.53) is restricted to a small strain. As has seen in Example 3.3,
because the Lagrangian strain is not affected by rigid-body motions, this constitu-
tive relation can accurately represent deformation with rigid-body motions. In fact,
using polar decomposition, the deformation gradient can be decomposed into
F=Q-U where Q is the rotational tensor and U is the stretch tensor. Then, only
the stretch tensor should affect the strain. In fact, the Lagrangian strain can be
written in terms of the stretch tensor by

L2

E = §<U - 1). (3.54)
Example 3.7 (St. Venant—Kirchhoff material) For the simple shear deformation in
Example 3.4, calculate the first and second Piola-Kirchhoff stresses and Cauchy
stress as a function of shear parameter k. Plot the shear stress components from the
three stresses as a function of parameter k. Assume isotropic St. Venant—Kirchhoff
material between the second Piola-Kirchhoff stress and the Lagrangian strain. The
two constants are £ =100 MPa and v =0.25.

Solution From the given deformation in Example 3.4, the Lagrangian strain can be
calculated as

{ 0 k 0
E= (C-1)=3|k K 0
0 0

N =
(en]

Convert the two material constants to the Lame’s constants because they are
convenient to use:

vE E
A=——— — 40MPa, = — 40MPa.
(1+0)(1 - 20) TS ) :
Thus, from Eq. (3.53),
K 2k 0

S=D:E=Atr(E)1+2uE =20| 2k 3k* 0 |MPa.
0 0 &
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Note that in addition to the shear component S;,, normal components also exist.
These normal components are all second order. Thus, if the shear deformation is
small, they will approach zero quickly and recover the infinitesimal deformation
theory. The first Piola-Kirchhoff and Cauchy stresses can be calculated from the
relation in Eqgs. (3.45) and (3.47) as

3k2 2% 0
P=SF'=20|2k+3k 3k 0 |MPa,
0 0 i
| 5K +3k* 2k+3K 0
6= jFSFT =20| 2k + 3k° 3k2 0 | MPa.
0 0 k2

Note that all three stresses have the same linear shear stress component and all other
terms are higher orders. Since the higher-order terms will decrease quickly for
small k values, they all recover the infinitesimal simple shear deformation. The first
Piola-Kirchhoff stress is not symmetric, and the Cauchy stress is different from the
stress in linear analysis. Indeed, the Cauchy stress here is the current stress at the
deformed geometry, while the stress in linear analysis is from small deformation
assumption. Figure 3.9 shows the plot of shear stress components. Note that in the
St. Venant—Kirchhoff material, the second Piola-Kirchhoff stress is linear, while
other stresses are nonlinear. [ ]

3.3.1.2 Boundary Conditions

To obtain a well-defined mathematical problem, boundary conditions must be
added to the equilibrium equation, which prescribes the displacement field u on
I and the surface tractions f° on I'® in the following forms:

20 T T

7
4

Cauchy stress \:, ’
10F Z E

2nd P-K stress

Shear stress
(e

- - 7 -
10 y
'
Y
7/
7
Fig. 3.9 Shear component -20 L L
& P 0.4 0.2 0.0 0.2 0.4

of the second P-K and
Cauchy stresses

Shear parameter k
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u=g on I
t=P'N on TI* (3:53)
Mathematically, the first is called the essential boundary condition and the second
the natural boundary condition. Note that even if the second Piola-Kirchhoff stress
is used as a stress measure, the first Piola-Kirchhoff stress is used in the traction
boundary condition as the latter is based on physical forces. Using the displacement
boundary conditions, the solution space V and the space Z of kinematically
admissible displacements are defined as

V= {u | we [H'(@Q]" ulp = g}7 (3.56)
and
Z = {ﬁ e [H'(Q)]" ul = o}, (3.57)

where H'(Q) is the space of functions whose first-order derivatives are bounded in
the energy norm. The space Z is the same as solution space V, except that it satisfies
the homogeneous essential boundary conditions.

3.3.1.3 Principle of Minimum Potential Energy

The weak form of a nonlinear elastic system can be obtained from the principle of
minimum potential energy. The potential energy of an elastic system is the differ-
ence between the stored strain energy []™ and the work done by external forces
[19". The strain energy can be obtained by integrating the strain energy density
function in Eq. (3.50) over the undeformed initial geometry. The work done by
applied forces can be obtained by multiplying displacement with the applied forces.
For simplicity, it is assumed that the applied forces are conservative, which means
that the applied load is independent of deformation. Therefore, these forces can be
transformed to the undeformed geometry.

Using the strain energy and work done by applied forces, the potential energy of
an elastic system can be obtained as

) Hlnt( ) HCXI( )

// W(E) dQ — // bedgflrsuTtdr’ (3.58)
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where f” is the body force, t is the surface traction force on the boundary OF“, and
E is the Lagrangian strain, defined as

E= %(FTF ~1) = %(VouT + Vou + Vou'Vou). (3.59)

The principle of minimum potential energy holds that displacement field u € V in
the equilibrium minimizes Eq. (3.58). In order to find the displacement at the mini-
mum potential energy, a perturbation method is often used. Let us assume that the
displacement field u is perturbed in the direction of u (arbitrary) and 7 is the parameter
that controls the perturbation size. The perturbed displacement is denoted by

u, =u+7u (3.60)

Note that u corresponds to the virtual displacement in the principle of virtual work.
In the above equation, the perturbed solution u, also belongs to the solution space V.
Accordingly, the variation u must satisfy the homogeneous essential boundary
condition, i.e., u € Z.

Then, the first variation of the potential energy can be obtained by taking the
first-order variation of [[(u) in the direction of u, as

(u,u) = %H(u +7a)| (3.61)
=0

where the overhead bar symbol represents the first-order variation of a function.
The process of variation is similar to the differentiation of a function. Note that
[1(u) only depends on the displacement u, whereas I1(u, u) depends on both u and
its variation u. Using the potential energy in Eq. (3.58) and equating the first
variation to zero, the following variational equation can be obtained:

ﬁ(u,ﬁ):// aW(E);E dQ—// ﬁTf”dQ—/ utdl =0. (3.62)
[Yo) aE 00 ors

In the above equation, the variation of the work done by applied loads is straight-
forward as it is linear with respect to the displacement u. For the variation of the
strain energy, using the chain rule of differentiation, the strain energy density is
differentiated with respect to the Lagrangian strain, and then the variation of the
Lagrangian strain is taken from its definition in Eq. (3.59) as

E(u,u) = 4E(u+ rﬁ)‘fzo

= %(Voﬁ + Vou! + Vou' Vou + VouTVoﬁ) , (3.63)

= sym(VoﬁT + VoﬁTVOu)
= sym(VoﬁTF)
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where sym(+) denotes the symmetric part of a tensor. Note that E(u, u) is a bilinear
function of u and u, even if E(u) is nonlinear. The principle of minimum potential
energy says that if the system is in equilibrium, the variation in Eq. (3.62) must
vanish for all u that belongs to the space Z of kinematically admissible displace-
ments. This is similar to the idea that a function has its minimum value when its
slope becomes zero.

Since the variational equation (3.62) is similar to that of linear systems, the same
notation will be used here. Thus, the variational equation for the nonlinear elastic
system can be written as

a(u, @) = (), VieZ, (3.64)

where a(u, ) is the energy form and ¢(t) is the load form, defined as
a(u, 1) = // S(u) : B(u, 1) dQ, (3.65)
°Q

and

((u) = // u'f?dQ + / u'tdr. (3.66)
Ye) ops

The only difference is that the energy form a(u, @) is nonlinear with respect to its
arguments. Note that the derivative of strain energy density with respect to
Lagrangian strain becomes the second Piolar-Kirchhoff stress from Eq. (3.53).

The variational equation in Eq. (3.64) is indeed the weak form of nonlinear
elastic systems. It is called the material description or the total Lagrangian formu-
lation, since the stress S and the strain E use the initial undeformed geometry as a
reference. Note that a(u, W) and ¢(u) are linear with respect to u but are nonlinear
with respect to displacement u. Nonlinearity comes from the fact that the stress and
strain implicitly depend on u.

3.3.1.4 Linearization (Tangent Stiffness)

The nonlinear variational equation (3.64) cannot be solved easily due to the
nonlinearity involved in the displacement—strain relation. A general nonlinear equa-
tion can be solved using a Newton—Raphson iterative method through a sequence of
linearization. Let us assume that equilibrium in Eq. (3.64) is not satisfied. Then, the
difference between the left- and right-hand sides is defined as a residual,

R = a(u, 1) — £(1). (3.67)

In the Newton—Raphson method, the Jacobian of the residual is required in each
iteration. Since the Jacobian in a one-dimensional problem is nothing but a tangent
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line at the current solution, it is often called a tangent stiffness, and the process is
called linearization. Let the linearization of a function f{(x) in the direction Au be
denoted as

Lf] = %f(x + wAu) == Au. (3.68)

Note that this process is similar to the variation of a function in Eq. (3.61) by
substituting Au for u. If right superscript k& denotes the iteration counter, then the

linear incremental solution procedure of the nonlinear equation f(x**') = 0 becomes
o\ ‘
vt =+ AU (3.69)

Xk+l =X + uk-‘-l.

Thus, for a nonlinear elastic system, Eq. (3.67) is solved iteratively until the
residual term vanishes. Figure 3.10 illustrates a one-dimensional example of the
Newton—Raphson iterative method.

The nonlinear equation (3.64) can be linearized following the same procedure
explained in Eq. (3.69). Since the load form in Eq. (3.66) is independent of
displacement, it is unnecessary to linearize it. Linearization of the energy form in
Eq. (3.65) can be written as

Lla(u,8)] = // (48 E+5: aF] 6 (3.70)

where AS is the stress increment and AE is the increment of strain variation. For the
St. Venant—Kirchhoff material, the stress—strain relation is linear, and thus, the
increment of stress can be written as

oS
AS=—:AE=D:AE 3.71
= , (371)
A
24
ox
S \
Fig. 3.10 Newton— f(xkﬂ)‘ Mk
Raphson method for yas] T >
X X x

nonlinear equation f=0
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where D is the fourth-order constitutive tensor in Eq. (3.51) and AE is the increment
of Lagrangian strain. By noting that the increment of deformation gradient is
AF = VAu from Eq. (3.5), the increment of Lagrangian strain and its variation
can be obtained as

AE(u, Au) = sym(V,Au'F) (3.72)
and
AE(Au,u) = sym(Vou' VoAu). (3.73)

Thus, the linearization of the energy form in (3.70) can be explicitly derived with
respect to displacement and its variation as

Lia(u,w)] = //OQ [E:D:AE+S:AE] dR=a (wAum).  (3.74)

The notation a*(u; Au, W) is used such that the form implicitly depends on the total
displacement u and is bilinear with respect to Au and u. The first integrand of
a*(u; Au,u) in Eq. (3.74) depends on the stress—strain relation. Since it is similar to
the stiffness term in linear systems, it is called the tangent stiffness. On the other
hand, the second integrand does not exist in linear systems. It only appears in
geometric nonlinear problems. Since it has the stress term, it is called the initial
stress stiffness.

Let the current load step be 7, and let the current iteration counter be k. Assuming
that the applied loads are independent of displacement, the linearized incremental
equation of Eq. (3.64) is obtained as

a*("ut; Auf u) = ((u) — a("t,u), VaeZ, (3.75)
and the total displacement is updated using
"t = gk - At (3.76)

Note that incremental equation (3.75) is in the form of ["Kk]-{ Auf }= {”Rk} after
discretization using finite elements, which will be discussed in Sect. 3.6. Equation
(3.75) is solved iteratively until the residual vanishes, which means that the original
nonlinear equation (3.64) is satisfied.

Example 3.8 (Uniaxial bar: total Lagrangian formulation) Using the total
Lagrangian formulation, solve displacement at the tip, stress, and strain of the
uniaxial bar in Fig. 3.11 under tip force F =100 N. Use a two-node bar element.
Assume St. Venant—Kirchhoff material with £ =200 Pa and cross-sectional area
A=10m"
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Fig. 3.11 Uniaxial bar
analysis using the total
Lagrangian formulation

@ @—>F: 100N

—» x

MMk

— L=lm ———»

Solution Since Node 1 of the bar element is fixed, u, is the only free degree of
freedom. In addition, since the length of the element is a unit, the approximation of
displacement gradient and its variation become

du du
— = U — = U».
ax P ax P

Since the problem is one-dimensional, it is sufficient to consider S;; for stress and
Ey, for strain. First, the strain energy density of the St. Venant—Kirchhoff material
is given as

W(En) :%E~ (Epp)?

where E is Young’s modulus and the Lagrangian strain £, is defined as

g du 1(du 2 Ly
ll—dX \ax = U 2“2-

Note that the strain is a nonlinear function of displacement. For the elastic material,
the second Piola-Kirchhoff stress can be calculated by

ow 1
E:E'E]] :E<M2 +§(M2)2>

The variation of the Lagrangian strain becomes

S =

— du du du

Eil=—+——=u(l .
11 dX+dXdX (1 + up)

Thus, the energy form can be obtained as

Lo _
a(u,ﬁ) = / SpEnAdX = SllALo(l + uz)ﬁg.
0
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Note that both stress and strain are constant within the element. Since the applied
load is a concentrated force at the tip, no integration is required. The load form
simply becomes

(u) = u,F.

The difference between the energy and load forms can be defined as a residual R,
and the nonlinear variational equation satisfies when the residual becomes zero:

R = ﬁz(SllAL()(l + Mz) —F) =0

for any arbitrary u,.
In order to solve the nonlinear variational equation using the Newton—Raphson
method, the following increments of stress and strain variation are required:

AS“ = EAE[] = E(l + Mz)AI/lz
AE“ = WAuy

Thus, the linearization of the energy form becomes

Lo
a*(u;Au,ﬂ):/ (E11~E~AE11+S11~AE11)AdX
0 .
= EALo(l + uz)zﬁzAuz + S11ALour Auy

Let the current iteration counter be k. Since the linearized variational equation must
satisfy for all u,, the coefficients of #, must be equal to zero:

B+ ud)” + St ALodus = F = 58, (1 4 ub) ALy

After solving for the incremental displacement, the total displacement is updated by

usth = uf + Aub.
The iteration continues until the convergence criterion discussed in Chap. 2 is
satisfied. Below is a MATLAB program that solves for the uniaxial bar using the
total Lagrangian formulation. Table 3.1a shows the convergence history using the
Newton—Raphson method. Note that the converged stress is 75.6 Pa, which is
smaller than the infinitesimal assumption stress of 100 Pa. This happens due to
the nonlinear displacement—strain relation.

It is interesting to note that without the initial stiffness term, S11ALu,Au,, the
Newton—Raphson method converges in the fifth iteration, as shown in Table 3.1b.
However, it does not show a quadratic convergence. As discussed before, if there is
an error in the Jacobian matrix, the algorithm may still converge but with a lower
convergence rate.
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Table 3.1 Convergence
history of uniaxial bar
using the total Lagrangian

Iteration u Strain Stress conv

(a) With initial stiffness

formulation 0 0.0000 0.0000 0.000 9.999E — 01
1 0.5000 0.6250 125.000 7.655E — 01
2 0.3478 0.4083 81.664 1.014E — 02
3 0.3252 0.3781 75.616 4.236E — 06
(b) Without initial stiffness
0 0.0000 0.0000 0.000 9.999E — 01
1 0.5000 0.6250 125.000 7.655E — 01
2 0.3056 0.3252 70.448 6.442E — 03
3 0.3291 0.3833 76.651 3.524E — 04
4 0.3238 0.3762 75.242 1.568E — 05
5 0.3250 0.3770 75.541 7.314E - 07

%

°

% Example 3.8 Uniaxial bar-total Lagrangian formulation

%
tol=1.0e-5; iter=0; E=200;
u=20; uold=u; £=100;

strain=u+ 0.5*u"2;
stress = E*strain;
P =stress* (1+u) ;

R=f-P;
conv=R"2/ (1+£72);
fprintf(’'\n iter ul E11l S11 conv’) ;

fprintf(’\n %$3d %7.5f %7.5f %$8.3f %12.3e %$7.5f’,iter,u,strain, stress,
conv) ;
while conv > tol && iter < 20
Kt = E* (1+u) "2 + stress;
delu = R/Kt;
u=uold + delu;
strain=u+ 0.5*u"2;
stress = E*strain;
P =stress* (1+u);
R=f -P;
conv=R"2/ (1+£"2);
uold =u;
iter = iter + 1;
fprintf (’\n %$3d %7.5f %7.5f $8.3f $12.3e %7.5f’,iter,u,strain, stress,
conv) ;

end
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3.3.2 Nonlinear Static Analysis: Updated Lagrangian
Formulation

A spatial description or an updated Lagrangian formulation uses stress and strain
measures, such as the Cauchy stress 6 and the engineering strain €, defined at the
current geometry. Although the term engineering strain is used, it is different from
the one in linear systems. In the updated Lagrangian formulation, the engineering
strain is defined in the deformed geometry, which is under large deformation. Thus,
the strain is not a linear function of displacement in this case. From the assumption
that the applied loads are independent of deformation, the load form ¢(u) is the same
as that of the total Lagrangian formulation in Eq. (3.66). Thus, only the energy form
will be discussed in the following derivation. The updated Lagrangian formulation
requires the relation between Cauchy stress and engineering strain. However, the
original constitutive relation is given in terms of the second Piola-Kirchhoff stress
and Lagrangian stress as in Eq. (3.53). The linear relation between S and E does not
mean a linear relation between ¢ and e (refer to Fig. 3.9). Thus, instead of
developing a nonlinear relation between ¢ and e, the linear relation between
S and E will be used in the following derivations.

The relation between material tensors (S,E) and spatial tensors (¢,€) can be
obtained through transformation as

S=JF'6F T (3.77)
E =F'e(u)F, (3.78)
where g(u) is the variation of the engineering strain at the current geometry. From
the definition of the variation of Lagrangian strain in Eq. (3.63), the variation of

engineering strain can be calculated by transforming the Lagrangian strain variation
to the current geometry as'

e(u) = F "EF!
e (A e B
—F 2(8XF+F < JF o
_lfou’ ou |
2\ ox  0Ox
= sym(V,u)

where V,, = 0/0x is the gradient operator at the current deformed geometry. Note
that Eq. (3.79) is different from the variation of the engineering strain in linear
systems with small deformations because it is defined in the current geometry under
the assumption of large deformation. Even if u is independent of displacement, the

! This transformation is often called a “push-forward,” while the reverse transformation is called a
“‘pull-back.”
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denominator x depends on displacement. In that sense, the above strain variation is
a nonlinear function of displacement.

Although it is possible to derive the energy form for the updated Lagrangian
formulation starting from a strain energy density that is defined in terms of
engineering strain, it would be difficult to have equivalent strain energy densities
that are in a quadratic form for both the Eulerian and engineering strains. In fact, it
will be shown that for the same material, the constant constitutive tensor for the
total Lagrangian formulation is not constant anymore in the updated Lagrangian
formulation. Thus, instead of deriving an equivalent strain energy density for the
updated Lagrangian formulation, the one for the total Lagrangian formulation is
used in the following derivations. Using Eqs. (3.77) and (3.78), the energy form
a(u, 1) in Eq. (3.65) can be expressed in terms of the spatial description as

a(u,m) = // OQS :E dQ = // . (JF'eF ) : (FTe(u)F) dQ

= ¢ :e(u) dQ. (3.80)
//”Q

In Eq. (3.80), the property d"Q = Jd’Q has been used to change the integral domain
from °Q to "Q. Using the above definition of the energy form, the nonlinear
variational equation for the updated Lagrangian formulation has the same form as
Eq. (3.64), namely,

a(u, 1) = (), Vi€ Z. (3.81)

However, the expression of a(u, @) is different from that of Eq. (3.65).

The linearization of Eq. (3.81) involves Cauchy stress, which is not easy to
linearize because the Cauchy stress is defined on current geometry that changes
according to deformation. In addition, the integral domain also depends on defor-
mation. These difficulties can be overcome by transforming the linearization in the
material description, given in Eq. (3.74), to the spatial description. The integrands
of Eq. (3.74) are transformed into the deformed geometry using the same “push-
forward” method described in Eq. (3.80) as

S:AE =J(F '6F ") : sym(Vou' Vdu)
=Jo :sym(V,u' V,Au) (3.82)
=Jo : n(4u,u)

and

(E:D:AE) = (F'e(m)F) : D : (F'e(Au)F)

= Js(ﬁ) C: S(All) ) (383)

where c¢ is the fourth-order spatial constitutive tensor. The relation between the
material and spatial constitutive tensors is given by
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1
Cijkl = jFierstmFlanmn- (384)

In the case of St. Venant—Kirchhoff nonlinear elastic material from Eq. (3.51), by
using the left Cauchy—Green deformation tensor G = F-F", the spatial constitutive
tensor becomes

1
i = — i + Gy +GiuGi)l. .
Ciikl 7 [/IGJG/([ ﬂ(G ij[ G [ij)] (3 85)

Note that ¢ is not constant for the updated Lagrangian formulation and that in
addition ¢ #c : e. Linearization of the energy form in the updated Lagrangian
formulation can be obtained from Egs. (3.82) and (3.83) as

Lla(u,@)] = //”Q [e(u) : ¢ : e(Au) + 6 :n(Au, )] dQ = ¢ (u; Au,u). (3.86)

The same notation a*(u; Au, @) is used with the total Lagrangian formulation so that
the configuration implicitly depends on total displacement u and ¢*(u; Au,u) is
linear with respect to Au and u.

If the current time step is t,, the current iteration counter is k, and the external
force is independent of displacement, then the linearized equation (3.81) can be
obtained as

a*("ut; Adk,u) = ((u) — a("ut, W), VaeZ (3.87)

Note that when the above terms are calculated, the integration is performed over the
domain based on deformation at the kth iteration. It is not the current geometry in a
precise sense. However, as the iteration converges, the difference between two
consecutive iterations becomes ignorable. Thus, at converged, the iteration satisfies
the updated Lagrangian description.

Provided that appropriate constitutive relations are used, as in Eq. (3.84), the two
linear formulations, Egs. (3.75) and (3.87), are theoretically equivalent but with
different expressions. The choice of method should depend on how effective the
numerical implementation is and how convenient it is to generate the constitutive
relation. For example, the strain measure of a total Lagrangian formulation is more
complicated than that of the updated Lagrangian formulation. However, the con-
stitutive relation in Eq. (3.51) can easily be used in the total Lagrangian formulation
without transforming the constitutive relation into the deformed geometry, as in
Eq. (3.84). In the case of elastoplasticity, the plastic evolution process always
occurs at the current geometry. Because it is difficult to express plastic evolution
in terms of material stress measures, the updated Lagrangian formulation is a more
attractive option for this case.

With a small deformation problem, it is possible to approximate F for 1. From
this approximation and from their definitions, the two stress measures (S and o)
become identical, and the same is true for the two strain measures (E and &).
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Example 3.9 (Uniaxial bar: updated Lagrangian formulation) Solve the uniaxial
bar in Example 3.8 using the updated Lagrangian formulation. Assume that the
change in cross-sectional area is ignored in one-dimensional bar.

Solution In the updated Lagrangian formulation, the current length L =L+ u, of
the bar is used to define the finite element. The approximation of displacement
gradient and its variation then become

du Uy du 1753

dxil—l—ug’ dx 1+u

For a one-dimensional bar, the deformation gradient and its determinant become a
scalar and can be calculated by

F —dx—l—i— J=1+
n=ax T uz, = Uy

The second Piola-Kirchhoff stress S, and the variation of Lagrangian strain £ are
used to calculate Cauchy stress and the variation of engineering strain as

1 1
o1 :jFllsllFll =E<M2 +§u%)(1 +uy)

up
14+ u

e (i) = F'EnFy =

Using the above two expressions, the energy form in the updated Lagrangian
formulation becomes

L
a(u,ﬁ):/ 611611(E>Adx:011Aﬁz
0

Note that the relation L = 1 + u5 is used in the above integration. Although the above
energy seems different from that of the total Lagrangian formulation in Example
3.8, it is identical because 617 = S11(1 + u5). Since the applied load is a concentrated
force at the tip, no integration is required. The load form simply becomes

E(ﬁ) =uwF

The difference between the energy and load forms can be defined as a residual R,
and the nonlinear variational equation satisfies when the residual becomes zero:

R :ﬂz(GnA —F) =0

for any arbitrary u,.
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In order to linearize the energy form, the transformation relations in Egs. (3.82)
and (3.83) are used. First, the spatial constitutive tensor ¢ has a single component as

1
c1i1 ZjF11F11F11F11E =(1+ u2)3E
Thus,

L
/ 6‘11(%)6‘11116‘11(AM)A(1X = EA(l + uz)zﬁzﬂuz
0

L
_ oA _
A Adx = A
/0 o111, (Au, ) l+u2u2 Uy

Thus, the linearization of the energy form becomes

L
a* (u; Au, ) :/ (en1(@)crr1€11(Au) 4+ o1n(Au, w))Adx
0

o11
AuzAuz
+ up

= EA(1 4 up)*pAu; + .

Again, the above linearization of the energy form is identical to that of the total
Lagrangian formulation by considering the relation between o;; and S;;. The
Newton—Raphson iteration scheme is identical to that of the total Lagrangian
formulation. Below is the list of MATLAB program that solves for the uniaxial
bar using the updated Lagrangian formulation. Table 3.2 shows the convergence
history using the Newton—Raphson method. Note that the history of displacement is
identical to that of the total Lagrangian formulation because the same constitutive
relation is used for both formulations. However, the histories of strain and stress are
different because different measures of stress and strain are used. Note that the
stress converges at 100 Pa, which is the true stress (F =100 Nand A =1.0 mz). The
engineering strain is smaller than the Lagrangian strain as it is defined with respect
to the current length, and the latter has a higher-order term.

Table 3.2 Convergence Iteration u Strain Stress conv

history of uniaxial bar using

the updated Lagrangian 0.0000 | 0.0000 0.000 | 9.999E — 01

formulation 1 0.5000 0.3333 187.500 7.655E — 01
2 0.3478 0.2581 110.068 1.014E - 02
3 0.3252 0.2454 100.206 4.236E — 06
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o o

Example 3.9 Uniaxial bar-updated Lagrangian formulation

o°

tol=1.0e-5; iter=0; E=200;
u=0; uold=u; £=100;
strain =u/ (1+u);

stress = E* (u+.5*u”2) * (1+u) ;

P = stress;

R=f-P;
conv=R"2/ (1+£"2);
fprintf(’'\n iter ul E11l S11 conv’) ;

fprintf (’\n %$3d %7.5f %7.5f %8.3f %$12.3e %7.5f',iter,u, strain, stress,
conv) ;

while conv > tol && iter < 20

Kt =E* (1+u) "2 + stress/ (1+u) ;

delu = R/Kt;

u=uold + delu;

strain =u/ (1+u);

stress = E* (u+.5*u”2) * (1+u) ;

P = stress;

R=f -P;

conv=R"2/ (1+£72);

uold =u;

iter =iter +1;

fprintf(’\n %34 %7.5f %7.5f %$8.3f %12.3e %7.5f’,iter,u,strain, stress,
conv) ;

end

3.4 Critical Load Analysis

As shown in Fig. 3.18, structural instability occurs when the load—displacement curve
has a negative slope; i.e., displacement rapidly increases without increase of the applied
loads. The force-controlled method cannot find a solution because either the structure
cannot support the loads beyond a certain level or the next stable state is too far from
the current state. Even if the displacement-controlled method can help convergence, it
cannot find an appropriate solution in many cases especially when the system has many
degrees of freedom. In practice, since instability is not a preferred state, it is not
important for the analysis to follow through this state. Instead, it is often more important
to predict when the instability initiates, i.e., what maximum load the structure can
support before becoming unstable. This maximum load is called a critical load.

From the one-dimensional load—displacement curve, such as the one in Fig. 3.18,
the slope of the tangent stiffness becomes zero at the critical load. For systems
with many degrees of freedom, the tangent stiffness matrix becomes singular.
Thus, based on the incremental equilibrium equation in the previous section, the
variational equation of a linear eigenvalue problem can be formulated for stability
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analysis in nonlinear structural systems to evaluate the stability status. [6, 7] These
problems differ in the assumption made between a critical load factor and the
estimated critical load. The critical load factor of a nonlinear structural system
can be evaluated by solving a linear eigenvalue problem at any pre-buckling
equilibrium configuration. The formulation of a stability analysis may include the
effect of large displacements, large rotations, large strains, and material nonlinear-
ities with appropriate kinematic and constitutive descriptions. The critical load can
be found by using the property that at least two adjacent states exist at the critical
load. [8] The mathematical basis for such a situation immediately follows from
incremental equilibrium equations; that is, the left-hand side of Eq. (3.75) or
Eq. (3.87) vanishes at the critical limit point. For a single-variable problem, the
slope of the displacement—load curve becomes zero. To make it easier to follow the
derivations, the linearized energy form in Eq. (3.74) can be divided into two parts:

A(u; Au, @) = //UQ (E:D:AE) dQ (3.88)

and
G(u; Au,u) = —// (S : AE) dQ. (3.89)
'Q

With the critical displacement “u at the critical limit point ¢, =¢"", the stability
equation becomes

@ ("w;y,y) =A("wy,y) - G("wy,y) =0, VyeZ  (3.90)

Note that eigen-function y and its variation y are used instead of incremental
displacement Au and its variation. Since the right-hand side is zero, if the tangent
stiffness matrix after discretizing a* ((’"u; y, Y) is positive definite, a trivial solution
y =0 is expected. Nontrivial eigen-function y is expected only when the tangent
stiffness matrix becomes singular, which serves to identify a point of instability;
that is, if the final equilibrium state is at the critical limit point, then solution y must
be nontrivial.

Note that Eq. (3.90) cannot be solved from the start because it is based on the
displacement “u, which is unknown. In this case, the incremental force method is
useful because the applied loads gradually increase until the instability occurs.
However, it does not guarantee that the critical load and the corresponding dis-
placement can be found. It is assumed that the incremental force method is
performed up to load step f, at which the corresponding load is “p. Since the
incremental force method cannot converge beyond the critical load, it is clear that
t, is pre-buckling state, i.e., "p <p.,. In order to find the critical load, it is first
represented by a scalar multiple of the pre-buckling load "p, i.e., p..={"p, where
the scalar { is called the critical load factor. The left-hand side of Eq. (3.90) is then
evaluated at the critical limit point using the information that is available at the final
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pre-buckling equilibrium state at load step #,. Linear extrapolation can be used to
approximate the left-hand side of Eq. (3.90) to form an eigenvalue problem. After
solving the eigenvalue problem, the lowest eigenvalue is considered to be an
estimate "¢ of the critical load factor {. Assuming a proportional conservative static
loading, the estimated critical load vector “p.., can be expressed with the given load
vector "p and the critical load factor "{. Two commonly used approaches, one- and
two-point linear eigenvalue approaches, are formulated in the variational form, and
expressions of the corresponding estimated critical load are presented in the
following subsections.

3.4.1 One-Point Approach

The goal of the one-point approach is to approximate the critical state using the
state at load t,. Utilizing the information at the equilibrium state at load step 1,
Eq. (3.90) can be rewritten as an eigenvalue problem. By linearizing the nonlinear
relation between energy form G and the additional load increment at the critical
limit point, G is approximated using the critical load factor "¢ at load t,,:

G(“w;y,y) ="¢G("w;y,y). (3.91)

Referring to Eq. (3.89), the stress 'S at the critical state is approximated by "£"S. In
addition, by neglecting the variations of energy form A due to the loading change,
A(C"u; y, Y) can be written as A("u; y, Y). Then, Eq. (3.90) becomes an eigenvalue
problem, which can be called a one-point linear eigenvalue problem, in the form of

A("w;y,y) —"¢G("w;y,y) =0, Vy€EZ. (3.92)

Solving this eigenvalue problem at a given load level "p that is lower than the true
critical load p., leads to the following estimated critical load:

npu‘ = nC"P- (393)

Note that the above estimate will be accurate if the load “p is close to the actual
critical load. Thus, it is important to make the load increment small so that the final
pre-buckling load is close enough. However, since p., is unknown, small load
increment will be computationally expensive.

3.4.2 Two-Point Approach

Utilizing the information at the last two states, at load step #,,_; and #,, where ¢,, is the
load step at the final equilibrium state, Eq. (3.90) can be rewritten as an eigenvalue
problem for the two-point approach. With the assumption that from load step ¢,_;



182 3 Finite Element Analysis for Nonlinear Elastic Systems

onward the energy form (A — G) changes linearly up to one additional load incre-
ment but with the same ratio between the two states at ¢,_; and ¢, the energy form
can be written as

A("wy,¥) - G("wy.y) = B("wyy.¥) +CE(" "2y, ), (3.94)

where the energy forms B and E are defined as
B("'wy,y) =A(" 'y, ¥) - G("'wyy,y) (3.95)
E("'u"uyy,y) = B("w;y,y) — B("'w;y,y), (3.96)

and ¢ is the critical load factor at time #,. Consequently, Eq. (3.94) becomes a
two-point linear eigenvalue problem, written as

B("'wiy,y) +CE(" wwiy,§) =0, WEZ (397)

Solving this problem at a given load level "p that is lower than the true critical load
P leads to an estimated critical load

P ="""p +CAp. (3.98)

In Egs. (3.92) and (3.97), {>1 is the smallest eigenvalue, and y is the
corresponding eigen-function. Note that if the load step ¢, is at the critical limit
point, then {=1 in Egs. (3.92) and (3.97), and these two equations become
identical to Eq. (3.90). The stability analysis of Eq. (3.92) or Eq. (3.97) can be
applied to any pre-buckling configurations, and the estimated critical load becomes
more accurate as the final equilibrium configuration approaches the critical limit
point. The estimated critical loads for both approaches are not conservative, that is,
they are larger than the true critical load "p,., > p.,. A stability analysis equation for
linear structural systems can be obtained as a special case of the nonlinear stability
equation, with the assumption of linearly elastic material and a small displacement.

3.4.3 Stability Equation with Actual Critical Load Factor

Consider a structural system with the equilibrium path shown in Fig. 3.12. The
critical limit point in Fig. 3.12 is a relative maximum point in the nonlinear
load—displacement curve and defines the boundary between the pre-buckling and
the post-buckling equilibrium paths. Assume that the magnitude of the total applied
load vector py is larger than the magnitude of the critical load vector p., and that
unlike the previous cases, the critical load vector p,, occurs at the final pre-buckling
equilibrium state at load step t, =t.,, i.e., p.-="p. Note that the load vectors p,,, po,
and "p have the same directions, since they are assumed to be proportional loadings.
The magnitude of the critical load is unknown before the system is analyzed.
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Fig. 3.12 Equilibrium path 4
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With the energy form a(u, @) in the final pre-buckling equilibrium configuration
at time 7, =1, and the load form /(@) which is the virtual work done by the total
applied load vector py, the equilibrium equation (3.64) can be rewritten as

a("u,@) = pl(w), VueZz, (3.99)

where the actual critical load factor f is defined as the ratio of the magnitude of the
critical load vector p..,. = "p to the magnitude of the total applied load vector py, that is,

Per = Ppo- (3.100)

The actual critical load factor # < 1.0 can be evaluated only after the critical load is
known. When the total applied load vector pq is equal to the critical load vector
Per="p, p=1 and the equilibrium equation (3.99) is the same as the equilibrium
equation (3.64). Note that the actual critical load factor # does not depend on the
configuration at ¢, and is not related to the estimated critical load factor "¢ which
varies with configuration ¢,.

3.5 Hyperelastic Materials

As has been shown in Sect. 3.3, material behavior is described by its constitutive
relation when subjected to deformation or deformation history. Different constitu-
tive relations can represent different material behaviors. The St. Venant—Kirchhoff
material in Sect. 3.3 provides a linear relation between stress and strain, which is a
simple extension of the one used for linear elastic materials. Unfortunately, this
model provides meaningful results only when the strains are small because most
materials show a nonlinear relation for large deformation. It is important to employ
a constitutive model that is appropriate for the material, the structure, and the finite
element formulation.

When the material status can completely be describable with a given total strain,
the constitutive relation is called hyperelasticity. In such a material, a strain energy
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density exists as a function of strain, and stress can be obtained by differentiating
the strain energy density with respect to strain. This material model is independent
of deformation history; i.e., the same deformation is expected if the final load is the
same. Rubberlike materials or human tissues belong in this category. On the other
hand, when the constitutive relation is given in terms of the stress and strain rates, it
is called hypoelasticity, which is often used in describing the plastic behavior of
materials. In such a material, the deformation history must be followed to calculate
stress because two states that have the same strain may have different stresses
depending on the loading history. Hyperelastic materials will be discussed in this
section, while hypoelastic materials will be discussed in Chap. 4. In this section, the
static response of hyperelastic materials is formulated based on the material
description, i.e., the total Lagrangian formulation. Different hyperelastic materials
will be introduced, but the main development will be explained using the Mooney-
Rivlin material, which is the most popular material model. In general, hyperelastic
materials exhibit the property of being incompressible during finite deformation;
i.e., the volume of the material is preserved. This is a common behavior of many
elastic materials in finite deformation. Numerically, a constraint, J = 1, needs to be
imposed to make the material incompressible. However, this causes numerical
difficulties called volumetric locking. Due to incompressibility, the hydrostatic
portion of stress cannot be calculated from the volumetric strain. The penalty
method [9], the selective reduced integration method [10], and the mixed formula-
tion method [11] have been successfully used for incompressible and nearly
incompressible materials.

If a strain energy density exists, such that stress can be obtained from the
derivative of the strain energy with respect to strain, the system is called path
independent. Thus, it is theoretically possible to solve the nonlinear equilibrium
equation for the given total magnitude of applied load. However, this equation is
still solved by using the incremental force method with a number of load steps to
finally reach the total applied load for computational purposes. The hyperelasticity
problem contains both material nonlinearity from constitutive relations and geo-
metric nonlinearity from kinematics.

3.5.1 Strain Energy Density

Modeling engineering materials at large deformations is still an active research
area. Without elaborating details of material modeling procedures, a method that
can describe the behavior of isotropic elastic materials which undergo finite defor-
mation is presented. In hyperelasticity, the stored strain energy density is used to
compute stress. For isotropic materials, the constitutive relation has to be indepen-
dent of the coordinate frame selected because the material has the same property for
all directions. For example, the strain component E;; cannot be used for the
constitutive relation because its value depends on the coordinate system. Thus, it
is natural that the strain energy density is defined using invariants of strain or
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alternatively that of the deformation tensor. When the undeformed state is used as
the frame of reference, the three invariants of the right Cauchy—Green deformation
tensor C in Eq. (3.9) are given as

I =t(C) =23+ 25 + 43, (3.101)
1
I = E[(trc)z - tr(cz)] = 2024 2R+ 202, (3.102)
and
I3 = detC = 11343, (3.103)

where 13, A3, and 13 are three eigenvalues of the left Cauchy—Green deformation
tensor C. From polar decomposition, it has been shown that 4;, 1,, and 15 are three
eigenvalues of the left stretch tensor U—also called the principal stretches. The
above three invariants will remain unchanged for different coordinate systems. In
order to be a valid deformation, the three invariants must be positive (refer to
Example 3.1). The square root of /3 in Eq. (3.103) measures the volume change of
the material. If the material is incompressible, it is clear that /3 =1. The three
invariants are identical for both the left and right Cauchy—Green deformation
tensors. When there is no deformation, i.e., A; =4 =43 =1,[1=L=3,and 3=1.

Example 3.10 (Invariants) Show that the three invariants of the left Cauchy—Green
deformation tensor G are equal to those of C when the three eigenvalues of the
deformation gradient are 4y, 4,, and A3.

Solution The three invariants will remain constant for different coordinate sys-
tems. Thus, it is possible to choose the three principal directions of the deformation
gradient as basis vectors for the new coordinate system X'Y’Z’ so that the deforma-
tion gradient will only have diagonal components:

A0 0
Fyyz =10 4 0
0 0

Then the right and left Cauchy—Green deformation tensors become identical

20 0 A0 0
=10 2 0|, Gyyy=(FF'),,,=[0 4 0],

Cyyz = (FTF)
0 0 A 0 0 2

XY'z

and the three invariants of the two tensors are identical. =
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Using the three invariants, a general form of strain energy density can be defined
in the following polynomials:

o]

Wl IoIs) = > Al = 3)" (I = 3)"(I3 = 1), (3.104)

m+n+k=1

where A, are coefficients of polynomials. In general, deformation of a material can
be decomposed into volumetric and distortional parts. If the material is incompress-
ible, i.e., I3 =1, then the volumetric part of the strain energy density is eliminated,
and only the first two terms contribute to the strain energy density. This part of the
stored energy is called the distortional strain energy density and is defined as

o0

Wil 1) = > Au(li —3)" (I = 3)". (3.105)

m+n=1

Note that Eq. (3.105) does not impose the incompressibility condition. A separate
constraint must be used to make the material incompressible. All the models listed
above account for nonconstant shear modulus. However, caution needs to be
exercised on inclusion of higher-order terms to fit the data, since this may result
in unstable energy functions, yielding nonphysical results outside the range of the
experimental data. Section 3.9 will discuss about how to find hyperelastic material
parameters by fitting experimental data. Various hyperelastic material models are
proposed using Eq. (3.105). Some examples are as follows.

Neo-Hookean model: This model has only one nonzero parameter, A1, and all
other parameters are zero. Using the undeformed state as a frame of reference, the
strain energy density can be defined as

Wi(l) = Ao(I, —3). (3.106)

In order to be equivalent to the linear elastic material in small deformation, the
parameter Ao is related to the shear modulus by A;y=p/2. The stress—strain
relation becomes linear with a proportional constant of 2A4,,=pu. However, this
model will show a nonlinear relationship when the deformation becomes larger due
to the nonlinear displacement—strain relation. This model gives a good correlation
with the experimental data up to 40 % strain in uniaxial tension and up to 90 %
strains in simple shear. This model is often used to describe the behavior of cross-
linked polymers.

Mooney-Rivlin model: This model is an extension of the Neo-Hookean model
by including the effect of the second invariant. The expression of the strain energy
density has two nonzero parameters as

Willy, 1) = A —3) +An (I — 3) (3.107)

This model is the most popular in finite element analysis of hyperelastic materials,
not because of accuracy but because of its simplicity. The Mooney-Rivlin model is
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good up to 100 % strain of tensile test, but has some difficulty in describing the
compression mode of deformation. Moreover, the Mooney-Rivlin model fails to
account for the hardening of the material at large strains.

Yeoh model: This model only uses /; and the experimental results are fitted
using a cubic function as

Wi(l1) = Aw(l, —3) + Ax(I; — 3)* 4+ Aso(1, — 3)°. (3.108)
This model corresponds well with experiments for large strain. Since only the first
invariant is used, the Yeoh model is often called the reduced polynomial model.

Ogden model: This model uses the principal stretches (the three eigenvalues of
the deformation gradient) to define the distortional strain energy density as

N
W1 (A1, 42, As) Z” A4 2% 48— 3) (3.109)

E ? |3

where N, y;, and «; are material parameters. N usually goes up to three. Note that
when the material is incompressible, the three principal stretches are not indepen-
dent, i.e., 114,43 = 1. By comparing with the linear elastic material, the initial shear
modulus can be obtained by

1 N
= EZ aiu; (3.110)
i=1

When N =1 and a; = 1, it becomes the Neo—Hookean material. When N =2, a; =2,
and a, = —2, it becomes the Mooney-Rivlin material. The model gives a good
correlation with test data in simple tension up to 700 %. The model accommodates
nonconstant shear modulus and slightly compressible material behavior. As strain
increases, the material shows hardening when a > 2, while softening when a < 2.

Example 3.11 (Stress—strain relationship for Neo—Hookean model) Plot the nom-
inal stress—strain relationship for a Neo—Hookean model under uniaxial tension and
compression and compare it with linear elastic material with the same modulus.
Assume material parameter Ao = 10MPa and incompressibility.

Solution Let us suppose that a uniaxial load is stretched so that A; =1 where 1 is an
arbitrary stretch along the rod’s length. From the assumption of incompressibility,

AAxA3=1 and A, = 13. Therefore, 1, = 13 = 1/\//—1 From Eq. (3.106), the strain
energy density of the Neo—Hookean material model becomes

2
W =Ai(l, —3) = A (4] + 15+ 15 -3) A10</12+13)
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The nominal stress (first Piola-Kirchhoff stress) in the direction of stretch can be
obtained by differentiating the strain energy density with respect to the principal

stretch as
ow 1 1
P=—=2A)p|A—-=] = 1 -
o 10( /12> H( +e <1+€>2>

Figure 3.13 shows the stress—strain curve for the Neo—Hookean material, along with
a linear elastic material. Since Poisson’s ratio for the incompressible material is 0.5,
Young’s modulus will be E =3 . Both curves share the same tangent line at ¢ =0,
but the error increases as the strain increases. One thing to note is that the Neo—
Hookean model shows a quite different behavior in compression from the linear
elastic material behavior. m

Example 3.12 (Relation between Mooney-Rivlin and Ogden models) Write the
material parameters y; and y, in the Ogden model in terms of Ao and A, in the
Mooney-Rivlin model. Use N =2, a; =2, and a, = —2 for the Ogden model.

Solution From Eq. (3.109), the Ogden model with two terms can be rewritten as

Wi (A1, Ao, 23) = %(/1% + 24 22-3) Jg(ﬁ + 5% 452 - 3)

50 T ;
Linear elastic

M

* i
(2]
e
=
© -100F 1
£
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Fig. 3.13 Stress—strain relationship for Neo-Hookean material
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From the definition of the invariants, the first term is identical to the first term of the
Mooney-Rivlin material. Thus, pu; =2A;o. For the second term, using the
incompressibility condition 4,443 =1, it can be rewritten as

A+ 72 =B+ 835+ =1,

Thus, the second term is also identical to the second term of the Mooney-Rivlin
material. Therefore, u, = —2Aq;. From Eq. (3.110), the equivalent shear modulus
for small deformation can be calculated by

1
n= E(alﬂl + aapy) = py — py = 2(Aro + Aot).

Example 3.13 (Strain energy density for St. Venant—Kirchhoff material) Show that
St. Venant—Kirchhoff material has the following strain energy density:

W(E) %[tr(E)]z 4 ufie(E2)] (3.111)

by deriving the material constitutive tensor D=11® 1+ 2ul.

Solution First, the second Piola-Kirchhoff stress is calculated by differentiating the
strain energy density with respect to the Lagrangian strain:

S = ang(EE) = tr(E)

otr(E) 5tr(E2)
E " OE

For the first term on the right-hand side, the following properties are used: t7(E) =
1:E and

otr(E)
OE

otr(E)
OE

=1 = Jitu(E) =11(1:E)=41®1):E.

For the second term, it is convenient to use index notation to derive the following
relation:

0Ey
otr (Ez)
OE

= 0p0;Ej; + Ejjojdy = Ex + Ey = 2Ey,

=2E=2I:E
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Since I is the fourth-order unit tensor, contraction with any second-order tensor will
yield the tensor itself. Thus, the second Piola-Kirchhoff stress can be written as

otr(E) atr(Ez)

E " oE
=1(1®1):E+2uE
—[1®1) +2ul : E
=D:E.

S = itr(E)

Note that the material constitutive tensor D is identical to that in Eq. (3.51). ]

3.5.2 Nearly Incompressible Hyperelasticity

Incompressibility of a material can cause many difficulties in the constitutive
relation, especially when it is combined with nonlinearities such as large displace-
ments, large strains, and contact. Perfect incompressibility, which corresponds to
Poisson’s ratio of one-half, is an idealization to make modeling more amenable for
obtaining closed-form solutions. In the real world, natural as well as filled rubbers
are slightly compressible, thereby, facilitating development of algorithms for nearly
incompressible behavior of elastomers. “Near-incompressibility” means that
Poisson’s ratio is not exactly one-half, but close to it. For example, 0.49 or higher
values are often used for the nearly incompressible behavior of elastomers.

As discussed previously, the hydrostatic pressure portion of stress causes volume
change (dilatation). However, if the material is incompressible, the volume remains
constant for different values of pressure. In other words, stress cannot be obtained
by differentiating the strain energy density because the hydrostatic pressure portion
of stress cannot be determined from deformation.

It has been observed from experiments that many rubberlike materials show
nearly incompressible properties. It means that only a small volume change occurs
under a large hydrostatic pressure. In such materials, the near-incompressibility can
be imposed by using a large bulk modulus, which relates hydrostatic pressure to
volumetric strain. Since the material is stiff in dilatation and soft in distortion, it is
necessary to separate these two parts in order to reduce numerical difficulties
associated with a large difference in stiffness. This has to be done in the level of
strain energy density.

In the previous section, it is discussed that the third invariant /3 is related to
dilatation, while the other two invariants, /; and I,, are related to distortion.
However, I, and I, do not remain constant during dilatation (see Example 3.13).
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In order to separate the distortion part from dilatation, it is necessary to introduce
the so-called reduced invariants, Jy, J,, and J3, defined by

I=hLI;7"3, I, =L1378, I3 =12 (3.112)

where I, I,, and /5 are the three invariants of the right Cauchy—Green deformation
tensor C. It can be easily verified that J, and J, are constant under pure dilatation;
they are only related to distortion, while J; is related to dilatation. Of course, when
the material is purely incompressible, the reduced invariants are the same with the
invariants of C.

Using the reduced invariants, it is possible to separate the distortion effect from
dilatation in defining the strain energy density, as

W(Jl,.]z,.]3):Wl(Jl,J2)+W2(J3), (3.113)

where W,(J1,J>) is the distortional strain energy density and W,(J3) is the dilatational
strain energy density. The distortional energy density can be defined using Eq. (3.105)
by substituting the reduced invariants for the original invariants. An example of the
dilatational energy density is related to the bulk modulus of the material as

K

53— 1)?, (3.114)

Wa(J3) =
where K is the bulk modulus. The relationship between the bulk modulus and
Lame’s constants for an isotropic material can be written as

K=a+% (3.115)

The above relation is valid for linear elastic materials. For general nearly incom-
pressible materials, a large value of the bulk modulus is used—two or three orders
of magnitude larger than material parameters in the distortional part. The material
becomes incompressible as the bulk modulus approaches infinity.

Example 3.14 (Dilatation) A dilatation status is defined by a constant deformation
for every direction. In terms of deformation, this status can be represented by

X1 =/1X1, X2:M2, X3:M3,

where 1 >0 is the stretch ratio. It is clear that all deformation is volumetric and
there is no shear deformation. Show that W;(J,J,) in the form of Eq. (3.105)
vanishes in such a volumetric deformation.

Solution First, the deformation gradient and the right Cauchy—Green deformation
tensor are defined by

200 2 0 0
F=|0 12 0], C=FF=|0 122 0
0 0 2 0 0 A2
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It is clear that the three principle stretches are all the same and have the value of A%
Thus, the three invariants of the deformation tensor can be calculated as

L=+ +12=32
I, =31*
I; = 2°.

Note that all three invariants are not constant under dilatation. Using the formula in
Eq. (3.112), the reduced invariants becomes

32 34 3
—_— = = 7 = 3, J 3 = A%,
Note that J, and J, are constant under pure dilatation. Thus, the distortional part of
the strain energy density for volumetric change becomes

WI(J]7J2):07 ||

3.5.2.1 Mooney-Rivlin Material Model

The Mooney-Rivlin model is one of the most popular models that are often used for

modeling rubberlike materials. Although a very simple material model is discussed

here, the method can be extended to general hyperelastic material models. With the

near-incompressibility constraint, the strain energy density is defined using the
reduced invariants as

W(J1,J2,J3) = Ao(J1 — 3) + Ag1 (J 3)+K(J 1)

1,J2,J3) = AoV 012 e (3.116)

= Wi(J1,J2) +  Wa(J3),

where Ay and Ag; are the material constants and K is the bulk modulus. For a small
strain, 2(A1o+Ap1) is equivalent to the shear modulus, and 6(A;g+ Ap;) to Young’s
modulus for a three-dimensional solid, and 8(A1o+ A;) is equivalent to the Young’s
modulus for a two-dimensional solid.

Since W, is independent of dilatation, volumetric deformation is only related to
W,. The hydrostatic pressure is defined as the derivative of W, with respect to J3, as

OW(J1,J2,J3) _ OWa(J5)
8J3 N aJS

p= =K(J;—1). (3.117)

Note that the term J3 — 1 is equivalent to volumetric strain in small deformation
(see Problem P3.10). Thus, the above relation recovers the linear elastic relation for
small deformation. Since a large value of K is used to impose near-
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incompressibility, numerical instability can result in computing the pressure from
the displacement.

For the constitutive relation, stress can be obtained by differentiating the strain
energy density in Eq. (3.116) with respect to strain. Since the material description is
used, Eq. (3.116) is differentiated with respect to the Lagrangian strain to obtain the
second Piola-Kirchhoff stress as

g_ W _ QWi sy OW\ 3% OW; 2
T OE 0J, OE  0J, OE 0J; OE

(3.118)
From the definition of the strain energy density, the second Piola-Kirchhoff stress
can be rewritten as

S =A0J1E +A01J2,E+K(J3 — 1)]3,];, (3.119)

where the subscribed comma denotes derivative, i.e., J; g = 0J,/0E. Thus, the next
task is to obtain the expression of J; g, Jo g, and J3 g in terms of the Lagrangian
strain. To this end, the derivatives of the reduced invariants with respect to
Lagrangian strain can be written as

_ 1 _
Jie =1g(3) 13 _ 511([3) 4/3[3,E
_ 2 _
g =hLg(l) 3 - 23) Bk (3.120)
1 _
J3E = 5(13) 1/213,E,

where the derivatives of the invariants can be obtained from

Lg=21
L =2(1-C) (3.121)
Ly =2IC".

The formulation in this section is called the penalty method in imposing the
near-incompressibility constraints because the penalty parameter (i.e., the bulk
modulus K) is used. As discussed earlier, this formulation will experience numer-
ical instability when the hydrostatic pressure is calculated from displacement,
which is called volumetric locking. Such instability stems from the fact that a
small change in displacement can cause a large change in pressure due to the large
magnitude of the bulk modulus. Even if various numerical techniques are available
to eliminate/reduce volumetric locking, selective reduced integration, mixed for-
mulation, and a perturbed Lagrangian formulation will be discussed in the follow-
ing subsection.
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3.5.2.2 Selective Reduced Integration

The strain energy density in Eq. (3.116) is composed of two parts: distortion and
dilatation. After finite element discretization, let K; and K, be the distortion and
dilatation stiffness matrices, respectively. Due to a large magnitude of bulk mod-
ulus in the penalty method, the stiffness of the dilatation part is much larger than
that of the distortion part. Thus, if K, is not singular, the incremental equation
(K;+K,)Au=R will yield Au=0. Thus, the residual on the right-hand side is
unable to be reduced, and the effect of K is ignored due to the large difference in
stiffness values. In this case, the stiffness is called over-constrained, and this
phenomenon is called “volumetric locking.”

The selective reduced integration method is the most convenient way of reduc-
ing volumetric locking in the near-incompressibility constraint. The basic idea is to
make the dilatation stiffness K, singular so that the distortion stiffness K can affect
the calculation of incremental displacement. Stiffness matrices are nonsingular
(after applying appropriate boundary conditions) if a regular integration order is
used. However, when integration is performed with one order less than the regular
one, it is found that the stiffness matrix becomes singular and the finite element
equation yields acceptable incremental solutions. For example, when a
two-dimensional quadrilateral element is used for a Mooney-Rivlin material, K;
is calculated using the 2 x 2 Gauss quadrature rule, while K,, is integrated using the
1 x 1 quadrature rule. The same reduced integration scheme should be used for
stress calculation: the distortion part (S=A,0/1 g+Ao1/2g) With 2 x2 and the
dilatation part (S = K(J3 — 1)J3 g) with 1 x 1 quadrature rule.

3.5.2.3 Mixed Formulation

In the mixed formulation, the hydrostatic pressure is treated as an independent variable
instead of calculating it from Eq. (3.117). Thus, the strain energy density also depends
on the hydrostatic pressure, and it is unnecessary to define the bulk modulus.
This hydrostatic pressure is in fact a Lagrange multiplier in the mixed formulation.
In the mixed formulation, the dilatational strain energy density is defined as

W2(J3,p) =p(J3 — 1). (3.122)

The advantage of the mixed formulation is that the pressure is not dependent on the
displacement so there is no numerical instability involved. However, the constitu-
tive relation becomes positive semi-definite and a special treatment is required in
solving the matrix equation.
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3.5.2.4 Perturbed Lagrangian Formulation

As explained in the mixed formation section, the pressure plays the role of
Lagrange multiplier in imposing the constraint. In the perturbed Lagrangian for-
mulation, the product of a small constant with the sum of the squares of the
Lagrange multipliers is added to the mixed formulation. The inverse of the bulk
modulus is often used for the small constant. In the perturbed Lagrangian formu-
lation, the dilatational strain energy density function is defined as

1 5
Wall3,p) =p(s = 1) = 5p™ (3.123)
If the Lagrange multiplier is removed in the element level through static conden-
sation, then the perturbed Lagrangian formulation becomes identical to the penalty
method. However, a reduced integration scheme is often employed for the pressure
terms. In such a case, the perturbed Lagrangian formulation is the same as the
selected reduced integration method.

Example 3.15 (Stress calculation in the perturbed Lagrangian formulation) When
the dilatational strain energy density function is defined as Eq. (3.123), write the
expression of stress as in Eq. (3.119) for the perturbed Lagrangian formulation.
Also, show that the perturbed Lagrangian stress becomes identical to that of the
penalty method when the pressure variable is eliminated in the element level.

Solution Using Eq. (3.123), the strain energy density for the perturbed Lagrangian
formulation can be written as

1
W(J1,J2,J3,p) =Aiw(J1 —3) + Ao (J2 — 3) +p(J3 — 1) —ﬁpz

Differentiating it with respect to the Lagrangian strain yields the second Piola-
Kirchhoff stress as

ow
S = a_E = Al(]Jl,E +A01J2,E +p‘13’E

Note that the hydrostatic pressure p is an independent variable. In the variational
equation with displacement and pressure variables, an additional equation is
required for the pressure variable, which can be obtained by differentiating
W with respect to p and equating the terms to zero:

(1) o

If the above equation is used to eliminate the pressure variable in the element level,
it simply becomes p = K(J; — 1), which is equivalent to the pressure term in the
penalty method. =
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3.5.2.5 Algorithm for Stress Calculation

In computer programming, it is convenient to use vector and matrix notation rather
than tensor notation. Thus, in the following algorithm, vector and matrix notation
will be used. Below is the procedure of stress calculation for the Mooney-Rivlin
hyperelastic material. The inputs are the Lagrangian strain and material parameters,
and the outputs are the six components of the second Piola-Kirchhoff stress:

1. For given strain {E} ={E;, Es, E33, E12, E3, E13}T and given material
constants (Ao, Agj, and K) for the penalty method, or material constants (A;q
and Ag;) and the hydrostatic pressure p for the mixed formulation method,
perform the following calculation.

2. Set {1}={1,1,1,0,0,0}" and {C} =2 x {E} + {1}.

3. Calculate the three invariants:

I =Ci +C+Cs.
12:C1><C2+C1><C3+C2><C3—C4><C4—C5><C5—C6><C6.

L= (CixCy—CyxCs)xCs+ (C4xCs—Cy xCs)xCs+ (Cq x Cs— Cy x Cg) x Cs.
4. Calculate the derivatives of invariants with respect to the Lagrangian strain:
{Lg} =2x{1}.
{Ig} = 2x{Cy+ C3.C3 +C.Ci 4+ Cy. — C4. — Cs5. — Cg}".
{e} = 2x {C2C3 — C5Cs5,C3C) — C6Cp,C1Cy — CyCy,
Cs5Cs — C3C4,C6Cy — C1Cs5,C4Cs — C2C6}T.

5. Calculate the derivatives of the reduced invariants.
_ 1 _
(e} =1 {1 g} — il YLk}
_ 2 _
{ox} =1 {Lx} - 32l sk}
1L 1
{/3.6} =5 e}

6. Calculate the second Piola-Kirchhoff stress from Eq. (3.119):
{S} =Aw{/ig} +Anu{/oe} +p{/3E}.

When the penalty method is used, then use K(J3 — 1) instead of p.
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3.5.3 Variational Equation and Linearization

Once the stress is calculated from the strain energy density, the energy form of the
variational equation can readily be obtained using the nonlinear elasticity formu-
lation developed in Sect. 3.3, which is rewritten here as

a(u, @) = (), VieZ, (3.124)

where the energy and load forms are defined as
a(u,u) = // S(u) : E(u,u) dQ (3.125)
°Q

and

((a) = // u'f’dQ + / a'tdr. (3.126)
00 ops

The definitions of the above two forms are identical to those of the nonlinear elastic
equation. However, the second Piola-Kirchhoff stress is calculated from Eq. (3.119)
for hyperelastic materials. Note that the undeformed state is used as a frame of
reference.

As discussed before, the load form is independent of deformation when it is
conservative. The energy form is nonlinear through the constitutive relation and
strain tensor. Linearization of the second Piola-Kirchhoff stress can be expressed in
terms of the displacement increment as

AS=Wpgg:AE=D:AE (3.127)

where D is the fourth-order constitutive tensor at the current load step, referring to
the undeformed state, and AE is the Lagrangian strain increment. Note that the
constitutive tensor D for the St. Venant—Kirchhoff material was constant, as in
Eq. (3.51). However, it is now a function of deformation for the hyperelastic
material.

The constitutive tensor D can be obtained by differentiating the second Piola-
Kirchhoff stress in Eq. (3.119) to obtain

oS
D= ﬁ = AIOJI,EE +A01J2,EE + K(J3 — 1)]3,EE + KJ3,E ®J3’E (3128)

where J, gg = 0°J,/OEOE is the second-order derivative of the reduced invariant
with respect to the Lagrangian strain. The same notation is used for J, gg and J3 gg.
The last term, J3 g ®J3 g, is a tensor product using J; g twice. Note that the
constitutive tensor has major and minor symmetries, i.e., D =Dy, and
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Dj;i= Djir. Unfortunately, the expressions of the second-order derivatives are
lengthy. From Eq. (3.120),

11 s 4 7 1. s
JI,EE:II,EE[33__]33(]1,12®[3,E+13,E®11,E)+§11133]3,E®]3,E_§Ill33l3,EE

=

N W

5

2 10 _s 2 s
Jogg =hgely’ — =13 (Lhe ® L+ LeE®LE) +31213 g QI3 — 51213 °I3 EE

w

13 1 1
J3 g = —113 Le®Lg+ 513 *I3 g

(3.129)
where the second-order derivatives of the invariants can be obtained from
Ligg =0
Ly =41®1-1 (3.130)
Lgg =4:C'oC' — L 'ICT!

where 1, = (6x0j; + 6;05)/2 is a symmetric fourth-order identity tensor.
Once the constitutive tensor is calculated, linearization of the energy form yields
the same expression as in Eq. (3.74), which is rewritten here as

a*(u;Au,ﬁ)E// (E:D:AE+S:AE) dQ. (3.131)
o)

Compared to the St. Venant—Kirchhoff material, the only differences are the
expressions of the constitutive tensor and the second Piola-Kirchhoff stress. Thus,
the same Newton—Raphson iterative method can be used for solving hyperelasticity
problems.

The stress in Eq. (3.119) and material stiffness in Eq. (3.128) can easily be
implemented in computer programs. Below is the MATLAB programs, Mooney,
that calculates the second Piola-Kirchhoff stress and material stiffness for a given
deformation gradient. The mixed and perturbed Lagrangian formulations require
slight modification of the program.

PROGRAM Mooney

oo

2nd PK stress andmaterial stiffness for Mooney-Rivlinmaterial

o0 o

function [Stress D] = Mooney (F, A10, A01, K, 1ltan)
Inputs:

o0 o

F = Deformation gradient [3x3]
Al10, AOl, K =Material constants
ltan =0 Calculate stress alone; 1 Calculate stress andmaterial stiffness

o0

o0 o

Outputs:
Stress = 2nd PK stress [S11, S22, S33, S12, 523, S13];
D =Material stiffness [6x6]

o° o
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X12=1/2; X13=1/3; X23 =2/3; X43 =4/3; X53 =5/3; X89=8/9;
C=F'*F;

Cl=C(1,1); C2=C(2,2); C3=C(3,3); C4=C(1,2); C5=C(2,3); C6=C(1,3);
I1=Cl+C2+C3;

I2 =Cl*C2+C1l*C3+C2*C3-C472-C5"2-C6"2;

I3 =det(C);

J3 =sqgrt(I3);

J3M1 =J3 -1.0D+00;

%

IlIE=2*[111000]";

I2E=2*[C2+C3, C3+C1, C1+C2, -C4, -C5, -C6]";

I3E=2*[C2*C3-C5"2, C3*Cl-C6"2, C1l*C2-C4"2, ...
C5*C6-C3*C4, C6*C4-C1*C5, C4*C5-C2*C6] " ;

%

WLl =TI3"(-X13); W2 =X13*I1*I3"(-X43); W3 =I3"(-X23);

W4 = X23*I2*I3" (-X53); W5 =X12*I3" (-X12);

%

J1E=W1*I1E - W2*I3E;

J2E =W3*I2E - W4*I3E;

J3E =W5*I3E;

%

Stress =Al10*J1E + AO1L*J2E + K*J3M1*J3E;
%

% Material stiffness

%

D= zeros (6) ;

if ltan==1

%

I2EE=[0 44 0 00;4040 00;44000 0;
00 0-200;0000-20;00000-27;

I3EE=[0 4*C3 4*Cc2 O -4*C5 0;
4*C3 0 4*C1 O 0 -4*C6;
4*C2 4*C1 O -4*C4 0 0;
0 0 -4*C4 -2*C3 2*C6 2*C5;
-4*C5 0 0 2*C6 -2*C1 2*C4;
0 -4*C6 0 2*C5 2*C4 -2*C2];
%
Wl =X23*I3"(-X12); W2 = X89*I1*I3"(-X43); W3 =X13*I1*I3"(-X43);
W4 = X43*I3"(-X12); W5 = X89*I2*I3"(-X53); W6 =I3"(-X23);
W7 = X23*I2*I3"(-X53); W8 = I3~ (-X12); W9 = X12*I3" (-X12);

%

J1EE = -W1* (J1E*J3E’ + J3E*J1E’) + W2* (J3E*J3E’) - W3*I3EE;

J2EE = -W4* (J2E*J3E’ + J3E*J2E’) + W5* (J3E*J3E’) + W6*I2EE - W7*I3EE;
J3EE = -W8* (J3E*J3E’) + WO*I3EE;

%

D=Al10*J1EE + A01*J2EE + K* (J3E*J3E') + K*J3M1*J3EE;

end

return;




200 3 Finite Element Analysis for Nonlinear Elastic Systems
3.6 Finite Element Formulation for Nonlinear Elasticity

So far, formulations and solution procedures of nonlinear elastic and hyperelastic
problems have been discussed in the continuum domain. In practice, the structure is
discretized by finite elements and the equilibrium equations are applied to these
elements. In this section, finite element discretization is discussed using a four-
node, plane-strain, quadrilateral solid element. Different types of elements have
different schemes of interpolation, which will only affect the displacement—strain
relation. The same algorithm for stress calculation and constitutive tensor can be
used for different types of elements.

Figure 3.14 shows a quadrilateral element defined in the undeformed state.
Even if a real structure is composed of many elements, for the simplicity of
explanation, it is assumed that the structure is modeled by one element. In the
total Lagrangian formulation, all interpolation functions are calculated in the
undeformed geometry. In the computer implementation of the nonlinear finite
element program, matrix—vector notation is more convenient than tensor notation.
In matrix—vector notation, a second-order symmetric tensor (e.g., stress and strain)
is expressed using a vector, while a fourth-order symmetric tensor (e.g., constitutive
tensor) is expressed using a matrix. For example, the stress and strain vectors are
defined as

{S}={Su S»n Sn} (3.132)
and
{E} ={En En 2En}". (3.133)
In the above definitions, the symmetric property of the tensor is used.
In the displacement-based implementation of finite elements, the displacement
vector u = {uy, U, }T is given for each node of an element. Subscript / will be used to

denote the node such that u; will be the displacement vector at node /. The displace-
ment within the element can be calculated using the following interpolation scheme:

n
3 -1,1) (1,1
| m—) &
1 2
X; (=1,-1) (1-1
Finite Element Reference Element

Fig. 3.14 Quadrilateral plane solid element



3.6 Finite Element Formulation for Nonlinear Elasticity 201

N,

u=> Ni(&u, (3.134)

I=1

where N, is the number of nodes of the element, €= {&, i }T is the natural coordinate
vector at the reference element [see Fig. 3.14], and N,(§) is the interpolation or shape
function. In the iso-parametric mapping method, the material coordinates within the
element are also interpolated using the same interpolation function. In the material
description, the reference coordinate X = {X;, X, 1T s interpolated using

X =Y "Ni(&X, (3.135)

I=1

where X;={X;;, Xp }T is the nodal coordinate of node I at the undeformed
geometry.

In order to express the nonlinear equation in terms of nodal displacements, it is
first necessary to interpolate the displacement gradient vector. Using the interpola-
tion scheme in Eq. (3.134), the displacement gradient can be expressed as

w, (3.136)

where the derivatives of the interpolation function can be obtained using the chain
rule of differentiation and the Jacobian relation, as explained in Eq. (1.139) in
Chap. 1. The only difference is that the undeformed coordinate X should be used.
Using index notation, the components of displacement gradient can be written as

N,
wij =Y Ni(Eu (3.137)
=1

where N;; is the derivative of N; with respect to X; and u,; is the component of u,. In

the following, a subscribed comma will be used for differentiation with respect to X;.
From the displacement gradient, the deformation gradient can be calculated using

Eq. (3.5). The following vector form of the displacement gradient is defined first:

T
Vou={uy,1 wy w1 uwpy} (3.138)
Then, the deformation gradient can be written as

{F}:{Fll F12 F21 F22 }T:{1+M1,1 Uy, Uz 1+M2’2 }T. (3139)
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For a given displacement gradient, the Lagrangian strain can be calculated by

1

Eq M1,1+2(M1,1M1,1+M2,1M2,1)
El=<{ E = 1 . 3.140
{E} 2 U2 + 5 (u1,2u2,1 + 1z 2112 2) ( )

Uy + Uz 1 + up Uy + Uzl

Using the Lagrangian strain, the second Piola-Kirchhoff stress can be obtained by
differentiating the strain energy density function with respect to E. For example, in
the case of the St. Venant—Kirchhoff material, the second Piola-Kirchhoff stress can
be calculated from Eq. (3.53), while the hyperelastic material can be calculated
from Eq. (3.119).

Next, the variation of Lagrangian strain E in Eq. (3.63) can be written in vector
notation as

{E} = By]{d} (3.141)
- - = = — 3T . .. .
where {d} = {d“ dp dy dyn - d42} is the variation of nodal dis-
placements and [By] is the nonlinear displacement—strain matrix defined as
F1iN1,1 F21Ny,1 F11N2 1 FaNyy -+ FuiNg, F21N4,1
By] Fi2N1 2 F»Ni» F12N3 2 FnNyo o --- FiaNg» F»N4 s
V] =
FiiNi,2 FaN12 F1iN2» Fa1Ny o F11N4» Fa1Ng»
TFoNw 4 FuN +FNy +FaNa, +F12Na1 +F2nNg
(3.142)

Note that the nonlinear displacement—strain matrix [By] is clearly different from
[B] in linear systems in Chap. 1. The latter remains unchanged for a given element
and given integration point, while the former changes according to displacement as
it contains the components of deformation gradient.

Using Eq. (3.141) and the second Piola-Kirchhoff stress in Eq. (3.132), the
discrete version of the energy form can be derived as

a(u,u) = //OQS :EdQ = {a}T//OQ[BN]T{S}dQ = {d}"{f"}, (3.143)

where {fim} is the discrete internal force vector. Note that both the tensor and
matrix—vector notations are used in the equation.
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In addition, the discrete external force vector can be derived from the definition
of the load form as

‘(@) = // o dQ + / a'tdl
00 ors

3 T
= ZU[T{//OQNI(‘:)fbdQ—F or.\-NI(é)tdF} = {a} {fext}.

(3.144)

When concentrated nodal forces are applied, they can directly be added to the
corresponding locations in {f**'}. Since the applied loads are assumed to be
independent of deformation, the external force {f**'} is a fixed vector. Thus, the
discrete version of solving the nonlinear variational equation is to find the internal
force that has the same value as the external force, i.e.,

{a)/ {f" (@)} = {a}’ (), v{d} ez, (3.145)

where Z,, is the discrete counter part of space Z. Since the displacement variation is
zero at the nodes where displacements are prescribed, Eq. (3.145) satisfies
{f"(d)} = {f*'} for all nodes whose displacements are not prescribed.

Since the internal force is a nonlinear function of deformation, Eq. (3.145) needs
to be solved using an iterative method, such as the Newton—Raphson method,
which requires the Jacobian matrix or, equivalently, the tangent stiffness matrix.
In the total Lagrangian formulation, the tangent stiffness matrix corresponds to
discretization of the linearized energy form in Eq. (3.74).

As we discussed in Sect. 3.2.1, the incremental Lagrangian strain has a similar
expression as

{AE} = [By]{Ad}. (3.146)

Then, the first term in the structural energy form can be written as

//OQE :D: AEdQ = {d}" U/UQ[BN]T[D] By]d©

where the 3 x 3 matrix [D] is the matrix version of the constitutive tensor D in
Eq. (3.51). In the case of the St. Venant—Kirchhoff material, the matrix [D] becomes

{Ad}, (3.147)

A+2u A 0
D] = p) A+2u O (3.148)
0 0 U

In the case of the Mooney-Rivlin material, the matrix [D] can be calculated from the
matrix version of Eq. (3.128) (see Problem P3.27).
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The second term, the initial stiffness, of the linearized energy form can be
written as

//OQS :AEdQ = {(_I}T [//UQ [B4]"[Z][Bo] 42

{ad} (3.149)

where

Su Sz 0 0
S S» O 0

[X] = 0 0 Su Sn (3.150)
0 0 Sip S»
Ny 0 Ny 0 Nzgp 0O Ngp O
_|Niz2 0 Ny 0 Nsp O Ngp O
Bal = |, Nt 0 Nay 0 Nay 0 Nay (3.151)

0 Nyt 0 Ny 0 N3zp 0 Nyp

Different from [By], [Bs] provides a linear relation between displacement and
strain. This is expected because its counterpart in continuum, AE(AU, ), is bilinear
with respect to displacement variation and displacement increment.

Using Eqgs. (3.147) and (3.149), the tangent stiffness matrix can be calculated as

Kr] = // - [[BN}T[D] [By] + Bs]"[Z] [BG]} dQ (3.152)

In general, the above integration as well as the one in the internal force in
Eq. (3.143) are evaluated using the Gauss quadrature rule. Normally, 2 X 2 inte-
gration points are used for a quadrilateral element. In the case of a hyperelastic
material with near-incompressibility constraint, however, the dilatation part may
cause volumetric locking if 2 x 2 integration points are used. In order to relieve
volumetric locking, in practice, 2 X 2+ 1 integration points are used in which an
additional point is added at the center of the element such that the distortion part is
calculated at 2 x 2 points and the dilatation part at the element center.

The discretized version of incremental equation in Eq. (3.75) can now be written
in the form of finite element matrix equation as

(@) K ){ad) = {@}"{+= - ™), v{d} ez, (3.153)

The above linear system of equations needs to be solved iteratively until the
residual force (right-hand side) vanishes. Different methods of solving nonlinear
equations in Chap. 2 can be used. For example, in the case of the modified Newton—
Raphson method, the tangent stiffness matrix [K7] at the first iteration is repeatedly
used. In the case of the incremental force method, the external force vector {f*'}
is divided by the number of increments, and the Newton—Raphson method is
employed at each load increment.
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3.7 MATLAB Code for Hyperelastic Material Model

In this section, a MATLAB code, HYPER3D.m, is introduced that can solve for
nonlinear elastic problems with the hyperelastic material model using the total
Lagrangian formulation. The code can be called from NLFEA.m in Chap. 2. As
explained in Fig. 2.26, the main function of HYPER3D.m is to build the tangent
stiffness matrix, [K], and the residual force vector, {R}. Then, NLFEA.m will solve
for the displacement increment as a part of the Newton—Raphson iteration.

HYPER3D.m shares most of its input variables with that of ELAST3D.m in
Chap. 1, which was explained in Table 1.5. Only difference is that mrp and proP are
used instead of Eran. The current implementation does not use MID inside of
ELAST3D.m, which is an integer for the material identification number. In order
to use HYPER3D.m, m1p should be a negative integer, such as -1. The array prop
stores hyperelastic material constants. The current implementation uses Mooney-
Rivlin material, which uses three material properties, PROP = [A;4, Aoy, K1. As with
ELAST3D.m in Chap. 1, the logical variable, uppaTe, is used to store the calculated
stresses in the global array szema, and the logical variable, Lran, is used to calculate
the tangent stiffness matrices and store them in the global array ekr. The residual
force, Force, will always be calculated.

In order to assemble the local stiffness matrix into the global stiffness matrix, the
IDOF array is used to store the location of the global DOFs corresponding to the
local 24 DOFs. The xe and wer arrays store one-dimensional integration points and
corresponding weights, as in Table 1.4. In this implementation, only two-point
integration is used for each coordinate direction.

At each integration point of an element, the derivatives of finite element shape
functions are calculated by calling SHAPEL.m. Since the total Lagrangian formu-
lation is used, the derivatives are evaluated with respect to the undeformed
geometry. Using the derivatives of shape functions, the deformation gradient, F,
is calculated using Eq. (3.5). Then, using the deformation gradient, F, and
hyperelastic material properties in prop, the second Piola-Kirchhoff stress and
tangent stiffness matrix are calculated by calling the Mooney.m function.

In the total Lagrangian formulation, the stress—strain relation is nonlinear, and
the nonlinear displacement—strain matrix, By, in Eq. (3.142) and the linear
displacement—strain matrix, Bg, in Eq. (3.151) are stored in BN(6,24) and
BG(9,24) arrays, respectively. In order to save computational time, the residual
force array, FORCE, is always calculated, while the tangent stiffness array, Gkr, is
calculated only when the logical variable, nran, is true. This functionality can be
used when the modified Newton—Raphson iteration is used. Since the total Lagrang-
ian formulation uses the Lagrangian strain and the 2nd Piola-Kirchhoff stress,
function CAUCHY is used to convert the 2nd Piola-Kirchhoff stress to Cauchy
stress, which is used in printouts.


http://dx.doi.org/10.1007/978-1-4419-1746-1_2
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Fig26
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function HYPER3D (PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE)

I R R R
% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR

%

HYPERELASTIC MATERIAL MODELS
I

o0
o°

global DISPTD FORCE GKF SIGMA

%

% Integration points and weights
XG=[-0.57735026918963D0, 0.57735026918963D0] ;
WGT=[1.00000000000000D0, 1.00000000000000D0] ;

oe

% Index for history variables (each integration pt)
INTN=0;
%
$LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
for IE=1:NE
% Nodal coordinates and incremental displacements
ELXY=XYZ (LE (IE, :),:);
% Local to global mapping
IDOF=zeros (1,24);
for I=1:8
IT=(I-1)*NDOF+1;
IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1: (LE(IE,I)-1)*NDOF+3;
end
DSP=DISPTD (IDOF) ;
DSP=reshape (DSP, NDOF, 8) ;
%
$LOOP OVER INTEGRATION POINTS
for LX=1:2, for LY=1:2, for LZ=1:2
E1=XG (LX) ; E2=XG(LY) ; E3=XG(LZ) ;
INTN = INTN + 1;

Determinant and shape function derivatives
~, SHPD, DET] = SHAPEL([E1l E2 E3], ELXY) ;
FAC=WGT (LX) *WGT (LY) *WGT (LZ) *DET;

%

% Deformation gradient

F=DSP*SHPD' + eye (3) ;

%
%
[

%
% Computer stress and tangent stiffness

[STRESS, DTAN] = Mooney (F, PROP (1), PROP(2), PROP(3), LTAN) ;
%

%

Update plastic variables
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if UPDATE
STRESS=CAUCHY (F, STRESS) ;
SIGMA (:, INTN)=STRESS;
continue;

end

o°

% Add residual force and tangent stiffness matrix

BN=zeros (6,24) ;

BG=zeros (9,24) ;

forI=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BN(:,COL)=[SHPD(1,I)*F(1,1) SHPD(1,I)*F(2,1) SHPD(1,I)*F(3,1);
SHPD(2,I)*F(1,2) SHPD(2,I)*F(2,2) SHPD(2,I)*F(3,2);
SHPD(3,I)*F(1,3) SHPD(3,I)*F(2,3) SHPD(3,I)*F(3,3);
SHPD(1,I)*F(1,2)+SHPD(2,I)*F(1,1)

207

SHPD(1,I)*F(2,2)+SHPD(2,I)*F(2,1) SHPD(1,I)*F(3,2)+SHPD(2,I)*F(3,1);

SHPD(2,I)*F(1,3)+SHPD(3,I)*F(1,2)

SHPD(2,I)*F(2,3)+SHPD(3,I)* F(2,2) SHPD(2,I)*F(3,3)+SHPD(3,I)*F(3,2);

SHPD(1,I)*F(1,3)+SHPD(3,I)*F(1,1)

SHPD(1,I)*F(2,3)+SHPD(3,I)*F(2,1) SHPD(1,I)*F(3,3)+SHPD(3,I)*F(3,1)];

%

BG(:,COL)=[SHPD(1,I) O
SHPD(2,I) O
SHPD(3,I) O

SHPD(1,1I)

SHPD(2,1I)

SHPD(3,1I) ;

0 SHPD(1,1I);

0 SHPD(2,1I);

0 SHPD(3,I)];

7

7

o O O O O o

o O O O O O

end

%

% Residual forces

FORCE (IDOF) = FORCE (IDOF) - FAC*BN' *STRESS;

%

% Tangent stiffness

if LTAN

SIG=[STRESS (1) STRESS(4) STRESS(6) ;
STRESS (4) STRESS (2) STRESS(5) ;
STRESS (6) STRESS (5) STRESS(3)1;

SHEAD=kron (eye(3),SIG) ;

°

EKF = BN’ *DTAN*BN + BG’ *SHEAD*BG;
GKF (IDOF, IDOF) =GKF (IDOF, IDOF) +FAC*EKF;
end
end; end; end;
end
end
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function STRESS=CAUCHY (F, S)
I R R R

o°

CONVERT 2ND PK STRESS INTO CAUCHY STRESS

E R R

o0 o

PK=[S(1) S(4) S(6);S(4) S(2) S(5);S(6) S(5) S(3)1;
DETF = det (F) ;

PKF = PK*F ' ;

ST = F*PKF/DETF;

STRESS=[ST(1,1) ST(2,2) ST(3,3) ST(1,2) ST(2,3) ST(1,3)1";
end

Example 3.16 (Hyperelastic analysis using MATLAB) Consider a unit cube as
shown in Fig. 3.15. An eight-node solid element is used to model the cube. The
positive X face (Face 4) is extended with a stretch ratio 1 =6.0. The following
boundary conditions are given: u; = 0 at Face 6, u, =0 at Face 3, and u3 = 0 at Face
1. Using NLFEA, calculate the relation between the stretch ratio and Cauchy stress.
Use the incompressible Mooney-Rivlin hyperelastic material with Ao =80 MPa,
Ag; =20MPa, and K = 107 MPa. Use 20 load increments. Compare the results with
the analytical solution.

Solution The following MATLAB script defines an eight-node solid element with
boundary conditions. Since this is a displacement-controlled problem, EXTFORCE
array is empty. Instead, spxspr array has nonzero prescribed displacements for
those nodes at Face 4. In order to make stretch ratio = 6, the displacement should be
5.0. The total load is divided by 20 increments in TIMs array.

Fig. 3.15 Extension of an
incompressible unit cube
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o o

Ex 3-16 Hyperelastic tension example

o° oP

Nodal coordinates

XYz=[000;100;110;010;001;101;111;0117;

% Element connectivity

LE=[12345678];

% No external force

EXTFORCE=[];

% Prescribed displacements [Node, DOF, Value]

SDISPT=[110;410;510;810; % ul=0 for Face 6
120;220;520;620; % u2=0 for Face 3
130;230;330;430; % u3=0 for Face 1
215;315;615;715]; %ul=5forFaced

Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.01.00.050.01.01";

% Material properties

MID=-1;

PROP=[80 20 1E7];

%

% Set program parameters

ITRA=30; ATOL=1.0E5; NTOL=6; TOL=1E-6;

%

% Callingmain function

NOUT = fopen (’output.txt’, 'w’);

NLFEA (ITRA, TOL, ATOL, NTOL, TIMS, NOUT, MID, PROP, EXTFORCE, SDISPT, XYZ, LE) ;

fclose (NOUT) ;

The convergence history shows an important capability of NLFEA. In the first
increment (Time = 0.05), the residual is 1.175ES5, which is larger than aTor = 1. 0ES5.
Therefore, NLFEA considers that the residual is too high, as which the load increment
is bisected. After reducing the load increment to 0.025, the iteration converges in four
iterations. Once the iteration converges, the bisection recovers the initial time incre-
ment. Therefore, after Time = 0.05, the time increment is recovered to 0.05. The
residual during the iteration shows a nice quadratic convergence as the residual
changes by several orders of magnitude in each iteration. The convergence iteration
is considered to be converged when the residual is less than ToL = 1E-6.

Time Time step Iter Residual
0.05000 5.000e-02 2 1.17493e+05
Not converged. Bisecting load increment 2
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Time Time step Iter Residual
0.02500 2.500e-02 2 2.96114e+04
3 2.5561le+02

4 1.84747e-02

5 1.51867e-10

Time Time step Iter Residual
0.05000 2.500e-02 2 2.48106e+04
3 1.69171e+02

4 7.67766e-03

5 2.39898e-10

Time Time step Iter Residual
0.10000 5.000e-02 2 8.45251e+04
3 1.88898e+03

4 8.72537e-01

5 1.86783e-07

Time Time step Iter Residual
1.00000 5.000e-02 2 8.55549e+03
3 8.98726e+00

4 9.88176e-06

5 1.66042e-09

Figure 3.16 shows the relationship between the stretch ratio and Cauchy stress.
Stress increases nonlinearly. It is noted that due to incompressibility, the volume of
stretched cube can be calculated by 6 x (1-0.5917) x (1-0.5917) = 1.00025, which
is almost identical to the initial volume. =

6000 T T T T 1

5000 1

4000} 1

3000 1

Stress

2000 b

1000 R

1 2 3 4 5 6
Stretch ratio

o

Fig. 3.16 Stress—extension ration graph for the extension of a unit cube
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3.8 Nonlinear Elastic Analysis Using Commercial Finite
Element Programs

In this section, nonlinear elastic analysis procedures using three commercial finite
element programs are discussed. Since controlling load steps was already discussed
in Chap. 2, defining nonlinear materials (including hyperelastic materials) will be
discussed in this section.

3.8.1 Usage of Commercial Programs

3.8.1.1 Abaqus

*STEP, NLGEOM=YES

The *sTEP keyword was discussed in Chap. 2. In addition to specifying the
maximum allowable load increments, the option can also be used to include
geometrically nonlinear effects. By setting the Nr.geom parameter to YES, Abaqus
considers the effects of large deformation and rotation.

Abaqus does not support the St. Venant—Kirchhoff material. Instead, if the
material is defined as linear elastic with Young’s modulus and Poisson’s ratio,
and NLeEOM parameter, it is considered as a nonlinear elastic material with a
constant relation between Cauchy stress and engineering strain at the deformed
state (a hypoelastic constitutive relation).

*MATERIAL, NAME—MOONEY
*HYPERELASTIC, MOONEY-RIVLIN
Al0, AO1,

In order to define a hyperelastic material in Abaqus, the *uyPERELASTIC key-
word is used with the material definition. This keyword defines the material type
and parameters. Since Abaqus uses a mixed formulation for incompressibility, there
is no need to define the bulk modulus. Abaqus supports the Arruda—Boyce, Marlow,
Mooney-Rivlin, Neo-Hookean, Ogden, polynomial, Yeoh, and user-defined
hyperelastic material models.

3.8.1.2 ANSYS
NLGEOM, ON

This command activates geometric nonlinear analysis. This affects the integra-
tion domain, stiffness matrix, and stress and strain calculations. The integration
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domain is updated to the current deformed domain. The stiffness matrix changes
according to the current displacement. Large strain effects and the nonlinear stress—
strain relation are used.

ANSYS does not support the St. Venant—Kirchhoff material. Instead, if the
material is defined as a linear elastic with Young’s modulus and Poisson’s ratio,
and NLGEOM is ON, it is considered as a nonlinear elastic material with a constant
relation between Cauchy stress and engineering strain at the deformed state.

TB, HYPER, 1, ,2, MOONEY
TBDATA, 1,Al10
TBDATA,2,A01
TBDATA, 3,2/K

The first command, TB, defines a Mooney-Rivlin material with two parameters.
In fact, ANSYS allows 2, 3, 5, and 9 parameter models based on Eq. (3.105). The
following three TBpATA commands provide the values of the parameters. Note that
the number of TBDATA is three because the last parameter is the incompressibility
parameter, which corresponds to 2/K with K being the bulk modulus. ANSYS also
provides polynomial, Neo—Hookean, Ogden, Arruda—Boyce, Gent, Yeoh, Blatz—Ko
foam, Ogden compressible foam, and user-defined hyperelastic models.

3.8.1.3 NEiNastran

PARAM, LGDISP, 1

This BULKDATA command activates geometric nonlinear analysis. This
affects the integration domain, stiffness matrix, and stress and strain calculations.
The integration domain is updated to the current deformed domain. The stiffness
matrix changes according to the current displacement. Large strain effects and
nonlinear stress—strain relation are used.

MATHP

This entry defines hyperelastic material parameters. The parameters of the
MATHP entry are as follows:

MATHP MID Al0 A0l D1
NA ND
A20 All A02 D2
A30 A21 Al2 A03 D3
A40 A3l A22 Al3 A04 D4
A50 A4l A32 A23 Al4 A05 D5
TAB1l TAB2 TAB3 TAB4 TABD
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MID is a unique identification number of the material. By default, the model
assumes the two-parameter Mooney-Rivlin material with a10 and ao1. b1 is the
half of the bulk modulus. When more than two parameters are used, it is necessary
to define na and np, which specify the order of distortional and dilatational strain
energy polynomials. Depending on Na and wp, additional coefficients a2o0, a11, etc.,
should be defined. When test data are available, praB1, TaB2, TaAB3, TAB4, and TABD
can be used to input test data so that NEiNastran can calculate coefficients using a
regression method.

Example 3.17 (Hyperelastic analysis using Abaqus) Consider a unit cube as shown
in Fig. 3.15. Using Abaqus, calculate the relation between the stretch ratio and
Cauchy stress. Use the incompressible Mooney-Rivlin hyperelastic material with
A10=280 MPa and Ay; =20 MPa. Use 20 load increments. Compare the results with
the analytical solution.

Solution Below is the list of Abaqus commands used to solve the uniform exten-
sion of a cube. C3D8RH in Abaqus is a hybrid eight-node linear brick element with
reduced integration and hourglass control. The element has the hydrostatic pressure
as an independent variable. The *sorIp sEcTION keyword assigns the material
(named MOONEY in this example) to the element via the ELSET parameter. In
order to apply the stretch ratio of 6.0, the displacement at Face 4 needs to increase
by 5.0 m.

The following figure shows the initial and deformed geometry of the cube. The
stress—stretch ratio curve shows that the numerical results agree well with the
analytical results.

6000 R
5000

Initial cube 4000

Stress

Deformed cube 3000

L E ’ 2000

1000 —— Analytical
o ABAQUS
0
1 2 3 4 5 6

Stretch ratio

*HEADING *HYPERELASTIC, MOONEY-RIVLIN
- Mooney-Rivlin Uniaxial tension 80., 20.,

*NODE, NSET=ALL *STEP, NLGEOM, INC=20

1, UNIAXIAL TENSION

2,1. *STATIC,DIRECT

3,1.,1 1.,20.

4,0.,1., *BOUNDARY , OP=NEW
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5,0.,0.,1. FACEL, 3
6,1.,0.,1. FACE3, 2
7,1.,1.,1. FACE6,1
8,0.,1.,1. FACE4,1,1,5.
*NSET, NSET=FACE1l *EL PRINT, F=1
1,2,3,4 S,

*NSET, NSET=FACE3 E,

1,2,5,6 *NODE PRINT, F=1
*NSET, NSET=FACE4 U,RF

2,3,6,7 *OUTPUT, FIELD, FREQ=1
*NSET, NSET=FACEG6 *ELEMENT OUTPUT
4,1,8,5 S,E

*ELEMENT, TYPE=C3D8RH, ELSET=0NE *NODE OUTPUT
1,1,2,3,4,5,6,7,8 U, RF

*SOLID SECTION, ELSET=0ONE, MATERIAL=MOONEY *END STEP
*MATERIAL, NAME=MOONEY

3.8.2 Modeling Examples of Nonlinear Elastic Materials

In this section, several analysis problems are used to discuss about modeling issues
as well as verifying the accuracy of analysis results with that of literature.
Hyperelastic thick cylinder under internal pressure [12]: An infinitely long
cylinder in Fig. 3.17a is made of Mooney-Rivlin material with A;;=80 psi and
Ap; =20 psi. The material is nearly incompressible where the compressibility is
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Fig. 3.17 Hyperelastic thick cylinder under internal pressure
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Table 3.3 Target results for
hyperelastic thick cylinder
under internal pressure

Criterion Target value

Displacement at the inner radius (in) | 7.180
Stress at the first element (psi) —122.0

equivalent to Poisson’s ratio of 0.49. An internal pressure of P; = 150 psi is applied.
The inner and outer radii of the cylinder are, respectively, R;=7.0in and
R,=18.625 in. The objective is to find the radial displacement at the inner radius
and the radial stress at radius R = 8.16in (center of 1st element) and to compare the
results with the target values in Table 3.3.

Since the cylinder is infinitely long, it is impossible to model the entire cylinder
in the axial direction. Therefore, an approximation must be adopted in this direc-
tion. From the fact that the cylinder is infinitely long, it is reasonable to assume that
there is no deformation in the axial direction, which corresponds to the plane-strain
condition. Therefore, it is expected that the results will be independent of axial
location z. In the circular cross section, it is also expected that the results will be
only a function of radius and independent of angular position 8. This type of
problem is called axisymmetric. Therefore, it would be unnecessary to model the
entire circular region. In addition, if the entire circular region is modeled, it would
be difficult to apply to displacement boundary conditions. All rigid-body motions
must be removed in static analysis.

The problem statement does not provide the bulk modulus for incompressibility.
Since Poisson’s ratio is given, this information needs to be used to estimate the bulk
modulus. The results are not particularly sensitive to this value because the material
is unconfined. First, the Young’s modulus can be approximated by £ = 6(A o+ Ag1)-
Then, using the definition of bulk modulus, it can be calculated from

E 600
K=-— =" 10,000 psi
3(1-20)  0.06 pst

The problem can be solved by different modeling strategies. In the following, the
problem can be modeled using 3D solid element, 2D plane-strain elements, and
axisymmetric elements. It is suggested to try with different element types and
compare the results with each other.

(a) 3D solid element: The advantage of using 3D solid elements is that it closely
models the real geometry. 8-node or 20-node hexahedron or 10-node tetra-
hedron elements can be used to model the cylindrical geometry. Since the
results do not vary along the z-axis, it would be enough to have a single
element in that direction. In order to apply the plane-strain condition, the
z-directional displacements are fixed. Since there is no systematic way to
apply the axisymmetric condition for 3D solid element, the first suggestion
is to model the first quadrant of the circular cross section (see Fig. 3.17b).
The advantage of this model is that it is straightforward to apply boundary
conditions. In order to have the same effect with the full circular geometry,
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u, is fixed for those nodes on the yz-plane, and u; is fixed for those nodes on
the xz-plane. It would be better to arrange elements in such a way that
element boundaries are aligned with lines with a constant angle 8, although
this will make small elements near the inner radius and large elements near
the outer radius. The other possibility is to further reduce the number of
elements along the angular direction because the results are independent of @
(Fig. 3.17c). In such a case, axisymmetric condition can be imposed by
fixing the displacements in the normal direction to the cut plane. Since these
planes may not be parallel to any global coordinate direction, it is necessary
to establish local coordinates and apply displacement boundary conditions
using them. The number of elements along the radial direction can be
determined through the convergence analysis, but about five elements
should be reasonable. The stress evaluation point R = 8.16in is chosen as
the center of the first element when five equal-length elements are used in
the radial direction. Lastly, it is important to understand that when linear
elements are used, the circular boundaries of inner and outer circumferences
are approximated by piecewise straight line segments, which may cause an
error in the applied pressure in the inner surface.

(b) Plane-strain elements: The plane-strain elements only require modeling
the cross-sectional area (xy plane) and assume there is no deformation in the
axial direction. For the purpose of geometric modeling, either top or bottom
portion of the 3D solid elements in the previous section is required (see
Fig. 3.17d). 8-node or 4-node quadrilateral or 6-node triangular elements
can be used to model the circular cross section. Similar to the 3D solid
elements, either the first quadrant or a portion of small angle € can be
modeled using proper symmetric boundary conditions. Since the plane-
strain elements do not have a degree of freedom in the z-direction, there is
no need to fix u3 displacement. For the standard plane-strain element, no
thickness information is required. In such a case, it is equivalent to assume
a unit thickness.

(c) Axisymmetric elements: An axisymmetric problem models a plane geom-
etry and rotates it with respect to an axis of rotation to build a 3D geometry.
Therefore, the cylinder model is cut by xz-plane, and the positive side of the
cross section is used to make axisymmetric elements (see Fig. 3.17¢). The
same types of element geometry with the plane-strain elements can be used.
This is why many finite element programs use the same elements for plane
strain and axisymmetry and use different properties to distinguish them.
The conventional xyz coordinates are interpreted as 7@z coordinates in
axisymmetric problems. For boundary conditions, the axisymmetric
model cannot move in the radial and angular directions. Therefore, only
u3 at the top and bottom edges need to be fixed. In axisymmetric problems,
u; displacement is interpreted as the radial displacement u,, and the cir-
cumferential displacement u, corresponds to uy.

Hyperelastic circular plate [13]: A flat circular membrane made of a rubber
material is subjected to uniform pressure on the bottom surface (see Fig. 3.18a). The
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0

Fig. 3.18 Hyperelastic circular plate

Table 3.4 Target results for Pressure (psi) | Displacement u3 at the center (in)
hyperelastic circular plate

4.0 2.250

24.0 6.200

38.0 10.900

radius of membrane is R = 7.5in and thickness = 0.5 in. The edge of membrane is
fixed. The Mooney-Rivlin hyperelastic material is used with material constants
Ao =380psi and Ag; = 20 psi. The objective is to determine the response as pressure
is increased to 50 psi and to compare the results with the target values in Table 3.4.

Since the plate is thin compared to the radius, 3D solid elements will not perform
well. This is especially true when a thin plate goes through bending deformation.
At least four or five elements are required through the thickness direction in order to
capture the bending behavior. Then in order to maintain a good aspect ratio,
elements in xy plane should also be in the similar size. That means a huge number
of elements must be used to model the membrane structures using 3D solid element.
This is generally true for modeling structures made of sheet metals or membranes.
Therefore, it would be better to model the membrane using shell elements. Shell
elements need to be created on the neutral plane (midplane) of the membrane. The
thickness of membrane is given as a property in the shell element. In addition to the
three nodal displacements at each node, a shell element has two or three rotational
degrees of freedom, depending on the theory used for implementation. These
rotational degrees of freedom will be denoted by r; and r, in addition to displace-
ments u;, u,, and usz for shell elements.

Similar to the pressurized cylinder problem, the problem is axisymmetric. The
easiest way of modeling is to make the circular plate, to fix the entire boundary, and
to apply a uniform pressure load (see Fig. 3.18b). However, in order to make the
axisymmetric behavior, elements should be laid out in the pattern of rotational
symmetry. Note that the shape of element at the center is triangular and all others
are quadrilateral. Since the results will not be a function of angular position 6, it is
possible to reduce the entire circle into the first quadrant with appropriate symmet-
ric boundary conditions. Since the shell element has additional rotational degree of
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freedom, caution is required to apply for the symmetric boundary condition. First,
for the edge along the y-axis, u; =r, =0, where r, is the rotational degree of
freedom along y-axis. Similarly, for the edge along the x-axis, u, =r; =0 (see
Fig. 3.18c). That is, the rotation along a symmetry line must vanish. Since the
results are independent of angular positions, the number of elements can be further
reduced by one in @ direction (see Fig. 3.18d). In that case, local coordinates are
required to provide the symmetric boundary condition. For the inclined edge, the
displacement normal to the edge and the rotation tangential to the edge must be
fixed for symmetric boundary condition.

Instead of 3D shell elements, axisymmetric shell elements can be used to model
the circular plate (see Fig. 3.18e). If a line is drawn from the center to the edge along
x-axis, and if the line is rotated by 360° degree with respect to z-axis, then it
becomes the circular plate. The shape of axisymmetric shell element is a line for
a linear element and a curve for a quadratic element. In the axisymmetric shell
element, there is no need to provide symmetric boundary conditions. The x- and z-
directional displacements at the node at the edge need to be fixed, and x-directional
displacement at the node at the center needs to be fixed. Note that x-axis should be
interpreted as r-axis.

Figure 3.19 shows the deformed shape of the membrane at different levels of
pressure. It shows that the thickness of the membrane gradually decreases as the
deformation increases. Since the membrane will go through a large deformation,
the surface area that the pressure is applied continuously varies; i.e., the applied
load depends on deformation. This is the case of force nonlinearity. Depending on
the relationship between force and displacement, it is possible that the deformation-
dependent force can cause instability. Therefore, it is beneficial to start with small
force increments and to plot the force—displacement graph to predict any possible
instability.
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Fig. 3.19 Deformed geometry and pressure—displacement curve for the hyperelastic circular plate
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Fig. 3.20 Stretching of a sheet with a hole

Stretching of a sheet with a hole [13, 14]: The objective of this example is to
verify the results of hyperelastic materials in plane stress using the uniform large
stretching of a thin, initially square sheet containing a centrally located circular
hole. The results are compared with those provided in Oden (1972) for different
forms of the strain energy function using the experimental results of Treloar
(1944). The geometry and the mesh for a quarter-sheet are shown in Fig. 3.20.
The undeformed square sheet is 2 mm (0.079 in.) thick and is 165 mm (6.5 in.) on
each side. It has a centrally located internal hole of radius 6.35 mm (0.25 in). The
sheet is confined in y-direction at top and bottom and uniformly extended by 20in in
both positive and negative x-directions. This is a very large deformation as the
imposed displacement is seven times larger than the dimension of undeformed
geometry. The force—displacement curve can be obtained by calculating the reac-
tion force at the edge of imposing displacement.

For the modeling purpose, it is possible to make a mesh to the entire sheet.
However, since the deformation is symmetric with respect to both x- and y-axis, it is
better to use the symmetric modeling, in which only the first quadrant can be used
for generating finite elements. The body is modeled with 32 second-order plane
stress elements: CPS8R for Abaqus, PLANE183 for ANSYS, and CQUADS for
NEiNastran. For the cut edges, u, =0 symmetric condition is applied to the edge
parallel to x-axis, while u#; =0 is applied to the edge parallel to y-axis.

The experimental data of Treloar (1944) composed of uniaxial, biaxial, and
planar tension data are applied to these models. The first hyperelastic material
model is the Mooney-Rivlin model that is discussed in this chapter, whose strain
energy density is given in the following form:

U :AIO(II — 3) +A01(12 — 3)

with the incompressibility condition. The second model is similar to the Mooney-
Rivlin model, but with more parameters. The Biderman model uses four parameters:

U =A(I; —3) +Ag (I — 3) + Axo(I) —3)* + Aso(1; — 3)°
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Fig. 3.21 Stretched geometry of a rectangular sheet with a hole
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Fig. 3.22 Load responses of a sheet with a hole

The constants used by Oden (1972) are A;(=0.1863 MPa (27.02 psi),
Ap; =0.00979 MPa (1.42 psi), and, for the Biderman model, A5, =-0.00186 MPa
(—0.27 psi) and Azo=0.0000451 MPa (0.00654 psi). It is noted that as the magni-
tudes of model parameters are gradually decreasing as the order of polynomial
increases. The third material model is the Ogden hyperelasticity model, which is
defined using the principal stretches, 1, 4, and 13, as

[\

-1 &

U= BG4+ 475 - 3)
where material parameters y; and a; can be calculated by fitting the experimental
data. Many finite element programs provide the capability of calculating model
parameters by fitting experimental data.

The final displaced configuration is shown in Fig. 3.21; and the load responses
are shown in Fig. 3.22, where the load is plotted as a function of the overall nominal
strain of the sheet in the x-direction. The results of Biderman and Ogden models are
seen to agree closely with Oden’s. The Mooney-Rivlin strain energy function (with
and as the only nonzero terms) cannot predict the “locking” of the response at
higher strains that is predicted by the Biderman and Ogden strain energy functions.
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Fig. 3.23 Large deformation of a beam under tip moment

Large deformation of a cantilever beam [15, 16]: A cantilever beam shown in
Fig. 3.23 is under bending moment at the tip. The beam is 10 m long with a
rectangular cross section of 100 mm x 147.8 mm. Since the length is hundred
times larger than the height of cross section, the beam can be considered as a
slender member. For material properties, Young’s modulus for 100 MPa is
assumed. The beam is modeled by 40 CPS4I elements in Abaqus. Since the beam
is modeled by plane solid elements, the moment is applied through a distributing
coupling constraint. The distributing coupling constraint is used to couple the nodes
at the cantilever tip to a reference node placed at the tip. The moment of
3384.78 N-m is applied to this reference node, resulting in a force-couple at the
bottom and top nodes of the cantilever tip. The value of tip moment is selected so
that the beam can wind twice, based on analytical relation of ML/EI =2zn with
n=2. Figure 3.23 shows the deformed plots of beam during nonlinear analysis. As
expected, the beam winds twice when the total bending moment is applied.

3.9 Fitting Hyperelastic Material Parameters
from Test Data

Although the hyperelastic materials in the previous sections can represent complex
behaviors of elastomers, it is difficult to obtain material parameters from experi-
ments. Compared to well-established test procedures for metallic materials [17], the
appropriate experiments are not yet clearly defined by national or international
standard organizations. This is partly because the complex mathematical models
are required to define the nonlinear and the nearly incompressible attributes of
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elastomers. This section explains how to determine hyperelastic material parame-
ters from experiments. For simplicity, we will only present the method using a
Mooney-Rivlin material. The material parameters of other types of hyperelastic
models can be determined in a similar way.

It is important to note that the procedure of material parameter determination
should be independent of the finite element model. That is, it would be inappropri-
ate to calculate material parameters by comparing finite element analysis
results with experimental data. This is because the finite element results may
have numerical errors in calculation. Therefore, experiments should achieve
“pure” states of strain such that the stress—strain curve represents the elastomer
behavior only in the desired state. In addition, since experiments are not failure
oriented, strain or stress is gradually increased in the working range, and data are
collected at various points.

3.9.1 Elastomer Test Procedures

Constitutive models for hyperelastic materials are developed from strain energy
functions and require nominal stress vs. nominal strain data to fit most models
available. In general, it is desirable to represent the three major strain states which
are uniaxial tension, uniaxial compression, and pure shear. If compressibility is a
concern, then bulk compressibility information is also recommended. For incom-
pressible elastomers, the basic strain states are simple tension, simple compression,
equi-biaxial tension, simple shear, pure shear, and volumetric compression. It will
be shown later that equi-biaxial tension is equivalent to simple compression. The
volumetric compression test is used to determine nearly incompressible attributes
of the elastomer through the dilatational parameter D. The other four tests are used
to determine the distortional constant A;q and Ag;. Most hyperelastic material
models share common test data input requirements. In general, engineering stress
and engineering strain” data sets are obtained by stretching the elastomer in several
modes of deformation. The engineering stress is the current force divided by the
original area, and the engineering strain is the change in length divided by the
original length. All test data presented and discussed herein will use engineering
stress and engineering strain measures. These data sets are fitted to determine the
parameters in material models through least-square method. Figure 3.24 shows a
typical set of three stress—strain curves appropriate for input into fitting routines.

Simple tension test: Simple tension test is very popular for elastomers and is similar
to the conventional tension test in metals. The most significant difference from the
standardized test methods is that in order to achieve a state of pure tensile strain, the
specimen should be much longer in the direction of stretching than in the width and
thickness dimensions. In such a case, the specimen is at least 10 times longer than the

2 Since engineering stress and strain are often considered in infinitesimal deformation, it would be
appropriate to call them as nominal stress and nominal strain.
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Fig. 3.24 Typical test data for elastomers [19]

width or thickness, so that there is no lateral constraint to specimen thinning. Also,
the cross section of the specimen is rectangular, as it is cut from a sheet. Since the
instrument clamps can produce complex stress and strain states, the specimen strain
must be measured on the specimen, but away from the clamp, where a pure tension
strain state is occurring. A non-contacting strain measuring device such as a video
extensometer or laser extensometer is often used for this purpose.

Pure shear test: A state of pure shear can be obtained by twisting a circular shaft.
Due to flexibility of elastomer, however, it is difficult to conduct a torsional test.
Instead, a test similar to simple tension test is used to generate a pure shear stress
state. Because the material is nearly incompressible, a state of pure shear exists in
the specimen at a 45° angle to the stretching direction. The specimen is perfectly
constrained in the lateral direction such that all specimen thinning occurs in the
thickness direction. The specimen must be at least 10 times wider than the length in
the stretching direction.

Simple compression test: Since most elastomers show quite different behaviors
between tension and compression, it is often required to provide compression test
data by compressing a specimen using two platens. The compression test specimen
is in the shape of a thick button. Due to extra thickness, the fabrication process can
be different from other test specimen. Also, it is difficult to achieve a pure state of
strain during the compression test because of the friction between the specimen and
instrument. As the cross section increases during compression, the specimen cannot
freely expand in the contacting surface, which generates a shear stress. Even a small
friction coefficient such as 0.1 can cause substantial shear strain; often the maxi-
mum shear strain exceeds the maximum compression strain.
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Equi-biaxial tension test: For incompressible or nearly incompressible materials,
equi-biaxial extension of a specimen creates a state of strain equivalent to pure
compression. Although the actual experiment is more complex than the simple
compression experiment, a pure state of strain can be achieved which results in a
more accurate material model. The equi-biaxial strain state may be achieved by
radially stretching a circular disc. As an elastomer is radially strained in all
directions in a single plane, the state of strain in the material is the same as that
in simple compression. The measured experimental parameters are radial strain and
the radial stress. These biaxial strains and biaxial stresses can be converted directly
to compression strains and compression stresses as follows:

oc = 0'}7(1 + 8},)3

cge=——-—1
(€b+1)2

where o¢ is nominal engineering compression stress, o, is nominal biaxial exten-
sion stress, £c is nominal engineering compression strain, and &, is nominal biaxial
extension strain. The biaxial stress can be obtained by o, = F/(z*D*t), where D and
t are, respectively, the diameter and thickness of the specimen.

Volumetric compression test: Volumetric compression is an experiment where the
near-incompressibility of the material is examined. In this experiment, a cylindrical
specimen is constrained in a fixture and compressed. The actual displacement during
compression is very small, and great care must be taken to measure only the
specimen compliance and not the stiffness of the instrument itself. The initial
slope of the resulting stress—strain function is the bulk modulus. This value is
typically 2-3 orders of magnitude greater than the shear modulus for elastomers.

3.9.2 Data Preparation

It is possible to use any combinations of the above experiments for finding material
parameters. However, it is important that enough number of independent experi-
mental data must be provided so that the curve-fitting algorithm does not have rank
deficiency. Also, multiple test types are recommended in order to capture different
behaviors of the material.

All experimental data must be converted into stress—strain pairs. As mentioned
before, nominal stress vs. nominal stretch will be used for this purpose. Since all tests
measure principal stress and principle stretch, the following discussions will also be
in the principle values. Table 3.5 summarizes types of data used in curve fitting. It is
noted that all tests measure the principle stretches between two points as shown in
Fig. 3.25 and all principal stresses are based on the force divided by the initial area.

For Mooney-Rivlin material, it is necessary to determine the three material
parameters: Ao, Ap;, and K. In practical point of view, since volumetric
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Table 3.5 Measuring stress and strain for elastomer characterization tests

Experiment type | Stretch Stress

Uniaxial tension | Stretch ratio A=L/L, Nominal stress T2 = F/A,
Equi-biaxial Stretch ratio A=L/L in Nominal stress TZ = F/A in
tension y-direction y-direction

Pure shear test Stretch ratio A =L/L, Nominal stress T = F/A,
Volumetric test | Compression ratio A=L/L, | Pressure T® = F/A,

e

Simple tension test

Volumetric compression test

Equal biaxial test

Fig. 3.25 Types of elastomer tests

compression test is difficult, K is often assumed based on a desired level of
incompressibility. For example, it is possible to calculate equivalent
K corresponding to Poisson’s ratio of 0.499. In general, most hyperelastic materials
show incompressible or nearly incompressible behavior. However, in the process of
curve fitting, it is assumed that the material is completely incompressible to
determine the distortional coefficients Ay and Ag;.

Since all tests yield a simple stress state, it is convenient to present in the
coordinates parallel to the principle directions. Then, the stretch ratios that are
measured in Table 3.5 are nothing but the principle stretches. The deformation
gradient is then defined in terms of the principle stretches as

A0 0
F=]10 4 O
0 0 A

where 41, 1,, and /3 are the principle stretches. If nominal strains are measures, then
the principle stretches can easily be calculated by 4;=1 +¢;.
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Because of incompressibility, det(F) = A,4,43 = 1. In such a case, the deviatoric
invariants can be written in terms of the principle stretches as

S\ =4+ B+74
Jo =7+ + A5

Using the incompressibility condition, all three principle stretches can be identified
once one of them is measured.

From the assumption of incompressibility, the strain energy density function can
be written in terms of the two invariants as

U:Alo(jl —3)+A01(J2—3) (3154)

Therefore, the objective here is to analytically calculate the nominal stress as a
function of principle stretches. Since different tests have different principle
stretches, individual tests are treated separately.

Uniaxial test: The three principle stretches for uniaxial tension test can be
written in terms of the measured principle stretch, 1 =4, as

M=2 h=ik=1/Vi

The principle stress can be obtained by differentiating the strain energy density with
respect to the principal strain. Since the principle strain and the principle stretch
have a relation of 4;,=1+¢;, the principle stress can also be obtained by differen-
tiating with respect to the principle stretch, that is,

T:%:Z(l —27%)(A10d + Anr) (3.155)

Note that the nominal stress is a linear function of material parameters. Therefore,
the linear least-square method can be used to find these coefficients. In order to use
the least-square method, the above expression is rewritten as

Tl Aod) = )0} = [26-47) 20-27) {40} Gaso)

where {x}" is a row vector, which will be used in the linear regression process, and
{b} is the vector of unknown coefficients.

Equi-biaxial test: The three principle stretches for equi-biaxial test can be
written in terms of the measured principle stretch, A = 4,, as

M=d=24 h=1/2

Since the two principle stretches are applied, the nominal principle stress can be
calculated by
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10U

T ==, =20=27) (A1 +240) (3.157)

In the case of equi-biaxial test, the row vector x| is defined as [2(A—17%), 2(A> = 17)].

Pure shear test (planar test): The three principle stretches for pure shear test
can be written in terms of the measured principle stretch, 1 =14, as

M=i h=1 41=1/2

where 4, is the principle stretch in the loading direction. In order to show that this test
is equivalent to the pure shear state, the following logarithmic strain can be calculated:

&1 = 111/11 = —ll’lﬂ3 = —&3, & = lnﬂ.z =0

which corresponds to a pure shear state at an angle of 45° to the loading direction.
The nominal principle stress can be obtained by

r =97~ 20— 7 (4o + A0 (3.158)

In the case of pure shear test, the row vector x| is defined as [2(4 - /1_3), 2(A— 1_3)].
Volumetric test: The three principle stretches for volumetric compression test
can be written in terms of the measured principle stretch, 1= 4,, as

M=h=~4hs=1

Therefore, J; =J, =3, and J5 = 4> = V/V,, (volume ratio). For the Mooney-Rivlin
material model, the hydrostatic pressure can be written as

p=K(-1) (3.159)

Similar to uniaxial compression test, the volumetric test will also experience
shear deformation between the elastomer and instrument. However, since the
magnitude of shear stress is orders of magnitude smaller than the hydrostatic
pressure, its effect can be negligible.

3.9.3 Curve Fitting

In general, the curve fitting can be performed in two stages. If the volumetric
compression data is available, it is used to determine K first. If the volumetric
compression data is not available, the bulk modulus can be estimated from
Poisson’s ratio or can be assumed. After that, all other test data are used simulta-
neously to determine constants Ay and Ag;.
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Let us assume that there are an NDT number of experimental data. For example,
when 10 uniaxial tension test data and 5 pure shear test data are available,
NDT = 15. Then, the following array is created that contains test types, stretches,
and stresses for all data:

Type 1 1 1 ... 4 4 o 4
/1 /11 ﬁz /13 e ﬂ,l‘ /IH-I [N /INDT
" TE TY TY ... TF TE, ... Tiy

The superscript “E” in the stress is used because it is experimental data. The
objective of curve fitting is to find material constants, A;q and Ag;, such that the
difference between measured stress and calculated stress is minimized.

For the assumed material constants A;o and A, the nominal stress can be
calculated using the principle stretches in Egs. (3.155), (3.157), and (3.158).
Since there are NDT stretches, the nominal stress is calculated at each of these
stretches, which are called T(Ag,Ao1, 44), k=1,....NDT. Then, the curve-fitting
process is to find the material constants, A;o and Ag;, to minimize the difference
between experimentally obtained stress and calculated stress using the material
constants:

NDT
minimize Z (T/f — T(Al(),A()l s ﬂk))z (3160)

Ao, Ao —l

The above equation can be solved using an optimization algorithm and/or regres-
sion method. In the case of Mooney-Rivlin material, T(A ¢, Ao1, 4) is linear with
respect to Ajp and Ag;. Therefore, a simple linear least-square regression can be
used for curve fitting. However, other materials, such as Ogden material, need an
optimization algorithm. In the following, the linear regression method is explained.

In order to apply the least-square method, nominal stresses from test data
and from model prediction are compared at the same value of principle stretch.
Since there are NDT test data, the same number of model predictions is combined
together in the following matrix form:

Tl X(/I])T
m=3 A= =)

Tnpr x(2npr) "

where {x(4;)}" is the row vector defined at each test type and {b} is the vector of
the unknown material parameters. Note that the dimension of coefficient matrix [X]
is NDT x 2. Also, the nominal stresses from all tests are combined together to build
the following vector:
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Ty

E
2

(17} -

E
TNDT

Then, the objective function of the optimization problem in Eq. (3.160) can be
rewritten in terms of vector notation as

fe}fe} = {T* — T} (1" - T}
= {TF —Xb}" {T* - Xb}

= {TE}{TE} — 2{b}"[X]"{T} + {b}"[X]"[X] {b}

The above equation is nothing but the sum of squares of errors between test and
model prediction. The minimum of the above error that can be obtained by setting
the derivative of the above expression with respect to {b} is equal to zero.
Therefore, the following form of least-square equation can be obtained:

X" [X]{b} = [X]"{T*} (3.161)

Since the dimension of the coefficient matrix [X]T[X] is 2x2, the above equation
can be solved easily.

3.9.4 Stability of Constitutive Model

In uniaxial tension of a linear elastic material, the slope in the stress—strain curve is
always positive. It means that in order to extend the material, the force must be
increased; this is a fundamental requirement for a stable material. If the slope is
negative, it is possible that application of a load to a material point can lead to
arbitrary deformations. Such a requirement of stable material is called Drucker
stability [18]. Material stability is not an issue for linear elastic material because the
material will always be stable with a positive Young’s modulus and Poisson’s ratio.
In the case of nonlinear material, however, it is possible that the slope becomes
negative locally, especially when the material parameters are identified by fitting
test data. Therefore, it is important to check material stability after material
parameters are determined from test data.

In the case of Mooney-Rivlin hyperelastic material, the stability requirement can be
defined in terms of the incremental work done by arbitrary change in deformation, as

de :de >0 (3.162)
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Using the tangent stiffness, the above equation can be rewritten in terms of arbitrary
strain increment as

de:D:de >0

The above requirement is identical to the positive-definite property of the material
tensor. It is clear that since D is positive definite for a linear elastic material, the
material satisfies the stability requirement. However, in the case of nonlinear mate-
rials, the material tensor D is a function of deformation, and it is impractical to check
all possible deformations. Therefore, the stability check is normally performed at
several specified deformations, such as uniaxial tension and compression, equi-biaxial
tension and compression, and planar tension and compression. Also, the range of the
stretch ratio over which the stability is checked can be chosen from 0.1 to 10.

Since the above deformations for checking stability are all in the principle
directions, the stability requirement can be written in the principle components as

doide; + dopdey + dosdes > 0

In addition, in the case of incompressible materials, the hydrostatic pressure p =
(01+ 02+ 03)/3 cannot cause any deformation. Therefore, it is possible to choose
any arbitrary hydrostatic pressure value. For convenience, p is chosen such that
03 =do3 =0. Then, the above stability requirement can further be simplified by

dode; + dopde; >0

By using the incremental stress—strain relation in the principle components, the
above stability requirement can be written as

Dy Dypp | ] de
de; de >0
{de: 2}[Dzl Dzz}{d&
where Dy, Dy,, D>, and D,, are components of material tensor for a hyperelastic
materials. For example, they can be calculated from Eq. (3.128) by considering the

three coordinate directions are principle directions. For Mooney-Rivlin materials,
the components of material tensor can be calculated by

Dy =407 +23) (Ao + A0
Dy, = 4(23 + 23) (A1o + A{An1)
D12 = Dy = 423A10 + 4252 Ao

In order to satisfy the stability requirement, the material tensor must be positive
definite, which is equivalent to the following requirements:

Dy +Dy >0

3.163
D11Dy» — D1pDay >0 ( )

Note that these requirements must satisfy for all possible deformations.
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3.10 Summary

In this chapter, finite element formulations for nonlinear elastic problems are
discussed. Among four different nonlinearities, geometric and material nonlinearities
are considered. All nonlinearities in the chapter are considered to be mild because they
are path independent and the status of a material does not change abruptly. For large
deformation, the deformation gradient plays an important role in connecting
undeformed and deformed states. The left and right Cauchy—Green deformation
tensors are used to describe large deformation. It is shown that every deformation
can uniquely be decomposed into a principal stretch and a rigid-body rotation.
Depending on the frame of reference, different stress and strain measures need to be
used in large deformation. Engineering, Lagrangian, and Eulerian strains are defined.
It has been shown that Lagrangian and Eulerian strains are independent of rigid-body
motion, while engineering strain is not. The definition of stress also depends on the
frame of reference. Cauchy stress and the first and second Piola-Kirchhoff stresses are
defined. These stresses are related to each other through the deformation gradient.

Nonlinear elastic systems can be modeled using either the total or updated
Lagrangian formulation. Since the total Lagrangian formulation uses the undeformed
state as a frame of reference, the Lagrangian strain and the second Piola-Kirchhoff
stress are used to describe the status of a material. The principle of minimum potential
energy is used to derive the nonlinear variational equation, and the tangent stiffness is
calculated through linearization for the Newton—Raphson method. Since the updated
Lagrangian formulation uses the deformed state as a frame of reference, the engi-
neering strain and the Cauchy stress are used to describe the status of a material.
Instead of deriving the nonlinear variational equation and its linearization, the
expressions in the total Lagrangian formulation are transformed to the deformed
state using the deformation gradient. It has been shown that the two formulations are
mathematically identical. Selection between two methods should be based on the
given constitutive relation and convenience of computer implementation.

In nonlinear analysis, load—displacement curves sometimes do not show a
monotonic trend due to instability of the system, such as bifurcation or buckling.
The curve starts decreasing after it reaches the maximum load, which is called a
critical load. Normally nonlinear static analysis can be performed successfully for
the applied load that is less than the critical load. Then, the critical load can be
estimated using either the one-point or two-point method. The basic idea is to find
the state in which the tangent stiffness becomes singular. More advanced methods
such as the arclength method can be used to find the actual critical load as well as
the behavior of the system (post-buckling analysis).

Hyperelasticity includes both geometric and material nonlinearities. It is accus-
tomed to large deformation, and the stress—strain relation is nonlinear, which can be
obtained by differentiating the strain energy density. Several hyperelastic material
models are introduced, but the derivation for the nonlinear variational equation is
explained for the Mooney-Rivlin material. Hyperelastic materials, and also most
nonlinear elastic materials, show incompressibility or near-incompressibility. When
the penalty method with a large value of bulk modulus is used, numerical instability,
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which is called volumetric locking, occurs. In order to eliminate or reduce volumetric
locking, several approaches are introduced, including selective reduced integration,
the mixed formulation, and the perturbed Lagrangian formulation. The first one is the
most convenient because only the integration scheme is changed. The other two
methods require introducing the hydrostatic pressure as an independent variable.

3.11

P3.1
P32

P3.3

P3.4

P3.5

P3.6

Exercises

Derive the expression of the Eulerian strain in Eq. (3.17).

Derive the relation in volume change in Eq. (3.26) for an infinitesimal
hexahedron whose edges are initially parallel to the coordinate directions.

Consider a square block under oscillating simple shear deformation.
The relation between undeformed and deformed geometry is given as

x1 =X| +aXosinwt, x3 =Xz, x3=2X;3

Calculate the deformation gradient and the change in volume.

Many materials often show very different behaviors between volume-
changing deformation and volume-preserving deformation. The former is
called dilatation, while the latter is called distortion. In such a case, it is
necessary to separate the dilatational and distortional parts from the defor-
mation gradient. For example, the deformation gradient can be decomposed
into F=F,-F,, where F, is the dilatational part and F, is the distortional
part. Calculate F, and F; using the third invariant of the deformation tensor.

Repeat Problem P3.4 for the Cauchy—Green deformation tensor; i.e., decom-
pose C=C,-C,.

Consider a bar with a square cross section in the figure under uniaxial tension
loading. The principal stretch in the X, direction is given by 1> 1. When
material is incompressible, compare the X; component of normal strain
using Lagrangian, Eulerian, and engineering strains.

X,

. /J = —ux

Fig. P3.6

P3.7

A four-node square element undergoes large displacement and rotation in
the XY plane, as shown in the figure. The node initially at the origin is moved
to (1, 1 —sinwt/4) and the element is rotated by 45°. Calculate the deformation
gradient. Compute the Lagrangian strains and demonstrate that no strain
occurs during rigid-body motion.
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Current

Initial

Fig. P3.7

P3.8 A square plane-strain element is deformed as shown in the figure. The
relationship between deformed and undeformed coordinates is given as

x1=X1 —aX1Xz, xx=X3, x3=X3

Compare the engineering strain and Lagrangian strain. Show that the two

9

strain measures become identical as “a” approaches zero.

= = == Original element
Deformed element

Fig. P3.8

P3.9 The relationship between deformed and undeformed coordinates for the pure
bending of a plane-strain solid is given as

X1 :Xl 761X1X2, X2 :Xz +%GX%, X3 :X3

Compare the engineering strain and Lagrangian strain. Show that the two

[Tt}

strain measures become identical as “a” approaches zero.

P3.10 In the small deformation theory, the volumetric strain (dV, —dVy)/dV, is
approximated by €1 + &5, + £33, while in the large deformation theory, it is
given by J — 1. Show that when the deformation is small, the latter can be
approximated by the former.

P3.11 An initially straight beam AB is bent into a circular arc A’B’ as shown in the
figure. The deformation is specified as
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71'(1 —X1)
2 b

71'(1 —Xl)

x; = g(X3) cos X = g(X;) sin s B= X3

where g(X>) is a simple function of X,. (a) Find the deformation gradient in
terms of g(X5). (b) If the volume of the beam does not change, find g(X,).
(c) Using g(X5) in (b), find U, Q, and V.

Xa

Undeformed beam

Deformed beam

Fig. P3.11

P3.12 Consider a square element under pure shear deformation as shown in the
figure. The relation between deformed and undeformed coordinates becomes

x1=X1 +kXs, x=kX;+X;

(a) Calculate deformation gradient F, Lagrangian strain E, Eulerian strain e,
and engineering strain €. (b) Calculate principal stretch tensors U and V and
rotation tensor Q.

Fig. P3.12

P3.13 A square block of surface area A on all sides is under pure shear deformation
due to the uniformly distributed load F on the top surface, as shown in the
figure. The deformation of the block is such that the deformed coordinates
can be written as
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x1=X1+aXs, x=X;, x3=2X;3

Calculate Cauchy stress and the first and second Piola-Kirchhoff stresses.

Fig. P3.13

P3.14 A force F is applied at the tip of the uniform bar element shown in the figure.
The initial length and the cross-sectional area of the bar are, respectively, Ag
and L. The elastic modulus of the material is E. Calculate the tip displace-
ment by solving the total Lagrangian variational equation with the
St. Venant—Kirchhoff nonlinear elastic material model. Assume the follow-
ing numerical values: E =700 MPa, Ag=1.0 x 107 mz, Ly=1.0 m, and
R = 10kN. Compare the tip displacement with that from the linear elastic
model when (a) E =700 MPa and (b) E = 70GPa.

Z

@ @—>F= 10kN

X

Li=lm ——>»

Fig. P3.14

P3.15 Solve Problem P3.14 using force equilibrium; i.e., internal force caused by
stress is equal to external force.

P3.16 Consider a plane-strain square element with unit depth as shown in the
figure. Use the St. Venant—Kirchhoff isotropic material model with two
Lame’s constants 4 and y. A uniformly distributed force T, (force per area)
is horizontally applied at the top surface. Assuming it is a simple shear
problem, the deformation of the element can be written as
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x1 =X, + kX,
X2 :Xz

(a) Find the relation between k and T, (b) find the reaction force in the X,
direction at the top surface, and (c) compare the results with that of the linear
elastic model.

X
W

T

X

4

Fig. P3.16

P3.17 Consider a deformation of a rectangular bar whose deformed geometry is
given as

x1=aXy, x2=pX2, x3=pX3

When the material is incompressible and St. Venant—Kirchhoff material
properties are given as £ =600 MPa and v = 0.49, write the expression of
the S, component of the second Piola-Kirchhoff stress as a function of a. In
addition, write the expression of 1, of the Cauchy stress as a function of a.
Plot S1, and o in the range of a=[0.7 1.5].

P3.18 Consider a simple shear deformation of a square whose deformed geometry
is given as

X=X +aXs, x=X;, x3=X3

When the material is incompressible and St. Venant—Kirchhoff material
properties are given as £ =600 MPa and v = 0.49, write the expression of
the S, component of the second Piola-Kirchhoff stress as a function of a. In
addition, write the expression of o, of the Cauchy stress as a function of a.
Plot S, and o, in the range of ¢ =[0.0 1.5].

P3.19 Consider the following deformation with lal < 1:
x1=X1+aXs, x = \/1—(,12X2, X3 = X3

Assume St. Venant—Kirchhoff material with two material parameters 1 and
u. (a) Show that the above deformation is a pure shear deformation in terms
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of the Lagrangian strain. (b) Calculate the second Piola-Kirchhoff stress and
Cauchy stress in terms of @, 4, and u.

P3.20 A force F is applied at the tip of the uniform bar shown in the figure. The
displacement of the bar is given as u(X) = AX where 4 is the principal stretch.
The initial length and the cross-sectional area of the bar are, respectively, Ag
and L. The elastic modulus of the material is E. Calculate the tip displace-
ment by solving for the principal stretch using the total Lagrangian formu-
lation with the St. Venant—Kirchhoff material model. Assume the following
numerical values: E =700 MPa, Ag=1.0 x 10 *m? Ly=1.0m, and F = 10
kN. Compare the tip displacement with that of the linear elastic model when
(a) E=700 MPa and (b) E =70 GPa.

2

—> F'= 10kN

Ly=lm —————

Fig. P3.20

P3.21 Solve Problem P3.20 using force equilibrium; i.e., internal force caused by
stress is equal to external force.

P3.22 Consider two bar elements under a force at the tip. Using the displacement-
controlled method, plot the load—displacement curve (F vs. u, and us).
Increase the tip displacement uz up to 1.0 m by ten equal increments.
Assume St. Venant—Kirchhoff material with £=100 MPa and cross-
sectional areas of A =1.0 x 107* m? and A® =0.5 x 10* m?.

o ® ®

E, AV LA — F

X
Lo=lm —»¢— Loi=Im 4"

P3.23 Consider a nonlinear elastic uniaxial bar element under tip force F =100 N
shown in Fig. 3.11. The stress—strain relation is given in terms of Cauchy
stress and engineering strain in the deformed geometry: o,; = E¢;. Using
the updated Lagrangian formulation, solve for displacement at the tip and the
stress and strain of the uniaxial bar. Assume E =200 Pa and the cross-
sectional area A =1.0 m>.

Fig. P3.22
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P3.24 Consider a deformation of a rectangular bar whose deformed geometry is
given as

x1 =aXi, x2=pX2, x3=pX;3

When the material is an incompressible Mooney-Rivlin hyperelastic mate-
rial with A;o=380 MPa and Ay, =20 MPa, write the expression of the Sy,
component of the second Piola-Kirchhoff stress as a function of a. In
addition, write the expression of o1, of the Cauchy stress as a function of
a. Plot S;; and o1, in the range of @ =1[0.7 1.5].

P3.25 Consider a simple shear deformation of a square whose deformed geometry
is given as

x1=X1+aXs, =X x3=X3

When the material is incompressible Mooney-Rivlin hyperelastic material
with A;p=80 MPa and Ay, =20 MPa, write the expression of the S,
component of the second Piola-Kirchhoff stress as a function of a. In
addition, write the expression of o, of the Cauchy stress as a function of
a. Plot S, and o1, in the range of a =[0.0, 1.5].

P3.26 Derive the energy form and its linearization of a Mooney-Rivlin hyperelastic
material using the perturbed Lagrangian method. Use a mixed variable
r=[u", pl".

P3.27 Derive the 3 x 3 [D] matrix in Eq. (3.147) for a two-dimensional Mooney-
Rivlin material with three material parameters (A, Ag;, and K). Use the
penalty method for near-incompressibility.

P3.28 Derive the 3 x 3 [D] matrix in Eq. (3.147) for a two-dimensional Mooney-
Rivlin material with three material parameters (Ao, Ag;, and K). Use the
perturbed Lagrangian method for near-incompressibility.

P3.29 A nearly incompressible rubber block is confined between two frictionless
rigid walls as shown in the figure. When uniform pressure P is applied to the
right end, the length of the block is changed by x; =(1 —a@)X;. When
a=0.1, (a) calculate the value of the strain energy density and (b) the
magnitude of applied pressure P on the right end. Assume a plane-strain
problem and use a Mooney-Rivlin material with A;p=80 MPa,
A1 =20 MPa, and K = 1,000 MPa.

2

Rigid X1 Rubber E P
wall >

A\

Fig. P3.29
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P3.30 Consider a unit cube shown in Fig. 3.15. Using an eight-node solid element,

perform biaxial extension analysis using Abaqus. Apply uniform extensions
in both X; and X, directions so that the deformed shape will be 5 x 5 x 5.
Plot stress o;; and thickness #; as a function of stretch.
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Chapter 4
Finite Element Analysis for Elastoplastic
Problems

4.1 Introduction

The unique property of nonlinear elastic materials in the previous chapter is that a
strain energy density exists and stress is defined by differentiating it with respect to
the appropriate strain. This property of elastic materials is called history indepen-
dent. For example, let the current strain of a nonlinear elastic bar be e. This state can
be reached either by gradually stretching the bar until the strain becomes ¢ or by
gradually compressing it after stretching it beyond the strain e. Even if these two
load histories are different, the bar will have the same value of stress because the
current strain is the same. Using the history-independent property, it is easy to
conclude that when stress disappears, strain does too. Thus, when the applied load is
removed, the structure will always come back to its initial geometry (reversible).
No permanent deformation will remain.

Different from elastic materials, some materials, such as steels or aluminum
alloys, show permanent deformation when a force larger than a certain limit (elastic
limit) is applied and removed. A simple example is bending a paper clip. If a small
force is applied and removed, the paper clip comes back to its initial geometry, but
when the force is larger than the elastic limit (irreversible), it does not. In contrast to
elasticity, this behavior of materials is called plasticity. Since these materials are
initially elastic and then become plastic, this behavior of materials is called
elastoplasticity, which is the main topic of this chapter.

Elastoplasticity, along with hyperelasticity in the previous chapter, belongs to
material nonlinearity, which comes from the constitutive relation, i.e., from the
stress—strain relation. Unlike hyperelasticity, there is no one-to-one relationship
between stress and strain for elastoplasticity. For example, let the bar in the
previous example be made of an elastoplastic material. Then, for a given value &
of strain, stress can have different values depending on whether the bar is stretching
or compressing. In fact, depending on the history of loads, stress can have any value
less than the elastic limit. Thus, the stress—strain relation cannot be given in terms of
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total strain. Instead, the constitutive relation is given in terms of the rates of stress
and strain. This type of constitutive relation is called hypoelasticity, against
hyperelasticity. The term “rate” does not mean the time rate. Rather, it should be
understood as an increment in static analysis. Since the relation is given in the rate
form, stress can only be calculated by integrating the stress rate over the past load
history. Thus, stress calculation is history or path dependent.

A key step in elastoplastic analysis is to separate elastic and plastic strains from
total strain. Once elastic strain is calculated, stress can easily be calculated from it;
plastic strain does not contribute to stress. In fact, various constitutive relations in
Chap. 3 can be used by considering all strains to be elastic. When total strain is small
(infinitesimal deformation), it is possible to assume that the total strain can be
additively decomposed into elastic and plastic strains. In this case, no geometric
nonlinearity is considered; i.e., displacement—strain relation is linear and integration
is performed over the initial undeformed geometry. Considering that the plastic
deformation of metals normally occurs at 0.2 % strain, metal plasticity often satisfies
small strain conditions. Sections 4.2 and 4.3 are based on infinitesimal elastoplasticity.
In alarge structure, even if strain is small, the structure may undergo a large rigid-body
motion due to accumulated deformation. In such a case, it is possible to modify
infinitesimal elastoplasticity to accommodate stress calculation with the effect of
rigid-body motion. Since the rate of Cauchy stress is not independent of rigid-body
motion, different types of rates, called objective stress rates, are used in the constitu-
tive relation, which is discussed in Sect. 4.4. When deformation is large, the assump-
tion of additive decomposition of elastic and plastic strains is not valid anymore. A
hyperelasticity-based elastoplasticity is discussed in Sect. 4.5 in which the deforma-
tion gradient is multiplicatively decomposed into elastic and plastic parts and the
stress—strain relation is given in the principal directions. This model can represent both
geometric and material nonlinearities during large elastoplastic deformation.

4.2 One-Dimensional Elastoplasticity

Elastoplasticity occurs when a material experiences both elastic and plastic defor-
mation. In this section, the basic concepts of elastoplastic finite element analysis are
introduced first using a one-dimensional bar. Generalization to multidimensional
elastoplasticity will be presented in Sect. 4.3. It is assumed that deformation is
small so that geometric nonlinear effects can be negligible. Therefore, no distinc-
tion between different stress measures will be necessary. Elastoplasticity with large
deformation will be considered in Sects. 4.4 and 4.5.

4.2.1 Elastoplastic Material Behavior

In a one-dimensional tension test, once a material deforms beyond the elastic limit,
it shows a complex stress—strain relation. For example, metals show that initially
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Fig. 4.1 Hardening models for elastoplasticity

stress increases proportional to strain (elastic). After it reaches the elastic limit, also
called yield stress, the material starts deforming plastically (see Fig. 1.11 in
Chap. 1). At the first stage of plastic deformation, stress further increases propor-
tional to strain but with a much smaller slope (strain-hardening) until it reaches an
ultimate strength. After that, stress starts gradually decreasing (strain-softening)
until the material fractures. In addition, if the applied load is reduced (unloading)
after the material becomes plastic, it does not follow the previous stress—strain
curve; the material becomes elastic immediately. If cyclic loads are applied, then
the material behavior becomes more and more complicated.

Modeling the behavior of a material depends on the purpose of analysis. For
example, if the objective is to find the material behavior until it fractures, it is
necessary to model all stages of the stress—strain responses in detail. However,
when the objective is to find the material’s response under small deformation, it is
possible to simplify the material behavior by regarding the elastic and strain-
hardening parts only. Of course, this model is not appropriate to predict fracture
of the material. An idealized elastoplastic stress—strain behavior from a uniaxial
tension/compression test is shown in Fig. 4.1. When a tension load is applied, the
behavior is initially elastic until yield stress, oy, is reached (line o—a). The elastic
modulus is the slope of the line and denoted by E. If the applied load is removed
from this region, the stress—strain relation follows the same curve (line a—o). Point
a is called a yield point, and the material is not elastic anymore beyond this point.

After yielding, the plastic phase begins and stress further increases with a slope
of E, known as the tangent modulus (line a—b). During this phase, strain is
composed of elastic and plastic parts. In this simplified model, it is assumed that
strain-hardening is linear. If the load is reduced after the material undergoes a
plastic state, it becomes elastic again, and stress decreases linearly with the same
initial elastic slope, E (line b—c). If the applied load is completely removed, a
permanent plastic strain remains (strain at point c¢). If the load increases again, then
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the material follows line c—b and has a new yield stress (stress at point b). After that,
the stress increases by following the same slope as the tangent modulus (line 5—d).
In the elastoplastic material, the yield stress changes due to the strain-hardening
effect. On the other hand, if a compressive load is applied at point ¢, which is a
stress-free state, the negative value of stress is developed with the slope of E. If the
compressive load continues, the material will eventually yield again in compression
(point e).

If the applied load is proportional, i.e., the load increases monotonically, the
strain-hardening is simply described by the tangent modulus, E,. However, when
combined cyclic loadings and unloadings are applied, it can be complicated
depending on when yielding occurs in the opposite direction. Several different
hardening models have been proposed for determining the yield stress in cyclic
loading situations. Figure 4.1 shows two of the most commonly used models, known
as the kinematic and the isotropic hardening. The kinematic hardening model
assumes that the elastic range (twice the initial yield stress) remains constant. The
center of the elastic region moves along the dashed line through the origin, parallel to
the strain-hardening line. Thus, line segments b—e and f~g are both equal and twice
the length o—a. In the isotropic hardening model, the magnitude of yield stress for the
reversed loading is equal to that of the previous yield stress. That is, the magnitude of
stress is the same at points b and e. Thus, the elastic range grows in this model.

In nonlinear finite element analysis, the Newton—Raphson iterative method
solves for the displacement increment that can reduce the residual of nonlinear
equation. In addition, using the finite element interpolation scheme, it is easy to
calculate the strain increment from the given displacement increment. Thus, an
important task of elastoplastic analysis is to find stress increment from the given
strain increment. However, it is unknown that, out of the given strain increment,
how much is elastic and how much is plastic. Once this decomposition is done, the
stress increment can be calculated using the elastic strain increment. Note that
plastic strain does not contribute to the increase of stress. When the material is
elastic, whether it is in the initial elastic phase or becomes elastic due to unloading,
the strain increment is purely elastic and no plastic strain increment is present. Then
the stress increment can be obtained by multiplying the strain increment with the
elastic modulus. Since this procedure is basically identical to linear elastic systems,
only the case when the material is in the plastic phase will be discussed.

Figure 4.2 shows the stress—strain curve for a one-dimensional elastoplastic
material. When the applied load is proportional, both isotropic and kinematic
hardenings provide the same result. At the previous load increment, it is assumed
that the material is already in the plastic phase. At the current load increment, the
strain increment is given from the Newton—Raphson method. Since the material is
in the plastic phase and the load continuously increases, strain increment Ae can be
decomposed into elastic and plastic strains. That is,

Ae = Ae. + Aeg,, (4.1)
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Fig. 4.2 One-dimensional elastoplasticity with strain-hardening

where subscripts e and p denote elastic and plastic, respectively. The elastic portion
of strain will be removed when the applied load decreases or changes its direction
(unloading), whereas the plastic portion remains constant during elastic unloading
and increases again when the material yields. The plastic strain can only increase
even if the material yields in opposite directions; it never decreases as it is an
accumulation of plastic deformation. From the assumption of small deformation,
Eq. (4.1) can be used to yield

£ =€ + Ep, (42)

where &, and &, are the sum of elastic and plastic strain increments, respectively, for
all previous load increments.

Equation (4.2) provides a very important difference between nonlinear elastic
material and elastoplastic material. In the former, a unique stress is determined
from the given magnitude of total strain, which is in fact total elastic strain. In the
latter, however, it is possible to have infinitely different values of elastic strain for a
given total strain by changing the value of plastic strain. Thus, in elastoplasticity, it
is impossible to determine the amount of stress for a given total strain. Since the
plastic strain is accumulated every time the material yields, it is necessary to follow
every load increment to calculate the plastic strain. This property of elastoplasticity
is called path dependent or history dependent. In order to determine stress, complete
history of the load must be considered. The load history is taken into account by the
accumulated plastic strain, g,. In addition, the yield stress of the material is
determined by the magnitude of the plastic strain.

Although the objective is to separate the elastic strain increment from the plastic
strain increment, it is assumed for the moment that the elastic strain increment is
known. The stress increment, Ao, can then be calculated using the elastic strain
increment as

Ac = EAe.. (4.3)
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In addition to the elastic and tangent moduli, a plastic modulus, H, is defined, which
is the slope of the strain-hardening portion of the stress—strain curve after removal
of elastic strain components. Thus,

H = E. (4.4)
Aeg,

Even if the stress—strain curve in Fig. 4.2 is given in terms of E and E|, it is common
for the material properties to be given in terms of E and H. Since the stress—strain
curve for the proportional loading is same for both isotropic and kinematic hard-
ening, the plastic modulus is also same for both hardening models.

The three moduli (elastic, plastic, and tangent) are related to each other. The
stress increment during the plastic phase can be written using any of the three
moduli as

Ao = EAe. = HAg, = EiAc. (4.5)

The relation, Ac = HAg,, may mislead that the plastic strain increases stress, but
this is due to the stain-hardening effect. By substituting the relation in Eq. (4.5) into
the strain increments in Eq. (4.1), we have

Ao Ao Ac 11 1 @)
EL E H E E H '

Thus, for the given E and E,, the plastic modulus H can be determined as follows:

EE,

H= .
E —FE;

(4.7)

On the other hand, if £ and H are specified, then E, can be computed as follows:

E=tH _p(io L) (4.8)
Et+H E+H

When the material is under the elastoplastic strain (along line a—b in Fig. 4.1), the
plastic portion can be determined for the given total strain increment, as

A HA H
Ae:ASeJV‘AEp:FU"‘ASp: E€p+A€p:A€p<E+l)
A (4.9)
P
T8 ST THE

Thus, for the given amount of strain increment, the plastic strain increment can be
calculated using the ratio between plastic and elastic moduli. As a special case, when
no strain-hardening exists, i.e., stress remains at the constant yield stress during
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plastic deformation, the strain increment becomes purely plastic. Note that the
formula in Eq. (4.9) is not working when the material is initially in the elastic state.

Example 4.1 (Elastic and Plastic Strain) A force 12 kN is gradually applied at the
end of an elastoplastic bar. When the yield stress of the material is 100 MPa, calculate
the elastic and plastic strains. Use the following material properties: E = 100 GPa and
H =10 GPa. The cross-sectional area of the bar is A=1.0 x 10~* m?.

Solution In a one-dimensional bar, it is assumed that the force is uniformly distrib-
uted over the cross section. Since the total stress, 6 = F//A = 120 MPa, is larger than
the yield stress, it can be concluded that the material is under plastic deformation. In
addition, since the load is proportionally applied, there is no need to distinguish
isotropic and kinematic hardening. It is convenient to divide the entire deformation
into elastic and elastoplastic phases. The material is initially elastic until it reaches
yield stress. Thus, until stress reaches yield stress 6'" = oy = 100 MPa, strain is
purely elastic:

Ael) = %Y —0.001.

After yielding, the remaining stress increment, Ac =20 MPa, is in the elastoplastic
phase. The elastic and plastic strain increments can be calculated from

Ac@
Ae® = 2 = 0.0002,
Ac?)
@ _ _
Ael? = =7 = 0.002.

Thus, the total elastic and plastic strains become

£e = Ael’) + Ael” = 0.0012
£, = Ael) = 0.002 '

4.2.2 Finite Element Formulation for Elastoplasticity

In this section, a finite element formulation for an elastoplastic bar element is
presented based on “the steps in the solution of nonlinear finite element analysis”
in Sect. 2.3. Due to the small deformation assumption, only material nonlinearity
will be considered.

In order to be more general, the incremental force method in Sect. 2.2.4 is
considered, where the applied load is first divided by N load increments, which
are denoted by [#4, #5, ..., ty]. Even if the analysis procedure is static, these load
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increments are also called time increments. It is also assumed that the analysis
procedure has been completed up to load increment 7, and a new solution at load
increment t,,; is sought using the Newton—Raphson method. In the following
explanation, the left superscript n or n+1 is used to denote the load increment,
while the right superscript, k or k+ 1, is used for the iteration counter. Since all
variables at ¢, are already converged, iteration counter only appears for those
variables at #,,;. When a variable does not show a load increment, it should be
considered a variable at ¢,,; or a constant value. It is also assumed that iteration
k has been finished and the current iteration is K+ 1. The iteration count will be
omitted whenever possible unless it can cause confusions. For most cases, variables
at t,,1 represent the variables at (k+ 1)th iteration, i.e., the current iteration.

Referring to Fig. 4.3, it is assumed that the entire structure is modeled by one bar
element, and the solution of the element is approximated by a vector, d = {u, u, }T,
of nodal displacements and its increment. In the view of load increment and
iteration counter, it is possible to consider two different definitions of displacement
increments, as

Adk — n+]dk _ nd

5dk — n+1dk+1 _ Vl+1dk (410)

where Ad is the increment from the last converged load increment to the previous
iteration, while 4d is the increment from the previous iteration. The former is used
to calculate the stress increment, while the latter is the displacement increment
calculated from the Newton—Raphson iteration. Therefore, dd is accumulated into
Ad during the Newton—Raphson iteration, and Ad is set to 0 before starting a new
load increment.

As discussed in Chap. 1, there is a suitable vector of interpolation functions, N(x) =
[Ny, N,], for the bar element so that the displacement increment can be interpolated by

AM]

Au(x) = [N1N2]{ Auz} =N-Ad. (4.11)

The corresponding strain increment can also be calculated by differentiating the
above displacement by

Ae:i(Au) = [—% %HiZ;} =B Ad, (4.12)

where B is the displacement—strain matrix—in the case of a bar element, it is a row
vector. Again, the strain increment is from the previous converged load increment

up up
P—>» @ e —»P,
X1 X2
Fig. 4.3 One-dimensional L L N

[~ i

elastoplastic bar element


http://dx.doi.org/10.1007/978-1-4419-1746-1_1

4.2 One-Dimensional Elastoplasticity 249

to the previous iteration, which is known. Using the same interpolation scheme, the
increment from the previous iteration can also be calculated by du(x) =N - dd and
oe=B-ad.

If the bar element in Fig. 4.3 is in equilibrium, the nodal forces due to internal
stresses must be equal and opposite in direction to the applied nodal forces. More
specifically, the weak form of structural equilibrium can be written as

L
aT/ B Ady =d "'F, Vd e R, (4.13)
0

where d = [i,,7,]" is the vector of virtual nodal displacements, A is the cross-
sectional area, and "*'F = [""'F,, ""'F,]" is the vector of applied forces, which is
assumed to be given.

Since the relationship between stress and strain is nonlinear, the above varia-
tional equation is nonlinear in terms of strain or, equivalently, displacement. In
order to solve the nonlinear equation, the Newton—Raphson method in Chap. 2 can
be employed. Assuming that the applied load is prescribed or independent of
displacement, only the left-hand side of Eq. (4.13) needs to be linearized. Since
only material nonlinearity is considered, the stress is linearized using the first-order
Taylor series expansion, as

0 :
n+16k+1 ~ n+16]< +a_o-5€ — n+16k +Dep58’ (414)
&

where D is the elastoplastic tangent modulus. From the stress—strain curve in
Fig. 4.1, the slope, DP, can be determined by

E if elastic
D% = . (4.15)
E, if plastic

By substituting Eq. (4.14) into Eq. (4.13) and moving known terms to the right-hand
side, the following linearized variational equation can be obtained:

L L
a [ / BTDePBAdx} sd=dF—d / B 6" Ady, (4.16)
0 0

where the terms in the bracket is called the tangent stiffness matrix for the bar
element and can be written as
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and the right-hand side of Eq. (4.16) is called the residual, R, which is defined as

L n+1F n+1 _k
n+1pk n+1 Tn+1 _k 1+ oA
R = +F—/0 B +0Adx{n+lF2_n+16kA}. (4.17)

Note that if the residual in the above equation becomes 0, then it means that the
original nonlinear Eq. (4.13) is satisfied.' Therefore, the Newton—Raphson iteration
stops and moves to the next load increment. In order to calculate the residual, it is
necessary to calculate stress, n+15K The stress calculations are more involved
because of nonlinearity in the stress—strain relation and dependency on the prior
stress history. For an elastoplastic material, the stress is a function of previous state,
plastic variables, and strain increment. Therefore, it can be written as

1 gk :f("a,"ep, A&k, ) (4.18)

In stress calculation, the following situations must be considered: whether the
material is in the elastic or strain-hardening portions of the curve, loading or
unloading, and changes in the stress at which yielding takes place based on the
hardening rule employed. This process is called state determination and will be
explained in detail in the following section.

If the residual does not vanish, another iteration is required based on Eq. (4.16).
Since Eq. (4.16) must satisfy for arbitrary d € R?, it is equivalent to solving the
following incremental matrix equation:

kr - 6d° = "T1RF, (4.19)

Therefore, the Newton—Raphson iteration solves for the incremental displacement
from the previous iteration using the residual at the last iteration. When the system
is composed of many bar elements, individual element equations are assembled in
the usual manner as in Chap. 1 and solved for displacement increments, after
applying boundary conditions. After obtaining the nodal displacement increments
by solving Eq. (4.19), the displacement increment, Ad, is updated by
Ad**!' = Ad* + 6d%, and the process repeated until the residual vanishes.

4.2.3 Determination of Stress State

As discussed in the previous section, the relationship between stress and strain is
nonlinear when plastic deformation occurs. In this section, the procedure of deter-
mining stress will be discussed when strain and its increment are available. For the

! Although the iteration counter is different, it does not matter when the residual vanishes.
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purpose of explanation, isotropic and kinematic hardenings are treated separately,
but later a combined procedure will be presented.

4.2.3.1 Isotropic Hardening Model

During the Newton—Raphson iterative method, it is assumed that the following
variables are given: the strain increment (Ag) from the last load increment to the
previous iteration, plastic strain (“sp), and stress ("o) at load increment n. The basic
steps in computing stress are as follows.

1. Compute the current yield stress. This depends on the accumulated plastic
strain, "¢, and the plastic modulus, H.

n

oy = oy + H"e,, (4.20)

where oy is the initial yield stress. Due to strain-hardening, the yield stress
increases according to plastic strain. Note that the yield stress is the same for
both tension and compression and it increases along with the plastic strain.

2. Elastic predictor. Assume an elastic behavior during the strain increment and
calculate stress increment and trial stress.

A"¢ = EAe, (4.21)
"6 ="06+ A"¢c. (4.22)
3. Check yield status. Check if the trial stress satisfies the yield condition; that is,

the stress must be lower than the yield stress. For that purpose, the following trial
yield function is defined:

"f =1|"¢| —"oy. (4.23)

If "£< 0, then the material stays elastic. As illustrated in Fig. 4.4, the material
is either on the initial loading curve below the yield stress or on the unloading/
reloading curve. In either case, the stress based on the elastic assumption is

correct. Set "+ 6 =" and move on to the next load increment. In this case, the
OA
Initial loading
A EEERYy Unloading
o | 4 Reloading
Fig. 4.4 Stress state under L c

elastic region Ae
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Fig. 4.5 Elastic to plastic oA
transition o c
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strain increment is purely elastic, and the plastic strain does not change,
ie, " e.="e.+Aeand "*'e, =",

4. Plastic corrector. If “f> 0, then the material yields during this increment. As
illustrated in Fig. 4.5, at load increment #,,, it is assumed that the material is at
point a (elastic). This elastic state is reached by unloading from a plastic state
(e.g., point d). Thus, the current yield stress is "oy. At load increment ¢,,, a
strain increment Ae¢ is given, and the corresponding updated state of stress is
sought. If the material is continuously elastic, the updated stress will be at point
¢ (trial stress "o). However, it is impossible for the state of stress to be above the
stress—strain curve in Fig. 4.5. Thus, a transition from elastic to plastic state
occurs in this step and the material moves up to point e (plastic). Considering
that the plastic strain increment does not contribute to the stress increment, the
trial stress is updated by subtracting the portion of plastic strain increment, as

"o ="6 —sgn("o)EAegp, (4.24)

where sgn() is a sign function, which takes “+1” when its argument is positive
and “—1” when negative. This function is added because the material can also
yield in compression. Since Eq. (4.24) corrects the trial stress by plastic strain
increment, this process is often called a plastic corrector. In addition, since it
makes the trial stress back to the yield stress, it is also called return-mapping. As
can be seen in Fig. 4.5, an algorithmic challenge is that while the trial stress
returns, the yield stress also increases (from point d to e). In Sect. 4.3, return-
mapping for multidimensional stress will be discussed.

5. Plastic consistency condition. In the plastic correction formula in Eq. (4.24),
the plastic strain increment is still unknown. In order to calculate it, the plastic
consistency condition is used, where the corrected stress must be on the yield
surface during the loading process. This condition can be written as

nlp |n+16‘ S p— (4.25)
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Therefore, the goal is to find the plastic strain increment that satisfies the above
condition. Note that not only the plastic strain increment reduces the corrected
stress, "+ o, but also it increases the yield stress, " * 1(7y. In order to calculate the
plastic strain increment, Eq. (4.25) can be expanded as

"o — sgn("o)EAey| — ("oy + HAgy) =0
= |”‘a} —"oy — (E+H)Agp, = 0.

Note that the above formula works for both positive and negative trial stress.
Therefore, the plastic strain increment can be obtained as

e — |rr6| _ nGY B trf
“T"EtH E+H

(4.26)

Since "f> 0, the plastic strain increment is always positive. With this plastic
strain increment, the stress in Eq. (4.24) can be updated, which concludes the
state determination. The plastic strain increment reduces the trial stress and
increases the yield stress so that the plastic consistency condition satisfies.

Since a linear hardening model with a constant plastic modulus, H, is used, the
plastic consistency condition in Eq. (4.25) can explicitly be solved in terms of
the plastic strain increment. If a nonlinear hardening model is used, however,
then the plastic consistency condition must be solved iteratively using a method
like the Newton—Raphson method.

In order to express the plastic strain increment in terms of the total strain
increment, a purely elastic fraction of strain increment, denoted by R in Fig. 4.5,
is calculated from similar triangles abc and dec as

|M|7u—mm4$Ril_f7
‘Atr6| - ’11'6| — oy - |A”'6’ '

(4.27)

It is mentioned that R is the interpolating factor between the elastic and tangent
moduli. When R is equal to one, the material is purely elastic. When R is equal to
0, the initial material status is plastic and the strain increment has both elastic
and plastic portions. Using the relation of “f= (1 — R)ElAel, the plastic strain
increment in Eq. (4.26) can be written as

(1-R)E

A =R

|Ae|. (4.28)
Note that when R =0, the relation becomes identical to that in Eq. (4.9). In a
similar way, the updated stress in Eq. (4.24) can be expressed as

(1 —R)E?
E+H

n+1

o ="c—sgn("o) |Ag|. (4.29)
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The first term on the right-hand side is from elastic trial, and the second term is
from plastic correction. Therefore, the algorithm for determining the state of
stress in elastoplastic is divided into (a) elastic trial and (b) plastic correction.
6. Algorithmic tangent stiffness. The elastoplastic tangent modulus D® in
Eq. (4.15) represents the relation between the stress increment and strain incre-
ment (hypoelasticity), which is nothing but the slope of the stress—strain curve in
Fig. 4.2. Tt would be beneficial to compare the tangent modulus of the state
determination algorithm in Eq. (4.24) with the slope of the stress—strain curve. In
the literature, the former is referred to the algorithmic tangent modulus, while
the latter the continuum tangent modulus. When the material is elastic or in the
elastic state of unloading/reloading process, the plastic strain increment becomes
0 and the trial stress becomes the updated stress. Therefore, the algorithmic
tangent modulus becomes identical to the elastic modulus. When the material is
in the plastic state, the algorithmic tangent modulus can be obtained by differ-
entiating the updated stress increment with respect to the strain increment, as

a2
 0Ae OAe

0Aeg,
OAe

DY —sgn("0)E (4.30)

Since the trial stress is elastic, it is straightforward that the first term on the right-
hand side is nothing but the elastic modulus. The derivative of the plastic strain
increment can be obtained by differentiating Eq. (4.26) with respect to the strain
increment

E
E+H

dhe, 1 O"f
0Ae E+HOAe

=sgn("o)

After substituting into Eq. (4.30), the algorithmic tangent modulus can be
obtained as

E if elastic
D"t = { _ . (4.31)
E, if plastic

It is interesting to note that the continuum tangent modulus, D, in Eq. (4.15) is
identical to the algorithmic counterpart in Eq. (4.31); that is, the state determi-
nation algorithm is consistent with the stress—strain curve. In multidimensional
elastoplasticity in the next section, however, it will be shown that the two
tangent moduli are different and show a quite different convergence behavior
during Newton—Raphson iterations. In addition, the two tangent moduli will be
different when a nonlinear hardening model is employed.

Example 4.2 (Elastoplastic Bar (Isotropic Hardening)) An elastoplastic bar is
under variable load history. At load step t,, the stress and plastic strain are
"6=150 MPa and "e,=1.0 x 10~ %, respectively. When strain increment is
Ae =0.002, calculate stress and plastic strain. Assume isotropic hardening with
E =200 GPa, H=25 GPa, and °6y =250 MPa.
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Fig. 4.6 Elastoplastic bar 0 A
scal ., ,
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Solution At a given plastic strain "e, = 1.0 x 10~ *, the yield stress is
"oy = oy + H"e, = 252.5 MPa.

Since "6 < "ovy, the material is in the elastic state at load step ¢, (Refer to the initial
state in Fig. 4.6). For given strain increment, the trial stress can be obtained as

A6 = EAe =400 MPa, "6 ="6 + A"¢ =550 MPa.

Since "f=1"06l — "6y =297.5 MPa > 0, the material yields during the current load
increment. The plastic strain increment can be calculated from the plastic consis-
tence condition as

tr
Ae, = E—i—ifH =1.322x 107°.

Therefore, stress and plastic strain are updated as
"o ="6 —sgn("c)EAe, = 285.6 MPa,
"Hle, ="e, + Aep = 1.422 x 107°.

Note that the updated stress is identical to the new yield stress " 'ov.

4.2.3.2 Kinematic Hardening Model

The main difference between the kinematic and isotropic hardening models is the
evolution of yield surface. The elastic range (twice of yield stress) increases in
isotropic hardening, while the range remains constant in kinematic hardening.
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Instead, the center of elastic range moves parallel to the hardening curve as plastic
strain increases. In order to model this effect, the following shifted stress is defined:

—6—a 432
n ; (

where a is called the back stress, which represents the center of elastic range. In
kinematic hardening, the shifted stress is used instead of ¢ in determining the
material status. Therefore, the back stress is considered as a plastic variable and
must be stored and updated at each load increment. The load history information is
stored in the back stress.

In the incremental formulation, it is assumed that the following variables are
given: the strain increment (Ag), stress (o), and back stress (“a) at load increment
t,. The basic steps in computing stress are as follows.

1. Elastic predictor. Assume an elastic behavior during the strain increment and
calculate stress increment and trial stress.

A6 = EAe. (4.33)

e ="6 4+ A"0. (4.34)

During the elastic predictor, the plastic variable remains constant as

Ta ="aq. (4.35)

Tm="6—-"a. (4.36)

2. Check yield status. Check if the trial stress satisfies the yield condition; that is,
the stress must be lower than the yield stress. For that purpose, the following trial
yield function is defined:

"f =1"n| =‘oy. (4.37)

Note that in kinematic hardening, the initial yield stress remains constant; that is,
the elastic range does not increase. If "f< 0, then the material stays elastic.
Set "*!'6="¢ and move on to the next load increment. In this case, the
incremental strain is purely elastic, and the back stress does not change, i.e.,
n*+1g ="q, and all strain increment is elastic, i.e., "* e, = "€, + A€.

3. Plastic corrector. If “f> 0, then the material yields during this increment. When
the material experiences plastic deformation, both the trial stress and back stress
are updated as

"o ="06 — sgn("n)EAgp, (4.38)
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"o ="a + sgn("n)HAe,. (4.39)

Note that the trial stress is reduced by the plastic strain increment proportional to
the elastic modulus, while the back stress is increased proportional to the plastic
modulus. The stress update formula is almost identical to that of isotropic
hardening, except that the shifted stress is used in sgn function. The back stress
is updated in a similar way of yield stress in isotropic hardening in Eq. (4.20)
because the stress—strain curve in a proportional loading is identical for both
hardening models. Therefore, the same plastic modulus is used. Even if the
plastic strain increment is always positive, the back stress can be negative
depending on the stress history; that is, the back stress increases if the yielding
occurs in tension, while decreases in compression.

4. Plastic consistency condition. In the plastic correction formulas in Egs. (4.38)
and (4.39), the unknown plastic strain increment is calculated from the plastic
consistency condition as

’hLlf _ |I’l+lrl‘ _ OGY =0. (440)

The above consistency condition can be expanded in terms of plastic strain
increment as

"o — sgn("n)E Ae, —"a — sgn("n)H Ag,| — "oy =0
= ‘”'a - ”'a| ~ %y — (E+H)Ae, = 0.

Note that the above formula works for both positive and negative trial stress.
Therefore, the plastic strain increment can be obtained as

f]f
“E+H

Ae, (4.41)

Note that the formula for plastic strain increment is identical to that of
isotropic hardening in Eq. (4.26). With this plastic strain increment, the stress
and back stress are updated according to Eqs. (4.38) and (4.39), which concludes
the state determination.

In the case of kinematic hardening, the plastic strain increment does not have
to be stored, as the load history information is stored in the back stress. Since the
plastic strain increment and stress update formula are identical for both isotropic
and kinematic hardening models, the same algorithmic tangent stiffness can be
used for both models.

Example 4.3 (Elastoplastic Bar (Kinematic Hardening)) An elastoplastic bar is
under variable load history. At load step ¢, the stress and back stress are
"6=150 MPa and "a=50MPa, respectively. When strain increment is
Ae =—0.002, calculate stress and back stress. Assume kinematic hardening with
E =200 GPa, H=25 GPa, and 6y =200 MPa.
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Fig. 4.7 Elastoplastic bar o A
in kinematic hardening (not
scaled)
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Solution Since the shifted stress " =" — "a =100 MPa < 6y, the material is in
the elastic state at load step ¢, (Refer to Fig. 4.7). For given strain increment, the
trial stresses can be obtained as

A6 = EAe = =400 MPa, "6 ="0+ A"¢ = —250 MPa
"a="a=50 MPa, "ny="6—"a=—-300 MPa '

Since “f=1"yl — °6y = 100 MPa > 0, the material yields in compression during the
current load increment. The plastic strain increment can be calculated from the
plastic consistence condition as

Il‘f
Ae, = =0.444 x 1073,
EP I H X

Therefore, stress and back stress are updated as

"o ="6 —sgn("n)EAe, = —161.1 MPa,
"o ="q+sgn("n)HAe, = 38.9 MPa.

Note that the updated back stress is reduced due to the yielding in compression. gy

4.2.3.3 Combined Isotropic/Kinematic Hardening Model

Many practical materials show a combined effect of isotropic and kinematic
hardenings, especially for polycrystalline metals. In such a case, the yield stress
initially increases due to plastic hardening, but it decreases when the direction of
strain changes. This phenomenon is related to the dislocation structure in the cold
worked metal. As deformation occurs, the dislocation accumulates at barriers and
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produces dislocation pileups and tangles. This effect is often referred to as
Bauschinger effect.

In order to model the combined effect of kinematic and isotropic hardening, a new
parameter, /3, is introduced. The parameter varies between 0 and 1. From the fact that
isotropic hardening changes the yield stress and the kinematic hardening changes the
back stress, the parameter interpolates between the two hardening models as

"oy ="y + (1 — B)HAe,, (4.42)
"o ="q + sgn("n)pHAe,. (4.43)

When =0, it becomes isotropic hardening, while when =1, it becomes kine-
matic hardening. In the combined hardening model, both the plastic strain and back
stress are plastic variables and need to be updated and stored at each load increment.
It would be a good practice to show that the plastic strain increment that is obtained
from the plastic consistency condition is identical to the case of isotropic hardening
in Eq. (4.26) and of kinematic hardening in Eq. (4.41).

The above algorithms can easily be implemented in computer programs. Below
is a MATLAB program, combHard1D, that calculates stress, back stress, and
plastic strain for a given strain increment. The program also requires stress, back
stress, and plastic strain from the previous load step, as well as material properties.

PROGRAM combHardl1D

1D Linear combined isotropic/kinamtic hardening model

o0 of o°

function [stress, alpha, epl=combHardlD (mp, deps, stressN, alphalN, epN)
$ Inputs:

mp = [E, beta, H, Y0];

deps = strain increment
stressN = stress at load step N

alphalN = back stress at load step N

O0 0 o0 O° A0 o

epN =plastic strain at load step N

e

E=mp (1) ; beta=mp(2); H=mp (3) ; YO=mp (4) ; $material properties
ftol = Y0O*1E-6; %tolerance for yield
stresstr = stressN + E*deps; %trial stress
etatr = stresstr - alphal; %trial shifted stress
fyld = abs (etatr) - (Y0+ (1l-beta) *H*epN) ; %trial yield function
if fyld < ftol %yield test
stress = stresstr; alpha = alphalN; ep = epN; %trial states are final
return;
else
dep = fyld/ (E+H) ; %plastic strain increment
end
stress = stresstr - sign(etatr) *E*dep; $updated stress
alpha = alphaN + sign (etatr) *beta*H*dep; %updated back stress
ep = epN + dep; %updated plastic strain

return;
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Fig. 4.8 Two-bar assembly

subjected to axial load Barl

Rigid P

Bar2

Example 4.4 (Two Bars in Parallel) An assembly of two bars with different
material and section properties is subjected to an axial load as shown in Fig. 4.8.
The initial length of the two bars is 100. Determine axial displacement, stresses, and
strains when P = 15 is applied at the tip. Assume that the elongations of both bars
are the same. Assume the following properties for the bars:

« Bar 1: A=0.75, E=10,000, E,= 1,000, OO'Y =5, kinematic hardening
e Bar2: A=1.25, E=5,000, E, =500, OO'Y =1.5, isotropic hardening

Solution The two bars can be modeled using two nodes and two elements. Both
elements are connected to the same nodes. Since the node on the wall is fixed, its
displacement is 0 and can be ignored. Then, the finite element matrix equation
becomes a scalar equation with the node at the tip as a single degree of freedom.
Since a single load increment will be use, the index for load increment will not be used.

Iteration 1: Initially, both elements are in the elastic state. Thus, the incremental
finite element equation becomes

(E1A1 n E2A2

1 0 0
T L )Au =P — (6)A; + 09A3).

Note that at the first iteration, the stresses in both elements are 0. Thus, the
incremental displacement and incremental strain can be obtained from

Au' =0.1091, Ae' =0.001091.

Note that the incremental strain is identical for both elements. Now, it needs to
calculate stress and plastic variables for both elements.
Element 1: Kinematic hardening

A"l = E\Ae' = 1091, "ol =0, + A"c! = 1091,
Taj = a? =0, "ni="0]—"a;=1091,

"y =|"nl| - oy, = 5.91.
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Since "f; > 0, the material is in the yield state. The plastic strain increment and
stress and back stress are updated as

I
Ael = N 53180 % 1074,
PE +H,y

o) = "o} —sen("n})E1Aey, = 5.5909,
al = "a} + sgn("y})HiAeh; = 0.5909,
8;1 = 531 + Aell,l =5.3182 x 107%.
Element 2: Isotropic hardening

A6y = EyAe' =5.4545, "oy = o) + A6} = 5.4545,
"fy = |"oy| — 0%, = —2.0455.

Since “f, < 0, the material remains elastic, and the trial state is the final state:

0y = 5.4545, ¢, =0.
Residual check: Residual =P — (6]A; + 6}A,) = 3.9886.
Since the residual is not equal to 0, it is not yet converged. Move to the next
iteration.

Iteration 2: Since Element 1 changes from elastic to plastic, the elastoplastic
tangent modulus E.,; =E; can be used in calculating displacement increment,
while Element 2 uses the elastic modulus. Thus, the incremental equation becomes

EyA, n E>A,
L, L,

>Au2 =P — (0]A| + 03A3).
The displacement increment and the strain increment can be obtained from
Au* =0.0570, Ae® =5.6981 x 107%, u* =u' + Au* = 0.1661.

Element 1:

A"6? = E\Ae* =5.6981, "ot = o]+ A"67 = 11.2890,
o =aj =0.5909, "ni="0t—"al =10.6981,
"t =|"m| — 0%, = 5.6981.
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Since “f, > 0, the material is continuously yielding. Then, the plastic strain incre-
ment, stress, and back stress can be updated by

-2
A2, = 7”]‘1

= =5.12 10~
N T 5.1280 x 107%,

o1 ="o1 —sgn("n7)E1Ay, = 6.1607,
ai ="ai + sgn (" ) Hi Mgy, = 1.1607,
ey = €3 + Aey, = 1.0446 x 107°.
Element 2:
A"02 = EyAe® = 2.8490, o2 = 0, + A"o2 = 8.3036,
"3 = |"63| — oy, = 0.8036.

Since “f, > 0, the material is in the yield state. The plastic strain increment and
stress can be updated as

-2
A€’ nfz

= = 1.446 x 107
P2 Ey + H, ’

o3 = "0 + sgn (") E2Aey, = 7.5804,
e, = £ + Depy = 1.4464 x 1077,
0%, = 0%, + HayAe), = 7.5804.

Residual check: Residual =P — (674 + 63A,) = 0.9040.
Since the residual is not equal to 0, it is not yet converged. Move to the next
iteration.

Iteration 3: Since both elements are in the plastic state, the tangent moduli are used
in the increment equation, as

Ej A, n EpA;
Ly L,

)mﬁ =P — (0A| + 634).

The displacement increment and the strain increment can be obtained from

Aw® =0.0657, A& =6.5747 x 107*, u® = u® + Au® = 0.2318.
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Element 1:

A"} = E|Ae® = 65747, "o} =" + A"6) = 12.7354,
”a%—a%=1-1607 ,7 =g 3 — 3_115747
"F3 = || - 6%, = 6.5747.

Since “f; >0, the material is continuously yielding. The plastic strain increment,
stress, and back stress can be updated by

tre3
Ag), = i 5.9180 x 1074,
E, +H,

o} = "o} — sgn("n})E1Ae), = 6.8182,
a ="a) +sen (" ) H Mgy, = 1.8182,
£, =& + Aed, = 1.6364 x 107,
Element 2:
Atrag = E,Ae® =3.2873, " 0'% _ 6% + Atro_g — 10.8677,
trfg — |t;‘6§| — o'Y2 = 3.2873.

Since “f, > 0, the material is continuously yielding. The plastic strain and stress can
be updated by
s _ " 4
Ae, = =5.9180 x 10~
"B+ H, !

o3 = "o, +sgn("m) B2 Mgy, = 7.9091,

e = €0y + Aeyy = 7.3636 x 107,
Residual check: Residual =P — (G%Al + agAz) =0.0.
Since the residual is equal to O, the iteration converges. =

Example 4.5 (Two Bars in Parallel) Solve the two bar problem in Example 4.4
using MATLAB programs.

Solution Below is the list of MATLAB programs that calculate the two bars in
parallel in Example 4.4. Since only the node at the right end is allowed to move, a
single nonlinear finite element equation is solved using the Newton—Raphson
method. The program converges in the third iteration with O residual. Table 4.1
shows the history of convergence iteration.



264 4 Finite Element Analysis for Elastoplastic Problems

Table 4.1 Convergence history of two elastoplastic bars using the Newton—Raphson method

Iteration u o1 0> Ep1 £p2 Residual
0 0.0000 0.000 0.000 0.000000 0.000000 1.50E+1
1 0.1091 5.591 5.455 0.000532 0.000000 3.99E+0
2 0.1661 6.161 7.580 0.001045 0.000145 9.04E—1
3 0.2318 6.818 7.909 0.001636 0.000736 0.00E+0
%
% Example 4.5 Two elastoplastic bars inparallel
%

E1=10000; Et1=1000; sYieldl=5;
E2=5000; Et2=500; sYield2=7.5;
mpl = [E1l, 1, E1*Et1l/(E1-Etl), sYieldl];
mp2 = [E2, 0, E2*Et2/ (E2-Et2), sYield2];
nSl=0; nAl =0; nepl =0;
nsS2 =0; nA2 =0; nep2 =0;
Al =0.75;L1=100;
A2=1.25; L2 =100;
tol=1.0E-5;u=0; P=15; iter =0;
Res =P -nS1*Al - nS2*A2;
Depl = E1; Dep2 = E2;
conv = Res”™2/ (1+P"2) ;
fprintf ('\niter u Sl S2 Al A2');
fprintf (’ epl ep2 Residual’);
fprintf ('\n %$3d %7.4f %7.3£%7.3£%7.3£%7.3f£%8.6£%8.6£%10.3e’,...
iter,u,nS1,nS2,nAl,nA2,nepl,nep2,Res);
while conv > tol && iter < 20
delu =Res / (Depl*Al/L1l + Dep2*A2/L2) ;
u=u+delu;
delE =delu / Ll;
[Snewl, Anewl, epnewl]=combHardlD (mpl,delE,nS1l,nAl,nepl) ;
[Snew2, Anew2, epnew2]=combHardlD (mp2,delE,nS2,nA2,nep2) ;
Res = P - Snewl*Al - Snew2*A2;
conv = Res”™2/ (1+P"2);
iter =iter + 1;
Depl =E1; if epnewl > nepl; Depl = Etl; end
Dep2 = E2; if epnew2 > nep2; Dep2 = Et2; end
nSl = Snewl; nAl = Anewl; nepl = epnewl;
nS2 = Snew2; nA2 = Anew2; nep2 = epnew2 ;
fprintf ('\n %3d %$7.4f %7.3f£%7.3f%7.3£%7.3f£%8.6f£%8.6£%10.3e’,...
iter,u,nS1,nS2,nAl,nA2,nepl,nep2,Res);
end
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4.3 Multidimensional Elastoplasticity

The basic concepts presented in the previous section for one-dimensional systems can
be generalized for multidimensional systems. However, in the one-dimensional case,
it is relatively straightforward to obtain the required stress—strain relation because
experiments are usually performed in the uniaxial tension test. The relationship is
given in terms of axial stress and strain. In addition, strain-hardening models are also
relatively straightforward because either the magnitude of yields stress increases
(isotropic hardening) or maintains the same range between tension and compression
(kinematic hardening). These strain-hardening behaviors can also be obtained using
uniaxial tension/compression tests. However, one-dimensional elastoplasticity can
only be used for very limited applications, such as bars and trusses.

When a structural system is in two or three dimensions, it is more difficult to apply
the theory of elastoplasticity from the previous section because now stress is not a
scalar quantity, but a tensor with up to six components. If a procedure similar to the
previous section is going to be used, then material tests with different combinations of
stress components must be performed. This is practically impossible because there are
infinite numbers of possible combinations. For example, let us consider biaxial loading
of a plane stress structure, which yields one of the simplest stress states beyond the
uniaxial case. Only nonzero stress components are 11 and o,,. One possible method of
stress combination is such that ¢y is fixed at 100 MPa (let’s say) and o5, gradually
increases beyond yielding of the material. Now, different combinations are possible by
fixing o, at different values and gradually increasing o,,. All these possible combi-
nations of stress components must be tested in order to obtain the stress—strain
relationship for biaxial loadings. Thus, it is practically impossible to obtain stress—
strain relationships for multidimensional systems except for very limited cases.

Instead of developing stress—strain relationships for all possible combinations, a
key concept in multidimensional elastoplasticity is to use a physics-based model that
can represent all possible cases. As mentioned in the above example, the possible
number of combinations is infinite even if only two stress components are involved.
Thus, a scalar measure of stress and strain that can represent the multidimensional
stress status should be used for practicality. In addition, this measure should be
independent of coordinate systems used for an isotropic material, i.e., invariant,
because the material shows identical behavior for all directions. For this purpose, an
equivalent stress and an effective strain are introduced in the first section. Since the
multidimensional model should also satisfy the one-dimensional case, the stress—
strain relationship can be obtained from uniaxial tension/compression tests. The key
ingredients are a certain form of yield criterion with a hardening rule and the
elastoplastic stress—strain law relating incremental stress to strain in the plastic
region. Among many different yield criteria, the von Mises yield criterion is widely
used for the isotropic metal plasticity, which will be discussed in the second section.
As discussed in Sect. 4.2, the kinematic and isotropic hardening models are
discussed in the multidimensional system. A general formulation for the incremental
elastoplastic stress—strain relationship is presented next. The remaining sections
give computational details for a few specific forms commonly used in practice.
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= T

Fig. 4.9 Material failures due to relative sliding

4.3.1 Yield Functions and Yield Criteria

Material yielding occurs due to relative sliding of the material’s molecules within
its lattice structure, which is similar to shear deformation. The material will not
come back to its original shape after the applied load is removed. As illustrated in
Fig. 4.9, such a sliding deformation preserves the volume of the material. If the
intermolecular distance is changed, then the volume is also changed. However, it is
very difficult to have a permanent deformation of a material by changing
intermolecular distance. Thus, it is commonly accepted that the material failure is
related to the shear deformation.

4.3.1.1 Maximum Shear Stress Criterion

One of the simplest failure criteria for a ductile material is the maximum shear
stress criterion, proposed by Tresca (1864). This criterion uses the maximum shear
stress, Tmax, aS an equivalent stress. The maximum shear stress is the radius of the
largest of Mohr’s circles. Let o, 05, and o3 be the three principal stresses, ordered
by o1 > 0, > 03. Then, the maximum shear stress can be defined as

T = % (4.44)

Note that 7,,,x is independent of the coordinate system used because the principal
stresses are independent of the coordinate system used. This criterion assumes that
material failure occurs when 7,,,,, is equal to the shear stress in a tensile specimen at
yield, zy. Note that in the tensile test at yield, 6y = oy and 6, = 63 =0. Thus, from
Mohr’s circles, it is easy to find that 7y is a half of 6y. When 7.« is less than 7y, the
material is elastic. It is impossible that 7,,,, is greater than zv. In this criterion, the
elastic range of the material is defined when

1
Tmax < Ty (z an) . (4.45)

The yield criterion is the boundary of the elastic range, i.e.,
f(6) =tmax —7y =0, (4.46)

where f(6) is the yield function and f{e)) = 0 is the yield criterion. Although the above
equation has a simple form, the actual combination of multidimensional stress states
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Fig. 4.10 Maximum shear
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can be complicated. Figure 4.10 shows the hexagonal failure envelope for the
two-dimensional maximum shear stress theory, i.e., 63 = 0. From the uniaxial tension
test, the material fails when o1 = oy and 6, =0 (point A). If o, starts increasing from
point A, it does not affect the yield criterion until it increases to oy (point B) because
Tmax 18 determined by o, and o3. Along line BC, 7,,,, is determined by o, and o3.
Along line CD, 7,,,,« is determined by ¢, and o5, and as 6, becomes more negative, 6,
must decrease. The elastic range in Eq. (4.45) corresponds to the interior of the
hexagon, in which the material is elastic. The yield criterion in Eq. (4.46) corresponds
to the boundary, which is often called the yield surface.

Example 4.5 (Maximum Shear Stress Criterion) Consider a thin square plate in the
xy plane under biaxial tension. When o,,=—200 MPa, determine o,,>0 that
makes the material yield. Use the maximum shear stress criterion with
oy =500 MPa.

Solution Since o, and o, are only nonzero stress components, ¢ = 6y,, 6, =0,
and o5 = o,,. Thus, the maximum shear stress becomes

o] — 0} 61+200
’[max = = .
2 2

Since the shear stress at yield is 7y = oy/2 =250 MPa, from the yield criterion

— 200
oy = GIT — 250 MPa.

Thus, the material yields when o, =300 MPa. m

4.3.1.2 Distortion Energy Criterion

The maximum shear stress criterion is based on shear stress only. In general, a
deformation can be divided into volume-changing (dilatation) and volume-
preserving (distortion) parts. For example, for a given strain tensor &, the volumetric
strain in a small deformation is defined as
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ey =tr(e) = &1 + exn + €33. (4.47)

Then, it would be more general to say that plastic deformation is related to the
volume-preserving part of the strain, which is often called the deviatoric strain. In
the case of pure shear deformation, for example, €, =¢,; are the only nonzero
strain components. Thus, the volumetric strain becomes 0, and the shear deforma-
tion is identical to the deviatoric strain. However, in the case of more complex
deformations, the deviatoric strain may have nonzero normal strain components,
e.g., €11 = —(&x + €33). The difficulty in using the deviatoric strain or stress for the
yield criterion is that it is not a scalar; it has six components in general and depends
on the coordinate system used. Thus, in order to use the deviatoric strain or stress, it
is necessary to have a scalar quantity that is defined from deviatoric strain or stress.

The next and more important criterion is the distortion energy criterion, which is
the main focus of this chapter. As stress gradually increases, so does the strain energy
density of the material. Since these two quantities are correlated, it is possible to use
the strain energy density for a failure criterion. The advantage of using the strain
energy density is that it is always a scalar even if all six stress components are
nonzero. As previously discussed, since volumetric deformation would not contrib-
ute to the material failure, this part of deformation must be removed from the strain
energy density before using it for the failure criterion. The strain energy density after
removing the volumetric part is called the distortion strain energy density. The
concept of the distortion energy criterion is to compare the distortion energy of a
multidimensional stress state to that of a tensile test at yield. The material is
considered to have failed when the distortion energy from multidimensional stress
has the same value with that of the tensile test at yield. When the distortion energy is
less than that of the tensile test at yield, the material is considered to be elastic.

The distortion strain energy is defined as the difference of the strain energy from
its volumetric part. In order to calculate the distortion energy, the volumetric parts
of stress (hydrostatic pressure) and strain (mean strain) are first defined as

1 1
Om = gtr(c) = 5(011 “+ o0 + 633) (448)
and
1 1
em = 3tr(e) = 3(en +en + e33), (4.49)

where tr(e) is a trace operator such that tr(¢) = o4. Note that the volumetric strain
differs from the mean strain by a factor of three. In order to calculate the distortion
energy, the deviatoric stress and strain tensors are defined as

s=6—opl =l : 0 (4.50)
and

e=¢—¢enl =1, : ¢, (4.51)
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where 1=[§;] is the second-order unit tensor, I is the fourth-order unit symmetric
tensor defined as Iy = (61 + 60j)/2, Tgev =1 — %1 ® 1 is the fourth-order unit
deviatoric tensor, ® is the tensor product, and “:” is the double contraction operator
of tensors. Note that tr(s) =0 and tr(e) =0.

Example 4.6 (Fourth-Order Unit Symmetric Tensor) Show that € =1: ¢ using the
definition of I,jjkl = (5ik6_/1 + 5115//()/2

Solution From the property that the Kronecker delta symbol changes index, i.e.,
04 = a;r, the double contraction between the fourth-order unit symmetric tensor
with strain tensor becomes

1 1
lijugn = 5(5z‘k5ﬂ + Sudi ) en = 5(81:/ + &) = €.

The symmetric property of the strain tensor is used in the last equality. =
For isotropic, linear elastic materials, the constitutive relation between the stress
and strain can be written as

c=M®1+2ul]:e=D:¢, (4.52)

where A and p are Lamé’s constants, and D is the fourth-order constitutive tensor.
Using the property of 1: € =tr(e) = 3¢,,, it is possible to decompose the constitutive
relation in Eq. (4.52) into volumetric and deviatoric parts, as

6 = A(3em)1 + 2u(e + enl)

4.53
= (314 2u)eml + 2ue (4.53)

If the above equation is compared with Eq. (4.50), the first part on the right-hand
side is the volumetric part and the second is the deviatoric part of the stress. Thus,
the following decomposed constitutive relation can be obtained:

s = 2ue (4.54)
and
om = (344 2u)en. (4.55)

It is straightforward to show that the bulk modulus (the constant that relates o,, with
ey) is defined as K = (31 + 2u)/3. It is interesting to note that only the shear modulus
4 appears in the relation between deviatoric stress and strain.

Using Eqgs. (4.50) and (4.51), the distortion energy density can be defined as

1
Ug = e (4.56)
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Using the relation s =2ue, the deviatoric strain energy density can be rewritten in
terms of stress as

1

Ug = @s :S. (4.57)

In the case of a one-dimensional tensile test, the material fails when 61, = 6y and
all other stress components are 0. Then, the deviatoric stress becomes

=0y 0 0
1
s=| 0 —3or 0 | (4.58)
1
0 0 —gO’Y

Thus, the distortion energy density at the status of material failure in the tensile test
becomes

1
Ud|ip = @6%(- (4.59)

A material in multidimensional stress status yields when the distortion energy
density becomes equal to that of the tensile test at the yield point. By equating
Eq. (4.57) with Eq. (4.59), it can be concluded that the material in the
multidimensional stress status yields when the following stress measure equals to
the one-dimensional yield stress:

3
Ce = \/Es S = oy. (4.60)

In the above equation, o, is called the equivalent stress or the von Mises stress. The
material is considered to be elastic when the equivalent stress is less than the
one-dimensional yield stress. Thus, a similar state determination as in
one-dimensional stress can be used for multidimensional cases using the equivalent
stress. Note that even if the equivalent stress is used to determine the state of
material failure, it comes from the criterion based on distortion energy.

The counterpart of equivalent stress is the effective strain, which is defined using
the definition of distortion strain energy density as

1 1
Uy ==s:e=—=cc¢, (4.61)
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where e, is the effective strain. Using Eqgs. (4.57) and (4.60), the distortion energy
U4 can be expressed in terms of equivalent stress, as

1 /2 1
Us=—(26%) = —o2. 4.62

By comparing Eq. (4.61) with Eq. (4.62), the effective strain can be written in terms

of equivalent stress, as
1 1 /3
e = —0c = —1/=S :S. 4.63
e 3/;7 3,“‘ / S5:S ( )

By using the relation s =2ue, the effective strain can be expressed in terms of
deviatoric strain as

ec =\/-e:e. (4.64)

Note that the equivalent stress in Eq. (4.60) and the effective strain in Eq. (4.64)
have similar definitions from deviatoric stress and strain, respectively, except for
the coefficients. The usage of effective strain is related to the plastic deformation.
The scalar plastic strain in one-dimensional plasticity becomes a tensor in
multidimensional plasticity.

Example 4.7 (One-Dimensional Equivalent Strain) A bar is under axial stress ¢
and axial strain e. Calculate the equivalent stress and effective strain in terms of o,
e, and Poisson’s ratio v.

Solution For a uniaxial tension problem, ¢,; = o is the only nonzero stress com-
ponent. Thus, the deviatoric stress becomes

2
50 O O
s=10 ! 0
30
0 0 —=0c

Using Eq. (4.60), the equivalent stress can be obtained by

o
Oe = > =o.

Note that the equivalent stress is identical to the axial stress. Thus, the material will
yield when the axial stress reaches the yield stress, which is consistent to the
definition of the yield stress.
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For a uniaxial tension problem, three nonzero strain components are &, =&,
&y, = £33 = —ve. All shear strains are equal to 0. From Eq. (4.49), the mean strain
becomes ¢, = (1 — 2v)e/3. The deviatoric strain is then obtained from Eq. (4.51), as

2
1
e:(—;—v)so 1 0

o
o
I
—_

The effective strain can be obtained from Eq. (4.64), as

4.3.2 Von Mises Yield Criterion

The distortion energy theory in the previous section is also called the von Mises
yield criterion, which states that yielding occurs when the equivalent stress reaches
the yield stress of the material in uniaxial tension. The equivalent stress o, in
Eq. (4.60) can be expressed as follows:

RS \/%s:sz vV 3J2, (4.65)

where J, is the second invariant of the deviatoric stress.” It can be expressed in several
alternative forms as follows. In terms of stress components, it can be written as

1
Jy = 6{(0){ — ay)2 + (ay — o-z)z + (0, — o-x)z} + rzy + T§Z + rzzx. (4.66)

Or, in terms of principal stresses,

Jr= é{(m — )" + (02— 03)" + (03 — 01)2] (4.67)

2 The same symbol was used for the reduced invariant of the Cauchy—Green deformation tensor in
Chap. 3. Since this symbol is widely used in the literature, it is kept here.
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Using the equivalent stress, the yield function and corresponding yield criterion can
be defined as

/

f(6)=0c2—06% =3/, —0% =0, (4.68)

where oy is the yield stress from the tensile test. Thus, even if the status of stress is
multidimensional, one-dimensional experimental data can still be used by consid-
ering the equivalent stress as a tensile stress.

From the definition of J; in terms of principal stresses, it can easily be seen that
the von Mises yield function represents an ellipse in two dimensions. As shown in
Fig. 4.11, any point inside the ellipse (f' < 0) represents an elastic stress state. The
inside of the ellipse is called the elastic domain of the material. Points on the yield
surface (f = 0) correspond to the stress state that causes the material to yield. It is
impossible for a stress state to reside outside of the yield surface.

Figure 4.11 also plots the maximum shear stress criterion. Note that the two
criteria meet at the six vertices, but the maximum shear stress criterion is inside of
the von Mises criterion, which means that the former is more conservative than the
latter. For example, in the situation of uniaxial tension, which corresponds to the
stress state along the o, axis, both criteria predict the same yield point at 6, =oy.
However, in the situation of pure shear stress, along the line OA in Fig. 4.11, the
maximum shear stress criterion predicts the material failure earlier than the von
Mises criterion. It is also noted that the von Mises yield surface is smooth, while the
maximum shear stress criterion has six vertices. The smoothness of the yield
surface helps to find the yield point numerically.

A plastic deformation can be physically explained by atomic dislocation. An
elastic deformation corresponds to the variation in the intermolecular distance
without causing atomic dislocation, while a plastic deformation implies relative

Max shear
o) . .
stress criterion
Oy .
) Von Mises
criterion
Elastic
region
—oy
O
O Oy
T = LG
oY
A
T=1g
2 %y

Fig. 4.11 Von Mises yield criterion



274 4 Finite Element Analysis for Elastoplastic Problems

sliding of the atomic layers and a permanent shape change without changing the
structural volume. Thus, plastic behavior can be efficiently described by the
deviator of a tensor, which preserves the volumetric components. As previously
discussed in Eq. (4.65), J, is the second invariant of the deviatoric stress. Specif-
ically, consider a stress tensor ¢ = [o;], (i, j =1, 2, 3). The second invariant of the
deviatoric stress can be written as

Jy = %[s 1S — tr(s)z} = %s 'S (4.69)

Note that tr(s) = 0 because the trace part of the stress tensor is moved to o,.

The yield function in Eq. (4.68) is given as a square of effective stress. Since
both the effective stress and the yield stress are always positive, it is unnecessary to
define the yield criterion using square terms. It is also more convenient to define the
yield criterion without having squares so that its unit is the same as that of stress.
Thus, the von Mises yield criterion can be rewritten as

flo) =||s|| - \@;Y =0, (4.70)

where lisll = (s :s)"/? is the norm of the deviatoric stress. The ellipse in Fig. 4.11

becomes a circle if it is plotted in the principal deviatoric stresses. It is then possible
to consider that \/(2/3)oy is the radius of the yield circle in deviatoric stress space.

Example 4.8 (Pure Shear Deformation) Consider a pure shear deformation of a
plane strain square block, as shown in Fig. 4.12 where a constant shear stress 7 is
applied. The yield stress of the material is oy. Calculate the shear stress 7 when the
material yields using the yield function formula in Eq. (4.70).

Solution In the pure shear problem, the stress tensor is identical to the deviatoric
stress because the volumetric part of the stress vanishes:

0 = O
0 0 O
x4 ..
— "
Tl l” ITT
Fig. 4.12 Pure shear ‘::—/ > X1
T

deformation
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Then, the von Mises yield function can be written as

$0) =1l v = V= 5o =0

Thus, the material yields when the shear stress becomes

1
—O0Y.
V3

Note that this value of shear stress is different from that of the maximum shear
stress criterion, 7=o0vy/2. In Fig. 4.10, line OA represents the case when a
shear stress gradually increases in a pure shear problem. Based on the maximum

T =

shear stress criterion, the material yields at 7 = 6v/2, whilez = oy/ /3 from the von
Mises criterion. The maximum shear stress criterion provides more conservative
yield point. |

Example 4.9 (Uniaxial Tensile Test) An axial stress o is applied to a uniaxial bar.
The yield stress of the material is oy. Calculate the tensile stress ¢ when the
material yields using the yield function formula in Eq. (4.70).

Solution Inthe uniaxial tension problem, the stress and its deviator can be written as

2 0 0
0 -1 0
0

00
0 0f, s=
00 0 -1

a
I
coa

(o2
3
Then, the norm of the deviatoric stress becomes

N T TN
||s||_3 2+ 1741 —\/;a.

Thus, the von Mises yield criterion can be written as

f(o')\/gcr—\/%cfyOéaay.

Thus, the von Mises yield criterion is consistent with the determination of yield
stress in tension test. m

4.3.3 Hardening Models

The yield criterion in the previous section determines whether a material yields or
not, based on the given yield stress of the material. In Eq. (4.70), it is assumed that the
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Fig. 4.13 Post-plastic o
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yield stress of the material remains constant. However, as discussed in Sect. 4.2, the
yield stress itself varies according to the plastic deformation, which is called strain-
hardening. In general, there are three classes of materials in terms of the yield stress
varies due to plastic deformation (see Fig. 4.13): (1) yield stress increases propor-
tional to plastic deformation (strain-hardening), (2) yield stress remains constant
(perfectly plastic), and (3) yield stress decreases as plastic deformation increases
(strain-softening). Generally, metals are strain-hardening materials, and geotechnical
materials may exhibit strain-softening under certain conditions. The strain-hardening
material is regarded as stable and will be considered in this section.

In Fig. 4.1, two different modes of strain-hardening were discussed: isotropic and
kinematic hardenings. The elastic range of the isotropic hardening model continu-
ously grows due to plastic deformation, while it remains constant for the kinematic
hardening model but moves parallel to the strain-hardening line. These definitions of
strain-hardening models can be extended to multidimensional plasticity. The yield
criterion in Eq. (4.70) can be considered as an equation of a circle with the center at
the origin and a radius of \/(2/3)oy. In the isotropic hardening model, the location
of the center is fixed, and the radius increases uniformly, i.e., oy increases. On the
other hand, for the kinematic hardening model, the radius is fixed, and the location of
the center moves in the stress space; i.e., the norm of deviatoric stress changes to
||s — at|| where o is the location of center of the yield surface. Figure 4.14 illustrates
these two hardening models. Since tensile tests are to be used for describing the
material behavior beyond yielding, the same hardening parameters that are used in
one-dimensional plasticity should be used for multidimensional hardenings. In the
following, these two hardening models will be discussed in detail.

4.3.3.1 Isotropic Hardening
In the isotropic hardening model, the subsequent yielding depends on the accumu-
lated effective plastic strain e,. For the linear isotropic hardening model, the yield

stress increases according to the effective plastic strain as

oy = o + He,, (4.71)
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Isotropic hardening Kinematic hardening
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Fig. 4.14 Hardening models in two dimension

where the plastic modulus H is obtained from the uniaxial stress—strain relationship
as follows:

_Ao

H=—.
Ae,

(4.72)

The radius of the yield surface increases according to the effective plastic strain
proportional to the plastic modulus. The above definition of plastic modulus can be
applicable for general nonlinear hardening because it is defined as a rate form. In
such a case, H will be the slope of stress—plastic strain curve at a given total plastic
strain. In the case of linear hardening, H will be a constant.

When H = 0, the material is called elasto-perfectly-plastic. The class of perfectly
plastic material is an idealization with the purpose of keeping the constitutive
equation simple. This idealization is reasonable for materials that do not show
significant strain-hardening. The adequacy of this idealization depends on the
purpose and requirement of specific applications. If only monotonic loading is of
interest and does not call for a refined solution, then this idealization may lead to a
satisfactory solution. However, due to progress in industries which give rise to
problems that are subjected to complex loading conditions and impose stricter
requirements, this idealization is no longer adequate in many applications and
strain-hardening should be considered.

4.3.3.2 Kinematic Hardening

In the kinematic hardening, the subsequent yield surfaces are shifted in the stress
space (see Fig. 4.14). Thus, the equation for a subsequent yield surface can be
obtained from the one used for initial yield surface by introducing a shift in stress.
This shift in the center of the yield surface is called back stress and denoted by .
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Then, the distance from the center of the yield surface to the yield surface can be
measured by the difference of s from . It would be convenient to define the
following shifted stress first:

n=s—o (4.73)

Note that both the back stress and shifted stress are deviatoric stresses. Next, the
equation for subsequent yield surface is defined as follows:

2
n|| - \@ay =0. (4.74)

In kinematic hardening, ov is the initial yield stress and remains constant. The back
stress depends on the current stress and the accumulated effective plastic strain ey,
According to Ziegler’s rule, the increment in back stress of the linear kinematic
hardening model is written as

2 n
Aa = \/HAe — (4.75)
37 |l

As with the isotropic hardening, the effective plastic strain plays an important role
in determining the evolution of the back stress. In addition, the back stress increases
in the parallel direction with the shifted stress. Since n=s — a is the radial direction
of the yield surface, the increment is always in the radial direction.

4.3.3.3 Combined Hardening

The difference between isotropic and kinematic hardening is clear. The former
increases the radius of the yield surface, while the latter moves the center of the
yield surface. However, many materials show a combined behavior of both models;
i.e., the yield stress increases due to plastic deformation, but the material yields
earlier in the opposite direction. This is caused by dislocation pileups and tangles
(back stress). When strain direction is changed, this makes the dislocation easy to
move. A combined linear isotropic/kinematic hardening model uses a parameter
p €1[0,1] to consider this combined effect, called the Bauschinger effect. In this
model, the yield surface is defined as

[Inf[ - \@[G?ﬂr(l — P)He,] =0 (4.76)

and the increment of the back stress is determined by

2 n
Ao = \/:ﬂHAe - 477
AT (4.77)
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This model is general enough to represent both isotropic and kinematic hardening
as special cases: § equals one for kinematic hardening and O for isotropic hardening.

Example 4.10 (Isotropic/Kinematic Hardenings) A uniaxial bar is under propor-
tional loading with axial stress 6. When the effective plastic strain is e,=0.1,
calculate the value of axial stress. Consider three different hardening models:
(a) isotropic, (b) kinematic, and (c) combined hardening with f=0.5. Assume
that the initial yield stress is 400 MPa and the plastic modulus is H =200 MPa.

Solution Since the applied stress is proportional loading, it is expected that the
material is in the plastic phase, and all three models provide the same stress value.
The difference occurs only when the direction of loading changes. In the case of
uniaxial tension, the stress and deviatoric stress become

2
- 0 0
6 0 0 31
6=|0 0 0|, s=|0 —= 0
00 0 S
0 756

Thus, the norm of the deviatoric stress becomes

sl = /2

(a) Isotropic hardening: from the definition of the yield function,

|Is[| - \@(62’( +He,) = \@" - \/§(400+ 200 x 0.1) = 0,

o = 420 MPa.

(b) Kinematic hardening: from the definition of yield function,

2
Hs—(xH—\/%aOY:O.

Note that Aa is parallel to n and the loading direction remains fixed. Thus, o is
parallel to s, in which the norm of the shifted stress can be written as
||s — at|| = ||s|| — ||et||. Thus, the yield function can be rewritten as

2 2 2 2 2
ol /20 = 1l ~ [l /2% = y 2o~ 2t b =00
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6 = 0% + He, = (400 + 200 x 0.1) = 420 MPa.

(c) Combined hardening: Similar to the kinematic hardening model, a is parallel
to s. Thus, the yield function can be written as

s = 2l + (1~ pytey

= [1ll e = y 208 + 1~y

2 2 2 2
= 3/;0 — \/;ﬁl-[ep — \/%ag — \/%(1 — p)He,

Thus, the applied stress can be solved:
=0y + He, = (400 4+ 200 x 0.1) = 420 MPa.

Note that all three models provide the same stress value. m

4.3.4 Classical Elastoplasticity Model

In the previous section, the yield function and strain-hardening models for
multidimensional plasticity were discussed. With these models, the objective of
this section is to determine the current stress state and evolution of plastic variables.
Based on the von Mises yield criterion and isotropic/kinematic hardenings, the
plastic variables are effective plastic strain, e, and back stress, o. The former is a
scalar, while the latter is a second-order tensor. First, all relations will be derived in
the rate form, and then written in the incremental form for the purpose of numerical
integration in the following section. For example, the relation between strain rate &
and strain increment Ae is that Ae = Azé where At is the time increment.

1. Additive Decomposition
The fundamental assumption in small deformation elastoplasticity is that the
elastic and plastic parts can be decomposed additively. This assumption is a
fundamental difference compared to the finite deformation elastoplasticity.
Assuming a small elastic strain, the strain and its rate can be additively
decomposed into elastic and plastic parts as

e=¢"+e, £=¢°1¢P (4.78)

where superscripts e and p denote elastic and plastic parts, respectively. The
superposed “dot” denotes the rate of a quantity. It is reminded that in static
problems, the rate is equivalent to the load increment. From the assumption that
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the plastic deformation only occurs in the deviatoric space, the plastic strain €°
and its rate are deviatoric tensors, i.e., tr(e’?)=0. As with one-dimensional
plasticity, the total strain and its rate are given. However, it is unknown how
much of them are elastic or plastic. Thus, the objective is to find the elastic or
plastic strain for a given total strain and its rate. The elastic strain produces stress
in the material, while the plastic strain is independent of stress. However, the
plastic strain affects the yield stress in the strain-hardening model.
2. Strain Energy Density

It is usually assumed that a strain energy density exists for the elastic part, such
that the stress can be determined by taking a derivative of the strain energy
density with respect to the elastic strain. The elastic part of the elastoplasticity
model is the same as a linear elastic material. Since the relationship between
stress and elastic strain is linear, this function takes a quadratic form. Thus, the
following form of strain energy density can be considered:

W(e®) = %ee :D:ef = %(e —€’):D: (e —¢P), (4.79)

where D is a fourth-order constitutive tensor. The elastic part of the strain is
usually unknown until the plastic behavior of the material is identified. By
differentiating the above definition, stress can be related to the elastic strain as

6= avgi:ﬁ) =D:e*=D:(e—¢). (4.80)

Now, it is clear that D is the constitutive tensor introduced in Eq. (4.52) when the
strain is interpreted as elastic. Due to the assumption in Eq. (4.78), the rate form
of the above equation can be written as

6=D:(&— &), (4.81)

where D= (1+(2/3)u)1 ® 1 +2ul,., is the fourth-order isotropic constitutive
tensor. Using the decompositions in Eqgs. (4.54) and (4.55), the relationship in
Eq. (4.81) can be further decomposed into volumetric and deviatoric parts as

G = %tr((s) - <a + gﬂ)n(é) — (314 2u)ém (4.82)

and
§ =2u(e —éP), (4.83)

respectively. In Eq. (4.82), the property that tr(¢”) = 0 is used. As can be found
in Eq. (4.82), the volumetric stress (hydrostatic pressure) is independent of
plastic deformation, which is consistent with the fact that the yield function is
defined using the deviatoric stress alone.
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3. Yield Function
For metal plasticity, the von Mises yield criterion with the associative flow rule
is commonly used to describe material behavior after elastic deformation.
Accordingly, the yield criterion or yield function is formulated as

o) = Il — /) <0 a8

where 1 =s — a is the shifted stress; o is the back stress, which is the center of
the yield surface (the elastic domain), and is determined by the kinematic
hardening model; x(ep,) is the radius of the elastic domain determined by the
isotropic hardening model; and e, is the effective plastic strain. The combined
isotropic/kinematic hardening model is used in Eq. (4.84). The elastic domain
generated by the yield function in Eq. (4.84) forms a convex set as

E={(n.ep)lf(n.e) <0} (485

In general, the yield surface defined by f in the above equation is smooth and
convex. In mathematical terms, the plasticity can be thought of as a projection of
the stress onto the yield surface. If the material is assumed to be purely elastic,
the stress will be much higher than that of the elastoplastic material for a given
strain. Then, elastoplasticity projects this stress onto the yield surface because it
is impossible for the stress to be outside of the elastic domain. Since the yield
surface is convex, the projection becomes a contraction mapping, which guar-
antees the existence of a unique projection. The same concept has been applied
in the case of one-dimensional plasticity in Sect. 4.2. Initially the stress incre-
ment is assumed to be purely elastic. If the estimated stress becomes larger than
the yield stress, this stress is brought back to the yield stress. This procedure
would be relatively easy if the yield stress is fixed. However, while the stress is
brought back to the yield surface, the yield surface itself changes according to
the hardening model. Thus, it is necessary to identify how the plastic deforma-
tion modifies the yield function.
4. Associative Flow Rule

The flow rule determines the evolution of the plastic strain €. In the case of
one-dimensional plasticity, the plastic strain is a scalar and its value only
increases. For multidimensional plasticity, since €” is a tensor, it is necessary
to determine its magnitude as well as its direction. Thus, a general form of the
flow rule can be written as

& = yr(o, &), (4.86)

where €= (a, ep) represents the plastic variables, and y is called a plastic
consistency parameter. In general, y > 0 where there is no plastic deformation
at 0. This is consistent to the fact that the plastic strain only increases in
one-dimensional plasticity.
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Advanced elastoplasticity shows that the flow rule can be obtained from the
constrained optimization theory in which Eq. (4.84) is an inequality constraint.
Referring to the principle of minimum potential energy in Chap. 3, the structural
equilibrium of an elastic material can be obtained by minimizing the potential
energy, which is the sum of strain energy and potential of applied loads. Thus, the
equilibrium equation is obtained from the optimality condition; i.e., the first-order
derivatives of the potential energy become 0. In elastoplasticity, this optimization
problem is modified such that the stress must stay within the elastic domain in
Eq. (4.84). This condition can be considered as a constraint to the optimization
problem. If the calculated stress from minimizing potential energy stays inside of
the elastic domain, no constraint is required. However, if the calculated stress is
outside of the elastic domain, it needs to be brought back to the boundary of the
elastic domain. In that case, the plastic consistency parameter becomes a Lagrange
multiplier to impose the constraint, and it is always nonnegative.

The expression of r(¢,&) depends on the plasticity model. It is often assumed
that there is a flow potential (or plastic potential), g, such that the plastic strain
evolves in the direction normal to the flow potential. That is,

& = yiag(a‘: o (4.87)

where g(6,€) is the flow potential. When the flow potential is the same as the
yield function, the plastic model is called associative. Thus,

P — J,M — yi =N, (4.88)
on |||

where N is a unit deviatoric tensor normal to the yield surface, and y is a plastic
consistency parameter, which is nonnegative. If the material status is elastic, y
must be 0, but if it is plastic, then y must be positive. Thus, the plastic strain
increases in the direction normal to the yield surface and has the magnitude of
plastic consistency parameter y.

As the material undergoes plastic deformation, the plastic variables (back
stress and effective plastic strain) also change according to the hardening model.
A general form of hardening rule can be written as

§ =7rh(s,8). (4.89)
Note that the evolution of the plastic variables is also proportional to the plastic

consistency parameter. In particular, the rate of back stress can be determined by
the kinematic hardening model as

———"—~ = Hq(ep)7N, (4.90)
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where H(ep) is a nonlinear form of the plastic modulus for kinematic hardening.
In the case of linear hardening, it becomes a constant, H,(ep) = H. The rate of
effective strain can be expressed by

ép = \/Hep }|_\[ (4.91)

where €P is the rate of deviatoric plastic strain.

Although it is not covered in this text, nonlinear hardening models are also
available in literature. For example, a nonlinear kinematic hardening can be
defined as the following evolution of back stress:

& = H(ep)e?, H(ep) = Hoexp <_:Tpo> , (4.92)

P

where ¢ © is the asymptotic limit of the plastic strain, and Hy is the initial

hardening modulus. This is also called the saturated hardening model. In the
case of nonlinear isotropic hardening, it is possible to define the following form
of the radius of yield surface:

K(ep) = 6(3’( + (o@o — 69() ll —exp (—%)] , (4.93)

P

where 05’ is the asymptotic limit of the yield stress.

5. Plastic Consistency Parameter
As mentioned before, y is 0 when the material is elastic (f< 0) and positive
when plastic (f=0). In optimization, this is called the Kuhn-Tucker condition
and can be written as

y>0, f<0, yf=0. (4.94)

It is possible to view the nonpositive property of the yield function as a
constraint, and the plastic consistency parameter y can be seen as the Lagrange
multiplier corresponding to the inequality constraint. The above Kuhn-Tucker
condition satisfies all possible states of the material. For example, when the
material is in the elastic state, i.e., the stress is within the elastic domain, it
becomes

<0, y=0=yf=0.
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When the stress is on the yield surface, i.e., in the plastic state, Eq. (4.94) is
satisfied because f=0. However, when the state varies, it is possible to have
three different cases:

(a) Elastic unloadingf <0,y=0= yf =0.
(b) Neutral loading f =0,y =0, = yf = 0.
(c) Plastic loadingf =0,y >0, = yf =0.

Thus, yf=0in Eq. (4.94) is equivalent to yf = O when the stress is on the yield
surface. Therefore, the rate form of Kuhn-Tucker condition can be used in
calculating the plastic consistency parameter. Among three possible cases,
only the last case, plastic loading, is of interest because the remaining cases
can be identified with y =0, which would not have any change in the plastic
variables. Thus, when the plastic loading state continues,

>0 f(6,&=0, (4.95)

which means that the yield function remains constant during the plastic loading
state. From the requirement that the yield surface remains 0, the following
condition can be obtained:

f(c,é):a—};:(s—ka—é:ézo.

By substituting the rates of stress and plastic variables, the above equation can be
written as

D:(éép)+g—€-yh0.

of
%.

Since the rate of plastic strain can also be written in terms of the plastic
consistency parameter, the above equation can be rewritten as

A e
%.D.e—%.D.yr—kaé yh =0.

The above equation can be solved for the plastic consistency parameter as

ad.p-é
NS (4.96)
s :D:r— 8_§ -h
where (x) is equal to x if x > 0; otherwise, it is 0. From the requirement of y > 0,
the numerator in the above equation must be nonnegative. The physical meaning
of this condition is that the normal direction to the yield surface and the stress
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increment rate must have an acute angle when the material is under plastic
loading (see Fig. 4.15):

7 .p.
g o' DE (4.97)
12]Ip el

If 6 < 90°, the material is in plastic loading; if € =0°, it is in neutral loading;

and if 6 > 90°, it is in elastic unloading.
6. Elastoplastic Tangent Stiffness

In one-dimensional systems, elastoplastic modulus DP was calculated based on
elastic and plastic moduli. In multidimensional systems, the counterpart is called
the continuum elastoplastic tangent stiffness. It represents the relation between
the rates of stress and strain. By substituting the plastic consistency parameter
into Eq. (4.81),

<g—f:D:8>
6=D:é—-D:yr=D:¢-D:r °
Lo:ir-%-n

The above equation can be rewritten in terms of stress and strain rates, as

<D:r®%:D>

6=|D--—— — "~
o .- of
a(;.D.r ag'h

£ =DP: ¢, (4.98)

where D is the continuum elastoplastic tangent stiffness. In general, DP is not
symmetric. However, when the associative flow rule is used, i.e., r = 0f/0o, it
becomes symmetric. The explicit expression of D can be obtained when the
flow rule and hardening model are specified. Since a part of the strain rate is
plastic and therefore does not increase stress, the elastic stiffness D is reduced by
the plastic consistency parameter. A similar observation can be made for the
case of the one-dimensional system in Eq. (4.8).

E
Elastic domain
Fig. 4.15 Angle between

elastic trial stress and ] .
normal to the yield surface Elastic trial



4.3 Multidimensional Elastoplasticity 287

In order to be a stable material, the rate of work due to stress rate must be
positive, i.e., 6 : € > 0. Equation (4.98) implies that the elastoplastic tangent
stiffness D°P must be positive definite for a stable material. In addition, in order
to have a stable hardening behavior, the rate of work during the plastic defor-
mation must be positive, i.e., & : &P > 0. These two conditions are called
Drucker’s postulate.

Example 4.11 (Plastic Consistency Parameter and Elastoplastic Tangent Stiff-
ness) Consider the following combined linear isotropic/kinematic hardening
model with associative flow rule:

(4.99)

Using five material parameters (4, u, 5, H, 0(3’{) and the current value of stress (¢) and
plastic variables (a, ep), calculate the plastic consistency parameters, y, and
elastoplastic tangent stiffness, Dep,.

Solution The plastic consistency parameter can be calculated from the rate of
change of yield function as

f(s,a,ep) =||s —af| — \/g[a%—i— (1 —pB)Hey| =0,

S DU ) ¢§ .
f—a.s—k%.a—ka—epep—N.s—N.a— 5(1—[1’)Hep—0.

The purpose is to write the above equation in terms of the plastic consistency
parameter. The deviatoric stress rate, back stress rate, and effective plastic strain
can be written in terms of the plastic consistency parameter, as

§ =2u(é —éP) =2ue — 2uyN
2 2
Y = “pHEP = “BHYN
0 = SfHe" = fHy
6 2
p 37/

By substituting these relations in the rate of yield function,

. 2 2
f:2,uN:é—2y}/N:N—§ﬁH;/N:N—§(1—ﬁ)H}/:O.
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Note that N:N=1 and N : € = N : ¢ are used. The above equation is linear with
respect to the plastic consistency parameter and can be solved for it, to yield

2uN : &

_HNCE 4.100
P (4.100)

For elastoplastic tangent stiffness, consider the following constitutive relation in
a rate form:

6=D:¢-D:é° =D:&¢—yD:N,

where D=+ 2/3)u)1®1+2ul4.,. Since N is a unit deviatoric tensor,
D: N=2uN. Thus,

. . 2uN : ¢ 2 )
6=D:¢-yNF2 _Ip_ " _NgN|:&
2u+5H 2p+5H
Thus, the elastoplastic tangent stiffness can be obtained by
4 2
D?=D-—F_N®N, (4.101)

Note that the first term on the right-hand side of the expression of elastoplastic
tangent stiffness DP is the elastic constitutive tensor D in Eq. (4.81). Thus, the effect
of plastic deformation appears in the second term through the plastic modulus H and
unit deviatoric tensor N, which depends on the current stress and back stress. g

Example 4.12 (Plastic Deformation of a Bar) Consider a bar under a uniaxial
tension load. At load step ¢, the axial stress o1y =300 MPa, and the material is
purely elastic before #,. At load step 7,1, a strain increment Ag;; = éAt = 0.1 is
given, determine stress and plastic variables. The material is combined linear
isotropic/kinematic hardening, and the material parameters are given in Table 4.2.

Solution Although it is a uniaxial problem, a three-dimensional stress state will be
considered. At load step ¢, the stress and its deviator can be written as

300 0 O 200 0 0
c=| 0 0 O|MPa, s=| 0 —100 0 [MPa.
0 0 O 0 0 —100
Table 4.2 Elastoplastic E P P oy H B

material parameters
2.4 GPa 1.0GPa |02 |300 MPa 100 MPa |03
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Due to the effect of Poisson’s ratio, the incremental strain and its deviator can be
written as

0.1 0 0 0.08 0 0
Ae=| 0 —0.02 0 , Ae=| 0 —-0.04 0
0 0 —0.02 0 0 —0.04

Since the material is purely elastic, the plastic variables are all 0, i.e., "a=0,
"e, =0. Accordingly, "n ="s — "ot ="s. The trial state can be obtained by assuming
the strain increment is elastic:

360 0 0
M="s="s+2ule=| 0 —180 0 | MPa.
0 0 —180

In order to calculate the unit deviatoric tensor N, the trial shifted stress is
normalized

[0 | = /3607 + 1807 + 1802 = 180v/6 MPa,

. 2 0 0
N = ——lo -1 o
|| v6lo o _i

It is necessary to check if the trial state satisfies the yield criterion or not. The yield
function with the trial state becomes

) = ral] ) = 180v6 300y 2 <5006 o

Thus, the trial state stays outside the yield surface, and the material will go through
plastic deformation. The plastic consistency parameter can be obtained by

_ 2uN: Ae

=R 0.0948.
R PR

Using the plastic consistency parameter, the stress and plastic variables are updated by

3852 0 0
"e="6+D:Ae—2uyN=| 0 774 0 |MPa,
0 0 774
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5 154 0 0
o ="o 4 §ﬂHyN =| 0 -077 0 |MPa,
0 0 077
2

”“ep ="e, +1/5zy = 0.0774.

W

Note that the stress is not uniaxial anymore. Due to plastic deformation, both 65,
and o33 exist. m

4.3.5 Numerical Integration

Since constitutive relations and evolution of plastic variables are in the form of rates
in the elastoplastic model, they need to be integrated over time (or load) increments.
In static problems, the time increment should be understood as a load increment (refer
to Chap. 3). The full magnitude of load is first divided by N increments, and the
structural equilibrium at each increment is sought with the incremental force method.
It is assumed that the solutions and the status of material at time #,, are known, which
includes stress and plastic variables. Then, at time #,, 1, the Newton—Raphson method
solves for the incremental displacements during the convergence iteration. Thus, the
objective is to update stress and plastic variables from time ¢, to ¢,,,; using the given
displacement increments or equivalently using the given strain increments.

Note that the structural equilibrium is only satisfied at the discrete set of time
increments. Thus, it is possible that there might be discretization error in time,
especially when the status of material changes within a time increment. If smaller
size of time increment is used, the error will be reduced. This is different from the
nonlinear elastic systems in which the size of time increment is determined in order
to help convergence. In the case of elastoplastic systems, it may affect the accuracy
of analysis.

Although there are many integration methods for solving differential equations,
it is important that the method should provide accurate and robust results. The
backward Euler time integration method, which will be used in the following
derivations, has been popular because it is simple and provides unconditional
stability. It is well known that the return-mapping algorithm, with the radial return
method as a special case, is an effective and robust method for plasticity [1]. Thus,
time integration of elastoplasticity model using return-mapping algorithm will be
discussed in this section. In the return-mapping algorithm, a two-step method is
often used. First, the elastic trial status is computed in which all strain increments
are purely elastic. If the trial stress resides outside the elastic domain, then the trial
stress is projected onto the yield surface, which is a convex set. This step is called
the return-mapping to the yield surface. During the return-mapping step, the yield
surface itself changes due to the evolution of plastic variables (strain-hardening).
Thus, it is challenging to find the return-mapping point on the yield surface, while
the radius and center location of the yield surface are changing.
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1. Return-Mapping Algorithm
For associative plasticity, it is well known that the backward Euler method
produces the closest point projection. Since the displacement increment at time
t,+11s known, the strain increment at time ¢,,, ; can be computed from the definition
of strain. The first step is called the elastic predictor and uses this incremental
strain. The stress and hardening parameters are predicted elastically as

s="s+2ule, "a="a, "e,="ep, (4.102)
m="s-"a, (4.103)

where the left superscript n denotes the time ¢, and “tr” denotes the trial status.
In the elastic predictor step, all strain increments are considered to be elastic and
thus, all plastic variables are fixed. Thus, there is no change in plastic variables.
Although both volumetric and deviatoric parts of stress change, only the change
in deviatoric stress is considered above because the hydrostatic stress does not
affect plasticity.

If the trial stress “m is within the elastic domain, i.e., {"n, "e,) <0, then the
status of the material is elastic, and the stress and plastic variables are updated
using the trial predictors as

n+1s _ trs, n+1a — rra, n—}—lep _ ”Aep- (4.104)

This is considered as the end of time integration when the status of the material is
elastic.

If the trial stress "n is outside the elastic domain, i.e., f{"n, “¢,) > 0, then the
status of the material becomes plastic, and the plastic correction step needs to be
carried out to find the plastic status of the material. The stress and plastic
variables are corrected by considering plastic deformation. Figure 4.16 illus-
trates the process of elastic prediction and plastic correction steps. First, because
the plastic strain does not contribute to the stress, the trial stress is reduced
proportional to the plastic strain increment as

ntlg =g — 2uAeP ="s — 2up N. (4.105)

The plastic variables are also updated simultaneously with the stress,
according to the flow rule as

"o = "o + Hyp N, (4.106)
n+1 n 2 -~
ep ="e, + 3 (4.107)
wherey = yAtis the plastic consistency parameter, and N ="*'n/I""* 'l is a unit

deviatoric tensor, normal to the yield surface at time ¢,,,. Note that stress and
back stress are corrected in the parallel direction to N; the trial stress reduces,
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Fig. 4.16 Return-mapping
of isotropic elastoplasticity

while the back stress increases. This fact makes it convenient for finding the
updated stress on the updated yield surface.

Note that the plastic strain increment A€, or equivalently, 7 N is unknown yet.
In order to simplify the following calculations, consider the shifted stress at time

L1t
milg ="tlg o =" — (2u + Hy )7 N. (4.108)

Since "“1] is parallel to N, "1 must also be parallel to N, which means that the
final updated stress moves in the same direction as the trial stress. Thus, the unit
normal tensor to the yield surface can be computed from the trial stress by

: (4.109)

which is known from the elastic predictor step. Thus, the plastic correction step
condenses to determine the plastic consistency parameter 7, from which the
plastic strain increment can be obtained. The basic idea is to make the yield
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function satisfy the yield condition at the updated state. Thus, at the return-
mapped point, the following yield condition must be satisfied:

2
f(n+ln’n+lep) _ ||n+1nH _ \/gk.(n-i-lep)
2
~[Inl] - (2 Ha( )7 20 e) =0,

(4.110)

which is a nonlinear equation in terms of y . Equation (4.110) can be solved for y
using the local Newton—Raphson method. Note that this is different from the
Newton—Raphson method for the convergence iteration in which equilibrium
between internal and external forces is sought (e.g., see Eq. (4.19)). This is a
local iteration to find the stress point on the yield surface. Thus, the solution
procedure for elastoplastic systems has double iteration loops. The inside, local
iteration loop usually converges quickly within five or six iterations, but it needs
to be performed at every integration point that has plastic deformation. Below is
the flowchart for the local Newton—Raphson iteration to find the stress point on
the yield surface:

1. Initialize variables
k=0, eg = "ep’ }/k =0, fTOL = 0'(; X 1077, kmax = 20.

2. Yield function

£ =[] - (2/4+Ha(e§))yk _ \/§K<e§)

3. Jacobian relation

of 2 0 2
87}/ =2u+H,+ \/;Hot,epy +§K,ep-

4. Update the plastic consistency parameter and effective plastic strain

k+1 k + fk k+1 n + \/E k+1
= , e ="e — .
v Y o o P 3

5. Check convergence

If (Il > froL) k=k+1 and go to Step 2.
If (k> kpmax) stop with error message.
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If isotropic/kinematic hardening is a linear function of y, or of the effective
plastic strain, then only one iteration is required to compute the return map point
because the equation becomes linear.

2. Updating Stress and Plastic Variables
After y is found, the deviatoric stress can be updated at time 7,,,; by

ntlg ="s 4+ 2uAe — 2uy N. (4.111)

However, once the return-mapped point is found, the deviatoric stress is no
longer necessary. Rather, the stress itself can be updated by

"l = "6 + Ao, (4.112)
where the stress increment can be calculated from
Ao =D : Ae —2uyN. (4.113)

In addition, the back stress and the effective plastic strain are updated by

"o =" + Hqp N, (4.114)
n+1 n 2A
e, ="e, + 3 (4.115)

Note that the stress and back stress increments corresponding to the plastic
correction component in Egs. (4.113) and (4.114) are in the same direction as
N, which is a radial direction of the yield surface, as shown in Fig. 4.15.

Example 4.13 (Plastic Consistency Parameter) Consider the combined linear iso-
tropic/kinematic hardening model in Example 4.11. Calculate the plastic consistency
parametery during time integration, and compare it with the rate form y in Eq. (4.100).

Solution In the case of linear hardening, the yield criterion in Eq. (4.110) becomes
a linear function of the plastic consistency parameter. For the given combined linear
isotropic/kinematic hardening model, the yield function at ¢, can be written as

. 2 2 2
f‘(iH»l,n,HJrlep) _ l‘ln _ (2,u+§ﬂH>}7NH _ \/;K(llep) _g(l _ﬂ)HyA =0. (4116)

Since " and N are parallel, the first term on the right-hand side (norm) can be split
into two individual norms, to yield

) 2\ . _ 2. \.
Ty — <2u+§ﬂH>yNH =||"n|| - <2ﬂ+§ﬂH>}/.

Then, it is clear that Eq. (4.116) is a linear function of the plastic consistency
parameter, which can be solved using
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}; — trl,l — /% ("e
1.

The above equation provides a convenient implementation strategy for checking
plastic loading and calculating the plastic consistency parameter. The return-
mapping step starts when the trial stress stays outside the yield surface, as

£ ep) = ||™n]] - \/gk(nep) > 0.

In fact, this trial yield function is identical to the numerator in Eq. (4.117). Thus, the
plastic consistency parameter can be calculated by

A :f(trn/rep)
2u+ %H

It is noted that both the rate form y and the incremental form y have the same
denominator. In order to compare the numerators, the trial yield function is explic-
itly written in terms of stress and plastic variables:

o) = - 2use] =) >0

The physical meaning of f{" 0, "¢,) is the radial distance from the yield surface to ”'s
in stress space, as shown in Fig. 4.17. In order to plot the numerator in Eq. (4.100),
2uN : &, it is converted to the incremental counterpart as 2uN:Ae. Since N is a unit
deviatoric tensor, N:Ae =N:Ae, which is a projection of Ae to N. As shown in
Fig. 4.17, the two formulations become equivalent when (a) the material is in the
plastic state at ¢,, and (b) Ae is parallel to the "n. In general, these two requirements
are satisfied when the size of time increment is very small. m

Fig. 4.17 Ditfference in the plastic consistency parameters from rate form and incremental form
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Example 4.14 (Plastic Deformation of a Bar) Determine stress and plastic vari-
ables in Example 4.12 using incremental time integration. The axial incremental
strain is given as Ae;; =0.1. Assume the same material properties and hardening
parameters with that of Example 4.12.

Solution The two formulations, rate and incremental forms, are identical until the
determination of plastic consistency parameter, which can be obtained using the
trial yield function in the incremental integration by

tr I
MEAG ORI

Note that the above plastic consistency parameter is identical with that of Example
4.12. This happens because (a) the material was initially plastic and (b) Ae is
parallel to the "n. Thus, the updated stress and plastic variables are supposed to
be identical, too:

3852 O 0

"Me="6+D:Ae—2uyN=| 0 774 0 |MPa,
0 0 774
5 154 0 0
o ="o 4 gﬁHyN =| 0 -077 0 |MPa,
0 0 —0.77
n+1 n 2
ep ="ep+ 3= 0.0774.

3. Consistent Tangent Stiffness

As discussed in Chap. 2, if the Jacobian matrix (or tangent stiffness here) is
accurate, the Newton—Raphson method shows a quadratic convergence. In struc-
tural analysis, since the residual force is related to stress, the Jacobian matrix
requires the derivative of stress with respect to strain, which is called the tangent
stiffness. The continuum elastoplastic tangent stiffness, DP, in Eq. (4.98) can be
used to this purpose, but numerical tests show that the Newton—Raphson iteration
does not show a quadratic convergence when DP is used. Simo and Taylor [2]
showed that this happens because DP is not consistent with the time integration
algorithm. D is tangent stiffness between stress and strain rates, while the time
integration algorithm uses a finite size of time increment. The tangent stiffness
must be consistent with the time integration algorithm to achieve quadratic
convergence during Newton—Raphson iteration. In this section, the tangent
stiffness that is consistent with the time integration algorithm is derived. The
incremental stress in Eq. (4.113) is differentiated with respect to the incremental
strain, which produces a consistent constitutive relation with the return-mapping
algorithm as
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O0Ac oy ON

D¢ = =D — 2uN —2up
DAe K ®8A “ e’

(4.118)

where D™# stands for consistent (or algorithmic) tangent stiffness. The above
relation requires derivatives of the plastic consistency parameter and unit
deviatoric tensor.

Since the consistency condition in Eq. (4.110) must be satisfied for all strain
states between load steps #, and t,,,1, the differential of f with respect to Ae must
vanish, from which the relation between y and Ae can be obtained. In order to
differentiate Eq. (4.110), the following relation can help:

o[|"n|| n
=2 = 2uN,
one ~ Ml =
0H (" e, )_\/iaH‘, 07
0Ae V3 0e, 0Ae

In the derivation of the above equation, the property that N is a deviatoric

tensor is used. In addition, the relation of Ae, = \/(2/3)7 is used. The yield
function in Eq. (4.110) can then be differentiated with respect to the strain
increment to obtain

of \P 2\ 97
== 2 2 H(X H(x() = 07
Fne N- ( ot Hot \[FHuq? +3 ) OAe

where Hy,., = OHy/0Oe, and k., = Ok/Oep. Thus, the derivative of the plastic
consistency parameter with respect to the strain increment can be obtained as
oy 2uN
08¢~ (ot Hot Hacd + )

(4.119)

Next, the increment of the unit normal tensor to the yield function can also be
expressed as

ON ON 0"n
OAe a”n O0Ae
I .rl ®fr,rl
= - - . : 2ﬂI ev -
lH”ﬂH [l ‘

2
= [ e ~NEN
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Thus, from Eq. (4.113) the consistent or algorithmic tangent stiffness becomes

Dt _ O0Ac b 4NN 4’y

OAe 2u+ Hyg +\/>Ha(,}/+3l<e H’r H

liew — N®@N].  (4.120)

It is interesting to compare the above tangent stiffness with the continuum
elastoplastic tangent stiffness in Eq. (4.98). Since Eq. (4.98) is written in terms
of a general hardening model, it is simplified for the case of the isotropic/
kinematic hardening model, as

42N @ N
T ) . LR\ (4.121)
2//‘ +H, +§K,ep

By comparing the two equations, it is clear that D’ does not have the third
term as in D&, which represents the effect of change of N due to the strain
increment. Since the rate form only considers infinitesimal strain increment
(strain rate), it does not take into account the change in direction. However,
when the strain increment is not small, it may change the direction of shifted
stress, and thus, N. This effect did not appear in the 1D elastoplasticity model in
Sect. 4.2 because a scalar stress is used with fixed N. The other difference is the
denominator of the second term on the right-hand side. They are similar, but DP
does not include the nonlinear hardening effect. Thus, they become identical
when the hardening is linear. This happens because, in a sense, the rate form
differentiates the hardening model first and then takes increments, while the
incremental form differentiates after taking increments. Note that the two tan-
gent stiffnesses become identical when y = 0.

4. Incremental Equations for Elastoplasticity
For notational convenience, the energy form and its linearization are defined as

a("g; " uu) // ¢ dQ, (4.122)

a* ("&,""'u; bu, ) // : DU : ¢(5u)dQ. (4.123)

The notation a*(&, u; 6u, W) is used such that the form implicitly depends on the
plastic variable & and the total displacement u and is bilinear with respect to du
and u. The energy form also implicitly depends on the plastic variables. Note
that unlike the geometric nonlinear systems in Chap. 3, the initial stiffness term
does not appear, since only infinitesimal deformation is being considered.
Total and updated Lagrangian formulations become identical for the infinites-
imal deformation problem.

Since only material nonlinearity is considered, the weak form of structural
equilibrium can be written at load step ¢, as


http://dx.doi.org/10.1007/978-1-4419-1746-1_3
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a("g;" a,a) = (W), Va € Z. (4.124)

Let the current load step be #,,; and let the current iteration counter be k.
Assuming that the applied loads are independent of displacement, the linearized
incremental equation of is obtained as

a*("g,"'u; out,u) = L(u) —a("E; " w W), VEEZ, (4.125)
and the total displacement is updated using
}’L+1uk+1 — n+1uk + 5uk (4126)

Note that incremental equation (4.125) is in the form of ["*'K*]-{8u*} = {"*'R}
after discretization using finite elements. Equation (4.125) is solved iteratively
until the residual vanishes, which means that the original nonlinear equation
(4.124) is satisfied. It is emphasized here that the linearized increment
Eq. (4.125) solves for displacement increment su* ="*"u**! —"*1y* between
two consecutive iterations, but the strain increment should be calculated using
the displacement increment Au* = A" *'u* +"u as in Eq. (4.10). This is because
the stress and all history variables are updated from the previous converged load
increment, not from the previous iteration.

Unlike nonlinear elastic systems, the elastoplastic system requires one more
step after the nonlinear equation (4.124) converges at load step #,,;. Since the
stress and plastic variables will be used in the next load step, they need to
be updated at the end of the current load step. This step is identical to the
updating procedures for stress and plastic variables, described in
Eqgs. (4.112)—(4.115). During iteration, these variables are calculated, but they
are not stored because they are not the converged values. Once the nonlinear
equation is converged, these values are updated and stored.

4.3.6 Computational Implementation of Elastoplasticity

In this section, implementation of the elastoplasticity with von Mises yield criterion
and combined linear isotropic/kinematic hardening model is presented. Even if it is
possible to develop the finite element formulation for various element types, an
eight-node hexahedral solid element in Chap. 1 will be used for demonstration
purposes. Since only the material nonlinearity is considered, it is assumed that the
strain as well as the rigid-body rotation is small.

In the computer implementation of finite element programs, matrix-vector
notation is more convenient than tensor notation. In matrix-vector notation,
a second-order symmetric tensor is expressed using a vector, while a fourth-order
symmetric tensor is expressed using a matrix. For example, the Cauchy stress and
incremental strain vectors are defined as


http://dx.doi.org/10.1007/978-1-4419-1746-1_1
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{6} =[on1 o2 o3 on on onl
and
{Ae} = [Ae;1 Aeyn Aez 2Aepn 2Aey; 2Aep3],

respectively. In the above definitions, the symmetric property of the tensor is used.

It is assumed that the incremental displacement vector Ad; = { Ady,, Ad),, Adj3 }T
is given for each node of the element. The subscript / is used to denote the node such
that d; will be the displacement vector for node /. In each element, the node numbers
are locally defined such that/ =1, 2, . . ., 8 for the hexahedral element (see Fig. 4.18).
The displacement increment within the element can be calculated using the follow-
ing interpolation scheme:

I=1

where €= {¢&, , £} is the natural coordinate vector at the reference element, N,(§)
is the interpolation or shape function whose expression is given in Eq. (1.136), and
Ad, is the vector of nodal displacement increment. Since stress and plastic variables
are calculated at the integration points, the value of natural coordinate is selected at
the integration point.

For given displacement increments, strain increments can be calculated in a
similar way as with the linear elastic material because the deformation is assumed
to be infinitesimal. Thus, the strain increment can be interpolated by

a b
g
X' X (~1,-1,1) 111
s 1,-1,1) |
X v (1,1)1)
1
— ' n
1
3 1
il x L] S JeLe
X (1L,-1-1) | 2
X3 7

4 c/ (1,1-1)

X2
X1
Finite Element Reference Element

Fig. 4.18 Eight-node three-dimensional isoparametric solid element. (a) Finite Element
(b) Reference Element
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8
{Ae} =) B/Ad),
=1

where
N 00
0 N 0
0 0 N;is
B, = ’ 4.128
! Nip Ny O ( )
0 Ni3 Npo

Nz 0 Npy

is the discrete displacement—strain matrix of a solid element, and N; ;= ON,/0x; is
the derivatives of the shape function N; with respect to the physical coordinates
whose expression in given in Eq. (1.138). Note that since the shape function is
defined in the natural coordinates, it is necessary to use Jacobian relation between
the physical and natural coordinates. Because of the infinitesimal deformation
assumption, the total displacement and the total strain can be obtained by adding
all incremental displacements and strains, respectively. Thus, the total displace-
ments and strains at load increment #,,; can be obtained by

n+lu — nu 4 Au

and
{"e} = {"e} + {Ae}.

In addition to the strain increment, the stress and plastic variables at the previous
load increment ¢, are required. In the case of combined linear isotropic/kinematic
hardening model, the following variables are needed: "e,, and

T
"6y3 o3},

as "ap )

{"6} ={"o11 "om "o3 "on

{na} — {na” "(122 116133 n n

an

Using the above stress and plastic variables and material parameters (4, y, #, H, JOY), the
updated stress and plastic variables are calculated using the return-mapping algorithm.

4.3.6.1 Return-Mapping

At each integration point of the element, the stress and plastic variables are
determined using the return-mapping algorithm. In the following flowchart, the
parentheses for vectors are not used for notational briefness:

1. Unittensor1=[1 1 1 0 0 0]".
2. Trial stress “6 ="06+D - Ae.


http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Equ138
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3. Trace of stress tr("6) ="0,1 + 622+ 033.
4. Shifted stress " = "6 — "a — 4tr("6)1.

5. Norm Htr'lH:\/(”7711)2"‘(""722)2 + (”"733)2 +2 {(""712)2 + (""723)2 + (”’113)2 .

6. Yield function f = ||"n|| = 3o} + (1 = p)H"e, .
7. Check for the yield status.

IF f< 0 THEN

The material is elastic

¢ ="0,
[A+2u A A 0 0 07
A A+ 2u A 0 0 O
Dt — D — A A A+2u 0 0 O
0 0 0 u 0 0
0 0 0 0 4 O
L 0 0 0 0 0 pul
EXIT
ENDIF
8. Consistency parameter y = zﬂfﬂ
3
9. Unit deviatoric vector N = ||i—:”

10. Update stress "*'6 = "6 — 2uy N.

11. Update back stress "o = "a + (2/3)H7 N.

12. Update eff. plastic strain ""e, = "e, + 1/ (2/3)7.
13. Consistent tangent stiffness

4y’ 4u*y
c = 5 Cy = 9
2u+3H |||
21 0]
3 3 3
1 2 1
3 3 3000
11 2
— —— Z 000
IdeV: 3 3 3
1 )
0 0 0 =00
2
o 0o 00 Lo
2
1
0 0 00 0 =
i 2]
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D =Dy — (c1 — c2)NiNj — ca x I

Note that the above calculation must be performed for each integration point of
an element. Accordingly, the stress and plastic variables at each integration point
must be stored and updated. There is no need to store the stress and plastic variables
during un-converged iteration. Once the Newton—Raphson method is converged at
load increment ¢, , they are stored, and next load increment starts.

In practical implementation, the stress update procedure is often separated from
algorithmic tangent stiffness calculation because the former is used more frequently
than the latter. Below are two MATLAB programs, combHard and
combHardTan. Both programs require stress, back stress, and effective plastic
strain at the previous load increment as inputs, as well as material parameters. It is
expected that stress and back stress are column vectors with dimension of 6 x 1.
Program combHard then returns updates stress, back stress and effective plastic
strain, while combHardTan returns the algorithmic tangent stiffness matrix.

PROGRAM combHard

Linear combined isotropic/kinematic hardening model

o0 o° o

function [stress, alpha, ep]=combHard (mp, D, deps, stressN, alphal, epN)

o°

Inputs:

mp = [lambda, mu, beta, H, Y0];
D=elastic stiffnessmatrix

stressN = [sll, s22, s33, tl2, t23, t13];
% alphaN = [all, a22, a33, al2, a23, al3];

o0 o° of

Iden=[1110001";

two3 =2/3; stwo3=sqgrt (two3) ; %constants
mu=mp (2) ; beta=mp(3); H=mp (4) ; YO=mp (5) ; $material properties
ftol = Y0O*1E-6; %tolerance for yield
stresstr = stressN + D*deps; %trial stress
Il =sum(stresstr(1:3)); %$trace(stresstr)
str = stresstr - I1*Iden/3; %deviatoric stress
eta = str - alphaN; %shifted stress
etat = sgqrt(eta(l) "2 +eta(2) "2 +eta(3)"2..
+2*(eta(4)"2 +eta(b5)"2 +eta(6)"2)); gnorm of eta
fyld = etat - stwo3* (Y0+ (1l-beta) *H*epN) ; %trial yield function
if fyld < ftol %yield test
stress = stresstr; alpha = alphaN; ep = epN; %trial states are final
return;
else
gamma = fyld/ (2*mu + two3*H) ; %plastic consistency param
ep = epN + gamma*stwo3; gupdated eff. plastic strain
end
N = eta/etat; gunit vector normal to f
stress = stresstr - 2*mu*gamma*N; $updated stress

alpha = alphaN + two3*beta*H*gamma*N; %updated back stress
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PROGRAM combHardTan

o0

% Tangent stiffness for linear combined isotropic/kinematic hardening
model

%

function [Dtan]=combHardTan (mp, D, deps, stressN, alphaN, epN)
Inputs:

mp = [lambda, mu, beta, H, Y0];

D=elastic stiffnessmatrix

stressN = [sll, s22, s33, tl2, t23, tl1l3];

alphaN = [all, a22, a33, al2, a23, al3];

00 0P 0P o° of

o°

Iden=[111000]";

two3 =2/3; stwo3=sqrt (two3) ; $constants
mu=mp (2) ; beta=mp(3); H=mp (4); YO=mp (5) ; $material properties
ftol =Y0*1E-6; %tolerance for yield
stresstr = stressN + D*deps; %trial stress
I1 =sum(stresstr(l:3)); %trace(stresstr)
str = stresstr - I1*Iden/3; %deviatoric stress
eta = str - alphaN; %shifted stress
etat = sgrt(eta(l) "2 +eta(2) "2 +eta(3)"2..
+2*(eta(4)”2 +eta(5)”2 +eta(6)”2)); %normof eta

fyld = etat - stwo3* (Y0+ (1l-beta) *H*epN) ; $trial yield function
if fyld < ftol %yield test

Dtan = D; return; %elastic
end
gamma = fyld/ (2*mu + two3*H) ; %plastic consistency param
N = eta/etat; %unit vector normal to f
varl = 4*mu”2/ (2*mu+two3*H) ;
var2 = 4*mu”2*gamma/etat; %coefficients
Dtan =D - (varl-var2) *N*N’ + var2*Iden*Iden’/3; $tangent stiffness
Dtan(l,1) =Dtan(1l,1) - var2; %contr. from4th-order I
Dtan(2,2) =Dtan(2,2) - var2;
Dtan(3 3) 7Dtan(3 3) -var2;
Dtan(4,4) =Dtan(4,4) - .5*var2;
Dtan(5,5) =Dtan(5,5) - .5*var2;
Dtan(6 6) —Dtan(6 6) - .5*var2;

4.3.6.2 Finite Element Procedure for Elastoplasticity
Once stress and plastic variables are determined, they can be used for solving the

nonlinear equilibrium equation. First, the variation of strain can be interpolated
using the same strain—displacement matrix B, as

)} = 28:13,&, = [B]{d}, (4.129)



4.3 Multidimensional Elastoplasticity 305

where d; = {311,312,313}T is the displacement variation at node /, while d =

{d),dy,....,dg }T is the displacement variation of all nodes in the element. Simi-
larly, [B]=[B1,B,, ..., Bgl.

Using the above equation and the updated stress in Eq. (4.112), the discrete
version of the energy form can be derived as

a("&;" u // JT{H6}dQ = [d) // {5 }d0
= {d}' {r"}, (4.130)

where {‘fi"t} is the discrete internal force vector. When numerical integration is
used, {£™} can be calculated by

fmt} Z( n+16}|J|) o,

where NG is the number of integration points, |J| is the Jacobian between the
physical and reference elements, and @ is integration weight.

In addition, the discrete external force vector can be derived from the definition
of the load form as

u) = /4/ QﬁTdeEH— /F SﬁTfde
- ;af { / / NiEaQ + /F SN,(g)fsdl“}' (4.131)

= {d}"{f>)

When concentrated nodal forces are applied, they can directly be added to the
corresponding locations in {f**'}. Since the applied loads are assumed to be
independent of deformation, the external force {£*'} is a fixed vector. Thus, the
discrete version of solving the nonlinear equilibrium equation is to find the internal
force that has the same value as the external force, i.e.,

{ay e @} = {a} (e}, v{d} ez, (4.132)

where Zj, is the discrete counterpart of space Z. Since the displacement variation
is 0 at the nodes where displacements are prescribed, Eq. (4.132) satisfies
{(f"(d)} = {£'} for all nodes whose displacements are not prescribed.

Since the internal force is a nonlinear function of deformation, Eq. (4.132) needs
to be solved using an iterative method, such as the Newton—Raphson method, which
requires the Jacobian matrix, or equivalently, the tangent stiffness matrix. Using the
consistent tangent stiffness, the linearized energy form can be discretized by
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*(né ntly 6uu {d} // Dalg [B]dQ{sd}. (4.133)

The integral term in the above equation is called the tangent stiffness matrix. After
using numerical integration, it becomes

NG
K] = (BT DY¢|[B J) wx. 4.134
il = > (1B (0] 81} ), (4.134)
In general, the above integration as well as the one in the internal force in
Eq. (4.130) are evaluated using the Gauss quadrature rule. Normally, 2 X 2 inte-
gration points are used for a quadrilateral element.
The discretized version of incremental equation in Eq. (4.125) can now be
written in the form of finite element matrix equation as

(@} [Kr]{5d} = {d} {£ — ™), v{d} € Z, (4.135)

The above linear system of equations needs to be solved iteratively until the
residual force (right-hand side) vanishes. Different methods of solving nonlinear
equations in Chap. 2 can be used. For example, in the case of the modified Newton—
Raphson method, the tangent stiffness matrix [Krt] at the first iteration is repeatedly
used. In the case of the incremental force method, the external force vector {f*'} is
divided by the number of increments, and the Newton—Raphson method is
employed at each load increment.

Finally, it is reminded that the above algorithm only works under the assumption of
small deformation and rotation. When deformation becomes large, the assumption
of additive decomposition, i.e., Ae = Ag. + Ag,,, cannot be valid. When deformation is
small but a rigid-body rotation is present, the assumption of additive decomposition
can still be used with caution, which will be discussed in the Sect. 4.4.

Example 4.15 (Shear Deformation of Elastoplastic Square) A plane strain square
undergoes simple shear deformation in the x—y plane. When the shear strain increment
is Ay, =10.004 at each step, plot shear stress 71, vs. shear strain y, curve for 15 load
increments. Calculate the slopes in the elastic and plastic regions and compare these
slopes from theoretical ones. Assume linear isotropic hardening with the following

material properties: E =24 GPa, v =0.2, H=1.0 GPa, and aOY = 200+/3 MPa.

Solution Since the square undergoes simple shear deformation, only nonzero stress
and strain components are 7j, and yi,, respectively. There is no effect on the
deviatoric component because all diagonal components are 0. Below is the list of
MATLAB programs that solve for stresses with given strain increments. Note that
the input deps is the strain increment, not the total strain. Figure 4.19 shows shear
stress vs. shear strain curve. As shown in Example 4.8, in pure shear deformation,
the material will yield at

1
T = %ag =200 MPa,

which is consistent with the curve in Fig. 4.19.


http://dx.doi.org/10.1007/978-1-4419-1746-1_2
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%
% Example 4.15 - Shear deformation of elastoplastic square

%

Young = 24000; nu=0.2; mu=Young/2/ (l+nu); lambda=nu*Young/ ((l+nu)*(1l-
2*nu) ) ;
beta=0; H=1000; sY=200*sqgrt(3) ;
mp = [lambda mu beta H sY];
Iden=[111000]1";
D=2*mu*eye (6) + lambda*Iden*Iden’;
stressN=zeros(6,1); deps=zeros(6,1); alphaN = zeros (6,1) ; epN=0;
for i=1:15
deps(4) =0.004;
[stress, alpha, ep]=combHard (mp, D, deps, stressN, alphaN, epN) ;
X(i) =i*deps(4); Y(i) =stress(4); Z(1)
stressN = stress; alphaN = alpha; epN = ep;
end
X=[0X]; Y=[0Y]; plot(X,Y);

The slope of elastic region is 10,000 MPa, which corresponds to y. The slope in
plastic region is 322.5 MPa, which corresponds to tangent stiffness in the plastic
region. Since 77, is only nonzero stress component, the trial stress can be written in
the scalar form:

"r15 = "1 + pAyy,.

For the convenience of discussion, it is assumed that "z, is at the initial yield point,
i.e., "1, =200 MPa. Then, the yield function at the trial stress becomes positive
(outside of the yield surface):

. 2 " 2
f=V2"rp - 36% = V2t + \/E(#Aﬁz) - gd(s)( = \/E#Ahz > 0.
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Thus, the plastic consistency parameter can be calculated by

_ Ve,

Then, the return-mapping algorithm for the shear stress becomes

"oy =115 + ubyy, — uyNo.

It is straightforward to obtain Ny, = 1/ /2 from the definition of N. After substitut-
ing the plastic consistency parameter, the updated shear stress becomes

n+1

T ="110 + |1 Ay,

__H
2,u+%H

The coefficient of Ay, is the slope in the plastic region of shear stress—shear
strain curve. =

4.4 Finite Rotation with Objective Integration

The elastoplasticity with return-mapping algorithm in the previous section can be
extended when the structure undergoes a small strain but with a finite rotation.
In such a case, if a body-fixed coordinate that rotates with the structure is used,
stresses will not be affected by the rigid-body rotation, which is the main idea in this
section. However, it can be shown that the rate of Cauchy stress is not invariant
under rigid-body rotation. The rate of a tensor that is independent of imposed rigid-
body rotation is called an objective rate. Thus, the concept of an objective stress rate
will be introduced first. For a finite rotational problem, objective rate tensors
have to be used to describe the motion of the structure and to obtain the material
frame independent results. Although an extensive amount of research has been done
pertaining to objective rates, only co-rotational Cauchy stress rate will be intro-
duced in this section. Other types of objective rates can be used in a similar manner.
The same constitutive relation for elastoplasticity in Sect. 4.3 can be used in terms
of objective stress rate. The approach is therefore valid for elastoplastic systems
with small elastic deformation, relatively large plastic deformation, and large rigid-
body rotation. Numerical difficulties associated with the objective rate include
the intricate transformation of a stress tensor into a rotation-free configuration,
the unsymmetric properties of the tangent stiffness, and the difficulty in obtaining
an exact tangent stiffness. Nevertheless, this model has been implemented in a good
deal of application software.
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4.4.1 Objective Tensor and Objective Rate

1. Objective Tensor

Any tensor that is not affected by superimposed rigid-body translations and rota-
tions of a spatial frame is called an objective tensor. It is noted that a rotation of the
body is equivalent to the rotation of the reference frame of the same magnitude but
in opposite direction. Consider two reference frames x —y—z and X —y —Z in
Fig. 4.20. The former is translated by ¢(#) and rotated by Q(t)T to arrive at the latter.
The position of a particle P at time ¢is X inx —y — z frame andXinX — y — z frame.
The former vector x is seen by an observer sitting in X —y —z frame as Q(#)-x.
In fact, the position vectors are related by

% =Q(1) x+ (1), (4.136)

where c(?) is the position vector of the origin of x —y —z frame and Q)" is the
orthogonal tensor that gives the orientation of x —y — z frame relative to X —y — Z
frame. Thus, x — y — z frame is different fromX — y — zby a rigid-body translation c(#)
and a rotation Q(r)".

Objectivity is also known as reference frame indifference. Quantities that
depend only on the orientation of the reference frame, which is given by Q, and
not on the other aspects of the motion of the reference frame (e.g., translation,
velocity and acceleration, angular velocity and angular acceleration) are said to be
indifferent or objective. Therefore, components of a tensor observed by two
different observers are different. This difference is due to the different orientations
of the observers but not to relative motions between the observers.

Definition Objective tensor. A scalar f, a vector v, and a second-order tensor T are
objective, if for reference frames X and x related by

X =c(1) + Q(r)x, (4.137)

Fig. 4.20 Two frames
different by rigid-body
translation and rotation
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i.e., differing only by a rigid-body motion, the corresponding scalar f, vector V, and
tensor T are related by the following:

=/,
v = Qy,
T = QTQ".

In this context, the change of coordinate system is not considered (each observer is
free to choose a coordinate system), but it is concerned with the change of
observer’s positions and orientations, or the change of reference frame. It is
convenient to imagine that the observers are attached to the continua and move
with the continua. If two motions are different only by a rigid-body motion, then the
two reference frames as seen in the eyes of the two observers are different by a
translation of the origin and a rotation of orientation. Therefore, in the discussion of
objectivity, transformation of coordinate system does not play any part.

Example 4.16 (Objective Tensor) When the two spatial frames are related by
Eq. (4.137), show that how the deformation gradient F, the right Cauchy-Green
deformation tensor C=F'F, and the left Cauchy-Green deformation tensor
b=FF" transform.

Solution The deformation gradient in the two different frames can be written as

ox - OX

Note that the material frame, X, never changes. The discussion in the objectivity is
only related to the spatial frames. By substituting the relation between the two
frames in Eq. (4.137),

F—E— 0(c+Qx)
To0XT 00X

ox
=Q X QF.
Note that the deformation gradient is a second-order tensor, but it behaves like a
vector. This happens because the deformation gradient depends on two frames: the
material frame (X) and the spatial frame (x). Since the vector in the material frame
remains unchanged, it behaves like a vector.
The right Cauchy-Green deformation tensor in X — y — z frame can be written as

C=F'F = (QF)"(QF) = F'Q"QF = F'F = C.

Thus, the right Cauchy-Green deformation tensor behaves like a scalar. This is
expected because C is a material tensor.
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The left Cauchy-Green deformation tensor in ¥ — y — Z frame can be written as

b=FF = (QF)(QF)" = QFF'Q" = QbQ".

Thus, the spatial tensor b is an objective tensor. =

As discussed in the above example, only spatial tensors are considered to
determine objectivity. Consider the velocity gradient in two different frames:

ov — 0V

L=< =%
ox’ ox’

(4.138)

where the velocity can be obtained by differentiating the relation X = Qx with
ignoring the rigid-body translation, as

Since Q is an orthogonal tensor, Q'=Q"and x=Q x=Q'x. Using this
relation, the above equation becomes

v=Qv+QQ'x (4.139)

Thus, the spatial velocity vector V is not objective under rigid-body rotation. The
velocity gradient in Eq. (4.138) can be obtained by differentiating the relation in
Eq. (4.139) as

— OV 0vOx . 10X T AT
L—%—Qag**QQ ﬁ—QLQ +QQ". (4.140)

This shows that the velocity gradient tensor is not an objective tensor because of the
presence of the second term. This means that the velocity gradient cannot be used to
describe the material behavior.

Example 4.17 (Rate of Deformation Tensor and Spin Tensor) The symmetric part
of the velocity gradient L is called the rate of deformation tensor d, whereas the
skew-symmetric part of L is called the spin tensor W. Show that d is objective and
W is not objective.

Solution From the definition of the velocity gradient, the rate of deformation can
be written as

L omy 1fov (ov\"\ 1{ovox (0¥ ox\'
d—i(HL)—i(%*(ﬁ))7(&%*(&%) )
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Using the relation v = Qv+ Qx and 0x/0X = Q, the above relation can be
simplified into

- 1 1/. LT
d=(QLQ" +QL'Q") +5(QQ" +QQ").

It is clear that the first term on the right-hand side is the rate of deformation in
x —y — z frame. For the second term, consider the following property of orthogonal
tensor: QQT = 0. Since this relation is satisfied for all time, its time rate should be

0,i.e., QQT + QQT = 0. Thus, the second term in the above equation vanishes, and
d = QdQ".

Thus, the rate of deformation is an objective rate. On the other hand, the spin tensor
becomes

W= QWQ' + (00" - Qa").

Due to the second term on the right-hand side, the spin tensor is not an objective
tensor. u

In the above example, it is seen that L and W depend on the spin of the rotating
system, but d depends only on the orientation of the reference (spatial) frame. Note
that for two chosen coordinate systems, L transforms like a second-order tensor if

Q=0.
2. Objective Rate

Suppose that T (any symmetric tensor) is an objective tensor. Is it true to say that its
rate T is also objective? The concept of the rate of a tensor T is important to find the
effect of deformation or loading history on the media. If a tensor is known as some
instantaneous moments, then by Taylor series expansion with respect to time, the
derivatives of this tensor field are required in order to determine the future response
of the media. In the rate form of elastoplasticity, the constitutive relation is given in
terms of stress and strain rates. Knowing an objective tensor T (stress or strain), the
question is whether T is objective or not. If it is not objective, it cannot be used to
predict the future value of T.

Let T be an objective tensor such that it satisfies the following transformation
relation:

T = QTQ". (4.141)

Then the rate of T can be written as

T = QTQ" + QTQ" + QTQ".
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. - T . . ..
The presence of QTQT and QTQ in the above equation shows that T is not an
objective rate. To determine an objective derivative, these two terms that include Q

- T . . .
and Q need to be eliminated from the above expression, since these terms cannot
appear in an objective tensor transformation. From the transformation of the

velocity gradient in Eq. (4.140), Q can be written as
Q=LQ- QL.
By taking the transpose of the above equation,
Q' =Q'L"-L7Q".
By substituting the above two relations into the expression of T,
T = (LQ - QL)TQ" + QTQ" + QT(Q'L - L'Q")
=LQTQ" - QLTQ" + QTQ" + QTQ'L" - QTLQ"
=LT - QLTQ" + QTQ" + TL' - QTLQ"
or, after rearranging,
T-TT-TL =Q(T - LT-TL")Q".
Thus, it follows that the following rate is an objective derivative:
T-LT-TL". (4.142)
Note that the above expression includes not only T but also T itself. The above rate

is called the Truesdell rate. It is possible to show that that the following derivatives
are also objective:

Co-rotational rate (Jaumann rate):

=T - Wr+1W. (4.143)
Convective rate:

T =T+ LT+ TL. (4.144)
Any one of the above three derivatives is as good as another, although they are not

equal to each other. If T is stress, these are objective stress rates. In the spatial
description, the constitutive model is given between the rate of stress and the rate of
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strain. Since the constitutive model has to be independent of the reference frame, it
is important to use the objective stress rate in describing the constitutive model.

Example 4.18 (Objective Stress Rates) Using the properties of Q = QW' — WTQ

: =T . . .
and Q = QL" — L Q, derive (a) co-rotational rate and (b) convective rate.

Solution:

(a) Using the property, Q=Qw' - WTQ, the rate of T can be written as
T =QTQ" +QTQ" +QTQ’
— (QW' - W'Q)TQ" + QTQ" + QT(WQ" - Q"W)
= Q(W'T)Q" - W'T + QTQ" + QTWQ" — TW.

After rearranging and using the property of W' = —W, the transformation
relation becomes

T+TW — WT = Q(T + TW — WT)Q".

Thus, T + TW — WT is an objective rate.
(b) Using the property, Q =QLT - ETQ, the rate of T can be written as

T = QTQ" + QTQ" +QTQ’
— (QUT-L'Q)TQ" + QTQ" + QT(LQ" - Q')
—Q(L'T)Q" —L'T + QTQ" + QTLQ" - TL.
After rearranging, the transformation relation becomes
T+L'T+TL=Q(T+L'T+TL)Q".

Thus, T 4+ L™T + TL is an objective rate. =

4.4.2 Finite Rotation and Objective Rate

1. Jaumann Stress Rate

It is well known that the rate of the Cauchy stress tensor is not objective, even if the
Cauchy stress itself is objective. As a body rotates without deformation, the Cauchy
stress tensor changes because the direction of the stress tensor has also changed. In
this section, instead of rate in the previous section, an increment is used; for
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example, the increment of rotation can be written as AQ = QAt. Let E; be a basis in
the jth direction of the material frame and let e; be the corresponding basis in the
spatial frame that is under rigid-body rotation such that they are related by ¢; = QE;.
The increment of e; can be computed by

Ae_,- = Wej, (4145)

where W; ;= (Au;; — Au;;)/2 is a component of the spin tensor that represents a
rigid-body rotation.
In spatial Cartesian coordinates, the Cauchy stress tensor can be written as

6 =o€ e,

where e; is a unit basis vector in the ith direction of Cartesian coordinates. In the
above equation, the summation rule is used for the repeated indices.
The incremental form of the Cauchy stress tensor can be obtained by taking
increments of the above equation as

Ac = Aa,-je,- & ej —+ o,-jAei & ej =+ GUC,‘ X Aej.

In the above equation Ac;; is the increment of stress component in the frame that
rotates with e;, which is the definition of co-rotational rate in Eq. (4.143). Thus, it is
indeed the Jaumann stress increment. After using the relation in Eq. (4.145), the
stress increment becomes

J
Ao = AGI:/»el' ® e + G[jW,'kek ® e + oje; & ijek~

After changing dummy indices, the stress increment can be written in terms of the
spatial basis as

Ac = (AGJ + ijW,'k - Gikaj) e e, (4146)

where Aafj is the Jaumann or co-rotational Cauchy stress increment, which is the
objective rate because it takes an increment of the tensor with respect to the
principal axis of the deformation rate tensor. Although the Jaumann stress incre-
ment is deficient with large shear strain problems because it produces an artificial
oscillation for a simple shear problem, it is the one most frequently used. Due to the
small strain assumption, the constitutive relation in the infinitesimal elastoplasticity
in Sect. 4.3 can still be used for finite rotational case. The constitutive equation in
Eq. (4.120) must be written in the form of the objective rate

Ac' =D : Ae. (4.147)

The other two terms in Eq. (4.146) represent the effect of rigid-body rotation.
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2. Objective Time Integration

Even if the incremental constitutive relation in Egs. (4.146) and (4.147) is written
using the objective stress rate, it is only accurate for small rigid-body rotations
because it is assumed that the spin tensor W is constant during the increment, which
is not true for finite rotation. Hughes and Winget [3] observed an excessive amount
of error in the rate form and proposed an algorithm to preserve objectivity for large
rotational increments. Their idea is to define the strain increment and spin tensor in
the midpoint configuration, which is between load steps ¢, and #,,;. In order to
rotate the strain increment and spin tensor to the rotation-free midpoint configura-
tion, the following relations have to be used:

1 1
n+i n n+1
X="X+-Au=""x —-Au.
2 2
Since the updated Lagrangian formulation will be used for elastoplasticity, it is
convenient to use the second relation in the above equation. If the above relation is
differentiated with respect to the coordinate direction "*'x at the current
configuration,

otx | 10Aw 1
ontlx 2 omHlx 27

where L = 0Au/0"*'x is the velocity gradient (from the fact that Au=vAr). The
inverse of the above relation can be obtained by

ontlx 1.\ !
——=(1—-=L .
Jntix ( 2 >

Then, the displacement gradient at the midpoint configuration can be obtained by

OAu 0Au a”lx:L( 1 )1.

anJr%x = ontlx anJr%X 1= EL
Then, the strain increment and spin tensor are defined at the midpoint configuration as

1{0Au  0Au”
1/ 0Au 0Au”

— = 4.149
2\ ortix  Ontax ( )

and stress and back stress at the previous load step are updated to the rotation-free
configuration by
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"s = R'6R", "a =R"aR", (4.150)

where R=1+(1—"%W) ' W, which is orthogonal and incrementally objective,
and can be obtained by applying the generalized midpoint rule to dR/dr = WR. The
usual return-mapping algorithm from Sect. 4.3 can be applied to Eq. (4.150) after
the transformation.

The following MATLAB program, rotatedStress, can be used to update the
stress and back stress to the rotation-free configuration. Inputs to the program are
the velocity gradient (L = 0 Au/0"*'x, 3 x 3 matrix), stress (6 x 1 vector), and back
stress (6 x 1 vector). Then, the program returns rotated stress and back stress. Once
the stress and back stress are rotated, they can be considered as the stress and back
stress at the previous load step in the return-mapping procedure.

PROGRAM rotatedStress

o
s

% Rotate stress and back stress to the rotation-free configuration
%

function [stress, alphal] = rotatedStress (L, S, A)

%L = [dui/dxj] velocity gradient

str=[S(1) S(4) S(6);S(4) S(2) S(5);S(6) S(5) S(3)1;

alp=[A(1l) A(4) A(6);A(4) A(2) A(5);A(6) A(5) A(3)];

factor=0.5;

R=L*inv (eye(3) + factor*L) ;

W= .5*(R-R");

R=eye(3) + inv(eye(3) - factor*W) *w;

str =R*str*R’;

alp =R*alp*R’;

stress=[str(l,1) str(2,2) str(3,3) str(l,2) str(2,3) str(1,3)]1";
alpha =[alp(l,1) alp(2,2) alp(3,3) alp(1,2) alp(2,3) alp(1,3)]1";

4.4.3 Incremental Equation for Finite Rotation
Elastoplasticity

Even if small strain is assumed in elastoplastic deformation, it is considered to be
a large deformation problem due to finite rotations. This is a major difference
from the infinitesimal elastoplasticity in Sect. 4.3, in which both small strain and
small rotation are assumed. Thus, the deformed geometry must be separated from
the undeformed geometry, which is similar to the geometric nonlinear analysis in
Chap. 3. Thus, either the total or updated Lagrangian formulation can be used.
However, it is inconvenient to express the equilibrium equation of an
elastoplastic problem in the total Lagrangian formulation, since the evolution
of plastic variables is directly related to the Cauchy stress. Thus, the updated
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Lagrangian formulation is a natural choice. It is assumed that the stress and
plastic variables as well as deformed geometry up to load step ¢, are known, and
the same variables and geometry at current load step 7,,; are wanted to be
computed. In the updated Lagrangian formulation, the energy form can be written
at the current geometry as

a("g" ', u) E// Vit s "edQ. (4.151)
n+1Q)

For a symmetric tensor S and nonsymmetric tensor L, it can be shown that S:L =S:
sym(L), where sym(L) is a symmetric part of L, i.e., sym(L) = %(L + L"). Thus, the
integrand of the above equation is the same as e(u) : "*'6, which is equivalent to
the updated Lagrangian formulation in Eq. (4.80). Note that in addition to displace-
ment and stress, the plastic variables from the previous load step are required to
calculate energy form at load step 7, .

Equation (4.151) is a nonlinear function of displacement since the deformed
geometry and stress at the current load step are unknown a priori. A linearization is
required to solve the nonlinear equation using the Newton—Raphson method itera-
tively. Let the external load be independent of displacement, that is, conservative.
Since the derivatives and integration in Eq. (4.151) are carried out with respect to
the current geometry, it is convenient to transform them to the undeformed geom-
etry using the deformation gradient and the Jacobian relation. The energy form can
be transformed into an undeformed geometry by

a("g;"" u ) = //OQ(VoﬁF‘l)  6JdQ. (4.152)

Note that F=0""x/0X, d""'Q=/dQ, and J=det(F). The integrand in this
equation is the same as T : F, where T=JF !¢ is the first Piola-Kirchhoff stress
tensor and the variation of displacement gradient is Vou = F. This transformation
is temporary as the updated Lagrangian formulation will be recovered at the end of
linearization.

Since the constitutive relation is given by the rates of Cauchy stress and
engineering strain, the linearization is carried out with respect to Cauchy stress in
the undeformed geometry. Note that linearization is equivalent to taking increment.
To linearize Eq. (4.152), the increment of the deformation gradient is first written as

u = V()All.

AF ===
oX

_ 0 [0(x+ wAu) _ oA
- Ow oX 0

In addition, from the incremental relation of FF~! =1, the following is given:
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A(F ") =-F 'VoAuF ' = -F 'V, Au.

The incremental form of the Jacobian of the deformation gradient [4] can be derived
by direct linearization of the expression of |F,,,| = (1/6)e;ye s f i-F;sFi, with the
identity of exe i = 25y,

AJ = Adet(F) =J div(Au).

By using the above two relations, the linearization of the energy form in Eq. (4.152)
can be obtained as

Ala("g;"'u, 1))
= A[//UQ(VOﬁFl) : 6JdQ

— [ [(Taua () s 07+ (VouF 1) s Aoy + (Vaup ) : 6s]a0

For the notational convenience, the left superscript n+ 1 is omitted for the stress.
The first term of the integrands can be simplified as

VQﬁA(Fil) o) = —VoﬁF’IVH]Au o) = —V,I_HEV,,HAu :oJ.

In order to make the above expression convenient for the following derivations, the
following rearrangement can be performed. For second-order tensors, the following
relation can be satisfied: (AB):S = A:SB™. This can be easily shown using the index

notation as A;By;S;; = AyS;;Bi;. Thus, the above term can be rewritten as

VouA(F ') 16/ = -V, u:6V, Au'J.
The second term can be simplified using the Jaumann rate as
(VouF ') : AeJ =V, 1u: (Ac’ + We — cW)J.
Finally, the last terms can be simplified as

(VouF ') : 6AJ =V, u : 6div(Au)J.

Thus, after combining these three terms, the linearization of the energy form can be
written as

A[a(”é;"“u,ﬁ)]

_ Vi [Ac’ + Wo — 6W + odiv(Au) — 6(V, Au)" [dQ
n+10Q

In the elastoplastic constitutive relation, the Jaumann rate is given as
Ac’ =D¥2:Ae, and the spin tensor can be written in terms of incremental
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displacement gradient. Thus, the integrands of the above equation can be explicitly
written in terms of incremental displacement gradient. For example, the We term in
the integrand can be expressed in terms of displacement increment, as

1/0Au; OAuy, 1 0Au;
Wimamj - 2(axM - axl) Omj = Eamj(éikéml - 5mk5i1) 87)(]
1
=5 (036 = 016u) [V 1 Aulyy

Thus, after rearranging terms, the linearization of the energy form can be written as

Ala("g"*u u)]
// Vynt: (D¥ —D*) : V, jAu+ 6 : (W, Au)|dQ.  (4.153)
n+IQ
("&,"u; Au, 1)

where the same notation as in Eq. (4.123) is used even if the above form is for the
updated Lagrangian formulation. In the above equation, ¢ : n(Au, ) is the initial
stiffness term with n(Aw,u) = sym(V, "V, Au), and

. 1
Dy = —0iiou + E(Gﬂéjk + 638 + 6udi + o) (4.154)

represents the rotational effect of the Cauchy stress tensor. Note that the linearized
energy form in Eq. (4.153) is not symmetric because D" is not symmetric. With
Eq. (4.153), the incremental equation of the Newton—Raphson method can be
obtained. Since the reference configuration is the current, unknown one, the last
iteration of the current load step is chosen as the reference configuration. Let the
current load step be #,,; and let the current iteration counter be k + 1. Assuming that
the external force is independent of displacement, the incremental equation is
obtained as

a ("g," 'u; Adt @) = (0) — a("g; " a,u), VuEe Z. (4.155)

The above iteration is repeated until the residual term on the right-hand side
vanishes. After the displacement increment is computed by solving linear systems
of equations using Eq. (4.155), the return-mapping procedure is carried out to
obtain the status of stress for each integration point, including internal plastic
variables.

Note that the linearized energy form in Eq. (4.153) is not an accurate Jacobian
relation because it does not include the effect of rotating stress and back stress to the
rotation-free midpoint configuration as in Eq. (4.150). For more accurate expression
of the linearized energy form, the readers are referred to Fish and someone [5].
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4.4.4 Computational Implementation of Finite Rotation

The implementation of elastoplasticity with finite rotation is an extension of the
infinitesimal elastoplasticity in Sect. 4.3.6. Thus, instead of explaining the entire
process, only different parts will be presented. Let the current load step be 7,,,; and
the current iteration counter be k+ 1. Same with infinitesimal elastoplasticity, the
available variables are "6, "o, "¢, and displacement increment AU,

In the updated Lagrangian formulation with objective time integration, strain is
defined with respect to the geometry at ¢,,1,. This can be achieved by calculating
velocity gradient at ¢, first and transform it to 7,,,1,. The Jacobian relation at 7, can be
defined as

ny _ | OE o0&
o
on Oy

where ("x;, "x,) is the material coordinate at load step #,, while (£, n) is the
corresponding coordinate in the reference element. Then, the derivatives of shape
functions with respect to ("x;, "x,) can be written in terms of the derivatives with
respect to (&, n) by

o o
a"Xl _ nJ—l aé
o | = o
a")CQ al’]

Using the above derivatives of shape function, the velocity gradient can be inter-
polated by

4
(aAu) ON; Ady,.

n = Ny,
"X ) = o

n+'

Then, from the relation that x ="x+(1/2) Au, the incremental deformation

gradient can be defined as

""'’x  9("x +1Au) 1+ 1 0Au
"x 0"x B 2 0x"

Then the velocity gradient at ¢,,,,, can be obtained by

U Ay 0Au OAu O0x" OAu 1 l% o
AT Oxr T Oxt Ox't . Ox” 2 Ox" .
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Using the above velocity gradient at the midpoint configuration, the following steps
will update stress and plastic variables and will solve for incremental displacement:

1. Strain increment and spin tensor at the midpoint

Ag = sym(V,,HAu), W= skew(V,,HAu).

2. Rotation matrix R =1+ (1 — W)™ 'W,
3. Rotated stress and back stress

¢ =R¢'R" @' =Ra'R".
4. Return-mapping with "¢ and "a (use the procedures in Sect. 4.3.6).

NG
5. Internal force {fim} = Z ([B]T{"HG}U\) wK.
K=1 K

NG
6. Tangent stiffness [Kr| = ([B]T D¢ — D*|[B]|J ) wk.
I; [ JBI3])
—011 O1] O1] —012
§ 022 —022 022 —012
D'=1| 633 o033 —omn 0
—o2 —opp 0 —5(611 + o)
NG
7. Tnitial stiffness [Ks] = ) ([BG]T[E] [BG]}JD k.
K
K=1
Niip O Nyy O i op 0 0
_|Nip O Nsr O _|op 6 0 O
[Bo] = 0 N 0 Ny 2= 0 0 o1 on2
0 N 0 N4o 0 0 o012 ox

8. Solve for incremental displacement
[Kr + Kg]{od"""} = {t=} — {£™}.
9. Update displacement
nrlgktl — ntlgh 4 sgkt!
Ad! = At + sd* T

If the residual force does not vanish, the iteration counter k is changed to k+ 1 and
the above procedures are repeated. When the iteration converges, updated stress
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and plastic variables are stored and n is changed to n+ 1, and the next load step
starts. Note that the Newton—Raphson iteration solves for displacement increment
between iterations k£ and k+1, 6dk+1, which is different from the displacement
increment between load steps 7 and n+ 1, Ad“*'. Thus, it is important to update
both d and Ad using éd.

It is reminded that the elastoplasticity with finite rotation is only valid when the
rigid-body rotation is large but the strain is small so that additive decomposition
between elastic and plastic strains is possible. As the strain becomes large, it is not
accurate to assume the additive decomposition. In addition, the assumption of
linear constitutive relation between stress and elastic strain is not valid anymore.
Thus, more general model is required for elastoplasticity with finite deformation.

Example 4.19 (Objective Time Integration) A plane strain square undergoes rigid-
body rotation and shear deformation such that the velocity gradient at each load step
is given as

0 0.024 0
{%} = | -0.02 0
0

Compare the stresses from infinitesimal deformation and finite rotation
elastoplasticity by plotting shear stress 71, vs. shear strain y;, curve for 15 load
increments. Compare all stress components at the last load step. Assume linear
isotropic hardening with the following material properties: £ =24 GPa, v =0.2,

H=1.0 GPa, and ¢}, = 200v/3 MPa.

Solution The given velocity gradient includes spin tensor (skew-symmetric part)
and rate of deformation part (symmetric part). After removing the rigid-body
rotation, the strain increment becomes Ay;, =0.004. The latter is related to the
strain increment, while the former represents the rigid-body rotation. Below is the
list of MATLAB program that solves for the shear deformation problem with and
without considering the rotational effect. The variable “stress” is the updated
stress from infinitesimal deformation assumption, while “stressR” is the one
from finite rotation assumption. At the last load increment, these two stresses are

stress =[0 0 0 2129 0 0]
stressR = [43.4 —434 0 2082 0 0]"

The difference in shear stress o, is relatively small. However, in the finite
rotational formulation, the normal stresses are developed due to the rotation of
the reference frame. Figure 4.21 show the shear stress vs. shear strain curve.
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—&— Small strain
— = — . Finite rotation

0.01 0.02 003 004 005 0.06

Fig. 4.21 Stress—strain 250 T T
curve for elastoplastic shear
deformation
200
<
[
2 1501
w
w
=
© —
o 100
Q
=
172}
50+
(h 1 1
0
Shear strain
%
% Example 4.19 - Shear deformation of a square (finite rotation)

clear;

Young = 24000; nu=0.2; mu=Young/2/(l+nu); lambda=nu*Young/ ((l+nu)*(1-

2*nu) ) ;
beta=0; H=1000; sY=200*sqgrt(3) ;
mp = [lambda mu beta H sY];
Iden=[111000]1";
D=2*mu*eye (6) + lambda*Iden*Iden’;
D(4,4) =mu; D(5,5) =mu; D(6,6) =mu;
L =zeros(3,3);
stressN=[000000]";
deps=[000000]";
alphaN=[0000001";
epN=0;
stressRN=stressN; alphaRN=alphalN; epRN=epN;
for i=1:15
deps(4) =0.004; L(1,2) =0.024; L(2,1) =-0.02;

[stressRN, alphaRN] = rotatedStress (L, stressRN, alphaRN) ;
[stressR, alphaR, epR]=combHard (mp, D, deps, stressRN, alphaRN, epRN) ;

[stress, alpha, ep]=combHard (mp, D, deps, stress

N, alphaN, epN) ;

X(i) =i*deps(4); Y1(i) =stress(4); Y2(i) = stressR(4);

stressN = stress; alphaN = alpha; epN = ep;
stressRN = stressR; alphaRN = alphaR; epRN = epR
end
X=[0X]; Y1=[0Y1]; Y2=[0Y2]; plot(X,Y1l,X,Y2);

7
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4.5 Finite Deformation Elastoplasticity
with Hyperelasticity

Many difficulties associated with finite deformation can be resolved by using a new
plasticity model, where the constitutive relation is based on hyperelasticity. Remem-
ber that hyperelasticity is a general model for nonlinear elastic relation between
stress and strain. In elastoplasticity, the hyperelastic relation can be used between
stress and elastic strain because the plastic strain cannot produce stress. However,
this requires a complete reformulation of plasticity. Among many elastoplasticity
theories with finite deformation, Simo [6] proposed a method that is close to the
infinitesimal plasticity in Sect. 4.3. This formulation will be discussed in this section.

4.5.1 Multiplicative Decomposition

The theory of multiplicative plasticity proposed by Lee [7] is used to overcome the
assumption of small elastic strain in the theory of classical infinitesimal plasticity,
which uses an additive decomposition of the strain and its rate. The computational
framework of this theory is proposed by Simo, which preserves the conventional
return-mapping algorithm in the principal stress space. Although the new plasticity
theory is based on completely different assumptions, at the end, it becomes surpris-
ingly close to the classical infinitesimal elastoplasticity at the implementation level.

In finite deformation, the deformation gradient plays an important role.
The deformation gradient F(X) relates a vector dX in the undeformed configuration
to a vector dx in the deformed configuration. This theory assumes that there exists
an imaginary, intermediate configuration, €2, such that F(X) can be decomposed
into F(X) and FP(X), as shown in Fig. 4.22. Since stress is only dependent on

deformed Configurati i
Undeformed Configuration Elastic

Deformatios

Current Configuration

Intermediate Configuration

Fig. 4.22 Multiplicative decomposition of deformation
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elastic strain, if stress is removed from the current configuration, the intermediate
configuration can be obtained. Of course, there is no guarantee that a continuous
intermediate configuration can be obtained. However, as least locally at a material
point X, this can be achievable. Thus, F(X) takes the following form of the local
multiplicative decomposition:

F(X) = F*(X)F"(X) (4.156)

where FP(X) denotes the deformation through the intermediate configuration,
which is related to the internal variables, and F¢~ 1(X) defines the local, stress-
free, unloaded process. In this decomposition, it is clear that plastic deformation
leads to the intermediate configuration, from which elastic deformation leads to the
current configuration. This does not mean that physically plastic deformation
occurs first, followed by elastic deformation. It is a mathematical decomposition
of the finite deformation elastoplasticity. In fact, plastic deformation simulta-
neously occurs with elastic deformation.

4.5.2 Finite Deformation Elastoplasticity

In the infinitesimal elastoplasticity, it was discussed that the Cauchy stress needs to
be used because the elastoplastic deformation occurs at the current configuration.
In the finite deformation, not only the evolution of stress but also that of the
geometry needs to be accounted for. Thus, it would be convenient if the following
stress measure is used:

T =Jo, (4.157)

where 7 is the Kirchhoff stress and J=IFl is the Jacobian relation between
deformed and undeformed configurations. Then the constitutive relation can
cover the effects of both stress and change in domain. For example, an integral
over the deformed geometry can be converted into an integral over the undeformed

geometry by
/ / cdQ = / / TdQ.
n+1 Q (JQ

However, the Kirchhoff stress is different from the first Piola-Kirchhoff stress P and
they are related by Tt =FP (refer to Sect. 3.2.5). Note that when deformation is
infinitesimal, the Kirchhoff stress approaches the Cauchy stress. The elastic domain
is defined using the Kirchhoff stress as

E={(x.q)f(x.q) <0}, (4.158)
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where q is the vector of stress-like plastic variables that characterize the hardening
property of the material. The yield function f(t,q) in Eq. (4.158) is an isotropic
function of t due to the principle of objectivity, that is, the yield function does not
depend on the orientation of the stress or on plastic variables, such as the von Mises
yield function.

In thermodynamics, a free energy is the irreversible energy that is available for
doing thermodynamic work. In mechanical systems, it is assumed that the free
energy locally depends on F°(X) only, since the free energy represents stored
energy through elastic deformation. The free energy is independent of the orienta-
tion, in the same context of the yield function. Thus, similar to the strain energy
density in Chap. 3, it can be defined using either right or left Cauchy-Green
deformation tensor. Since the plastic evolution occurs at the current configuration,
it would be convenient to define it using the left Cauchy-Green deformation tensor
b. Since the deformation is composed of elastic and plastic parts, the free energy is
defined as

w = (b, ), (4.159)

where b® = F°F°T is the elastic left Cauchy-Green deformation tensor, and € is the
vector of strain-like plastic variables conjugate to q in the sense that q = —Ow/0&.
In the viewpoint of classical plasticity, q can be seen as back stress, and & as the
effective plastic strain. Here, the general notation q and & is kept until a specific
plastic model is introduced.

The stress—strain relation can be obtained by defining a local dissipation function
and using the principle of maximum dissipation, which says that the plastic
deformation occurs in the direction that maximizes the dissipation function.
By ignoring thermoelastic parts, local dissipation function D is defined per unit
reference volume as the difference between the rate of stress work and the rate of
free energy change as

D=x:d- %l/f(be,é) >0, (4.160)

where d =sym(L) denotes the rate of deformation and L = FF~! is the velocity
gradient. The time rate of the free energy can be obtained using the chain rule and
the time rate of b°=FC"~ 'F", with C* =F""F" as

b = Lb® +b°LT + L, (b°), (4.161)

where CP is the plastic, right Cauchy-Green tensor, and L,(b°®) is referred to as the
Lie derivative of b°, which is obtained by pulling b® back to the undeformed
configuration and, after taking a time derivative, pushing b® forward to the current

configuration (see Example 4.20). Considering b as the rate of elastic strain, the
first two terms on the right-hand side correspond to the total rate of strain, while the
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Lie derivative corresponds to the negative of the rate of plastic strain. Thus, the
above equation is suitable for the elastic predictor and plastic correction algorithm.

In order to obtain the constitutive and evolution relations, it is necessary to
expand the local dissipation function D as

d
D=x:d——y(b°
t:d d[y/(b ,€)

Ceed QW e 0w

—T.d—ﬁ.b —a—ég

:r;d—gl‘fe:(Lbe+beLT+Lv(be))+q~& . (4.162)
— . al// (S al/j e . 1 e\je—1 &
—t:d—220b .L+<Zabeb>.[—§Lv(b)b }—Fq-é

_ al// e . al// e . 1 e\pe—1 ¢
_(t—Zabeb>.d+<Zabeb>.{—ELv(b)b }Jrq-ézo

For symmetric matrices, the property A:BC=AC:B is used, and the skew-
symmetric part of L (the spin tensor) vanishes by multiplying it with the symmetric
matrix; i.e., for a symmetric tensor S, S:L = S:d. Inequality in Eq. (4.162) holds for
all admissible stresses and plastic variables. When the material is in the elastic

range, the rate of plastic variables becomes 0, i.e., Ly(b®) = & = 0. Then the first
term on the right-hand side of the last equation must be 0 because the dissipation
function must be nonnegative for arbitrary d. For example, if the term yields a
positive dissipation with d', then it would yield a negative dissipation for d* = —d".
Thus, the only possible way is that the coefficient of d in the above equation must
vanish. Thus, the following constitutive relations and reduced form of dissipation
inequality can be obtained:

_ 0w .
T=2o b, (4.163)
D=n1: [—%Lv(be)be‘l} +q-&>0. (4.164)

Equation (4.163) provides a stress—strain relation in terms of the Kirchhoff stress
and elastic left Cauchy-Green tensor. Note that this relation is given in the form of
hyperelasticity, not in the rate form.

In the principle of maximum dissipation, the state variables {t, q} maximize the
dissipation function D for given rate {Lv(be),é} of plastic variables. This is
equivalent to say that for all possible state variables within the elastic domain,
the following inequality holds:

D=(t—1): [—;Lv(b")b"l] +(q—q")-E>0, V{t' q'} €E (4.165)

The two terms (stress and plastic variables) in the above equation can be considered
separately. For the stress term, for example, the Lie derivative term must be in the
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Fig. 4.23 Principle of fit,q) =
maximum dissipation

1 e\l[e—1
LL, (b)b

normal direction to the elastic domain in order to make the dissipation nonnegative
for arbitrary T ( see Fig. 4.23). Thus, the above dissipation inequality satisfies if
and only if the Lie derivative term is parallel to the normal direction to the elastic
domain E. This is similar to the classical plasticity in which the rate of plastic strain
is normal to the yield surface. Thus, the evolution equations can be obtained by
using the normal property and plastic consistency parameter y, as follows:

e =, Y0 (4.166a)
2 el
E=v o (4.166b)
y>0, f(r,q9) <0, yf(zr,q)=0. (4.166¢)

The first two equations become hardening models for plastic variables. The last
equation is the same as the Kuhn-Tucker condition of the classical elastoplasticity
problem such that y =0 when the material is elastic, while f=0 when it is plastic.

Example 4.20 (Time Derivative of the Elastic Left Cauchy-Green Tensor) Derive
the time derivative of the elastic left Cauchy-Green tensor in Eq. (4.161). Define an
appropriate form of the Lie derivative.

Solution From the relation of FC=FFP~ !, b® can be written as
b* = (FF*~') (F*"F") = F(F*"F?) " F' = FCP'F".
The time rate of b® can then be written as
e . e d _
b = FC'FT + FCP R + F_(CP)F".

Using the velocity gradient L = FF~!, the above equation can be written as

. d
b° = LFC*'F' + FC*"'F'L" + F(C)FT

=Lb® 4+ b°LT + Fg

p—1 T
dt<C )F
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By comparing with Eq. (4.161), it is clear that the Lie derivative can be defined as
e d -\ T
L,(b%) = Fd—t(Cp )F'.

From the observation that C°~' is obtained by transforming the Eulerian tensor b
to the undeformed configuration (pull-back operation),

' =F 'bF T

The physical meaning of Lie derivative is (a) pulling back b° to the undeformed
configuration, (b) differentiating it at the undeformed configuration, and (c) pushing
forward it to the current configuration. =

4.5.3 Time Integration

The rate form elastoplastic evolution in the previous section needs to be integrated
to calculate plastic variables at a given load step. Let the system be converged at
load step t,, such that all variables, {"F, "b°, "€}, are known. At new load step 7,1,
the Newton—Raphson iteration provides displacement increment Au. Then, the
objective is to update the variables {"*'F, "*'b®, "*'&} at load step t,,,. Note that
b® is a primary variable instead of stress in the classical plasticity model. Once b° is
known, the stress can be calculated by differentiating the free energy with respect to
b°. Thus, in this model, strain is updated, rather than stress. In the following
derivations, the left superscript n+ 1 is omitted when it is clear in the context.

Deformation between load step ¢, and ¢,,,; can be represented using the following
relative deformation gradient:

an+1x

f(x) = i = 1+ V,Au, (4.167)

which can be obtained by differentiating "*'x ="x+ Au with respect to "x. The
deformation gradient at time ,,, is then "*'F(X)=£(x)"F(X). The first-order
system of evolution equations can be obtained by inserting Eq. (4.166) into
Eq. (4.161) as follows:

of (t,q)

b° = [Lb® +b°L"] — 2y Sb°, (4.168a)
e af(Taq)
&= ""oq (4.168b)
r>0, f(t,q) <0, yf(t,q)=0. (4.168¢)

The above differential equations need to be solved using time integration with the
following initial conditions: {f, b®, &} = {1, "b°, "E}.
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Kirchhoff stress and stress-like plastic variables are derived using the primary
variables by the following constitutive law:

%bi (4.169)
~ Oy(b%§)
S (4.170)

T=2

This process represents the major difference from the classical plasticity model,
where an evolution equation is expressed in terms of stress and back stress.

As in classical infinitesimal plasticity, the evolution equations in Eq. (4.168) can
be split into a trial elastic state and a plastic return-mapping. In Eq. (4.168a), the
first term, [Lb® + beLT], corresponds to the trial elastic state in which the displace-
ment increment in L is used to increase b°. In practice, this can be achieved using
the relative deformation gradient. From the given displacement increment, the
relative deformation gradient can first be calculated using Eq. (4.167). The trial
elastic state can then be obtained by eliminating plastic flow and pushing the elastic
left Cauchy-Green deformation tensor forward to the current configuration using
the relative deformation gradient as

"b* = f'b°tT, "E="E. (4.171)

In terms of deformation gradient, this process is equivalent to "FP = "FP and “F® = £ "F°.
Thus, the incremental deformation is assumed to be purely elastic.

If T and q, which are evaluated using the trial state, are within the elastic domain,
then the trial stress and the stress-like plastic variable are exact, and time integration
is finished with the material being elastic. Otherwise, the material is plastic, and
plastic return-mapping is carried out by integrating Eq. (4.168) between load step ¢,
and 7,,; with constraints imposed on the stress through the yield function in
Eq. (4.168c). By integrating the differential part of Eq. (4.168), the following
return-mapping algorithm can be obtained:

b® = "bexp [—ZAy W} , (4.172a)
r of (v, q)
= A 4.172b
E="E+ Ay g ( )
Ay >0, f(r,q) <0, Ayf(tr,q) =0. (4.172c)

The property that the solution of differential equation y = Ay is y = yoexp(AA¥) is
used in Eq. (4.172a), and Ay =yAt is used. This integration algorithm has first-
order accuracy and unconditional stability.

Note that the return-mapping procedure in the above equations are different from
that of the classical plasticity because it is based on strains (b®, ), not stresses (z, q).
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In addition, the return-mapping of b° is given in terms of multiplication with an
exponential function, which is not straightforward to implement. The idea proposed
by Simo was that if logarithm is taken in Eq. (4.172a), the multiplication will be
converted into an addition, and the strains in b will be converted into logarithmic
strains. Another important concept is that when a material is isotropic, the principal
directions of 7 is aligned with that of b® by using the isotropic assumption. From
this observation, the spectral decompositions of b and T can be written as

3
b => i en (4.173)
i=1
and
3 . .
t=> o en, (4.174)
i=1

respectively, where /; is the principal stretch, t°= {1}, 5, T§}T is the vector of

principal Kirchhoff stresses, and 0’ is the spatial eigenvector corresponding to the
material eigenvector N'. In addition, it is assumed that the plastic return-mapping
occurs with the fixed principal directions. Since “b® has the same principal direc-
tions as b®, the principal directions of T and b® can be computed from the known
principal directions of “b°. Thus, the return-mapping occurs in the principal
stretches with fixed principal directions. The counterpart in the classical plasticity
is the radial return-mapping in which the trial shifted stress “n is parallel to the
updated shifted stress n (see Fig. 4.15).

The facts that the principal directions of T and b® are the same and the principal
directions are fixed during the return-mapping make it possible to modify the
algorithm into stress-based one. In addition, the algorithm becomes similar to the
classical plasticity when principal stresses and principal logarithmic stretches are
used. For the simplicity of derivations, the vector of logarithmic, elastic principal
stretches are defined by e=[e,, e, es]" =[log(4)), log(4,), log(43)]". In the
elastoplasticity theory, it can be assumed that the free energy is in the following
quadratic form:

w(e, &) = %ﬁ[el +ertes] +ufei? + e’ +e?] +K(E), (4.175)

where K(&) denotes energy from isotropic hardening law and A and y are Lame’s
constants. Then the hyperelastic constitutive relation in Eq. (4.169) can be reduced
to ¥ = Ow/0e in principal space. Using the above free energy, the relation between
principal stress and the logarithmic elastic principal stretch becomes
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TP — aa_l/ej — cee’ (4176)

where ¢© = (/1 + %,u)i ®1+ 2ul4ey is the elastic 3 x 3 constitutive tensor for an
isotropic material, 1= (1, 1, l]T is the first-order vector, and 14., = 1 — %(I ® i)

is the second-order unit deviatoric tensor. These notations can be thought of as a
second-order version of the fourth-order notations given in Eq. (4.50). Taking the
logarithm of Eq. (4.172a) and pre-multiplying by ¢° yields the following return-
mapping algorithm forms in the principal stress space:

TP = c%e”, (4.177a)
_w . Of (7, q)
=" — A Fo (4.177b)
of (v, q)
—nE LA , 4.177
E="¢ o (4.177¢)
Ay >0, f(,q) <0, Ayf(eq) =0, (4.177d)

where e is the logarithmic principal stretch of “b° and f(t,q) is a different
expression of f(t, q), whose explicit expression will be presented later. The normal
to the yield surface in the stress space can be written in the normal to the principal

stress space by 0f /0t = 23:1 0f /0z"n’ @ 1'. This return-mapping algorithm is the
same as that of the classical plasticity, with a difference that principal Kirchhoff stress
and logarithmic strain are used instead of Cauchy stress and engineering strain.

4.5.4 Return-Mapping Algorithm

Since a plastic behavior can be efficiently described by the deviatoric part of a vector,
which preserves the volume change, a deviatoric principal stress is defined by

1 A~
s=1° — g(rp : 1)1 T (4.178)

For plasticity, the von Mises yield criterion and the associative flow rule are
commonly used to describe metal-like material behavior after elastic deformation.
Accordingly, the yield criterion or yield function is formulated as

Fler) = [l xter) =0 (4.179)
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where 1 is equal to s — o and « is the back stress, which is the center of the yield
surface and is determined by the kinematic hardening law. x(ep) is the radius of the
yield surface and is determined by the isotropic hardening rule. For a general
nonlinear hardening rule, x(e,) can be expressed by

k(ep) =% + Ko (ep), (4.180)

where GOY is the initial yield stress from a uniaxial tension test, and K,gp (ep) =
0K /0e, is the isotropic hardening law. The effective plastic strain e, can be
determined by integrating the rate of plastic strain as

t 2 .
ep:/o \@||ev(f>||df. (4.181)

The plastic variables are reduced to the effective plastic strain and back stress. Note
that the above yield function and hardening models are similar to that of the
classical plasticity in Sect. 4.3. The only difference is that they are formulated in
the principal stress space.

Now, the return-mapping algorithms in Eq. (4.177) can be implemented in the
principal Kirchhoff stress space by

TP = c%e”, (4.182a)
™ = "7P — 2uApN, (4.182b)
o = "o + AyHN, (4.182c¢)
e, ="ep, + \/gAy, (4.182d)

where H,(e,,) is a plastic modulus for kinematic hardening and

r
no_n (4.183)

il [|]|

is an outward unit normal vector on the yield surface. The plastic consistency
parameter, Ay, is computed from the fact that the yield function remains O during
the plastic deformation:

) = nll = 3
= ||"n|| — (21 + Ha(ep)) Ay — \/gx(ep) =0, (4.184)

N=

which is a nonlinear equation with respect to Ay. Equation (4.184) can be solved
using a local Newton—Raphson method to compute Ay. As the elastic domain E is
smooth and convex, the return-mapping algorithm becomes robust. If the
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isotropic/kinematic hardening is a linear function of Ay or of the effective plastic
strain, then Ay can explicitly be calculated without any iteration. When the hard-
enings are nonlinear, the following derivative of the yield function with respect to
Ay is required during the iteration:

of

2 2

3

This part of algorithm is the same as the return-mapping algorithm in Sect. 4.3.5.
Once Ay is obtained, it is used to calculate principal stresses and plastic variables in
Eq. (4.182).

The Kirchhoff stress tensor can be obtained from Eq. (4.174) using the principal
stress and principal direction as

t=>Y 7fm’, (4.185)

where m’ = n’ ® 0’ is the matrix of principal directions. The left Cauchy-Green
deformation tensor is updated and stored by the formula in Eq. (4.173), which
represents the intermediate configuration:

3
b* = expl2en’ @ W, (4.186)
i=1

where e =¢” — AyN is an elastic logarithmic principal strain. Equation (4.186)
corresponds to the update of C°~ ' =F~ 'b°F~ .

Example 4.21 (Incompressible Elastic Cube) An incompressible elastic cube
undergoes the following deformation:

xi=oaXy, x2=pX2, x3=pXs.

Using the linear relationship between principal Kirchhoff stress and logarithmic
stretch, find the Kirchhoff stress tensor as a function of stretch a. Use the following
material properties: A and p.

Solution Since the cube is elastic, there is no need to separate elastic and plastic
part of deformation. Thus, the superscript “e” will be omitted in the following
derivation. For given deformation, the deformation gradient and left Cauchy-Green
deformation tensor become

S)

0
0
i

F =

S O R

0 0
p 0|, b=FF' =
0 p

oo
oo
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From the requirement of incompressibility, the relation between a and f# can be
obtained as = 1/+/a. Since b has only diagonal components, the three eigen-
values and eigenvectors become

Mm=ad, n'=[1 0 0

h=a', n2=[0 1 0]".

h=al, nP=[0 0 1]"
Then, the logarithmic stretch can be obtained by

e ={2loga —loga —loga}".

The stress—strain relation in the principal space, T° = c-e, can be written as

A+2p A A 2loga 4uloga
= A A4 2u A —loga p = ¢ —2uloga
A A A+2u —loga —2uloga

Then, the Kirchhoff stress can be obtained using

3 ' ‘ 2 0 0
T= Zr,-pn’ ®@n' =2uloga |0 —1 0
i=1 0 0 -1
Note that the relation between stress and logarithmic stretch is linear. m

4.5.5 Consistent Algorithmic Tangent Operator

The exact tangent operator can be obtained by taking the derivative of the Kirchhoff
stress tensor with respect to the strain. This spatial tangent operator has the
following relation to the material tangent operator:

os
Cijkl = 2Fi1FjJFkKF1LF:L, (4.187)

where Cg; is a component of the right Cauchy-Green tensor, and S;; is a component
of the second Piola-Kirchhoff stress defined by S=F '6F . Since stress is a
function of elastic trial strain and since the intermediate configuration is held fixed
in the elastic trial process, all material tensors are referred to the intermediate
configuration and linearization is carried out with respect to that configuration.
The return-mapping in the previous section gives the following relation:

o1
=g~ ¢

Calg e 4M2N ® N _ 4/42A}/
tr
2+ Ho + \/gH(x,(,pAy%K,ep [l

[leev — N®N],

(4.188)
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which is a 3 x 3 symmetric matrix in the principal stress space. Equation (4.188)
has the same form as the classical plasticity model in Eq. (4.120), except that
principal stress and logarithmic stretch are now used. Using the property in
Eq. (4.187), the stress in Eq. (4.185) is differentiated to yield

ot aT ea i eT i p ea eT
e Z Ber 2F 6C°F @m' +277( F aceF (4.189)

where e is a function of total deformation and is independent of the plastic

evolut10n law. The following relation is the differential version of the eigenvalue
problem C°N = A°N, derived in Sect. 4.6.1:

tr

aej r .
2 S P =, (4.190)

The last term in Eq. (4.189) is independent of plastic flow because plastic evolution
is carried out in the fixed, principal direction. In Sect. 4.6.2, it is explicitly shown
from finite elasticity that

. om’

oce

Lty v e () e (1))

Jr%_{be @m +m' @b+ (I, — 42> )m' @ m'}

éi

where d; = (A? — }LJZ)(AI-2 — 22) with an even permutation between i—j—k, I, and /5 are
the first and third invariant of b®, and I,y = 1(bibj + bubj) can be obtained by
pushing I forward to the current configuration. The algorithmic tangent operator in
Eq. (4.187) can thus be expressed as

3 3
= Z D citml @ ml +2) e, (4.192)

i=1 j=1 i=1

which contains all symmetric properties between indices.

4.5.6 Variational Principles for Finite Deformation

The energy form at time #, can be written using Kirchhoff stress and engineering
strain at the current configuration as

a("€;u,u) = // T : e(0)dQ. (4.193)
Q
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Since Kirchhoff stress is used, the integration domain is an undeformed
configuration. It is assumed that the constitutive equation is given in the total
form for elastic material as in Eq. (4.187). The explicit form of ¢;j;; can be obtained
from Eq. (4.192). The updated Lagrangian formulation of the linearized energy
form has a specific expression as

a ("&b, u; Au, 1) // ):c : e(Au) + T (Au, W)]dQ. (4.194)

If current load step is #,,; and the iteration counter is k+ 1, then the linearized
incremental equation becomes

a*("g," "t Autt u) = ¢(a) — a("E;" b)), Vae Z. (4.195)

The above equation is solved iteratively until the right-hand side (the residual force)
vanishes. After convergence, time is increased and the same analysis procedure
described above is repeated until a final configuration is reached. Note that inte-
gration of the internal energy term is carried out on the undeformed configuration
because Kirchhoff stress is used.

4.5.7 Computer Implementation of Finite
Deformation Elastoplasticity

The implementation of the above finite deformation elastoplasticity can be similar
to the infinitesimal elastoplasticity if the Kirchhoff stress and logarithmic strain are
used in the principal space. Below are the lists of two MATLAB programs:
mulPlast and mulPlastTan. The former performs return-mapping to find
stress and plastic variables, while the latter calculates consistent tangent stiffness
matrix. Since there is no shear stress, the principal stress and logarithmic strain are
stored in 3 x 1 vectors. The input parameters are velocity gradient at the current
load step, and plastic variables from the previous load step along with material
properties. First, the incremental deformation gradient is calculated from the
velocity gradient, and the elastic left Cauchy-Green deformation tensor, b°, is
updated using the incremental deformation gradient. Second, the eigenvalues
(principal stretches) and eigenvectors (principal directions) of b® are calculated.
Third, using logarithmic principal stretches, the return-mapping procedure is
performed to find principal Kirchhoff stresses. Lastly, stress and plastic variables
are updated using the plastic consistency parameters. The Kirchhoff stress is
calculated using the principal stresses and principal directions.

The tangent stiffness of the multiplicative plasticity consists of two stages. In the
first stage, the consistent tangent stiffness matrix between principal stresses and
principal logarithmic stretches is calculated, which is similar to that of the infini-
tesimal plasticity. The second stage is to calculate the effect of elastic principal
stretches and that of the principal directions.
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PROGRAM mulPlast

o°

% Multiplicative plasticity with linear combined hardening
%

function [stress, b, alpha, ep]=mulPlast (mp,D,L,b,alpha, ep)
$mp = [lambda, mu, beta, H, Y0];

%D = elasticitymatrixb/wprin stress & logprin stretch (3x3)
%L = [dui/dxj] velocity gradient

%b = elastic left C-G deformation vector (6x1)

%alpha = principal back stress (3x1)

%ep = effective plastic strain

o
s

Iden=[111]"; two3 =2/3; stwo3=sqgrt (two3); %$constants

mu=mp (2) ; beta=mp(3); H=mp (4); YO=mp (5) ; gmaterial properties
ftol =Y0*1E-6; %tolerance for yield
R=1inv(eye(3)-L); %inc. deformation gradient
bm=[b(1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)1;

bm = R*bm*R " ; %trial elastic left C-G
[V,P]l=eig(bm) ; %eigenvalues and vectors
b=[bm(1l,1) bm(2,2) bm(3,3) bm(1,2) bm(2,3) bm(1,3)1";

M=zeros (6,3); %eigenvector matrices
M(1,:)=V(1,:)."2;

M(2,:)=V(2,:)."2;

M(3,:) V(3,:).A2~

M(4,:)=V(1,:).*V(2,:);

M(5,:)=V(2,:).*V(3,:);

M(6,:)=V(1,:).*V(3,:);

eigen=[P(1,1) P(2, 2) P(3,3)1"; %principal stretch

%1if abs(eigen(l)-eigen(2)) < 1E-12; eigen(2) =eigen(2) + 1E-12; end;
%1if abs (eigen(2)-eigen(3)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

deps = 0.5*1log(eigen) ; %$logarithmic
sigtr = D*deps; %trial principal stress
eta = sigtr - alpha - sum(sigtr) *Iden/3; %shifted stress
etat = norm(eta) ; $norm of eta
$etat=sqgrt (eta(l)"2+eta(2)"2+eta(3)"2);
fyld = etat - stwo3* (Y0+ (1l-beta) *H*ep) ; %trial yield function
if fyld < ftol %yield test
sig = sigtr; %trial states are final
stress = M*sig; %stress (6x1)
else
gamma = fyld/ (2*mu + two3*H) ; %plastic consistency param
ep = ep + gamma*stwo3; $updated eff. plastic strain
N = eta/etat; gunit vector normal to f
deps = deps - gamma*N; %updated elastic strain
sig = sigtr - 2*mu*gamma*N; $updated stress
alpha = alpha + two3*beta*H*gamma*N; $updated back stress
stress = M*sig; $stress (6x1)
b =M*exp (2*deps) ; %updated elastic left C-G

end
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PROGRAM mulPlastTan

o°

Tangent stiffness of multiplicative plasticity with linear hardening

o° oP

function [Dtan]=mulPlastTan(mp,D,L,b,alpha, ep)

o
s

Iden=[111]"; two3 =2/3; stwo3=sqgrt (two3); %$constants

mu=mp (2) ; beta=mp(3); H=mp (4); YO=mp (5) ; %material properties
ftol =Y0*1E-6; %tolerance for yield
R=inv(eye(3)-L); %inc. deformation gradient
bm=[b (1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)1;

bm = R*bm*R " ; %trial elastic left C-G
[V,P]l=eig(bm) ; %eigenvalues and vectors
b=[bm(1l,1) bm(2,2) bm(3,3) bm(1,2) bm(2,3) bm(1,3)]1";

M=zeros (6,3); %eigenvector matrices
M(L,:)=V(1,:)."2;

M(2,:)=V(2,:)."2;

M(3,:) V(3, ).A2~

M(4,:)=V(1,:).*V(2,:);

M(5,:)=V(2,:).*V(3,:);

M(6,:)=V(1,:).*V(3,:);

eigen=[P(1,1) P(2, 2) P(3,3)1"; %principal stretch

%if abs(eigen(l)-eigen(2)) < 1E-12; eigen(2) =eigen(2) + 1E-12; end;
%1f abs (eigen(2)-eigen(3)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

deps = 0.5*1log(eigen) ; %$logarithmic
sigtr = D*deps; %trial principal stress
eta = sigtr - alpha - sum(sigtr) *Iden/3; %shifted stress
etat = norm(eta) ; $norm of eta
fyld = etat - stwo3* (Y0+ (1l-beta) *H*ep) ; $trial yield function
if fyld >= ftol $yield test
gamma = fyld/ (2*mu + two3*H) ; %plastic consistency param
N = eta/etat; gunit vector normal to f
sig = sigtr - 2*mu*gamma*N; $updated stress
varl = 4*mu”2/ (2*mu+two3*H) ;
var2 = 4*mu”2*gamma/etat; %coefficients
D=D- (varl-var2)*N*N’+ var2*Iden*Iden’/3; $tangent stiffness
D(1,1) =D(1,1) -var2; $contr. from4th-order I

D(2,2) =D(2,2) -var2;

D(3,3) =D(3,3) -var2;

end
J1l = sum(eigen) ;
J3 = eigen(l) *eigen (2) *eigen(3) ;

I2=[111000]";

Id4=eye(6);I4(4,4)=.5;TI4(5,5)=.5;I4(6,6)=.5;
Ibb=[0,b(4)"2-b(1)*b(2),b(6)"2-b(1)*b(3),0,b(4)*b(6)-b(1l)*b(5),0;
b(4)*b(4)-b(1)*b(2),0,b(5)"2-b(2)*b(3),0,0,b(4)*b(5)-b(2)*b(6);
b(6)"2-b(1)*b(3),b(5)"2-b(2)*b(3),0,b(5)*b(6)-b(3)*b(4),0,0;
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0,0,b(5)*b(6)-b(3)*b(4), (b(1)*b(2)-b(4)"2)/2,...
(b(2)*b(6)-b(4)*b(5))/2, (b(1)*b(5)-b(4)*b(6))/2;
b(4)*b(6)-b(1)*b(5),0,0, (b(2)*b(6)-b(4)*b(5))/2,...
(b(2)*b(3)-b(5)72)/2, (b(3)*b(4)-b(5)*b(6))/2;
0,b(4)*b(5)-b(2)*b(6),0, (b(1)*b(5)-b(4)*b(6))/2,...
(b(3)*b(4)-b(5)*b(6))/2, (b(1)*b(3)-b(6)"2)/2];

%

(
(

dl=1/((eigen(2)-eigen(l))* (eigen(3)-eigen(l)));
d2=1/((eigen(3)-eigen(2))* (eigen(l)-eigen(2)));
d3=1/((eigen(l)-eigen(3))* (eigen(2)-eigen(3)));
tll=-J3*dl/eigen(l);tl2=-J3*d2/eigen(2);tl3=-J3*d3/eigen(3);
t21l=dl*eigen(l);t22=d2*eigen(2) ;t23=d3*eigen(3);

t31=t21* (Jl-4*eigen(l));t32=t22* (Jl-4*eigen(2));t33=t23* (Jl-4*eigen
(3)):

CT1=dl1*Ibb+tll* (I4-(I2-b)*(I2-b)’)+t21* (b*M(:,1) " +M(:,1)*b’")+t31*M
(:,1)*M(:,1)";

CT2=d2*Ibb+tl2* (I4-(I2-b)* (I2-b) " )+t22* (b*M(:,2) "+M(:,2)*b’")+t32*M
(:,2)*M(:,2)";

CT3=d3*Ibb+tl13* (I4-(I2-b)*(I2-b)’)+t23* (b*M(:,3) "+M(:,3)*b’")+t33*M
(:,3)*M(:,3)";

s

Dtan = M*D*M’ + 2* (CT1*sig(1l)+CT2*sig(2)+CT3*sig(3));

Example 4.22 (Shear Deformation of a Square) Solve the shear deformation of a
square in Example 4.19 using multiplicative plasticity. Plot shear stresses from
small strain, finite rotation, and large strain as a function of shear stress.

Solution The shear stresses from the small strain and finite rotation are available in
Example 4.19. Below is the list of MATLAB program that solves for the shear
deformation problem for all three cases. The variable “stress” is the updated
stress from infinitesimal deformation assumption, “stressR” is the one from
finite rotation assumption, and “stressM” is the one from large strain assumption.
At the last load increment, these three stresses are

stress=[0 0 0 2129 0 0]
stressR = [43.4 —434 0 2082 0 0] :
stressM = [—56.9 —1523 —78.7 206.7 0 0]

The difference in shear stress oy, is relatively small. However, in the finite rotational
and large strain formulations, the normal stresses are developed due to the rotation of
the reference frame. Figure 4.24 shows the shear stress vs. shear strain curve.
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% Example 4.22 - Shear deformation of a square

%

Young = 24000; nu=0.2; mu=Young/2/(1l+nu); lambda=nu*Young/ ((l+nu)*(1-

2*nu) ) ;

beta=0; H=1000; sY =200*sqgrt (3);

mp = [lambda mu beta H sY];

Iden=[111000]1";

D=2*mu*eye (6) + lambda*Iden*Iden’;

D(4,4) =mu; D(5,5) =mu; D(6,6) =mu;

Iden=[111]";

DM=2*mu*eye (3) + lambda*Iden*Iden’;

L =zeros(3,3);

stressN=[000000]";

deps=[000000]";

alphaN=[000000]";

epN=0;

stressRN=stressN; alphaRN=alphalN; epRN=epN;

bMN=[111000]";

alphaMN = [000]";

epMN=0;

for i=1:15
deps(4) =0.004; L(1,2) =0.024; L(2,1) =-0.02;
[stressRN, alphaRN] = rotatedStress (L, stressRN, alphaRN) ;
[stressR, alphaR, epR]=combHard (mp,D,deps, stressRN, alphaRN, epRN) ;
[stress, alpha, ep]=combHard (mp, D, deps, stressN, alphaN, epN) ;
[stressM, bM, alphaM, epM]=mulPlast (mp,DM, L, bMN, alphaMN, epMN) ;
X(i)=i*deps(4);Y1(1)=stress(4);Y2(1i)=stressR(4);Y3(1)=stressM(4);
stressN = stress; alphaN = alpha; epN = ep;
stressRN = stressR; alphaRN = alphaR; epRN = epR;
bMN=bM; alphaMN = alphaM; epMN = epM;

end

X=[0X]; Y1=[0Y1]; Y2=[0Y2]; Y3 =[0Y3]; plot(X,Y1l,X,Y2,X,Y3);
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4.6 Mathematical Formulas from Finite Elasticity

In this section, mathematical formulas used in the finite elasticity are derived
in detail.

4.6.1 Linearization of Principal Logarithmic Stretches

Let the reference frame be the intermediate configuration for an elastoplastic
problem, which is fixed in the trial state. The principal stretches A; are functions
of the total deformation and independent of the plastic flow. For simplicity, all
variables denote elastic trial status in this section without being given a specific
notation. The right and left Cauchy-Green tensors have the same principal values
47, and the eigenvalue problem is

CN' = 2N, bn' = ’n’. (4.196)
The relation between principal directions is
FN' = An'. (4.197)
By differentiating Eq. (4.196), the following relation can be obtained:
dCN’ + CdN' = 22,d4,N" + 22dN,  no sum on i. (4.198)

Then, taking an inner product with N and using the property that N -dN = 0, the
following can be obtained:

2,d; = N'dCN' = tr [dC (N" ® N")} (4.199)
or
Ry
— NN 42
o=z N oN (4.200)

Since the logarithmic strain is defined by the principal stretch,

e; = log(4) (4.201)
and
Oe; Oe; 0 ~ o~
2ot =0 L0 = 72N s 4.202
oc 2o, oc i NON (4.202)

The push-forward of this result along with the relation in Eq. (4.197) yields
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ae,«

2FaC

F'=n'®n’ (4.203)

Since all the relations are transformed to the current configuration, the properties of
the intermediate configuration are completely removed.

4.6.2 Linearization of the Eigenvector of the Elastic Trial
Left Cauchy-Green Tensor

For simplicity, all superscripts of elastic trial status are ignored. Let n* be the

principal direction of b corresponding to the principal value 43, and let N* be the
principal direction of C. The following relation is thus satisfied:
3 _ 3
C=) 4N*@N', b=> Zn*on’ (4.204)
= A=1

A=1

and Iy, I, and I5 are the three invariants of C. The relation of eigenvector bases
between material and spatial description is

M =N eN' =F '@ e )F " =F 'm'F . (4.205)

The explicit form of M* can be computed by Serrin’s representation theorem,
namely,

1

M = —
dy

C— (I, —2)1+5L42CY, (4.206)
A A

where dy = (/13‘ — /112;)(/13x — /1%) = 2/1;} — 11/13\ +157; 2 with A, B, and C having an even
permutation. The following properties can be derived by using the chain rule of
differentiation and direct computation:

g—g =1= %(éikéjl + 8udin), (4.207)

aaL(;l — ¢! g_gcfl = I = ,%(C;(lcﬁl + lellcj;{l), (4.208)
%’2‘ - ,ﬁMA, (4.209)

oy e (4.210)
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Ody

= (424 — 1125 — LA OM — 221+ LA 2C 4211
aC A A A

The derivative of Eq. (4.206) with respect to C becomes

o o (2o
oc ocC

1 5 oI, i 03 ,0C™t . 0d,

+d |:ﬂ. Cc! ®ac IEYN Cc! ®ac+[3ﬂAW—M ®W

(4.212)

By using the property of Egs. (4.207) through (4.211), the following explicit form
can be obtained:

LML‘_L _ _ -2 _ -1 _ A -1 _ A
e = M- 1e1- 021 — (€ = MY) & (€ - MY)]]
C da

[
2 (4.213)
+ o [leM M @ 1) + (I — 47, )M @ M)
A

This relation was originally derived by Simo and Taylor [8]. The spatial version of
Eq. (4.213) can be obtained through a transformation as

A
aal:i[lb—b@)b—lyqz[l— 1-m") e (1-m")]]
g da : (4.214)
d—A (beom* +m* @b) + (I, — 44,*)m" @ m"]
A

which is equivalent to F(Om*/0C)F".

4.7 MATLAB Code for Elastoplastic Material Model

In this section, two MATLAB codes, PLSET.m and PLAST3D.m, are introduced that
can solve for nonlinear elastoplastic problems with three different options: (1) MID =1
for elastoplasticity with infinitesimal strain (Sect. 4.4), (2) MID = 2 for elastoplasticity
with finite rotation (Sect. 4.4), and (3) MID = 31 for finite deformation elastoplasticity
(Sect. 4.5). The codes are called from NLFEA.m in Chap. 2.

PLSET.m initializes plastic variables before starting analysis. Therefore, this
function is called only once from NLFEA .m. First, PLSET.m allocates memory for
global arrays for history-dependent variables, STGMA and XQ. These variables are
used at each integration point of every element. Since the current implementation
uses two-point integration in each coordinate direction, the size of array should be
8*NE, where NE is the number of elements. At each integration point, the size of
XQ is either 7 or 4, and that of SIGMA is 6 or 12, depending on plasticity
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formulations. PLSET.m also calculates the elastic stiffness matrix ETAN using the
two Lame’s constants, LAM and MU.

As explained in Fig. 2.25, the main function of PLAST3D.m is to build the
tangent stiffness matrix, [K], and the residual force vector, {R}. Then, NLFEA.m
will solve for the displacement increment as a part of the Newton—Raphson
iteration. Also, PLAST3D keeps track of history-dependent variables and stores
them in global arrays after the solution converges at a given load increment.

PLAST3D.m shares most of its input variables with that of ELAST3D.m in
Chap. 1, which was explained in Table 1.5. The only difference is that MID and
PROP are used in addition to ETAN. MID should be 1, 2, or 31 for elastoplastic
material models. The array PROP stores elastoplastic material constants. The current
implementation uses combined linear hardening model using von Mises criterion,
which uses five material properties, PROP = [ lambda, mu, beta, H, Y0].The
first two variables are Lame’s constant, beta is the combined hardening parameter,
H is the plastic modulus, and YO is the initial yield stress. As with ELAST3D.m in
Chap. 1, the logical variable, UPDATE, is used to store the stresses and history
variables in the global array STGMA and XQ, respectively, and the logical variable,
LTAN, is used to calculate the tangent stiffness matrices and store them in the global
array GKF. The residual force, FORCE, will always be calculated.

In order to assemble the local stiffness matrix into the global stiffness matrix, the
IDOF array is used to store the location of the global DOFs corresponding to the
local 24 DOFs. The XG and WGT arrays store one-dimensional integration points
and corresponding weights, as in Table 1.4. In this implementation, only two-point
integration is used for each coordinate direction.

At each integration point of an element, the derivatives of finite element shape
functions are calculated by calling SHAPEL.m. It is noted that the derivatives of
shape function from SHAPEL.m is with respect to the undeformed configuration;
that is, SHPD = ON,/0X,. Since the formulations with MID = 2 or 31 use the
updated Lagrangian formulation, the material derivatives are converted into the
spatial derivatives by multiplying with the inverse of the deformation gradient.

The global array XQ stores both the back stress and the effective plastic strain at
the previous converged load increment. When MID = 1 or 2, it stores [@;1, @22, @33,
a1z, M3, 13, €p] at each integration point, while when MID = 31, it stores [a1, 022,
a33, €,] because this model uses the principal components of back stress. When MID
= 1 or 2, the global array SIGMA stores stress components at the previous
converged load increment, [0, 625, 633, 012, 023, 613]. When MID = 1, SIGMA
stores stress components as well as the elastic left Cauchy-Green deformation
VECtor, [611, 622, 633, 612, 023, 013, b11, b2, b33, b2, bos, byal.

With a given strain increment, DDEPS, combHard.m and mulPlast.m are used
to calculate stress and history variables. For the case of finite rotation, the stress
and back stress are rotated to the neutral configuration in rotatedStress.m.
The outcomes of these functions are stress, back stress, effective plastic strain,
and elastic left Cauchy-Green deformation vector. If the logical variable UPDATE
is true, then these variables are stored in the global arrays, SIGMA and XQ. This
only occurs when the residual becomes less than the convergence tolerance TOL
(TOL is an input variable to NLFEA.m).


http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Fig25
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Once the stress is calculated, it is used to build the global residual vector,
FORCE, which represents {fim} in Eq. (4.130). The tangent stiffness array, GKF,
is calculated only when the logical variable, LTAN, is true. This functionality can be
used when the modified Newton—Raphson iteration is used.

function ETAN=PLSET (PROP, MID, NE)
%********************************************************************
% Initialize history variables and elastic stiffness matrix

% XQ : Back stress alpha and Effective plastic strain

% SIGMA : Stress for rate-formplasticity

% : added Left Cauchy-Green tensor B formultiplicative plasticity

% ETAN : Elastic stiffnessmatrix
%********************************************************************
%%

global SIGMA XQ

%

LAM=PROP (1) ;
MU=PROP (2) ;

%

N = 8*NE;

%

1f MID > 30
SIGMA=zeros (12,N) ;
XQ=zeros (4,N) ;

SIGMA(7:9,:)=1;

ETAN=[LAM+2*MU LAM LAM ;
LAM LAM+2*MU LAM ;
LAM LAM LAM+2*MU] ;

else

SIGMA=zeros (6,N) ;
XQ=zeros (7,N) ;

ETAN=[LAM+2*MU LAM LAM 0 0 O0;
LAM LAM+2*MU LAM 0 0 0;
LAM LAM LAM+2*MUO O O;
0 0 0 MUO O;
0 0 0 0 MUO;
0 0 0 0 0 MUJ];

end
end

function PLAST3D (MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
B
% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR

% PLASTIC MATERIAL MODELS

I R R R R
%%

global DISPDD DISPTD FORCE GKF XQ SIGMA

%

% Integration points and weights (2-point integration)
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XG=[-0.57735026918963D0, 0.57735026918963D0] ;
WGT=[1.00000000000000D0, 1.00000000000000D07] ;

oe

% Index for history variables (each integration pt)
INTN=0;
%
$LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
for TE=1:NE
% Nodal coordinates and incremental displacements
ELXY=XYZ (LE(IE, :),:);
% Local to global mapping
IDOF=zeros(1,24);
for I=1:8
IT=(I-1)*NDOF+1;
IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1: (LE(IE,I)-1)*NDOF+3;
end
DSP=DISPTD(IDOF) ;
DSPD=DISPDD (IDOF) ;
DSP=reshape (DSP, NDOF, 8) ;
DSPD=reshape (DSPD, NDOF, 8) ;
$LOOP OVER INTEGRATION POINTS
for LX=1:2, for LY=1:2, for LzZ=1:2
E1=XG (LX) ; E2=XG(LY) ; E3=XG(LZ) ;
INTN = INTN + 1;
%
% Determinant and shape function derivatives
[~, SHPD, DET] = SHAPEL([E1l E2 E3], ELXY) ;
FAC=WGT (LX) *WGT (LY) *WGT (LZ) *DET;
%
% Previous converged history variables
if MID > 30
NALPHA=3;
STRESSN=SIGMA (7:12, INTN) ;
else
NALPHA=6;
STRESSN=SIGMA (1:6,INTN) ;
end
ALPHAN=XQ (1 :NALPHA, INTN) ;
EPN=XQ (NALPHA+1, INTN) ;
%
% Strain increment
ifMID==2 || MID == 31
F=DSP*SHPD' + eye(3);
SHPD=inv (F) ' *SHPD;
end
DEPS=DSPD*SHPD’ ;
DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) ..
DEPS(1,2)+DEPS(2,1) DEPS(2,3)+DEPS(3,2) DEPS(1,3)+DEPS(3,1)1";
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% Computer stress, back stress & effective plastic strain

if MID ==
% Infinitesimal plasticity
[STRESS, ALPHA, EP]=combHard (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
elseif MID ==

% Plasticity with finite rotation

FAC=FAC*det (F) ;

[STRESSN, ALPHAN] = rotatedStress (DEPS, STRESSN, ALPHAN) ;

349

[STRESS, ALPHA, EP]=combHard (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
elseif MID == 31
[STRESS, B, ALPHA, EP]=mulPlast (PROP, ETAN, DEPS, STRESSN, ALPHAN, EPN) ;

end

%
%

if UPDATE
SIGMA(1l:6, INTN)=STRESS;
XQ(:,INTN)= [ALPHA; EP];
if MID > 30
SIGMA(7:12,INTN)=B;

end

continue;

end

%

% Add residual force and tangent stiffness matrix

BM=zeros (6,24) ;
BG=zeros(9,24) ;
for I=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BM(:

%

BG(:

end
%

,COL) =[SHPD (1, I)
0
0
SHPD(2, I)
0
SHPD (3, I)

,COL)=[SHPD(1, I)
SHPD (2, I)
SHPD (3, I)

o O O O O O

% Residual forces
FORCE (IDOF) = FORCE (IDOF) - FAC*BM’ *STRESS;

%

Update plastic variables

0
SHPD (2, I)
0
SHPD(1,1I)
SHPD (3, I)
0

0
0
0
SHPD(1,I)
SHPD (2, I)
SHPD (3, 1I)
0
0
0

0;

0;
SHPD(3,1I);
0;
SHPD(2,1I);
SHPD(1,I)];

SHPD(1,1I);
SHPD(2,1I);
SHPD(3,I)];
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Fig. 4.25 Hardening
models for elastoplasticity

En

% Tangent stiffness
if LTAN
if MID ==
DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
EKF = BM' *DTAN*BM;
elseif MID ==
DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
CTAN=[-STRESS (1) STRESS (1) STRESS (1) -STRESS(4) 0 -STRESS(6) ;
STRESS (2) -STRESS(2) STRESS(2) -STRESS(4) -STRESS(5) 0;
STRESS (3) STRESS(3) -STRESS(3) 0 -STRESS(5) -STRESS(6) ;
-STRESS (4) -STRESS(4) 0-0.5* (STRESS (1) +STRESS(2)) -0.5*STRESS (6)
-0.5*STRESS (5) ;
0 -STRESS (5) -=STRESS(5) -0.5*STRESS (6) -0.5* (STRESS (2) +STRESS (3) ) -
0.5*STRESS (4) ;
-STRESS (6) 0 -STRESS (6) -0.5*STRESS(5) -0.5*STRESS (4) -0.5* (STRESS
(1) +STRESS(3))1;
SIG=[STRESS (1) STRESS (4) STRESS(6) ;
STRESS (4) STRESS(2) STRESS(5) ;
STRESS (6) STRESS(5) STRESS(3)1;
SHEAD=kroon (eye(3),SIG) ;
EKF = BM’ * (DTAN+CTAN) *BM + BG’' *SHEAD*BG;
elseif MID == 31
DTAN=mulPlastTan (PROP, ETAN, DEPS, STRESSN, ALPHAN, EPN) ;
SIG=[STRESS (1) STRESS(4) STRESS(6) ;
STRESS (4) STRESS (2) STRESS(5) ;
STRESS (6) STRESS (5) STRESS(3)];
SHEAD=zeros (9) ;
SHEAD(1:3,1:3)=SIG;
SHEAD(4:6,4:6)=SIG;
SHEAD(7:9,7:9)=SIG;

%

EKF = BM' *DTAN*BM + BG' *SHEAD*BG;
end
GKF (IDOF, IDOF) =GKF (IDOF, IDOF) +FAC*EKF;
end, end, end
end
end
end
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4.8 Elastoplasticity Analysis of Using Commercial Finite
Element Programs

4.8.1 Usage of Commercial Programs

In this section, elastoplasticity analysis procedures using three commercial finite
element programs are discussed.

1. Abaqus

Although elastoplasticity analysis for isotropic material using von Mises crite-
rion is presented in this chapter, Abaqus supports broader range of plasticity
including anisotropic plasticity, rate-dependent yield criteria, creep and swelling,
porous media plasticity, etc. In this section, the metal plasticity with von Mises
criterion in Abaqus will be discussed. Abaqus supports linear and nonlinear isotro-
pic/kinematic hardening models.

The elastic material properties are the same as elastic material. For small elastic
strain assumption, the linear elastic material properties can be used for this purpose
(keyword *ELASTIC). In order to specify hardening properties, Abaqus requires
data in the pairs of yield stress and effective plastic strain.

In Abaqus plastic materials, Cauchy stress and logarithmic plastic strain are
used. Since material properties in tensile test are calculated from nominal stress and
engineering strain, they need to be converted using the following relations:

Otrue = Unom(l + Enom)a (4215)

el = en — ef) = In(1 + 2gom) — 22, (4.216)

where oy and o, are respectively the Cauchy stress and nominal stress, €0, 18

engineering strain, and sﬂ is the logarithmic plastic strain. Consider the Cauchy stress
and logarithmic strain curve in Fig. 4.25. The Young’s modulus can be calculated from
the initial slope of the curve and it becomes E = 200 GPa. Let the Poisson’s ratio be 0.3.
If the stress unit is MPa, then the *ELASTIC keyword is defined as

*ELASTIC
200.E3,.3

The material starts yielding at oy, =200 MPa and is linearly hardened until
220 MPa at logarithmic strain e, = 0.002. At the initial yielding the plastic strain is
0, and at &, = 0.002, the plastic strain is e‘fi = 0.0009. After that the hardening is 0. In
this case, the keyword * PLASTIC can be used to describe the hardening as

*PLASTIC
200.0, 0.0
220.0, 0.0009
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By default, Abaqus assumes the isotropic hardening model. In order to use kine-
matic or combined hardening model, HARDENING option can be used. The following
keyword defines elastoplastic material with linear kinematic hardening:

*PLASTIC, HARDENING=KINEMATIC

Example 4.23 (Uniform Tension of a Cube) Consider a unit cube as shown in
Fig. 4.26. An eight-node solid element (C3D8) is used to model the cube. The positive
X, face (Face 4) is extended with a strain € =0.004. The following boundary
conditions are given: u; =0 at Face 6, u, =0 at Face 3, and u3 =0 at Face 1. Using
Abaqus, calculate the relation between Cauchy stress and strain. Use elastoplastic
with isotropic hardening material. The elastic properties are E =200 GPaand v = 0.3.
The initial yields stress is oy =200 MPa and is linearly hardened until 220 MPa at
logarithmic strain &, =0.002. After that, there is no hardening (see Fig. 4.25).
Compare the stress—strain curve from the material definition and the response from

Abaqus.

Solution Below is the list of Abaqus commands used to solve the uniform exten-
sion of an elastoplastic cube. An eight-node linear brick element, C3D8, in Abaqus
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is used. The stress—strain curve in Fig. 4.27 shows that the numerical results agree
well with the hardening curve.

*HEADING *MATERIAL, NAME=ALLE

- Extension of elastoplastic cube *ELASTIC
*NODE, NSET=ALL 200.E3, .3
1, *PLASTIC
2,1. 200.,0.
3,1.,1., 220.,.0009
4,0.,1., *STEP, INC=20
5,0.,0.,1 UNIAXIAL TENSION
6,1.,0.,1. *STATIC,DIRECT
7,1.,1.,1. 1.,20.
8,0.,1.,1. *BOUNDARY , OP=NEW
*NSET, NSET=FACE1 FACEL, 3
1,2,3,4 FACE3, 2
*NSET, NSET=FACE3 FACEG6, 1
1,2,5,6 FACE4,1,1,0.004
*NSET, NSET=FACE4 *OUTPUT, FIELD, FREQ=1
2,3,6,7 *ELEMENT OUTPUT
*NSET, NSET=FACE®6 S, E
4,1,8,5 *NODE OUTPUT
*ELEMENT, TYPE=C3D8, ELSET=0ONE U,RF
1,1,2,3,4,5,6,7,8 *END STEP
*SOLID SECTION, ELSET=ONE, MATERIAL=ALLE

|

2. ANSYS

ANSYS supports bilinear/multilinear/nonlinear isotropic/kinematic hardening
models as well as anisotropic plasticity. The term bilinear is the same with linear
hardening in this text because ANSYS considers that the material response is linear for
both elastic and plastic states. For elastoplastic materials, TB, TBDATA, and TBPT
commands are used to define stress—strain behavior. By default, ANSYS assumes
infinitesimal deformation. When structures experience large strain, the NLGEOM
command should be used to include the effect of geometric nonlinearity. For large
strain analyses, stress—strain properties must be input in terms of true stress and
logarithmic strain.

TB, Lab, MAT, NTEMP, NPTS
The TB command activates a data table for nonlinear material properties. The first

parameter Lab specifies hardening models. Lab can take the following options:

BISO: Bilinear isotropic hardening
BKIN: Bilinear kinematic hardening
KINH: Multilinear kinematic hardening (strain—stress data)
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MISO: Multilinear isotropic hardening
MKIN: Multilinear kinematic hardening (plastic strain—stress data)
PLASTIC: Nonlinear plasticity with stress vs. plastic strain data

The second parameter, MAT, is a material reference number that can be used by MAT
command. If the temperature varies during the plasticity analysis, NTEMP is used to
set the number of temperatures for which data will be provided. NPTS is the number
of data points to be specified for a given temperature. Data points are defined with
the TBDATA or TBPT commands.

TBDATA, STLOC, C1, C2, C3, C4, C5, C6

The TBDATA command defines data for the data table. The first parameter STLOC
is the starting location in table for entering data. For example, if STLOC = 1, data
input in the €1 field applies to the first table constant, C2 applies to the second table
constant, etc. If STLOC =5, data input in the C1 field applies to the fifth table
constant, etc. C1, C2, C3,..., C6 are data values assigned to six locations starting
with STLOC.

TBPT, Oper, X, Y

The TBPT commend adds/deletes a point on a nonlinear data curve. If Oper =
DEFI, it adds a point at (X, Y).If a point already exists with the same X value, it is
replaced. If Oper = DELE, it deletes a point at point X.

The following example defines an elastoplastic material with bilinear kinematic
hardening model in the Newton millimeter units. TBDATA is used to provide the
yield stress and hardening modulus.

MP,EX,1,200E3 ! Young’s modulus = 200GPa
MP,PRXY,1,0.3 ! Poisson’s ratio=0.3
TB,BKIN,1,1 ! Activate a data table
TBDATA,1,200.,20.E3 ! GYZZOOMPa; H = 20GPa

The following example defines an elastoplastic material with multilinear kinematic
hardening model. Three data points are provided in terms of (strain, stress).

TB,KINH,1,1,3 ! Activate a data table

TBPT,,0.001,200. ! Strain=0.001, Stress = 200MPa
TBPT,,0.002,220. ! Strain=0.002, Stress = 220MPa
TBPT, ,0.200,250. ! Strain =0.200, Stress = 250MPa

3. NEiNastran

NEiNastran supports four different yield criteria using von Mises, Tresca, Mohr-
Coulomb, and Drucker-Prager models. In terms of hardening, it supports isotropic,
kinematic, and combined hardening models. MATS1 bulk data card is used to
specify elastoplastic material properties.

MATS1
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This entry defines elastoplastic hardening models and parameters. It must be
associated with the elastic material properties that are defined in MAT1, MAT2,
MATS8, MAT9, or MAT12. The parameters of the MATS1 entry are as follows:

‘M.ATSl |MID H TID H TYPE H H “ YF H HG H LIM1 |LIM2 H ‘

The MATS1 card can define either nonlinear elastic material or elastoplastic
material. For the latter, TYPE = PLASTIC is used. MID is the identification
number of MAT1, MAT2, MAT8, MAT9, or MAT12. The hardening parameters can
be provided either using either the table identification TID or the work hardening
slope H, but not both. H is the plastic modulus (slope of stress vs. plastic strain) in
units of stress. For more than a single slope in the plastic range, the stress—strain
data must be supplied on a TABLESI entry referenced by TID, and this field must
be blank. YF field specifies the yield function criterion (1 = von Mises, 2 = Tresca,
3 =Mohr-Coulomb, 4 =Drucker-Prager). The hardening rule is specified in HG
(1 =isotropic, 2 = kinematic, 3 = combined isotropic and kinematic hardening).
If TID is given, TABLES1 entries (Xi, Yi) of stress—strain data (g, o;) must
conform to the following rules. The curve must be defined in the first quadrant. The
first point must be at origin (¢; =0, ¢y = 0) and the second point (X2, Y2) must be
at the initial yield point (cy) specified on the MATS1 entry. The slope of the line
joining the origin to the yield stress must be equal to the valued of E.

4.8.2 Modeling Examples of Elastoplastic Materials

In this section, several analysis problems are used to discuss about modeling issues
as well as verifying the accuracy of analysis results with that of literature.

Elastoplastic Cylinder Under Internal Pressure: An elastoplastic cylinder,
subjected to internal pressure, is shown in Fig. 4.28. Assuming that both ends are
fixed, a plane strain condition can be applied. The internal pressure is applied such
that the inner radius experiences a large change (a factor of three). The geometry of
the cylinder is given such that the inner radius is 254 mm (10 in.) and the outer
radius of 508 mm (20 in.). It is noted that axisymmetric modeling can also be used
as both the geometry and load conditions are identical for a given angle q. Either ten
four-node quadrilateral elements (CPE4 for Abaqus or CQUAD4 for NEiNastran)
or five eight-node hexahedral elements (CPE8 for Abaqus or CQUADS for
NEiNastran) can be used to model the cylinder with periodic boundary condition.
The cylinder is assumed to be made of an elasto-perfectly-plastic material with the
following material properties: Young’s modulus E=207 GPa (30,000 ksi),
Poisson’s ratio v = 0.3, and yield strength oy =207 MPa (30 ksi).

This is a good example to discuss about the difference between the force-
controlled and displacement-controlled method. In the case of elasto-perfectly-
plastic material, the material cannot support loads beyond its yield strength. There-
fore, if a force-controlled method is used, it is possible that the user can apply a load
larger than the material can support. Then, the system becomes unstable and the
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Fig. 4.28 Elastoplastic
cylinder under internal
pressure

Ri=10"

Prescribed displacement

Initial geometry Final geometry

nonlinear iteration diverges. In fact, at the point of material yield, the deformation
continuously increases without further increase in the load. On the other hand, the
displacement-controlled method can maintain stability during nonlinear iteration
even if the force remains constant or decreases. This difference is explained in
Fig. 2.23 of Chap. 2. In the case of elastoplastic cylinder under internal pressure,
the inner radius is gradually increased by prescribing the radial displacement at the
innermost nodes, and the applied pressure is then calculated as a reaction force to
these prescribed displacements. The cylinder is expanded to three times its initial
radius in a small number of increments. This requires very large strain increments
and would probably be too large for a more complicated problem that involves
shear and rotation as well as direct straining. However, large strain increments are
suitable for this simple case.

Normally, it is difficult to obtain analytical solution for elastoplastic problems
except for very limited cases. In this example, however, since the strains are so
large, the results can be compared by the exact, rigid-plastic solution by Prager and
Hodge [9]. The stresses from the rigid-plasticity theory are given as

1 R*+ 1l —R}
(R) = —oyln | ——————L
o ( ) \/§O-Y |:R§ +r12 —R12:|

2
opo(R) = 0,+(R) +—0 )
00(R) (R) \{gy

0.:(R) =0, (R) + 7?_’03(

where R; and R,, are the initial inner and outer radii, respectively; r; is the current
inner radius; and R is the radius, in the initial configuration, of the material point at


http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Fig23
http://dx.doi.org/10.1007/978-1-4419-1746-1_4
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Fig. 429 Stress o, at R/R;=1.5

which the stresses are being calculated. Note that since o4y and o, are a function of
0,,, only o,, needs to be compared.

In order to test the performance of different element formulations, three types of
elements are used in Abaqus: CPE8, CPE8H, and CPE4. Figure 4.29 compares the
radial stress at R/R;=1.5 location at different levels of deformation using these
three element models to that given by the exact, rigid-plastic solution. Both CPESH
and CPE4 modes agree very closely with the exact solution, but the results from the
fully integrated 8-node (CPES) element are significantly different.

The pure displacement 8-node elements (CPES8) give poor results because the
strains are calculated directly from the interpolation functions at each integration
point and the incompressibility requirement causes a severe oscillation in the
mean pressure stress throughout each element. However, in the hybrid, eight-
node elements the mean pressure stress is interpolated independently, so an accu-
rate value is obtained for this variable. In addition, the four-node elements in
Abaqus are constant strain/stress elements for this case (because these elements
are coded with a constant hoop strain value and use “selective reduced integration,”
in which the volume strain is computed at the centroid only) and so also provide
accurate pressure stress values.

Results for models using the fully integrated versions of plane strain elements
are shown here to caution the user. With rare exceptions the fully integrated 8-node
quadrilaterals are not as effective as the reduced integration versions of the same
elements; the reduced integration 8-node quadrilaterals are, hence, almost always
recommended over their fully integrated counterparts. This particular problem
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Fig. 4.30 Finite element model and results for a plate with a hole

gives a dramatic illustration of a difficulty encountered with full integration in a
problem in which the bulk behavior of the material is very much stiffer than the
shear behavior, a type of behavior commonly encountered.

Stretching of a Plate with a Hole: A square 30 x 30 plate containing a hole of
radius 4 is stretched in the y-direction, while displacements in the x-direction are
restrained along its outer perimeter. Figure 4.30 shows the initial quarter symmetry
models with four-node quadrilateral elements. The elastic material properties of the
plate are a Young’s modulus of 1 x 10° and a Poisson’s ratio of 0.3. The isotropic
von Mises plasticity specification uses constant isotropic hardening with an initial
yield of 1 x 10° and a hardening modulus of 4 x 10°.

The analysis is performed in Abaqus/Explicit, where the plate is stretched by
ramping the velocity at the top nodes to 5 for the first half of the step time and then
keeping a constant velocity of 5 at these nodes for the rest of the analysis. At the end
of time, the vertical displacement at the top nodes is 2.5.

The contours of the equivalent plastic strain in each of the plates, obtained from
the analysis performed exclusively in Abaqus/Explicit, are shown in Fig. 4.30.
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Inspection of the deformed shapes and regions of high plastic strain shows that the
hole enlarges not only in the stretching direction but also in the lateral direction,
where the highest plastic deformation is observed. The contour of equivalent plastic
strain at the end of the import analysis is also shown in Fig. 4.30.

4.9 Summary

In this chapter, finite element formulations for elastoplastic problems are discussed,
which correspond to material nonlinearity. Elastoplastic problems are considered
rough nonlinear because their responses are history dependent and the status of
material can change abruptly. Permanent material dislocation during plastic defor-
mation is represented using the evolution of internal plastic variables. For large
deformation problems, both material and geometry nonlinearities exist, which
makes the problem more difficult to solve.

First, one-dimensional plasticity is introduced with linear hardening models and
small deformation assumption in Sect. 4.2. Two different hardening models are
discussed: isotropic and kinematic hardenings. The former increases the elastic
domain, while the latter maintains the size of elastic domain but moves the center
of it. From the small strain assumption, the strain is additively decomposed into
elastic and plastic strains in which only elastic strain is related to stress. Plastic
deformation depends on load history and it is stored in plastic strain. The state
determination of stress is based on (a) elastic trial and (b) plastic return-mapping.
In the elastic trial state, the strain increment is assumed to be elastic and stress
increases accordingly. If the trial stress is out of elastic range (i.e., beyond the current
yield stress), it is returned to the yield stress. The plastic strain increment is identified
during this return-mapping process.

In multidimensional stress states, it is impractical to perform tests in all possible
stress combinations. One-dimensional tension test data can still be used for deter-
mining failure of multidimensional stress using failure theories, which are based on
equivalent stress. Since failure criteria should be independent of coordinate systems,
they are defined using invariants. The Tresca criterion uses the maximum shear stress,
while the von Mises criterion uses the second invariant (J,) of deviatoric stress. Same
as one-dimensional case, the algorithm is composed of elastic trial and plastic return-
mapping. In the case of von Mises criterion, the return-mapping occurs in the radial
direction of deviatoric stress. While the stress is returning from the trial states, the
yield surface varies simultaneously. The final return-mapping point is determined by
the plastic consistency condition. It is shown that when linear hardening is used, this
return-mapping point can be found explicitly. Otherwise, the local Newton—Raphson
method is required to find the return-mapping point. Since the continuum tangent
stiffness is inconsistent with finite step size of time integration, the convergence
iteration does not show quadratic convergence. In order to guarantee the quadratic
convergence of the Newton—Raphson iteration, an algorithmic tangent stiffness that is
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consistent with the return-mapping algorithm is obtained by differentiating the time
integration algorithm with finite step size.

When the structure experiences small strain but finite rigid-body motion, the
classical theory of elastoplasticity with the assumption of infinitesimal deformation
needs to be modified to take into account the rigid-body motion. The objective rate
and objective time integration play important roles to express the rigid-body motion
systematically. An objective stress rate must be used to define the constitutive
relation because the material response should be independent of coordinate
systems. In addition, the midpoint configuration is used to reduce errors involved
in nonuniform rotation and spin. Although a good deal of research has been
performed on the objective rate, difficulties still remain concerning numerical
integration methods that satisfy all physical requirements. The difficulty in
obtaining an exact tangent stiffness operator is another drawback to this approach.

A new method for expressing the kinematics of finite deformation elastoplasticity
using the hyperelastic constitutive relation is becoming a desirable approach to
isotropic material. This method defines a stress-free intermediate configuration
composed of a plastic deformation, and obtains the stress simply by taking a
derivative of the strain energy density with respect to the intermediate configuration.
The multiplicative decomposition of an elastoplastic deformation is converted into an
additive decomposition by defining appropriate stress and strain measures. Even if
the final variational equation is represented using the updated Lagrangian formula-
tion, the reference for a constitutive relation is implicitly a stress-free intermediate
configuration. By using the constitutive relation between principal stresses and
logarithmic stretches, better accuracy is obtained for a large elastic strain problem
than with the classical elastoplasticity method. In addition, the same return-mapping
algorithm from classical theory can be used in the principal stress space.

4.10 Exercises

P4.1 A force is gradually applied at the end of an elastoplastic bar such that it is in
the plastic phase. When the total magnitude of strain is e = 0.003, calculate
the applied force, axial stress, elastic strain, and plastic strain. Use the
following material properties: E = 100 GPa, H = 10 GPa, and 6y = 100 MPa.
The cross-sectional area of the bar is A= 1.0 x 10~* m?.

P4.2 A force 12 kN is gradually applied and then removed at the end of an
elastoplastic bar. When the yield stress of the material is 100 MPa, calculate
plastic strains and tip displacement after removing the applied force. Use the
following material properties: E =100 GPa and H =10 GPa. The cross-
sectional area of the bar is A=1.0 x 10* m? and the length of the bar is
L() =1m.

P4.3 A uniaxial bar is under tensile force =12 kN at load step ¢,. (a) When the
plastic strain is &y =0.002, determine the yield status of the material. (b) If
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the applied force is increased to F = 15 kN at load step ¢,,,, calculate plastic
strain and tip displacement. Assume the initial yield stress oy =100 MPa,
E =100 GPa, and H=10 GPa. The cross-sectional area of the bar is
A=1.0 x 10~* m? and the length of the bar is Lo =1 m.

An elastoplastic bar is under variable load history. At load step 7, the stress
and plastic strain are 6" =200 MPa and g =10x10" 4. respectively. (a) Is
the material in elastic or plastic state? (b) When strain increment is
Ae =—0.003, calculate stress and plastic strain. Assume isotropic hardening
with £ =200 GPa, H=25 GPa, and oy =250 MPa.

Repeat Problem P4.4 using the kinematic hardening model. For back stress,
use o' =2.5MPa.

Repeat Problem P4.5 using the combined hardening model with f#=0.5.

For the combined isotropic/kinematic hardening model, derive the expres-
sion of plastic strain increment from the plastic consistency condition.

An elastoplastic bar is clamped at the left end, and variable loads are applied at
the right end, as shown in the table. Plot the stress—strain curve by changing the
applied forces by 5 kN increments. Assume the following material properties
with isotropic hardening: E =70 GPa, H = 10 GPa, 6y = 250 MPa. The length
of the bar is L= 1 m, and the cross-sectional area is A = 1.0 x 10™* m?.

2 3
20 35

4
20

Load step 1
Force (kN) 30

An elastoplastic bar is clamped at the left end, and variable displacements
are applied at the right end, as shown in the table. Plot the stress—strain curve
by changing the tip displacement by 1 mm increments. Assume the follow-
ing material properties with isotropic hardening: E =70 GPa, H =10 GPa,
oy =250 MPa. The length of the bar is L = 1 m, and the cross-sectional area
isA=10x10""m’.

2 3
3.0 7.0

4
6.0

Load step 1
5.0

Displacement (mm)

A force of P =15 is applied to the two parallel bars in Example 4.2 and then
removed. Using combHard1D programs, calculate tip displacement and
residual stresses for the two bars after unloading. Use 15 load increments
for each loading and unloading cycle. Plot stresses vs. tips displacement in
the XY graph.

A force 12 kN is gradually applied at the end of an elastoplastic bar. When
the yield stress of the material is 100 MPa, calculate displacement at the tip.
Use the following material properties: £ =100 GPa and H =10 GPa. The
cross-sectional areas of the bars are A=1.0x10"* m? and
AP =05x10""m’.
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P4.12 Two one-dimensional bars are connected serially as shown in the figure. At
load step n, barl was plastic and bar2 was elastic. At load step n+ 1, the
increments of nodal displacements are given as Au = [Au;, Au,, Aus] =[0.0,
—0.01, 0.0]. Calculate stresses and plastic strains of both bars at load step n + 1.

Fig. P4.11

20 @ ®
barl | bar2 |
L=100 l L=100 l
Fig. P4.12
barl bar2
Young modulus (E) 10,000 5,000
Tangent modulus (E,) 1,000 500
Previous stress (¢”) 6.0 7.4
Initial yield stress (oy) 5.0 7.5
Plastic strain (&) 9E—4 0.0
Yield status Plastic Elastic
Hardening Isotropic Isotropic

P4.13 Write the expression of the fourth-order unit symmetric tensor and unit
deviatoric tensor in the 6 X 6 matrix notation.

P4.14 A solid shaft as shown in the figure is subjected to tensile force P and a
torque 7. The force and torque are such that the normal stress o, =0 and
shear stress 7=o0. The shear stress is along the circumference of the shaft.
Using the von Mises criterion, determine the values of ¢ when the material
yields first time. The yield stress from the uniaxial tension test is ovy.

X

( 0— ——n
N
T

Fig. P4.14
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P4.15 A plane stress plate is under biaxial stress state in which o6, = —0,,=0.
When the applied load is proportional, determine o when the material yields
first time. The yield stress from the uniaxial tension test is oy.

P4.16 A square is under proportional loading with shear stress 71, =17,; =7. When
the effective plastic strain is e, =0.1, calculate the value of shear stress.
Consider three different hardening models: (a) isotropic, (b) kinematic, and
(c) combined hardening with f=0.5. Assume that the initial yield stress is
400 MPa and the plastic modulus is H =200 MPa.

P4.17 A pure shear deformation is applied to the square element as shown in the figure
such that 61, = 65 is only nonzero stress component. At load step 7, the stress
value was o1, = 50, and there was no plastic deformation. At load step n+ 1,
incremental strain Aej, = Aey; = 0.005 is applied. Calculate stress components
and effective plastic strain atload step n + 1. Use the following material properties:
shear modulus ¢ = 1,000, plastic modulus H = 100, initial yield stress oy = 100.

Fig. P4.17

P4.18 Displacements of a simple shear deformation in the figure can be expressed by
Uy = kxo,up = 0. Atload step n, k = 0.016 and the material is elastic. Atload step n
+ 1, Ak = 0.008. Calculate stress and plastic strain. Check if the updated state is on
the yield function, i.e., (c"* ", e *+1) = 0. Use the following material properties:

shear modulus y = 100, plastic modulus H = 10, initial yield stress oy = v/ 12.

Fig. P4.18
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P4.19

P4.20
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At load step 7, a unit square is under unaxial stress state with o1, = 100 MPa,
and all other stress components and plastic variables are 0. At load step ¢,,,1,
additional shear stress is applied such that Ay;, =0.002. Determine stress,
back stress, and effective plastic strain. Assume the following material
properties: A=y =100 GPa, H=10 GPa, oy = 100 MPa, combined isotro-
pic/kinematic hardening with f=0.5.

Using Abaqus perform a uniaxial tension test of a unit cube (C3D8) in x3-
direction. Assume elastoplastic material with linear isotropic hardening
(E=2.0E5, v=0.3, 6y=200, H=2.0E4). Displace at x;=1 surface is
controlled as shown in the figure with three steps. Use ten increments in
each step. Plot stress—strain curve for all 30 increments.

0.006] -=====================

0.004-------

0.001 |-/ -----

Fig. P4.20

P4.21

P4.22

P4.23

Calculate D, and D™ for one-dimensional elastoplasticity problem using
the von Mises yield criterion and linear combined isotropic/kinematic hard-
ening. Assume material properties: (E, H, (FOY, 2.

In the saturated isotropic hardening model, the yield stress starts from initial
value of 63 and approaches o5 as the plastic strain increases.

K(ep) = O'OY + (5@0 — O'OY) [1 —exp <:Tpo>] .
p

Since the hardening model is nonlinear, it is required to have a local
Newton—Raphson method to find the plastic consistency parameter. Modify
MATLAB program combHard so that it can solve for the above saturated
isotropic hardening model. Test the program by solving the pure shear
problem in P4.15. Assume the following material properties: shear modulus
1= 1,000, plastic modulus H = 100, initial yield stress oy = 100, asymptotic
yield stress =200, and asymptotic effective plastic strain = 0.05.

An plane strain square undergoes the following elastic deformation:
x1=X1+kX2, =X x3=X;.

Using the linear relationship between principal Kirchhoff stress and loga-
rithmic stretch, find the Kirchhoff stress tensor when k=0.02. Use the
following material properties: 4 =y = 100 GPa.
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P4.24 A history of biaxial loadings is applied to a 1 mm x 1 mm square, as shown
in the figure. The square is constrained in the Y-direction along the bottom
edge and in the X-direction along the left edge. The model is displaced in the
X and Y directions at the right and top edges by R =2.5 x 10~ mm, respec-
tively. Calculate oy, 6y, 0., and von Mises stress at each load step. Use the
following material properties: E =250 GPa, v=0.25, 6y=5 MPa, and

E+=50 GPa.
1fay
N
—N
—N AX
Im
Yy
//17- — X
I
— 1 ——
Fig. P4.24
Load step AX AY Description
1 R 0 First yield
2 R 0 Plastic flow
3 0 R Elastic unloading
4 0 R Plastic reloading
5 —R 0 Plastic flow
6 —R 0 Plastic flow
7 0 —R Elastic unloading
8 0 —R Plastic flow
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Chapter 5
Finite Element Analysis for Contact
Problems

5.1 Introduction

When two or more bodies collide, contact occurs between two surfaces of the
bodies so that they cannot overlap in space. Metal formation, vehicle crash,
projectile penetration, various seal designs, and bushing and gear systems are
only a few examples of contact phenomena. During sheet-metal formation, for
example, a simple-shaped blank is formed into a desired shape through contact
against a punch and die. In such a case, it is important to determine contact locations
between a deformable blank and a rigid or deformable punch and die. In a broader
sense, contact is a common and important aspect of mechanical systems, where
multiple parts are assembled to compose the system. In fact, contact is the main tool
to join multiple parts together, which includes screws, bolts, welds, etc.

The objective of contact analysis is to answer the following questions:
(a) whether two or more bodies are in contact, (b) if they are, where the location
or region of contact is, (c) how much contact force or pressure occurs in the contact
interface, and (d) if there is a relative motion after contact in the interface. In this
chapter, these questions will be addressed in the continuum and finite element
domains.

Contact is categorized as boundary nonlinearity, in contrast to both geometric
nonlinearity, which emerges from finite deformation problems, and material
nonlinearity, which is a product of nonlinear constitutive relations. The nonlinearity
of contact can be explained in two aspects. Firstly, if two separate bodies come into
contact, the graph of the contact force vs. displacement looks like a cliff because the
contact force stays at zero when two bodies are separate and increases vertically
after the bodies come into contact. In such a case, a functional relationship is not
available because there is no one-to-one relationship between contact force and
displacement. A similar phenomenon happens in the tangential direction under
friction where two bodies are stuck together until the tangential force reaches a
threshold, after which continuous sliding occurs without further increasing the
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tangential force. Such an abrupt change in contact force and slip makes the problem
highly nonlinear. Secondly, in order to be a well-posed problem in mechanics,
either displacement (kinematics) or force (kinetics), but not both, must be given for
every material point. Then, the finite element equation solves for unknown infor-
mation with given information. On the displacement boundary, for example, if
displacement is given, reaction force should be calculated. On the other hand, on
the traction boundary, if the applied force is given, the corresponding displacement
is to be calculated. Note that these two boundaries are clearly identified in the
problem definition stage. In the case of contact, however, both displacement and
contact force are unknown, except for very limited cases; that is, the contact
boundary is a part of the solution. The user can only identify a candidate of contact
boundary before solving the problem. Therefore, the finite element analysis proce-
dure must find (a) whether a material point in the boundary of a body is in contact
with the other body, and if it is in contact, (b) the corresponding contact force must
be calculated. Since the contact force at a material point can affect the deformation
of neighboring points, this process needs to be repeated until finding right states for
all points that are possible in contact. Because of this procedural nature, contact
nonlinearity is often addressed algorithmically (Fig. 5.1).

For the case of an elastic system, equilibrium can be described as finding a
displacement field that minimizes the potential energy. Contact can then be con-
sidered as a constraint of the optimization formulation, such that the potential
energy is minimized while satisfying the contact constraint; that is, a body cannot
penetrate the other body." The constrained optimization problem can be converted
into an unconstrained one by using the penalty regularization or Lagrange multi-
plier methods. Therefore, most contact algorithms are derived based on these two
methods. Once understanding that contact can be considered as a constraint to the
structural equilibrium, it can be applicable to nonelastic materials, such as
elastoplastic material, as it is basically independent of material models used.
Therefore, it is possible to treat the contact formulation independent of constitutive
models.

Although contact problems can be formulated in a variety of ways, the slave—
master concept is commonly used in finite element-based applications. In the slave—
master concept, one body is called a slave body, and the other is called a master
body. Although the selection of slave and master bodies is arbitrary, some guide-
lines will be given later in the chapter. The contact constraint is then imposed in
such a way that the slave surface cannot penetrate the master surface. Or, in finite
elements, the nodes on the slave boundary cannot penetrate the surface elements on
the master boundary. It is also possible that the role of slave and master can be
changed so that the master surface cannot penetrate the slave surface.

"Rigorous discussions on this topic with variational inequality and its equivalence to the
constrained optimization can be found in J. Sokolowski and J. P. Zolesio, Introduction to Shape
Optimization, Springer-Verlag, Berlin, 1991. A brief summary will be presented in Sect. 5.3.
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Contact force
Body 1
Body 2
4 —7
‘ Contact stress
(compressive)
Contact boundary Penetration

Fig. 5.1 Contact boundary and contact force

This chapter is organized as follows. In Sect. 5.2, simple one-point contact
examples are presented in order to show the characteristics of contact phenomena
and possible solution strategies. In Sect. 5.3, a general formulation of contact is
presented based on the variational formulation similar to previous chapters. To
facilitate comprehension, the complexity of formulation is gradually increased by
moving from flexible-to-rigid contact to flexible-to-flexible contact, from line-to-
line to surface-to-surface contact, and including friction. Section 5.4 focuses on
finite element discretization and numerical integration of the contact variational
form. Three-dimensional contact formulation is presented in Sect. 5.5. From the
finite element point of view, all formulations involve the use of some form of
constraint equation. Because of the highly nonlinear and discontinuous nature of
contact problems, great care and trial and error are necessary to obtain solutions to
practical problems. Section 5.6 presents modeling issues related to contact analysis,
such as selecting slave and master bodies, removing rigid-body motions, etc.

5.2 Examples of Simple One-Point Contact

In order to illustrate key features of a contact problem, simple one-point contact
examples are presented in this section. The concepts in this section will be gener-
alized to curve or surface contact problems in Sect. 5.3.

5.2.1 Contact of a Cantilever Beam with a Rigid Block

Consider a cantilever beam subjected to a distributed load. The deflection of the
free end of the cantilever is limited by a rigid block. There is a small gap between
the end of the beam and the rigid block as shown in Fig. 5.2. The following
numerical data are assumed: distributed load ¢ =1 kN/m, length of the beam
L=1m, flexural rigidity £/ = 10> N m?, and initial gap § =1 mm.
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Fig. 5.2 Cantilever beam q
supported by a rigid block
o I
EI —
Rigid
block

5.2.1.1 Solution Using Trial and Error

In such a simple case, there are two possibilities. If the initial gap is larger than the
deflection of the beam, then there will be no contact. On the other hand, if the
deflection is larger than the gap, then the gap is closed under the given load. One
solution strategy would be first to assume that the gap is large enough so that it will
not close under the given load. In that case, the rigid block has no influence on the
deformations. From the Euler beam model, the deflection curve and the tip deflec-
tion can be given as
2 q L4

wmzﬁ%@Mwﬁ—%ﬁ w(L) = 45 = 000125m.

The solution shows that the tip deflection is larger than the gap, and therefore, the
assumption of gap not closing is wrong.

Now, when the gap is closed, contact occurs between the beam and the rigid
block. Even if the rigid block has a finite width, it is assumed that the contact only
occurs at the tip of the beam, i.e., one-point contact. Since the rigid block prevents
the deflection of the beam, its effect can be modeled by applying a force, i.e., a
contact force, such that the beam cannot penetrate the rigid block. Since the beam
deflection is small, the rule of superposition is used for the effect of the two loads.
The deflection curve and the tip deflection of the beam under the force at the tip can
be given as

—x2 —A
= 3L—x), ve(l)=—2—.
ey CL =%, () %105

ve(x)

Here, a negative sign is used for the force because the direction of contact force is
opposite to the applied distributed load. At this point, the contact force, 4, is
unknown, which can be calculated from the condition that the beam cannot
penetrate the rigid block; that is, the deflection of the combined loads is the same
with the gap, as

A
ip = V(L) +v.(L) =0.00125 — ———= = 0.001 = 6.
Vp = (L) + (L) T
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Fig. 5.3 Deflection of
cantilever beam with gap : N
and contact force

T v(x)

Rigid
block

From the above relation, the contact force can be calculated to be A=75 N.
The deflection curve can then be obtained by combining the two deflection curves,
as v(x) = vn(x) + ve(x).

5.2.1.2 Solution Using Contact Constraint

The issue in the previous trial-and-error approach is that the solution (deflection of
the beam) has to be calculated first in order to determine the status of contact. When
contact occurs at multiple points, the procedure can be quite complicated to check
all possible combinations of the contact points. A more systematic contact formu-
lation can be developed by considering both the contact force and the gap between
the beam and the rigid block as unknowns and adding an additional constraint. The
unknown contact force is denoted by A that acts on the beam and the rigid block in
the opposite directions.”

In order to assign consistent directions, one of the two contact points is consid-
ered a master and the other a slave. The master is assumed to be fixed while the
slave moves to initiate the contact. For a general situation, when both bodies in
potential contact are loaded, the choice between a master and a slave may be
arbitrary. More details will be discussed in Sect. 5.5 for selecting the master and
slave. In this problem, the beam obviously is the slave and the rigid block is the
master.

With the downward deflection being positive, Fig. 5.3 shows the positive
directions for this contact force on the beam and the rigid block. The contact
force is treated as an externally applied load, even if it is unknown. Because of
Newton’s third law, the contact force acts in an equal and opposite direction to the
beam and the block. In this particular example, since the rigid block is fixed, it is
unnecessary to consider the equilibrium of the rigid block.

Treating the contact forces as externally applied loads and using the superposi-
tion rule of two independent loads, the beam deflection curve can be obtained by

It will be clear later that the contact force is equivalent to the Lagrange multiplier in the
constrained optimization, which is the reason to use the Greek symbol 4.
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2 2

qx X
v(x) = 5aE] (x2+6L2—4Lx) —@(3L—x). (5.1)

This deflection curve must be supplemented by a contact constraint, which is
defined using the following gap function:

g=wip—6<0. (5.2)

The physical requirements of contact are that there should be no penetration, the
contact force should be positive, and when the gap is greater than zero, the contact
force should be zero and vice versa. These requirements dictate that the solution
satisfies the following three conditions:

No penetration : g < 0,
Positive contact force : 1 > 0, (5.3)
Consistency condition : 1g = 0.

The above requirements are exactly the same as those of the Lagrange multiplier in
a constrained optimization problem. The consistency condition in the above equa-
tion can be used to find the correct contact status as well as the contact force. Since
the gap is also a function of contact force, using Eqgs. (5.1) and (5.2), the above
consistency condition can be written as

A
Ag =4 (0.00025 — i) =
3 x 10

The above quadratic equation has two solutions: A=0Nor A=75N. When A =0N,
the gap becomes g =0.00025 > 0, which violates the condition of no penetration.
Therefore, this cannot be a possible configuration. On the other hand, when
A=7T5N, the gap becomes g =0. Since this solution satisfies all requirements,
this is the solution. In fact, the solution is consistent with the solution from the
direct method.

In the above example, the additional unknown (contact force) is added as a
Lagrange multiplier, and the consistency condition is used to determine contact
status and contact force. In the penalty method, it is also possible to impose the
contact constraint without introducing additional unknowns. In the penalty method,
a small amount of penetration is allowed, and the contact force is applied propor-
tional to the amount of penetration. Since the gap in Eq. (5.2) can be both positive
and negative, the following penetration function is defined:

#y =51l +9) (54)

which is zero when ¢ <0 and has the same value with g when g > 0. Then, the
contact force is defined using the penetration function
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Table 5.1 P enetrat.ions and Penalty parameter Penetration (m) Contact force (N)
contact forces for different P )
penalty parameters 3 x 10 1.25x 10 37.50
3% 10° 227 %1077 68.18
3% 107 248 x 10°° 74.26
3% 10® 2.50 x 1077 74.92
3% 10° 2.50 x 1078 75.00
A= Knoy, (5.5)

where Ky is a penalty parameter. The contact force will be zero when the gap is
open and proportionally increase with the penetration. The basic concept is that this
method allows a small amount of penetration and then penalizes it by applying a
large force. A benefit is that the contact force is now related to the gap, albeit the
relationship is nonlinear.

The definition of the gap in Eq. (5.2) can be used to calculate the contact status
and contact force, as

Ky 1
=0.00025 — —2~ _ _(|g| + 2).
g %10 2(Igl g)

When g <0 is assumed, the above equation is self-conflicting, which means that
penetration occurs. When g > 0, the above equation can be solved for the gap with a
given penalty parameter Ky. Table 5.1 shows the amount of penetration and contact
forces for different values of the penalty parameter. It can be observed that as the
penalty parameter increases, the penetration decreases and the contact force con-
verges to the accurate value.

Example 5.1. Lagrange multiplier when no contact When the distributed load is
500 N/m, calculate the tip deflection of the beam and determine if contact occurs or
not using the Lagrange multiplier method.

Solution From Eq. (5.1), the tip deflection can be written in terms of the Lagrange
multiplier as

A

Vip = 0.625 x 1073 — —Z
P 3% 10°

Using the gap function in Eq. (5.2), the contact consistency condition in Eq. (5.3)
can be written as

A
g = A<—0.375 x 1077 — 75> =
3 x 107
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Fig. 5.4 Cantilever beam

q
supported with a potential LU DL DDl
frictional contact at the tip El gap

with a rigid block Rigid bm;»’

The above equation has two solutions: A = — 112.5 N and A = 0. The former violates
the inequality condition of the Lagrange multiplier; therefore, it is an invalid
solution.> The latter yields the gap function of g=—0.375x 10~ > <0, which
satisfies the inequality condition; therefore, it is a valid solution. In fact, it physically
means that the gap is not closed and contact does not occur. This can be confirmed by
the tip deflection of vy, = 0.625 mm, which is smaller than the initial gap. [ ]

P

5.2.2 Contact of a Cantilever Beam with Friction

Consider a slightly more complicated problem that involves both a normal contact
and friction. A cantilever beam is subjected to a distributed load and an axial load.
The free end of the cantilever could potentially contact the block, as shown in
Fig. 5.4. Again, it is assumed that the contact can occur only at the tip of the beam.
The block surface has a known coefficient of friction u. The load sequence is such
that the transversely distributed load ¢ is applied first, followed by the axial load P.
The same numerical data as in Sect. 5.2.1 are used for the beam deflection. For the
axial direction, the following data are used: axial load P =100 N, axial rigidity
EA =10° N, and friction coefficient = 0.5.

5.2.2.1 Solution with No Frictional Resistance

From the assumption of infinitesimal deformation, the transverse behavior of the
beam can be decoupled with the axial behavior. Therefore, the beam deflection will
be identical to the previous section, and the beam will be in contact with the rigid
block with a contact force of 75 N. In the axial direction, the displacement can be
modeled using an axially loaded bar. Therefore, the tip displacement due to the
axial load becomes

no-friction PL
tip friction AT 1.0mm. (5.6)

This tip displacement will be compared with the case when friction exists at the
contact point.

tis interesting to note that the physical interpretation of the negative Lagrange multiplier is the
force that is required to apply at the tip of the beam in order to close the gap.
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Fig. 5.5 Tangential slip of
cantilever beam with

o Y .
friction force 7 . Uy
/f >
Yy

5.2.2.2 Frictional Constraint Function

When friction exists on the interface, the contact point may or may not slip,
depending on interface conditions, such as friction coefficient, contact force, and
tangential force. In Coulomb’s friction model, sliding along the contact surface
will take place when the tangential component of the contact force is greater
than the frictional resistance. Similar to the normal contact case, the tangential
friction force also occurs both in the beam and the rigid block in equal and
opposite directions. The positive directions of contact and friction forces are
shown in Fig. 5.5. Denoting the normal force at the contact surface as 4 and
tangential force ¢, the physical requirements for a frictional constraint are as
follows.

Stick condition : # —pud <0, wup =0,
Slip condition : t—pud =0, wug >0, (5.7)
Consistency condition : i, (f — ud) = 0.

When the stick condition occurs, the contact point will not move in the tangential
direction, and the tangential force will be determined based on the equilibrium with
the externally applied loads, whose magnitude should be less than 4. When the slip
condition occurs, the tangential force will be the same as p4 and the contact point
will continuously move tangentially until the system finds an equilibrium.

The above frictional constraint is similar to the one in Eq. (5.3). Therefore, either
the penalty method or Lagrange multiplier method can be applied. The only
difference is that now the slip displacement u, is considered as a Lagrange
multiplier, while the friction force is considered as a constraint.

5.2.2.3 Solution Using Trial and Error

In the trial-and-error approach, one condition is assumed first, and then after solving
the problem, the other requirements are checked. If all requirements are satisfied,
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then the initial assumption is correct and the state is determined. Otherwise, other
conditions are assumed until all possible conditions are exhausted.
If the stick condition is assumed first, it means that

PL L
p=7r 7, =20 t =P = 100N.
Yo TEATEAT S T
However, this tangential friction force violates the requirement ¢ — uA < 0. There-
fore, the stick condition is not valid.
In order to check with the slip condition, the friction force is first calculated from
t =puA=737.5N. The friction force will generate the following displacement:

PL 1L
Uip = 7y ~ px = 0.625 mm, (5.8)
which satisfies the requirement. Therefore, the slip condition is valid. Note that the
slip is less than that of the frictionless assumption in Eq. (5.6).

5.2.2.4 Solution Using Frictional Constraint

In the Lagrange multiplier method, the consistency condition in Eq. (5.7) is used to
impose the constraint condition. Compared to the case of normal contact, the choice
of the Lagrange multiplier is not obvious in this case. Between the tip displacement
and frictional force, the tip displacement is chosen as a Lagrange multiplier and the
frictional forcing term, 7 — u4, is chosen as a constraint. For the case when the
Lagrange multiplier and constraint are switched, the readers are referred to Exercise
Problem P5.2. Using the tip displacement formula in Eq. (5.8), the tangential force
can be written in terms of the tip displacement as

EA
t=P— Tblﬁp.

Therefore, the consistency condition can be written as
EA
Mtip <P — Tuﬁp - /4/1) =0. (59)

The above consistency condition has two solutions: u, =0 and

(P —pA)L
Utip = T
The first solution, u;, =0, corresponds to the stick condition and yields = P.
However, since t—pul=62.5N >0, it violates the stick condition. The second
solution,
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(P —uA)L

A =0.625mm > 0

Utip =

corresponds to the slip condition and yields ¢ = uA, which satisfies the slip condi-
tion. Therefore, this is the valid state.

In the penalty method, the constraints on the frictional force are penalized when
it violates the condition, that is, when ¢t — u4 > 0. In the same way with the normal
contact case, the following penalty function is defined for the frictional force:

1
¢r = 5|t — pa| + 1 — pd). (5.10)

Note that ¢y=0 when ¢ — A <0 and ¢y =1t — ul >0 when the constraint is vio-
lated. In the penalty method, the relationship between the slip displacement and the
frictional force can be established by

utjp :KT¢T’ (511)

where Kt is the penalty parameter for the tangential slip. When ¢t — ul <0, the
above equation represents a stick condition exactly; i.e., ui, = 0. Therefore, no
approximation is involved in the case of a stick condition. On the other hand, the
above equation shows a slip condition when ¢t — uA > 0, i.e., when the constraint is
violated. However, the slip condition is penalized with a large value of penalty
parameter Kt so that the violation remains small.

In order to find the tip displacement using the penalty method, the frictional
force is expressed in terms of the tip displacement, as

EA
1= P~ —uip. (5.12)

By substituting the above equation into Eq. (5.11), the following tip displacement
can be obtained:
KtL(P — uk)
Wip = ——————

"L+ KrEA
For a large value of Kt, the above equation can be approximated by

(P — pA)L
EA

Utip ~

and the frictional force becomes
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Table 5.2 Tip displacement and frictional forces for different penalty parameters

Penalty parameter Tip displacement (m) Frictional force (N)
1x107* 5.68 x 1074 43.18
1x1073 6.19 x 107* 38.12
1x1072 624 x 1074 37.56
1x107! 6.25x 1074 37.50
1x10° 6.25x 1074 37.50

EA
t=P— Tuﬁp ~ ud,

which is nothing but the slip condition. Table 5.2 shows the tip displacements and
frictional forces for different values of penalty parameter. It can be observed that as
the penalty parameter increases, the tip displacement and the frictional force
converges to the accurate value of 0.625 mm and 37.5 N, respectively. It is noted
that the penalty parameter is relatively small compared to the case of normal
contact because the penalty parameter relates the frictional force to the slip
displacement.

Example 5.2. Lagrange multiplier for friction When the force at the tipis P =25 N,
calculate the tip displacement of the beam and determine if a stick of slip occurs
using the Lagrange multiplier method.

Solution From Eq. (5.9), the consistency condition has two solutions: u, =0 and
uip = (P — uA)L/EA. The first solution, u;, =0, corresponds to the stick condition
and yields t =P =25N. Since t — ul=—7.5N <0, it satisfies the stick condition.
Therefore, the beam is in the stick condition. On the other hand, if the slip condition
is checked, the tip displacement

P —pud)L
iy = % — —0.075mm < 0

becomes negative, which violates the stick condition. Therefore, the stick condition
is not a valid state. |

5.3 General Formulation for Contact Problems

The one-point contact examples in the previous section are limited to a practical
point of view, as most contact in engineering applications occurs along a line (one
or two dimensional) or a surface (three dimensional). In this section, the basic
concepts of one-point contact are extended to two or three dimensions. In order to
simplify the presentation, only the penalty method will be discussed.
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Fig. 5.6 Contact condition
in two dimensions

Rigid Surface

5.3.1 Contact Condition with Rigid Surface

The general formulation is illustrated with reference to contact between two bodies,
as shown in Fig. 5.6. The concepts can easily be generalized to contact involving
more than two bodies. Note that each body is assumed to be properly supported
such that no rigid-body motion is possible even without the contact. In the case of
contact with a rigid body, it is natural that the flexible body is selected as a slave
body and the rigid body as a master body.

Contact conditions can be divided into normal impenetrability and tangential
slip. The impenetrability condition prevents the slave body from penetrating into
the master body, while the tangential slip represents the frictional behavior on the
contact surface. Figure 5.6 illustrates a general contact condition with a rigid
surface in two dimensions. A part of the slave boundary is denoted by contact
boundary, I'.. Although the actual contact region is unknown and is a part of the
solution, the user specifies the contact boundary such that all possible contacts can
only occur within this boundary. It is assumed that a point x on the contact boundary
will be in contact with a point x. on the master surface if the contact actually occurs.
In the following, the contact condition will only be discussed with respect to a
single slave point x. Since the motion of the rigid surface is prescribed throughout
the analysis, a natural coordinate £ is used to represent the location on a rigid
surface. Thus, the coordinates of contact point X, on the master surface can also be
represented using a natural coordinate at the contact point &, by

X, = Xc(&,)- (5.13)

However, the contact point X, or equivalently &, is yet unknown. In the three-
dimensional space case, two natural coordinates are required to describe the master
surface.

In general, contact analysis is to find the contact point and the contact force at the
contact point, including contact pressure and frictional force. In finite element
analysis, either displacement or force is known at the boundary and the other
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unknown variable is solved through the equilibrium requirements. In contact
analysis, however, both the contact point x. and the contact force at that point are
unknown, which makes the contact problem challenging. Usually, a trial-and-error
approach is taken in which the contact point is searched from the current geometry,
and the contact constraint is imposed once the point is in contact.

The first step of contact analysis is to find the contact point x.(£.) on the master
surface corresponding to a slave point x. It is necessary to identify this point in order
to determine if the two points are in contact or not. Mathematically, this is called the
orthogonal projection, or the closest point from the slave point x. When the master
boundary is a straight line, the closest point can explicitly be found. For a general
nonlinear curve, however, the following nonlinear equation is solved to find the
contact point:

(&) = (x = xc(&)) e(&) = 0, (5.14)

where e, = t/lltll is the unit tangential vector and t =x_ : is the tangential vector at
the contact point. The subscribed comma represents differentiation with respect to
the following variable; i.e., X, = 0Xx./0¢. Equation (5.14) is called the contact
consistency condition, and x.(&,.) is the closest projection point of x € I'; onto the
rigid surface that satisfies Eq. (5.14).

Once the contact point is found, it is necessary to determine if the contact
actually occurs, which can be done by measuring the distance between the two
points. At the same time, the impenetrability condition can be imposed by using the
same distance, as shown in Fig. 5.5. The impenetrability condition can be defined
by using the normal gap function g,, which measures the normal distance, as

8 = (x—xc(&) en(&) >0, x€T, (5.15)

where e,(£,) is the unit outward normal vector of the master surface at the contact
point.

As the contact point moves along the master boundary, a frictional force in a
tangential direction to the master boundary resists the tangential relative movement.
The tangential slip function g, is the measure of the relative movement of the
contact point along the rigid surface and is defined as

& =) (& - &), (5.16)

where both the tangential vector t and the natural coordinate £° are the values at the
previously converged time increment or load increment. The superscript “0” will
denote the previous configuration time in the following derivations.

Example 5.3. Projection to a parabola When a rigid boundary is given as y =x,

find a projection point from x={3, 1}T using Eq. (5.14) and distance using
Eq. (5.15) when x > 0.
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Fig. 5.7 Projection 4
to a parabola
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Solution In order to use the contact consistency condition to find a project point, it
is necessary to represent the rigid boundary using a parameter. In the case of the
given parabola, the parametric relation can be written as x. = {¢, E2}T. The unit
tangential vector can be calculated by

-t
N VT e

By defining the unit normal vector in the z-coordinate ask = {0 0 1 }T, the unit
normal vector to the rigid boundary can be defined as

1
en:etxk:4{ 25}.
1+42 -1

Then, the closest project point from x= {3, 1} can be found by

= (X=X Te :L—Zf‘%:
9(§) = (x =x(¢)) e(§) Ny 0

Since the solution is in the first quadrant, £ > 0, the numerator of the above equation
can be solved for £ =1.29. Therefore, the contact point on the rigid boundary
becomes x. = {1.29, 1.66}T, as shown in Fig. 5.7.

The distance between the slave point x and contact point X, can be obtained using
the gap function, as
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_ b t+65 1
1+ 4&

g = (x—x.) e, = 1.83.

The above result can be verified by using the distance formula between two points
as

\/(3 —1.29)% + (1 — 1.66)* = 1.83.

5.3.2 Variational Inequality in Contact Problems

Before deriving a contact variational formula, it is beneficial to discuss the funda-
mental properties of the contact problem. Although only a linear elastic problem
will be considered for simplicity, due to the inequality constraint on the deforma-
tion field, the contact problem is nonlinear even in a linear elastic case. The
differential equation of the contact problem can be written as follows:

Governing equilibrium equation:

O','j,j-‘rfiB =0, xeQ,
u;(x) =0, xer?, (5.17)
ojin; :flfg, X € rs.

Contact conditions:

u'e, +g,>0,
on >0, xel., (5.18)
on(ule, +g,) =0.

The first inequality in Eq. (5.18) can be obtained from the incremental form of the
impenetrability condition in Eq. (5.15), since a small deformation linear problem is
assumed. Note that the expression of contact conditions in Eq. (5.18) is similar to
that of Eq. (5.3). Therefore, either the Lagrange multiplier method or the penalty
method can be used to impose the contact condition. The inequality contact
constraint in Eq. (5.18) can be considered by constructing a closed convex set K,
defined as

K = {w e [H'(Q)]" Wl =0 and w'e,+g,>0 on rc}. (5.19)

The convex set K satisfies all kinematic constraints (displacement conditions).
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If u is the solution to Egs. (5.17) and (5.18), then u& K. The variational
inequality can be derived from the weak formulation of the differential
Eq. (5.17). In previous chapters, the weak form is obtained by multiplying the
governing differential equation with a virtual displacement u, which belongs to the
space of kinematically admissible displacements. In order to make the elements in
the convex set K kinematically admissible, the virtual displacement u is substituted
by w —u for all w € K. Therefore, after multiplying w — u and integrating by parts,
the weak form becomes

/Qaij(u)s,-j(w —u) dQ

= —/a,-j,j(w,- — I/ll') dQ + / o,-jnj(w,- — I/t,') dr (520)
Q rSur.

={(w—u)+ / oin(wi —u;) dr,
r

c

where the last term in Eq. (5.20), which is not known until the solution is obtained,
is always nonnegative, as shown below:

/a,jnj(wi — Lll') dr
Ie

= [ on(Wn —u,) dI'

Te (5.21)
= / Gn(wn + 8y — Un — gn) drr

I,

:/an(wnJrgn) dr >0, vwek
Ie

Thus, variational equation (5.20) becomes a variational inequality as
a(u,w—u) > l(w—u), Ywek (5.22)

where u € K is the solution.

Figure 5.8 shows the relationship between the solution without contact, u’ € Z,
and the solution with contact, u. If the solution u’ belongs to the convex set K, it
satisfies the contact condition and is the solution. However, if u’ is out of the convex
set, that is, u’ violates the contact condition, then it has to move to u’ through the
orthogonal project, which belongs to the convex set. This conceptual explanation
can be illustrated using the beam deflection problem in Sect. 5.2.1. As shown in
Fig. 5.9,V is the deflection curve when there is no rigid block or contact constraint.
Since the distributed load is large enough so that the tip deflection is larger than the
initial gap, the contact constraint is violated. That is, v belongs to the space of
kinematically admissible displacements, but not in the convex set. Therefore, V' is
projected to v on the boundary of the convex set by applying the contact force. The
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Fig. 5.8 Projection of a
solution on to a convex set
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Fig. 5.9 Beam deflection with and without rigid block

physical meaning of the contact force is the force required to project v onto the
convex set, i.e., to satisfy the contact constraint.

The existence and uniqueness of the solution to the variational inequality has
been extensively studied for linear elastic material by Duvaut and Lions [1] and
Kikuchi and Oden [2]. The existence of a solution to Eq. (5.22) for the nonlinear
elastic problem has been proved by Ciarlet [3] for a polyconvex strain energy
function.

The same variational inequality in Eq. (5.22) can be used for the nonlinear
elastic contact problem with the appropriate structural energy form, as seen in
previous chapters. The constraint set of a large deformation problem contains the
impenetrability condition in Eq. (5.15) as

K = {w e [H'(@)]" W)« =0 and (x —x.(&))"es > 0 on rc}. (5.23)

From an engineering point of view, however, it is not convenient to solve the
variational inequality directly without mentioning the construction of a test func-
tion on constraint set K. The good news is that it is possible to show that the
variational inequality is equivalent to the constrained optimization problem of the
total potential energy. If the total potential energy is
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II(u) = %a(u,u) — {(u), (5.24)

where a(u, u) is positive definite, then the directional derivative of II(u) in the
direction of v is defined as

(DII(u),v) = a(u,v) — £(v), (5.25)

where the bilinear property of a(-,-) and the linear property of /(-) are used. Using
the directional derivative, the variational inequality a(u,w—u) > /(w—u) can then
be rewritten as

(DII(u),w —u) >0 (5.26)

To show that Eq. (5.26) is equivalent to the constrained minimization problem,
let us consider the following relation. For an arbitrary w € K,

M(w) — M(u) = (DII(w),w — ) + za(w — u,w — u). (5.27)

Since a(-,-) is positive definite, the last term in Eq. (5.27) is always nonnegative;
thus,

II(w) > I(u) + (DI(u),w —u), VYweckK (5.28)
which means
M(u) = rv?elﬂlé IM(w) = 15161]11(3 Ba(w,w) - Z(W):| . (5.29)

If TI(w) is convex, and set K is closed and convex, then both the constrained
minimization problem in Eq. (5.29) and the variational inequality have a unique
solution u. The variational inequality in Eq. (5.22) can be solved using the
constrained minimization problem in Eq. (5.29). Many optimization theories can
be used, including mathematical programming, sequential quadratic programming,
and active set strategies. For further information on the numerical treatment of
contact constraints, the mathematical programming method [4, 5], active set strat-
egies [6], and the sequential quadratic programming method [7] are available.

5.3.3 Penalty Regularization

In the viewpoint of finite element analysis, the constrained optimization problem in
Eq. (5.29) is not trivial to solve, because the fundamental idea of finite element
analysis is to build test functions that satisfy zero displacement (kinematic)
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boundary conditions, which is nothing but the space of kinematically admissible
displacements. Using nodal interpolation of finite elements, this condition can
easily be obtained by setting the nodal displacement to zero for those nodes that
belong to the displacement boundary. However, it is not trivial to build test
functions that satisfy the contact constraint because the contact boundary is
unknown until the problem is solved.

Instead of solving the constrained optimization, it is easier to convert the
constrained optimization problem into an unconstrained optimization problem by
using either the penalty method or the Lagrange multiplier method. The former
penalizes the potential energy proportional to the amount of constraint violation
such that the minimum of the penalized potential energy approximately satisfies the
contact constraint. The latter augments the potential energy by a product of the
contact constraint and a Lagrange multiplier, which corresponds to the force to
impose the contact constraint, such that the minimum of augmented potential
energy can satisfy the contact constraint as well as identify the Lagrange multiplier
or the contact force. The advantages and disadvantages of the two methods can be
found in traditional optimization textbooks [8]. In this section, only the penalty
method will be discussed, but a similar approach can be developed for the Lagrange
multiplier method.

In order to penalize when w¢ K in Eq. (5.29), if a region I, exists that violates
the impenetrability condition in Eq. (5.15), then the potential energy is penalized
using a penalty function. That is, the potential energy is penalized when penetration
occurs. Similarly, the tangential movement of Eq. (5.16) can also be penalized
under the stick condition. The contact penalty function must first be defined for the
penetrated region by

1 1
P=-w, / g, 2dl + —, / g dr, (5.30)
2 Fc 2 Fc

where @, and w, are the penalty parameters for normal contact and tangential slip,
respectively. The penalty function defined in Eq. (5.30) leads to an exterior penalty
method whereby the solution approaches from the infeasible region. This means
that the impenetrability condition will be violated, but the amount of violation
decreases as the penalty parameter is increased.

The constrained minimization problem in Eq. (5.29) is converted to an
unconstrained minimization problem by adding a penalty function to the total
potential energy. Thus,

II(u) = minIT1(w) ~ min [[I(w) + P(w)]. (5.31)

wek weZ

Note that the solution space is changed to Z from K because of the penalty function.
Therefore, it is much more convenient to build test functions w € Z. The variation
of Eq. (5.31) contains two contributions that will be examined in this section: one
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from the structural potential and the other from the penalty function. The variation
of P yields the contact variational form, which is defined by

b(u,u Ewn/gnﬁndl“+w/ g.g.dl’
(u, ) o /e (5.32)
= bN(ua ﬁ) + bT(ual_l)v

where by (u, @) and by (u, W) are the normal and tangential contact variational forms,
respectively. The variable with an over-bar represents the variation of the variable.
br(u,w) appears only when there is friction in the contact interface. In Eq. (5.32),
wng, corresponds to the compressive normal contact force, and w,g, corresponds to
the tangential traction force. The latter increases linearly with the tangential slip g,
until it reaches a normal force multiplied by the friction coefficient. The contact
variational form in Eq. (5.32) can be expressed in terms of the displacement
variation. To make subsequent derivations easier to follow, it is necessary to define
several scalar symbols, as follows:

a= enTXc,z::’Z P=elXee ¥ = €, Xe 22 (5.33)
e =t = g v =]t /c.

Note that a, B, and y are related to the higher-order derivatives of the master

boundary. If the rigid boundary is approximated by a piecewise linear function,

thena=p=y=0and v=1.

Example 5.4. Penalty method for beam contact Using the potential energy and the
penalty method, calculate the deflection curve for the cantilever beam example in
Sect. 5.2.1 with different values of penalty parameter. Assume the following form
of beam deflection curve v(x)= a2x2 +a3x3 +(l4,x4 and calculate unknown
coefficients.

Solution The potential energy of a cantilever beam under a distributed load can be
written as

1 L L
1 :—/ El(v,xx)zdx—/ qvdx. (5.34)
2 0 0

Since the given form of deflection curve satisfies the essential boundary conditions
at x=0, ie., v(0)=v,(0)=0, it already belongs to the space of kinematically
admissible displacements.

In order to apply the penalty constraint to the region where the impenetrability
constraint is violated, the deflection curve of the beam should be calculated first by
minimizing the potential energy in Eq. (5.34). If the impenetrability constraint is
violated, then the penalty constraint is applied to the violated region. This process
makes the problem nonlinear, and the solution can be found through an iterative
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procedure. However, to simplify the presentation, it is assumed that the impenetra-
bility constraint is violated only at the tip.

In this particular problem, the contact boundary becomes a point at the tip of the
beam. In order to define the penalty function, the following form of gap function is
defined first:

gnzé—vtipzé—az—a3—a4.

The integral form of the penalty function in Eq. (5.30) is defined at a point, x =L, as

|
P = —w,g>.
2@nén

Therefore, the penalized potential energy becomes

L L

n+°P= l/ E](v,xx)zdx — / gqvdx + lwngﬁ.
Note that the above penalized potential function is a function of unknown coeffi-
cients, ay, az, and a,4. The requirement of its minimum is that the potential energy is
stationary with respect to these unknown coefficients.* By substituting the expres-
sion of v and v, into the penalized potential energy, and differentiating with
respect to a,, as, and a4, the following linear system of equations can be obtained:

1

AEI+ @y OEI+wn  SEl+wy | (o 34+ @nd

Ol +wn 12EI+wy 18El+aon |) 0\ _ 1q+w s
144 ‘ 47

8El + w, 18El+ w, —EI+ w, as 1

For the given material, geometric, and load parameters, the three unknown coeffi-
cients can be calculated by solving the above matrix equations. For a positive
penalty parameter, the coefficient matrix is positive definite. Therefore, a unique
solution is expected. Table 5.3 shows the three unknown coefficients, penetration
(ar +az+as—0), and the contact force (—w,g,) for different values of the penalty
parameter. Similar to the results in Table 5.1, the tip displacement converges to the
accurate value as the penalty parameter increases. [ |

* This is the Rayleigh-Ritz method. For details, readers are referred to N. H. Kim and B. V. Sankar,
Introduction to Finite Element Analysis and Design, Wiley & Sons, NY, 2008.
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Table 5.3 Coefficients of deflection curve, penetrations, and contact forces for different penalty

parameters

Penalty Penetration Contact force
parameter a, a» as (m) (N)

3% 10° 231x107% | —1.60%x 107 [4.17x107* |1.25x107* |37.50

3% 10° 2161072 | —1.55%x 107 [4.17x107* [227x 107> | 68.18

3% 107 213%x 1072 | —1.54%x 1072 [4.17x107* |248x107% |74.26

3% 108 213x 1072 | —1.54%x 1073 [4.17x107* |250x 1077 | 74.92

3% 10° 213x107% | —1.54%x107% [4.17x107* 250 x 107* | 75.00

True value 213x 1072 | —1.54%x 1073 [4.17x107* | 0.0 75.00

5.3.4 Frictionless Contact Formulation

As an ideal case, the contact formulation when there is no friction in the contact
interface is addressed first. Computationally, the frictionless contact problem with
elastic material is path independent; that is, the equilibrium state is independent of
the load history. From a mechanics point of view, a potential energy (or augmented
potential energy with contact penalty function) exists, and all field variables are
functions of the current configuration.

The first step is to express the normal contact variational form in terms of
displacement variation. By taking the first variation of the normal gap function in
Eq. (5.15) and using the variation of the contact consistency condition in Eq. (5.14),
the first variation of the normal gap function can be obtained as

g, (wu) =u'e,, (5.35)
where the variation of the natural coordinate at the contact point is canceled by an
orthogonal condition. The normal gap function can vary only in a normal direction
to the rigid surface, which is physically plausible. By using Eq. (5.35), the normal
contact form is expressed in terms of displacement variation as

bx(u, 1) = wy, / g, u'e,dr. (5.36)
Fc

This contact form originates in the impenetrability condition and the fact that the
magnitude of the impenetrability force is proportional to the violation of the
impenetrability condition.

Note that by (u, @) is linear with respect touand implicit with respect to u through
gn and e,. Since by(u,u) is nonlinear in displacement, the same linearization
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procedure is required that was used for the structural energy form in Chaps. 3 and 4.
The increment of the normal gap function can be obtained in a similar procedure to
Eq. (5.35) as

Ag,(u; Au) = e Au. (5.37)

To obtain the increment of the unit normal vector, it is necessary to compute the
increment of natural coordinate £, at the contact point using Eq. (5.14), since the
normal vector changes along &.. The increment of Eq. (5.14) solves A&, in terms of
Au as

A {(x - xc)Tet}
= (Au —tAE,) e + (x — x.)" Ae, (5.38)

1
= AuTe, — ||t| AL, + (x — xc)Ten (megxc,¢¢> Aé. =0.

Thus, using the definition in Eq. (5.33), we can calculate the increment of the
natural coordinates in terms of increment of displacement, as

t
AE, = @etTAu. (5.39)

If e5 is the fixed unit vector in the out-of-plane direction, then the increment of the
unit normal vector can be obtained from the relation e, = ez X e, as

Ae, = e3 X Ag;

t
=e3 X A |::|
Il

=e3 X ﬁ[At —e(e]At)]

5.40
) B

Thus, from Egs. (5.37) and (5.40), the linearization of the normal contact form is
obtained as

u'e,e Audl’ — wn/ ai_'"ﬁTetetTAudF. (5.41)

by (u; Au, @) = a)n/
r. ¢

re

Note that there is a component in the tangential direction because of the effect of
curvature. The first term is the conventional contact tangent term for linear
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kinematics. The contribution of the second term is usually small, as the contact
violation is reduced. If the contact boundary is linear, the second term disappears as
a=0.

In the case of a general nonlinear material with a frictionless contact problem,
the principle for virtual work can be written as

a(u,u) 4+ by(u,m) = £L(u), VueZ. (5.42)

The above equation is obtained from the first variation of the penalized potential
energy function in Eq. (5.31), which is equated to zero to satisfy the Kuhn-Tucker
condition. Suppose the current time is ¢, and the current iteration counter is k+ 1.
Assuming that the external force is independent of displacement, the linearized
incremental equation of Eq. (5.42) is obtained as

at (nuk;_AukH,l:) k—"__blil (nuk; nAl:{/mL_l’ ll) - (543)
=((u) — a("*,u) — bx("u*, W), VaeZ.

Equation (5.43) is linear in incremental displacement for a given displacement

variation. The linearized system of Eq. (5.43) is solved iteratively with respect to

incremental displacement until the residual forces on the right side of the equation

vanish at each time step.

Example 5.5. Frictionless contact of a block A unit square block is under a
uniformly distributed load at the top surface and a frictionless contact condition
with a rigid body at the bottom surface, as shown in Fig. 5.10. Using the penalty
method, calculate the displacement field, penetration, and contact force at the
contact interface. Use EA = 10° N and ¢ = 1.0 kN/m and vary the penalty parameter
from 10° to 10%. Assume plane strain with zero Poisson’s ratio.

Solution In a two-dimensional problem, the displacement and its variation can be
written as u={u,, uy}T and U= {ﬁx, ﬁy}T, respectively. Since the contact
surface is flat and parallel to the x-coordinate, the unit normal vector is constant
ase,={0, 1}7. In this simple problem, the contact boundary can be parameterized
by & =x. Accordingly, the slave contact point and corresponding master point can
be written as x = {¢&, 0}T and x. = {&,, uy}T. Therefore, the gap function can be
defined as

g, =(x— Xc)Ten = uy.

Therefore, the contact form in Eq. (5.36) can be written in terms of displacement as
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Fig. 5.10 Frictionless VA

contact of an elastic block m
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1
bN(u, ﬁ) = wn/ u.\’u}’|y:0 dx.
0

The penalized potential energy for a two-dimensional plane strain problem can be
written as

1 ! e
H+P:—// sTDedA—/ (—q)uy| _ dx+—wn/ gl dv.  (544)
2)) 4 0 = 27 )y A

From the assumption of zero Poisson’s ratio, the stress—strain matrix D becomes a
diagonal matrix, and all stress—strain relations are decoupled. In addition, since the
load is only applied to y-direction, it can be concluded that &, =y, = 0. Therefore,
the only nonzero displacement component will be u,. Based on the Rayleigh-Ritz
method, the following forms of u, and its variation are assumed:

Uy =ap+ayy, Uu,=ap+apy.

After substituting these approximations into Eq. (5.44) and taking the variation, we
have

1 1
ﬁ+1_):// FEaya,dA — (—q)(EOJrEl)derwn/ apapdx = 0.
A 0 0
Since @y and @, are arbitrary, their coefficients must be zero in order to satisfy the
above equation, from which the two coefficients can be determined by

w4
oy ! EA

Therefore, the displacement u, can be determined by
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q q
19, og<y<1.
W Ten EA Y

The first term on the right-hand side is the contact constraint violation due to the
penalty method, while the second term represents the constant strain due to the
distributed load. The constraint violation will be reduced as the penalty parameter
increases. On the other hand, the contact force remains the same as
— Wpgn = — Wyityly, — o = g; that is, the product of penetration and penalty parameter
remains constant. Note that the contact force is equal and opposite in direction to
the distributed load in order to create equilibrium for the block. [ ]

5.3.5 Frictional Contact Formulation

As mentioned before, frictionless contact is independent of load history. When
friction exists at the contact interface, the solution depends on the history of the load
applied to the structure. The sequence of the load needs to be considered, and the
friction force is determined using not only the current but also the previous location
of the contact point. Therefore, it is natural to discuss frictional behavior in the
framework of load increment. The current load increment is #,, and the previous
load increment ¢,_; is converged. For the notational convenience, all variables at
load increment 7,_; are denoted by a right superscript “0,” and all variables at the
current load increment are denoted without any superscript.

The classical Coulomb friction law is commonly used in computational mechan-
ics. However, as mentioned in Sect. 5.2.2, due to the discontinuity in the relation-
ship between slip and friction force, it is difficult to handle in the framework of
iterative solution procedures based on the Newton—Raphson method, which
assumes that the solution is continuous and smooth. As an alternative, the frictional
interface law of Wriggers et al. [9] is employed here. This friction law is a
regularized version of Coulomb law, such that the vertical portion of the Coulomb
model is changed to an inclined line, as shown in Fig. 5.11. The slope of the
regularized line can be related to experimental observation.

The tangent slip form by(u,@) in Eq. (5.32) can be expressed in terms of a
displacement variation. The first variation of the tangential slip function, presented
in Eq. (5.16), becomes

g = [|[t°||& = vae, (5.45)

where a procedure similar to Eq. (5.39) is used. Note that the first variations of
|t°]] and &° are zero, since they are the solutions to the previous time increment
and fixed at the current time. By using Eq. (5.45), the tangential slip variational
form in Eq. (5.32) can be rewritten in terms of the displacement variation as
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~HOn8n |

8

Fig. 5.11 Frictional interface model

br(u,0) = o, / vgu e.dl. (5.46)
rc

The frictional traction force w,g, works in the tangential direction, is proportional to
the tangential slip, and is scaled by curvature through v. As discussed in Eq. (5.33),
the variable v =1 when the contact boundary is straight.

The frictional force is bounded above by a compressive normal force multiplied
by the friction coefficient in the Coulomb friction law. In the case of a small slip
(micro-displacement), however, traction force is proportional to the tangential slip.
The penalty parameter @, is the proportional constant for this case. An exact stick
condition represented by a step function in the classical Coulomb friction law is
now regularized by a piecewise linear function, with the penalty parameter w;
serving as a regularization parameter. As shown in Fig. 5.11, this regularized
friction law is reduced to the classical law as @, — oco. The regularized stick
condition occurs when

g < |uwng,|- (5.47)

Otherwise, it becomes a slip condition and g, =—puw,g,. In Eq. (5.47), p is the
Coulomb friction coefficient. In the case of a slip condition, the contact variational
form has to be modified. Thus, Eq. (5.46) must be divided into two cases as

wl/ z/g‘ﬁTetdF if [ong,| < [pongy|
br(u,0) = Te (5.48)

—pwnsgn(g,) / vg,u'e dl’" otherwise

c

Thus, linearization of the tangential slip variational form has to be separated into
stick and slip conditions.
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5.3.5.1 Linearization of Stick Condition

The first equation in Eq. (5.48) implicitly depends on displacement through v, g,
and e.. The incremental form of g, can be obtained using the relation in Eq. (5.39) as

Ag,(u; Au) = [|t°]|A¢
’ ¢ 54
=velAu. (5.49)
The incremental form of the unit tangential vector can be derived using a procedure

similar to that used in Eq. (5.40) with e, =e3 X e,

Ae, = —e3 X Ae,
(04
= Ze, (e, Au).
C

(5.50)

In addition, the increment of v can be obtained from its definition in Eq. (5.33).
After some algebraic calculation, the linearization of Eq. (5.46) leads to the
tangential stick bilinear form

bi(u; Au, ) = a)[/ vu'ee! Audl
I

+ oy / AT (ene” + ee]) Audr (5.51)
I

c

vg _
o [ 2 (1)~ 2a)g, — pIA°) W suar.
Ie

Again, for the case of a straight contact boundary, only the first terms on the right-
hand side of the above equation survives.
The contact bilinear form is the sum of Egs. (5.41) and (5.51) as

b*(u; Au,u) = by (u; Au, @) + b3 (u; Au, ). (5.52)

In the case of a stick condition, the contact bilinear form in Eq. (5.52) is symmetric
with respect to the incremental displacement and variation of displacement. It is
noted that the elastic stick contact condition is a conservative system.

5.3.5.2 Linearization of Slip Condition

As the contact point is forced to move along the contact surface, leading to a
violation of Eq. (5.47), the slip contact condition is applied and the second equation
from Eq. (5.48) is used. In the case of a slip contact condition, the tangential penalty
parameter @ is related to the impenetrability penalty parameter @, according to the
following relation:
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o = —pwysgn(g,). (5.53)
The tangential slip form for the slip condition is
br(u, @) = o, /r vg,u'edr. (5.54)
The linearization of Eq. (5.54) leads to the tangential slip bilinear form as
by (u; Au, ) = o / vi'ee] Audl

Ie
" ov
+wt/ T (ere” + eie]) Audr (5.55)
I

Vg, _
o [ & (1] - 208)g, ~ Bt ) e duar.
I.

In the case of a slip condition, the contact bilinear form in Eq. (5.55) is not
symmetric with respect to the incremental displacement and variation of the
displacement. The system is no longer conservative because frictional slip dissi-
pates energy.

In the case of a general nonlinear material with a frictional contact problem, the
principle for virtual work can be written as

a(u, 1) + b(u, @) = ((T), VacZ (5.56)

The current time is ¢, and the current iteration counter is k+ 1. Assuming that the
external force is independent of displacement, the linearized incremental equation
of Eq. (5.56) is obtained as

* (nyk. k+1 5 *(nyk. k+1 55
s ) ) s
=((u) — a("d*,u) — b("v*, W), VaeZ
Equation (5.57) is linear in incremental displacement for a given displacement
variation. This linearized equation is solved iteratively with respect to incremental
displacement until the residual forces (the right side of the equation) vanish at each
time step.

Example 5.6. Frictional slip of a cantilever beam The cantilever beam in Example
5.4 is now under additional axial load P = 100 N at the tip, after the distributed load
q is applied. Using the variation of the penalized potential energy, determine the
stick or slip condition and calculate the tip displacement. Use friction penalty
parameter w,= 10°, axial rigidity EA =10 N, and friction coefficient u=0.5.
Assume the axial displacement in the form of u(x) =ag+a;x.
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Solution From Example 5.4, the cantilever beam is in contact with the rigid block
with the contact force of F. =-w,g, =75 N. From the infinitesimal deformation
assumption, the bending behavior of the beam can be decoupled (or sequential)
with the axial behavior. Therefore, it is possible to write the penalized potential
energy of the axial behavior and take a variation to find an equilibrium. The
penalized potential energy becomes

L
1
I, = / EA(u.)*dx — Pu(L) + Ewtgtz
0

x=L

The variation of the penalized potential energy becomes

L
I, = / EAu i ydx — Pu(L) + o8 38|,., =0, VaeZ.
0

The assumed axial displacement must satisfy the essential boundary condition,
which is #(0) =0 in this case. Therefore, the first coefficient should be zero, and
u(x) = a;x; only one coefficient needs to be identified. The gradient and its variation
of displacement can be written in terms of the unknown coefficient as u , =a; and
U, =da.

The tangential slip function needs to be expressed in terms of displacement using
the definition in Eq. (5.16). In order to simplify the calculation, it can be assumed
that the parametric coordinate x has an origin at x =L, and it has the same length as
the x-coordinate. Based on this setting, it can be derived that ||x. || = [t]| = [|t°]| = 1
and ég =0. In addition, the tangential slip becomes g, =¢&.=u(L) =a;,.

First, the stick condition is assumed; that is, w,g; < luw, g, must be satisfied once
the solution is obtained. After substituting the above variables, the variation of the
penalized potential energy becomes

El(EAal —+ wiay 7P) =0, Va € R,

where R is the space of real number. In order to satisfy the above equation for all @,
the terms in the parenthesis must vanish, which can be solved for the unknown
coefficient a;. Therefore, the axial displacement becomes

Px

=~ =909 x 10x.
EA + w, . x

u(x)
Using the tip displacement, the stick condition should be checked, as
w8, = 90.9 > 37.5 = |uwng,|.

Since the assumption of the stick condition is violated, the beam is under the slip
condition, where the variation of the penalized potential energy can be written as
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L
I, = / EAu 4 ,dx — Pu(L) — pwysgn(g,)gn8il ., =0, Vu e Z.
0

From the normal contact result in Example 5.4, it can be concluded that
— uwng, = 37.5N. Therefore, the above penalized potential energy becomes

EI(EAal —P+ 375) = 0, Val €eR

which yields a; = 62.5 x 10> and the tip displacement Usip = 0.625 mm, which is
consistent with the result in Eq. (5.8). ]

5.4 Finite Element Formulation of Contact Problems

As mentioned before, since the contact formulation is independent of constitutive
models, it is enough to discuss finite element formulation of the contact variational
form in Eq. (5.30). Then, it can be added to the matrix equation of different
materials, for example, elastic material models in Chap. 3 and elastoplastic material
models in Chap. 4. Therefore, in the following, only the discretization of the contact
variational form will be discussed.

Since the contact problem is solved as a part of finite element analysis, it makes
sense to formulate the contact problem in the same context. For that purpose, the
contact variational form in Eq. (5.30) is calculated on the boundary of the
discretized finite element domain. If the structural domain is discretized by
two-dimensional finite elements, then the contact problem is defined on the bound-
ary of two-dimensional finite elements, that is, along a boundary curve. In the case
of three dimensions, the contact problem is defined on the boundary surface. In this
section, contact conditions in two dimensions are discussed. In order to make the
presentation simple, the contact between a flexible body and a rigid body will be
discussed first in Sect. 5.4.1, followed by contact between two flexible bodies in
Sect. 5.4.2.

5.4.1 Contact Between a Flexible Body and a Rigid Body

The simplest formulation of a contact problem can be obtained when a flexible body
is in contact with a rigid body, which is the main topic of this section. In general, it
is possible that the rigid body can move to satisfy the equilibrium; but in this text, it
is assumed that either the rigid body is fixed or its motion is prescribed. In such a
case, it is obvious to choose the flexible body as a slave body and the rigid body as a
master body so that the flexible body cannot penetrate the rigid body. In fact, it is
sufficient to define the master boundary, not the entire master body. In addition,
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Slave body Q,

: X . X2
- N

Master body Q,

Fig. 5.12 Continuum vs. discrete contact conditions

since the master body is not governed by equilibrium, the contact variational form
is only calculated on the slave boundary.

Let I'. be a portion of the slave boundary where the slave body penetrates the
master body as shown in Fig. 5.12. This boundary is represented by a set of slave
nodes that penetrate the master boundary. In the following, a single slave node is
considered. Although different ways of defining contact constraints exist in finite
elements, in this section it is assumed that the contact constraint is defined using a
pair that includes a slave node and a master segment. In addition, only a straight
master segment that is defined by two nodes is considered. Therefore, a contact pair
can be defined using a slave node and two master nodes, as X = {Xx,, Xi, X2}T. Itis
possible that one slave node can be associated with different master segments that
have a possibility of making contact with the slave node. The two master nodes are
ordered in such a way that the master body is located on the right-hand side of the
directional line segment from node x; to node x,. The natural coordinate £ on the
master boundary is defined such that it is zero at x; and one at X,.

For a given contact pair X, the objectives are (1) to find if the contact pair is in
contact or in separation and (2) to calculate the contact force and penetration if it is
in contact. The first objective is called “contact search.” In a large-scale model,
many slave nodes have a possibility of making contact with many master segments.
Therefore, the number of contact pairs is huge and a lot of computational time is
often consumed in search of contact pairs that are actually in contact. Once these
actual contact pairs are identified, the contact force is calculated for these pairs in
the second step.

5.4.1.1 Normal Contact

For a given contact pair, the unit normal and tangential vectors can be defined as

t

t=x; —xy, et:m,

e, —e3 X €.

Since the master segment is straight and fixed, the above vectors are also fixed.
Because of the linear master segment, the contact consistency condition in
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Eq. (5.14) and the gap in Eq. (5.15) can explicitly be calculated. First, the gap can
be calculated by

g = (x, —x1) e, (5.58)

If g,>0, then contact does not occur in this pair and no further calculation is
required. If g, <0, then one more check is required. That is, the natural coordinate
at the contact point must be within 0 <&, <1 so that the contact occurs within this
master segment. The natural coordinate at the contact point can be calculated by

1 T
£ =—(x,—X1) e
<l t

If £.<0 or & > 1, then contact does not occur in this segment and no further
calculation is required. If 0 <&, <1, then contact occurs in the segment and needs
to calculate the contact force, which acts in the direction to the normal vector and
proportional to penetration, as

[+
f, = —wng,en.

In Newton—Raphson iteration during nonlinear analysis, the tangent stiffness of
the above contact force is required. Since e, is fixed, no linearization is required.
Therefore, only the gap needs to be linearized, which is similar to the variation of
the gap in Eq. (5.35), by replacing the displacement variation with the displacement
increment. Therefore, the contact stiffness can be obtained by

[ T
k, = wqeqe, .

In the continuum formulation, by(u, @) is expressed as an integral along the
boundary I'.. However, using the slave—master pair and collocation integration, the
boundary integral along the I'; is approximated by the summation for those violated
slave nodes. Let the contact boundary of body €, in Fig. 5.12 be represented by
piecewise linear master segments, with a slave node on the contact boundary of ;.
Since I'. is not known in priori, contact search has to be carried out first to find those
violated nodes. Let NC be the number of slave nodes that penetrate the master
segment. Then, the discretized contact variational form becomes

NC NC

ba(u 1) ~ Y [0 (wngeen)], = D [0 (—£5)], =] (-F;), (5.59)

I=1 I=1

where F; is the contact force in the global coordinate, which is constructed by
adding contact forces at each slave node to the corresponding global degrees of
freedom. Since the contact variational form occurs on the left-hand side of
Eq. (5.56), it will be moved to the right-hand side as a residual force during a
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Newton—Raphson iteration as in Eq. (5.57). Including a negative sign in front of the
contact force in Eq. (5.59) is equivalent to adding the contact force to the global
residual force.

At this point, it is a good idea to discuss collocation integrals. In general,
numerical integration of a function approximates the integral by function values
and associated weights at selected integration points. A collocation integral simply
chooses the integration points at the node. This choice is a matter of convenience
and accuracy. Since most field variables are calculated at nodes in the finite element
method, it is convenient to use the nodal values in integration. This is why many
finite element programs use collocation integrals for contact analysis. Since the
accuracy of numerical integration depends on the number of integration points, a
single point integration at a node is less accurate. The weight represents the domain
that an integration point covers. For example, if a constant function is integrated
over an area with a single integration point, then the weight is the same as the area.
However, it is not commonly known that the weight of integration is implicitly
included in the function in a collocation integral. For the case of the contact
variational form in Eq. (5.59), the weight is included in the gap, g,. This concept
is further explained in Example 5.7.

In a Newton—Raphson iteration during nonlinear analysis, linearization of the
contact variational form needs to be calculated, which yields the tangent stiffness
matrix. Linearization of by (u, W) becomes

NC NC
by (w; Auu) =) (00" ene Au), = Y (0'kiAu), =0 KiAu,  (5.60)

I=1 I=1

where K is the contact stiffness in the global coordinate, which is constructed by
adding contact stiffness matrices at each slave node to the corresponding global
degrees of freedom. Using a too-large value for the penalty parameter can cause a
numerical difficulty because it makes the matrix ill-conditioned.

Example 5.7. Contact force and gap of a block A unit square block is under a
uniformly distributed load ¢ = 1.0 kN/m on the top surface. The bottom surface is
under contact constraint against the rigid floor. When the block is modeled by one
and four finite elements, as shown in Fig. 5.13, calculate contact forces and gaps at
contact nodes. Assume isotropic material and no friction in the contact interface.
Use the penalty parameter o, = 10°.

Solution Since a uniformly distributed load is applied, the finite elements are under
constant stress. Therefore, without detailed calculation, the contact forces at the
bottom two nodes should be f{ =15 = 500 N. Since the contact force is generated by
the gap multiplied by the penalty parameter, the gap at two nodes should be
gn1 = gm = — 10° x 500 = — 0.005.

In the case of four elements, the two bottom elements are in contact with the
rigid floor. Since each element is under constant stress and distributes the equal
contact force to the two nodes, the contact forces at the three nodes become
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Fig. 5.13 Contact forces of square block

/1 =/5=250N and f5 =500N. Again, using the penalty method, the gap at each
node can be calculated using the contact force by g, =gn3=—0.0025 and
gn2=—0.005. As more elements are used along the contact boundary, the gap
will become smaller. It is clear that the normal gap changes as the element size
changes, which means that the discretized normal gap includes the integration
weight implicitly. ]

5.4.1.2 Frictional Slip

Different from the normal contact, the tangential slip under friction requires
information from the current as well as the reference configuration. The reference
configuration can be the initial state or the previous time increment, but for a large
deformation problem, the previous time increment can be more accurate. For the
straight master segment, the tangential slip is first defined by

g =10(E &), (5.61)

where the right superscript “0” denotes the value evaluated at the previous time,
£. €10, 1] is the natural coordinate corresponding to the contact point on the master
segment, and [° is the length of the master segment. Since the master segment is
rigid, its length does not change, but the above definition is used in order to be
compatible with the case of two flexible bodies in contact.

In the penalty method, the friction force is generated if the tangential slip is not
zero, proportional to the tangential penalty parameter w,, as

ftC = fa)[g[e[. (5.62)

The above linear relationship is called the stick condition because the tangential slip
disappears if the tangential force vanishes. Therefore, the two bodies stick together
and behave similar to an elastic material. Also, in the stick condition, the friction
force can be understood as a recovery force against tangential deformation. There-
fore, the stick condition represents an elastic deformation before slip occurs.
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However, the tangential force cannot indefinitely increase in the Coulomb
friction model. The magnitude of the tangential force is limited by the friction
coefficient multiplied by the normal contact force as in Eq. (5.47). Once the slip is
greater than the limit, then the tangential force is limited by

£ = ponsgn(g)g e if  |og| > |uwong,l, (5.63)

where p is the frictional coefficient. Thus, the tangential contribution is separated
into two cases: the stick and slip conditions. The stick condition is applied when the
tangential force is small such that only a microscopic relative movement is
observed and the frictional force is proportional to the relative deformation. The
slip condition is applied when macroscopic movement is occurred with the critical
force. In this case, Eq. (5.63) is used to calculate tangential friction force.

For the stick condition, the tangent stiffness of the above frictional force
becomes

ktc = a)[e[elT
while the tangent stiffness of the slip condition becomes
T
kS = pw,sgn(g,)ee, .

Note that the tangent stiffness matrix is unsymmetric for the slip condition.
Now, the tangential slip form representing the frictional behavior of the contact
interface can be discretized by

NC
br(u,m) ~ Y [0'(-£7)], =u] (-FY), (5.64)

I=1

where F{ is the frictional force in the global coordinate, which is constructed by
adding frictional forces at each slave node to the corresponding global degrees of
freedom. And the linearization of the tangential slip form yields

NC
bi(u; Au,u) =~ > (u'k{Au), = 0K Au,
=

where K is the contact stiffness in the global coordinate, which is constructed by
adding contact stiffness matrices at each slave node to the corresponding global
degrees of freedom.
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5.4.2 Contact Between Two Flexible Bodies

When both the slave and master bodies are flexible, the finite element discretization
becomes more complicated as the contact force is applied to both bodies. In this
case, the slave nodes are the boundary nodes of the slave finite elements, while the
master segments are the edges of master finite elements. In the case of self-contact,
the slave finite elements are the same with the master finite elements.

The contact force is directly calculated at the slave node. However, in the case of
the master segment, the contact force is applied at the &. location of the segment.
Therefore, the contact force is distributed to the two master nodes proportional to the
distance from the contact point. For example, when the contact force 7 occurs at &,
this force is distributed to two master nodes by [f,, £,]=[—(1 — &), —E L]
The negative sign is added in the contact force because the direction of contact force
is reversed at the master segment. Therefore, in the contact pair, X = {xy, X1, xz}T,
the contact forces can also be written in the same format as

fo={£5 — (1— &), — &£}, Considering the contact force as an internal
force, the sum of contact forces in a contact pair vanishes. In the following, the
superposed “hat” symbol will be used to represent the nodal values in a contact pair,
for example, i = {u,, uy, uz}T.

In the multi-body contact, the contact variational forms in Eq. (5.32) need to be
modified to include the effect of master surface, as

by(u,u) = wn/ gnenT(ﬁS —u,.)dr,

c

12l
c

br(u,m) = a)[/ & (uetT(uS —u.) + erlTqu) dr.
I.

Note that the tangential slip form has a normal component; the contact point can
move in both normal and tangential directions due to the movement of master
surface. For detailed derivations of the above equations, readers are referred to Kim
et al. [10].

For notational convenience of derivations, the following sets of vectors (6 x 1)
are defined, which has become quite standard [11]:

Uy €, € 0 0
i=|uy |, N=|-(1-&)e |, T=|-(1-E)e|, P=|—-e |, Q=|—¢
u —&cen —£.e e, e

C=N-%q. c=1+%p.

(5.65)

Then, the contact variational form b(u, W) can be discretized by
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b(u,u) = bx(u, 1) + br(u, 1)

NZ[ (@ng,N }+Z[ (@8], (5.66)

u, (—Fo),

where Fc is the contact force in the global coordinate, which is constructed by adding
contact forces at slave and master nodes to the corresponding global degrees of freedom.

The linearization of the above contact variational form can be obtained by
following a similar procedure as with the previous section. First, linearization of
bn(u, @) becomes

NC
b (u; Au,m) = Y (wnﬁT[Cnch] Aﬁ)l = u/KyAu,. (5.67)
=1

Linearization of br(u, @) should be considered in two different cases.
For the stick condition,

NC
bi(u; Au,u) = Z (wtﬁT [ClCtT + % (sym(C,P") — sym (C[QT))] Aﬁ)
=1

= ﬁgTKTAug.

1

(5.68)

For the slip condition,

NC
u; Au, ) Z (a)tu {C NT + 27 (sym(C,P") — sym(CtQT))} Ali> ,
=1 I
= _gTK Au,,

(5.69)
where o, = uw,sgn(g,) is used for the slip condition in Eq. (5.69) and sym(-) is the

symmetric part of the matrix. Note that the matrix Kr in the slip condition is not
symmetric. Thus, the linearization of the contact variational form is obtained as

b*(u; Au, ) = by (u; Au, @) + by (u; Au, )
~ 1, KnAu, + 1, KrAu, (5.70)
= ﬁchAug,
where K¢ is the contact tangent stiffness matrix in the global coordinate. After
combining with the structural matrix equation and transforming to the physical

coordinate, the incremental variational equation and corresponding matrix equation
are obtained as
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=T =T =T =T
u, KAu, +u, KcAu, =0, Fies +u, Fc. (5.71)

The incremental discrete variational equation (5.71) must satisfy for all u, that
satisfy the homogeneous essential boundary conditions. One of the common
methods in imposing this condition is to delete those rows that correspond to the
essential boundary from the above matrix equation. After performing this removal
process, we can obtain the reduced form of the incremental matrix equation:

(K+Kc)Au, = Fs + Fc. (5.72)

As can be seen in the above equation, the contribution from the contact constraints
is separated from the contribution from the structural problem. Thus, the contact
constraints can be implemented independently of the structural constitutive model.
For both the elastic problem in Chap. 3 and elastoplastic problem in Chap. 4, the
contact stiffness matrix K¢ and the contact residual force F need to be added to the
system matrix equation.

5.4.3 MATLAB Code for Contact Analysis

The MATLAB program cntelm2d calculates the contact force and contact tangent
stiffness for a contact pair, whose current coordinates are defined in the ELXY array.
The format of the ELXY array is

ELXY = ["S M XZ] :
Ys Y1 Y2
ELXYP is the same as ELXY, except that the array stores the coordinates of the
contact pair at the previous time increment. OMEGAN, OMEGAT, and CFRI are,
respectively, the two penalty parameters and the coefficient of friction. If L'TAN is
not zero, then cntelm2d calculates the contact tangent stiffness matrix STIFF. The
contact force, FORCE, will always be calculated.

The program first checks if contact occurs in the given contact pair. This check is
performed in two ways: (1) the gap must be negative and (2) the natural coordinate
at the contact point must be between zero and one. Also, the program checks if the
contact interface has friction, based on the value of the coefficient of friction. Once
these two conditions are satisfied, then the contact force vector, whose dimension is
(6 x 1), is calculated. If LTAN is not zero, then the contact tangent stiffness matrix,
whose dimension is (6 X 6), is also returned.


http://dx.doi.org/10.1007/978-1-4419-1746-1_3
http://dx.doi.org/10.1007/978-1-4419-1746-1_4

5.4 Finite Element Formulation of Contact Problems 407

PROGRAM cntelm2d

function [FORCE, STIFF] = cntelm2d (OMEGAN, OMEGAT, CFRI, ELXY, ELXYP, LTAN)
%‘k***‘k****‘k***‘k****‘k***‘k****‘k****************************************
% SEARCH CONTACT POINT AND RETURN STIFFNESS AND RESIDUAL FORCE

TIF CONTACTED FOR NORMAL CONTACT

Khkkkhkkhkkhkkhhkhkhkhkhkhkhkkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhhkhkhhkhkhkhhhhkhkhhhhhhkhkhkhkhkhhkhhkhkhkhkrxxx%x%

o°

0P of

ZERO=0.D0; ONE=1.D0; EPS=1.E-6; P05=0.05; FORCE=[]; STIFF=[1];
XT =ELXY(:,3)-ELXY(:,2); XLEN = norm (XT) ;
if XLEN < EPS, return; end
XTP = ELXYP(:,3)-ELXYP(:,2); XLENP = norm(XTP) ;

% UNIT NORMAL AND TANGENTIAL VECTOR

XT = XT/XLEN;

XTP = XTP/XLENP;

XN = [-XT(2); XT(1)];

%

% NORMAL GAP FUNCTIONGn = (X_s -X_1).N
GAPN = (ELXY(:,1)-ELXY(:,2)) ' *XN;

%
% CHECK IMPENETRATION CONDITION

if (GAPN >= ZERO) || (GAPN <= -XLEN), return; end
%

% NATURAL COORDINATE AT CONTACT POINT
ALPHA = (ELXY(:,1) - ELXY(:,2)) ' *XT/XLEN;

ALPHAO = ( (ELXYP(:,1)-ELXYP(:,2))’*XTP)/XLENP;
%
% OUT OF SEGMENT

if (ALPHA > ONE+P05) || (ALPHA < -P05), return; end
%

% CONTACT OCCURS IN THIS SEGMENT
XLAMBN = -OMEGAN*GAPN;
XLAMBT = 0;
LFRIC=1; 1f CFRI == 0, LFRIC =0; end
if LFRIC
GAPT = (ALPHA - ALPHAQO) *XLENP;
XLAMBT = -OMEGAT*GAPT;
FRTOL = XLAMBN*CFRI;
LSLIDE =0;
if abs (XLAMBT) > FRTOL
LSLIDE =1;
XLAMBT = -FRTOL*SIGN (ONE, GAPT) ;
end
end
%
% DEFINE VECTORS
NN = [XN; - (ONE-ALPHA) *XN; -ALPHA*XN] ;
TT = [XT; - (ONE-ALPHA) *XT; -ALPHA*XT] ;
PP = [ZERO; ZERO; -XN; XN] ;
QQ = [ZERO; ZERO; -XT; XT];
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CN = NN - GAPN*QQ/XLEN;
CT = TT + GAPN*PP/XLEN;
%
% CONTACT FORCE
FORCE = XLAMBN*CN + XLAMBT*CT;
%
% FORM STIFFNESS
if LTAN
STIFF = OMEGAN* (CN*CN') ;
if LFRIC
TMP1 = ~-CFRI*OMEGAN*SIGN (ONE, GAPT) ;
TMP2 = -XLAMBT/XLEN;

if LSLIDE
STIFF = STIFF + TMP1* (CT*CN’) + TMP2* (CN*PP’ +PP*CN’-CT*QQ’' -QQ*CT") ;
else
STIFF = STIFF + OMEGAT* (CT*CT') + TMP2* (CN*PP’+PP*CN’'-CT*QQ ' -QQ*CT") ;
end
end
end

end

5.5 Three-Dimensional Contact Analysis

The two-dimensional contact formulation in Sect. 5.3 and its finite element
discretization in Sect. 5.4 can be extended to three dimensions. However, three-
dimensional contact formulations are quite complicated without providing much
insight in physical understandings. In this section, a finite element formulation of
three-dimensional contact is introduced without considering continuum variational
formulation. In order to simplify the presentation, it is assumed that the master body
is a rigid body and the master surface is discretized by four-node quadrilateral
elements. Only frictionless contact between a slave node and a master element is
considered. An extended formulation of three-dimensional contact formulations
can be bound in the work by Laursen and Simo [12] or Kim et al. [13].

Figure 5.14 shows the contact situation between a flexible slave body and a rigid
master body. In the discretized domain, the contact condition between a slave node
and a master element is considered. The reference coordinates in finite elements can
be used as natural coordinates in contact formulation. Therefore, the master element
is be represented by the two parameters &; and &, such that a point on the element
can be expressed as X.(&y, &;).

Two tangential vectors in the parametric direction on the master element are
defined as

ta = Xc¢,a» a = 17 27 (573)

where the subscribed comma denotes a partial derivative with respect to the
parametric coordinate, i.e., X¢ ,= 0x/0&,, a=1, 2. In this section, Greek letters
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Fig. 5.14 Contact
kinematics and design
velocities of two bodies

Slave node

Master element

are used for the index in the direction of the parametric coordinates. Note that t; and
t, are not necessarily orthogonal to each other, but are parallel to the contact
surface. In the quadrilateral master element, the two tangent vectors can be calcu-
lated by differentiating shape functions

4
t, = ; al\é’—f")x,, a=1,2.

a

The unit outward normal vector on the master surface can be obtained using
Eq. (5.73) as

t Xt
ey = (5.74)
[t % to]

One of the most important steps in contact analysis process is locating the
contact point in an accurate and efficient way. The contact point on the master
element corresponding to the slave point can be found from the following consis-
tency condition:

P = (X = Xe(£1,8)) 1al£1,6) =0, a=1,2, (5.75)

which provides the closest projection point x. of X,, and the corresponding para-
metric coordinates at the contact point are denoted by (&5, £5). For a general master
surface, no explicit form of the solution to Eq. (5.75) is available. Finding contact
point x. efficiently is very important for a large deformation problem. A local
Newton—Raphson method can be used to solve nonlinear Eq. (5.75) with a close
initial estimate. The contact consistency Eq. (5.75) is two equations with two
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unknowns. Using the first-order Taylor series expansion, the following equation for
Newton—Raphson iteration can be obtained:

901 Op
-1
0, Ogy | | AL, -2 )
&, 04

Once the contact point is found, it is necessary to check if the contact point is
within the master element or not. If £, < -1 or &, > 1, then contact does not occur in
this element and no further calculation is required. If -1 < ¢, <1, the gap function
is defined by the distance between the slave node and the contact point on the
master element as

8n = (Xs - Xc)Ten Z Oa (576)

where the inequality constraint represents the impenetrability condition: the slave
point cannot penetrate the master surface. If the gap at the contact point is greater
than zero, contact does not occur and no further calculation is required. The violated
region of constraint Eq. (5.76) is penalized by applying the contact force, which acts
in the direction of the normal vector and proportional to penetration, as

C
f, = —wng,en.

In a Newton—Raphson iteration during nonlinear analysis, the tangent stiffness
of the above contact force is required. Since e, is fixed, no linearization is required.
Therefore, only the gap needs to be linearized, which is similar to the variation of
the gap in Eq. (5.35) by replacing the displacement variation with the displacement
increment. Therefore, the contact stiffness can be obtained by

c __ T
k, = wqeqe, .

The assembly process is identical to two-dimensional contact.

The MATLAB program cntelm3d calculates the contact force and contact
tangent stiffness for a contact pair, whose current coordinates are defined in the
ELXY array. Since the master segment is discretized by four-node quadrilateral
elements, the format of the ELXY array is

Xsg X1 X2 X3 X4
ELXY = [y, Y1 Y2 Y3 W

Zy  I1 Zp I3 Z4

OMEGAN and LTAN are the same with cntelm2d.
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The master element is parameterized by two natural coordinates, XI and ETA, and
the contact point XC is found by determining these two natural coordinates at the
contact point. Different from a two-dimensional contact problem, these natural coor-
dinates cannot be determined explicitly; that is, the contact consistency condition must
be solved iteratively using the Newton—Raphson-type method. Since the convergence
of the Newton—Raphson method strongly depends on the initial estimate, cntelm3d
projects the slave node to the master element and approximately estimates the natural
coordinates by projecting the projected slave node to the two tangent vectors.

% INITIAL CONTACT POINT ESTIMATE.
[T1, T2, XS] =CUTL (0,0, ELXY) ;
XN=cross (Tl, T2); XN=XN/norm(XN) ;
XI=(XS'*T1)/(2*norm(T1)"2);
ETA= (XS’ *T2) / (2*norm(T2)"2) ;
GN=XN'*XS;

If the estimated XTI and ETA are out of their ranges with a safety margin [-2, 2],
then it is clear that the current contact pair is not in contact and no further
calculation is performed. Also, if the estimated gap is positive with a safety margin,
it is also concluded that no contact occurs.

Once the initial estimate is within the thresholds, then Newton—Raphson itera-
tion is performed to find the accurate contact point. Since the master element is
linear quadrilateral, the iteration should converge within two or three iterations.
Once the accurate contact point is determined and if the gap is negative, then the
contact force is calculated proportional to the amount of penetration. Also, if LTAN
is not zero, then the contact tangent stiffness matrix, whose dimension is (6 x 6), is
also returned.

PROGRAM cntelm3d
function [FORCE, STIFF] = cntelm3d (OMEGAN, ELXY, LTAN)

%********************************************************************

% CALCULATE CONTACT FORCE AND STIFFNESS FOR NORMAL CONTACT FOR 3D
%************************************‘k********‘k********‘k‘k******‘k‘k‘k***
%
EPS=1.E-6; TL1=2; TL2=0.1; TL3=1.01; FORCE=[]; STIFF=[];
%
% INITIAL CONTACT POINT ESTIMATE.
[T1, T2, XS] =CUTL (0, 0,ELXY) ;
XN = cross (T1, T2) ; XN=XN/norm (XN) ;
XI = (XS'*T1l)/ (2*norm(T1)"2);
ETA = (XS’ *T2) /(2*norm(T2) "2) ;
GN = XN’ *XS;
XX=(ELXY(:,2)-ELXY(:,3)+ELXY(:,4)-ELXY(:,5))/4;

o oP

INITIAL SCREENING OF OUT OF BOUNDS
if ((XI<-TL1) || (XI>TL1) | | (ETA<-TL1) | | (ETA>TL1) | |GN>TL2), return; end

o0
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% FIND EXACT CONTACT POINT THROUGH NEWTON-RAPHSON METHOD
for ICOUNT=1:20
[T1l, T2, XS] = CUTL (ETA, XI,ELXY) ;
A=[-T1’*T1, XS’ *XX-T2'*T1; XS’ *XX-T2'*T1, -T2'*T2];
B=[-XS'*Tl; -XS'*T2];
DXI=A\B;
XI=XI+DXI(1l); ETA=ETA+DXI(2) ;
if (norm(DXI)<EPS), break; end
end

% CHECK THE RANGE OF NATURAL COORD.
if ((XI<-TL3) || (XI>TL3) | | (ETA<-TL3) | | (ETA>TL3) ), return; end

e

% NORMAL GAP FUNCTION AND CONTACT FORCE
XN = cross (T1l, T2) ; XN=XN/norm (XN) ;
GN = XN’ *XS;
if GN>0, return; end
FORCE = -OMEGAN*GN*XN ;

%

% FORM STIFFNESS (NONFRICTION)

if LTAN, STIFF = OMEGAN* (XN*XN’) ; end
end
function [T1, T2, XS] = CUTL (ETA, XI, ELXY)

%****‘k‘k***‘k***‘k‘k***‘k***‘k‘k***************‘k‘k‘k**************************

% COMPUTE COORD. OF CENTEROID AND TWO TANGENT VECTORS
%********************************************************************
XNODE=[0-111-1;0-1-1111;
Tl =zeros(3,1); T2 =zeros(3,1); XC=2zeros(3,1); XS=zeros(3,1);
forg=1:3
T1(J) = sum(XNODE (1,2:5) .* (1L+ETA*XNODE (2,2:5)) . *ELXY (J,2:5) ./4) ;
T2 (J) = sum(XNODE (2,2:5) . * (1+XI *XNODE(1,2:5)) . *ELXY (J,2:5) ./4);
XC(J) =sum( (1+XI*XNODE (1,2:5)) .* (1+ETA*XNODE (2,2:5)) . *ELXY (J,2:5) ./4) ;
XS (J) = ELXY(J,1) - XC(J);
end
end

5.6 Contact Analysis Procedure and Modeling Issues

The contact formulations in the previous sections are relatively straightforward
compared to nonlinear constitutive models in the previous chapters. However, in
practice, users often experience difficulty of solving nonlinear problems due to
contact. The lack of convergence and significant amount of calculation error can be
caused by poorly modeled contact conditions. Therefore, it is important to under-
stand the modeling characteristics of contact problems, which is the objective of
this section.
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5.6.1 Contact Analysis Procedure

In general, contact analysis requires three steps: (1) defining contact pairs and types,
(2) searching for the contact point, and (3) calculating contact force and tangent
stiffness.

5.6.1.1 Definition of Contact Pairs and Types

Since the user does not know the location of the contact boundary, it is necessary to
define contact pairs that are already in contact or have a possibility of contact. This
is especially important for a large deformation problem where the structural
boundary can change its shape significantly during the analysis. Many commercial
programs provide a tool to generate all contact pairs automatically or with mini-
mum user actions. In addition to contact pairs, it is also necessary to define the
properties of contact interface, including (a) weld contact, (b) rough contact,
(3) stick contact, and (4) slip contact.

In weld contact, the slave node is bonded to the master element and there is no
relative motion in the interface. There will be no contact search, and all contact
pairs are assumed already in contact, which makes this formulation fastest. Con-
ceptually, this is equivalent to the rigid link element or multipoint constraint; the
only difference is that the force in the interface is decomposed into normal and
tangential components. However, the interface is still under infinitesimal elastic
deformation, as it is a part of an elastic body.

Rough contact is similar to weld contact, except that the contact interface may
not be initially in contact or the initial contact point can be separated. But once it is
in contact, it behaves similar to a weld contact. Therefore, its behavior is similar to
the case where the contact interface is rough such that there is no relative motion in
the interface, independent of the magnitude of normal contact force.

Stick contact is similar to rough contact in the sense that the contact interface can
be closed or separated. The difference from rough contact is that the interface can
have a relative motion similar to elastic deformation. When a tangential force acts
on the contact interface, rough contact behaves like a rigid link, while stick contact
shows a small elastic deformation in the interface. The user needs to specify the
tangential stiffness. It is noted that the tangential stiffness matrix is symmetric.

Slip contact is the most general contact formation, where the contact point can be
closed or separated. In addition, the contact interface can have a relative motion
governed by the Coulomb friction model. In practice, the stick condition is first
applied before the slip condition is used in many contact algorithms. Different from
stick contact, the tangent stiffness of slip contact is unsymmetric.
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Fig. 5.15 Contact search methods. (a) Node-to-surface contact search. (b) Surface-to-surface
contact search

5.6.1.2 Contact Search

The easiest way of performing a contact search is for the user to specify the master
element with which that a slave node will contact. This is only possible when
deformation is small and no relative motion exists in the contact interface. Slave
and master nodes are often located at the same position and connected by a
compression-only spring (node-to-node contact). This type of contact pairing
works for very limited cases where the user makes slave elements and master
elements such that both elements coincide at the contact interface. Also, the contact
surface must be simple enough so that the user knows the exact contact region in
advance.

In general cases, however, the user does not know about the contact pairs that are
actually in contact. Instead, the user specifies all possible candidates. During the
contact analysis, the program searches for all contact pairs and determines those
pairs that are actually in contact, that is, the violated pairs of the impenetrability
condition. Since contact pairs include all possible pairs, the number of pairs is
significantly large. For example, if 1,000 slave nodes have a possibility of contacting
1,000 master elements, then theoretically it is necessary to check one million contact
pairs. Considering this is required during a single iteration of nonlinear analysis, the
program will repeat this search numerous times in order to finish iterative nonlinear
analysis. Therefore, it is important to effectively search for contact pairs. Some-
times, it is useful to store the currently contacting master element information for a
given slave node, such that in the following iteration, the contact search is performed
for only neighboring master elements of the previous one.

In general, contact search is categorized by a node-to-surface and surface-to-
surface search (Fig. 5.15). The former is to search if a slave node penetrates the
master surface, which is often used when the master surface is rigid. The latter is to
search for an impenetrability condition between a slave surface and a master
surface. This is useful when the two flexible bodies are under a large slip such
that the distinction of slave and master is unclear. Although the latter represents the
impenetrability condition more accurately, it takes more computational time due to
bidirectional contact (Fig. 5.16).
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Fig. 5.17 Contact tolerance and detecting contact

Contact tolerance: Since searching for all possible contact pairs is very expensive,
commercial programs often use the concept of contact tolerance, which is the
minimum distance to search for contact. The default value can be 1 % of the contact
element length. This can be used for detecting bodies about to make contact as well
as excluding bodies that are on opposite sides. The contact tolerance can be used for
compensating for geometric tolerance in the case of weld contact. If two contact
surfaces are within the contact tolerance, they are considered in contact and the
contact force is calculated. In the case of rough and general contact, contact pair is
established when two surfaces are within the contact tolerance.

For example, the two separate bodies in Fig. 5.17 are going to be in contact.
Contact tolerance is set in two ways: d; for separation and d, for penetration. In the
cases of (b) and (c), the initial separation or penetration is within the tolerance, the
contact pair is established, and the convergence analysis is performed by generating
appropriate contact force. In the case of (c), since penetration is relatively large, the
load increment is bisected to reduce the amount of penetration. However, in the
cases of (a) and (d), the initial separation or penetration is larger than the contact
tolerance, the search algorithm fails to detect contact, and, as a result, the two
surfaces will be penetrated without contact.

Therefore, an appropriate load increment, as in Fig. 5.18a, should be used in
order to make initial contact detection. If the load increment is too large, as in
Fig. 5.18c, then the contact search algorithm fails to detect contact because the
movement is larger than the contact tolerance. In this case, the contact condition is
not established, and, as a result, a too-large penetration occurs in the next load
increment, which may completely miss contact detection. In the case of Fig. 5.18b,
the contact surface is within the contact tolerance; even if a large penetration may
occur, the contact pair will be generated, and the impenetrability condition will be
satisfied through bisecting the load increment.
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Fig. 5.18 The effect of load increment in contact detection

5.6.1.3 Contact Force and Tangent Stiffness

Once the contact pairs are actually in contact (or violated the impenetrability
condition), either the penalty method or the Lagrange multiplier method can be
applied to satisfy contact constraint. The penalty method is simple and intuitive but
allows a small amount of constraint violation. That is, the impenetrability condition
will be slightly violated. The amount of violation can be controlled by the penalty
parameter. A large penalty parameter allows only a small amount of violation, but a
too-large penalty parameter can cause numerical instability because it makes the
stiffness matrix ill-conditioned.

Contact stiffness: In practice, the penalty parameter is better selected based on
material stiffness, element size, and element height normal to the contact interface.
Therefore, it is often called the contact stiffness. If two contacting bodies have
different material stiffness, it is calculated based on the softer material. A large
value of contact stiffness can reduce penetration, but can also cause a problem in
convergence. Therefore, a proper value of contact stiffness must be determined
based on allowable penetration, which requires experience. Normally many pro-
grams suggest the contact stiffness based on the elastic modulus of contacting
bodies and allow users to change it by multiplying a scale factor with a default of
one. The user can start with a small initial scale factor and gradually increase it until
a reasonable penetration can be achieved.

Tangential stiffness: If the contact stiffness is for the normal contact, tangential
stiffness is for the frictional force in the contact interface. Since the frictional force
is generated through normal contact force, it depends on the contact stiffness, and
its behavior is more complicated because of friction. In the penalty formulation, an
elastic stick condition applies before slip occurs under a tangential load. If the
tangential load is removed, then the body returns to its original state. The tangential
stiffness controls this stick condition. If the tangential stiffness is too large, then the
contact interface shows slip without stick. If too small, then the stick condition will
be overextended.

Contact force: When two bodies are in contact, the contact force in the interface
can be considered as either an internal or external force, depending on how the
system is defined. If a free-body diagram is constructed of each body separately,
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then the contact force is the externally applied force on the boundary. From this
viewpoint, the contact problem is called boundary nonlinearity, because both the
boundary and force are unknown. However, if the free-body diagram includes both
contacting bodies, then the contact force can be viewed as an internal force. If the
entire system is in equilibrium, then all internal forces must vanish. Therefore, the
contact force on the slave nodes must be equal and opposite in direction to the
contact force on the master elements. This can also be viewed from Newton’s third
law: equal and opposite forces act on interface. Figure 5.19 shows two contacting
bodies in equilibrium. Because the individual bodies as well as both bodies together
are in equilibrium, the following relation should be satisfied:

N N
F= Zplp(‘i = zqci' (577)

It is noted that in Eq. (5.77), individual p.; and ¢.; are different in magnitudes
because of discretization. The force distribution can be different. However, the
resultants should be the same, as the two bodies are in equilibrium.

5.6.2 Contact Modeling Issues

In this section, several modeling issues in contact analysis are summarized. The
contents that are covered in this section are by no means complete. However, users
should be familiar to these issues in order to solve convergence problems as well as
accuracy of analysis results.
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Fig. 5.21 Alternating definition of slave-master pairs in order to prevent penetration from
either body

5.6.2.1 Definition of Slave and Master

When two bodies are in contact, the slave—master concept distinguishes body
1 from body 2. Although there is no theoretical reason to distinguish body 1 from
body 2, the distinction is often made for numerical convenience. One body is called
a slave body, while the other is called a master body. Then, the contact condition is
imposed such that the slave body cannot penetrate into the master body. This means
that hypothetically the master body can penetrate into the slave body, which is not
physically possible but numerically possible because it is not checked. There is not
much difference in a fine mesh, but the results can be quite different in a coarse
mesh, as shown in Fig. 5.20. When a curved boundary with a fine mesh is selected
as a master body, a straight slave boundary with a coarse mesh shows a significant
amount of penetration, even if none of slave nodes penetrate into the master body.
Therefore, it is important to select the slave and master body in order to minimize
this type of numerical error. In general, in order to minimize penetration, a flat and
stiff body is selected as a master body, while a concave and soft body is selected as
a slave body. Also, it is suggested that a body with a fine mesh be a slave and a body
with a coarse mesh be a master. In the case of flexible-rigid body contact, the rigid
body is selected as a master body and the flexible one as a slave body.

No matter how the slave and master are selected, it is possible that a master node
can penetrate into the slave element. In order to prevent penetration from either
body, it is necessary to define the slave—master pair twice by changing their role, as
shown in Fig. 5.21. Some surface-to-surface algorithms use this technology to
prevent penetration from either body.
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5.6.2.2 Flexible Contact vs. Flexible-Rigid Contact

Since all bodies are flexible in the viewpoint of mechanics, it seems natural to
model all contacting bodies as flexible and apply contact conditions between
flexible bodies. However, since modeling is an abstraction of physical phenomena,
it is possible to consider one body as a rigid body, even if in reality it is flexible.
Therefore, in such a case, a flexible-rigid body contact condition can be applied.
The question is why we want to use flexible-rigid body contact and when we can
apply that condition.

The flexible—flexible contact can be applied when two bodies have a similar
stiffness and both can deform. For example, metal-on-metal contact can be modeled
as flexible—flexible contact. However, when the stiffness of two bodies are signif-
icantly different, such as contact between rubber and metal, the behavior of metal
can be approximated as a rigid body, because the deformation of metal can be
negligible compared to that of rubber. However, this can also depend on physical
behavior of the system. For example, if a rubber ball impacts on a thin metal plate,
then the plate needs to be modeled as a flexible body because the deformation of the
plate can be large.

There are obvious advantages of using flexible-rigid body contact over two
flexible—body contact. When two bodies have a large difference in stiffness, the
stiffness matrix becomes ill-conditioned and the matrix equation loses many sig-
nificant digits. Therefore, accurate calculation becomes difficult. In addition, as
shown in previous section, the numerical implementation of flexible-rigid body
contact formulation is much easier than multi-body contact formulation.

5.6.2.3 Sensitivity of Mesh Discretization

At the continuum level, it is assumed that the contact boundary varies smoothly
and the boundary is differentiated two or three times in deriving contact force and
tangent stiffness. In the numerical model, however, the contact boundary is
approximated by piecewise continuous curves (or straight lines), and only C°
continuity is guaranteed across the element boundary. Therefore, the slope of the
contact boundary is not continuous. Unfortunately, the contact force is very
sensitive to the boundary discretization and strongly depends on this slope:
contact force acts in the normal direction of the contact boundary. Therefore, if
the actual contact point is near the boundary of two elements with a large slope
change, it is possible that the Newton—Raphson iteration may have difficulty in
convergence.

Another important aspect related to mesh is the distribution of contact stress/
contact pressure. As shown in Fig. 5.22, if a uniform pressure is applied on top of a
slave bodys, it is natural to think that the contact pressure on the bottom surface will
also be uniform. However, due to the effect of a large master surface at the bottom,
the contact pressure is high on the edge of the contacting region. Therefore, the
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contact stress/pressure is not uniform. Theoretically, the contact stress on the edge
can be twice the inside contact stress.

Another important observation on contact stress distribution is that it is sensi-
tive to mesh discretization. As shown in Fig. 5.23, the contact stress distribution is
different for different locations of the block. Therefore, it is dangerous to deter-
mine the maximum contact stress using a single coarse mesh. It is always
recommended to perform mesh sensitivity study to show convergence of contract
stress.

5.6.2.4 Rigid-Body Motion

Rigid-body motion in contact is one of the most commonly confused concepts to
users. This is also a good example of contact boundary conditions that are different
from the displacement boundary conditions. Figure 5.24 shows a cylindrical slave
body between two rigid masters. It is assumed that the slave body slightly pene-
trates into the lower master body, while it has a slight gap with the upper master
body. Since the contact force is generated proportional to penetration, the upward
contact force will be applied at the lower part of the cylinder, which will move the
cylinder upward, as in Fig. 5.24a. Next, the body now penetrates the upper master
body because of the previous upward motion. Then, the contact force is now
applied from the upper master body and it is not in contact with the lower master
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Fig. 5.25 Contact stress at bushing due to shaft bending

body, which will cause a downward contact force. Under this situation, the slave
body can either oscillate between the two master surfaces (Fig. 5.24a) or fly out if it
is in contact with a single master body (Fig. 5.24b). In fact, without contact, the
cylinder is not well constrained. Even if in real physics a body can be stable
between two contacting bodies, in numerical analysis, it is better to constrain the
flexible body without contact, so that the rigid-body motion can be removed. When
a body has rigid-body motion, an initial gap can cause a singular matrix (infinite/
very large displacements). The same is true when there is an initial overlap. In order
to remove rigid-body motion, it is possible to add a small, artificial bar element so
that the body is well constrained while minimally affecting analysis results, as
shown in Fig. 5.25, where the shaft is constrained by two bar elements.

5.6.2.5 Convergence Difficulty
Common difficulties in contact analysis are (a) the contact condition does not work,

i.e., penetration occurs, and (b) the Newton—Raphson iteration does not converge.
The former is related to the contact definition or a too-large load increment.
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Therefore, this type of problem can be solved relatively easily. On the other hand,
the lack of convergence is the most common difficulty in nonlinear analysis, and it
is not trivial to find the cause because they can be caused by different reasons.

As the convergence of Newton—Raphson method depends on the initial esti-
mate, it is possible that the method can improve the convergence by starting with
the initial estimate that is close to the solution. In the increment force method in
Chap. 2, the solution is a function of load increment. A small increment means
that the solution from a previous increment is close to the solution in the current
load increment. Therefore, using a small load increment is the most common
remedy when convergence cannot be obtained. Many commercial programs have
the capability to automatically control the load increment. When a given load
increment does not converge, then the current increment is reduced by half or a
quarter and convergence iteration is retried. This bisection process is repeated
until the convergence can be achieved or the program stops when the maximum
allowed bisections are consumed or the minimal size of load increment is not
converged.

If the Newton—Raphson iteration failed to converge with the smallest load
increment, the problem resides in fundamental issues. The basic assumption in
Newton—Raphson method is that the nonlinear function is smooth with respect to
input parameters. In the context of contact analysis, this can be interpreted as the
contact force varies smoothly throughout deformation. Unfortunately, this is a
strong assumption in finite element analysis because of discretization. As shown
in Fig. 5.26, the slope of finite elements is discontinuous across the element
boundary, especially when the contact boundary is curved. As illustrated in the
figure, this discontinuity can make the contact force oscillate between two master
elements and discontinuously change the direction of contact force. In order to
minimize such a situation, it is necessary to use more elements to represent the
curve boundary. As a rule of thumb, it is recommended to generate about 10 contact
elements along the 90° corner fillet or use higher-order elements.

A nonsmooth contact boundary can also affect the accuracy of contact analysis.
As an example, Fig. 5.27 shows contact between a shaft and a hole. In Fig. 5.27a,
both the shaft and hole are discretized by 15 linear elements along the circumfer-
ence. When the mesh locations of both parts are different, the inaccuracy of
representing circular geometry significantly affects contact results. Some nodes
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Fig. 5.27 Discretization of circular shaft and hole using (a) linear and (b) quadratic elements

are out of contact, while others are under excessive contact force due to over-
penetration. Therefore, the contact stress contour does not show a smooth variation
of contact stress. Rather, a localized random and discrete contact stress distribution

may

be observed. On the other hand, if higher-order elements are used as in

Fig. 5.27b, the two contact boundaries become much more conforming and smooth
contact stress distribution can be obtained.

5.7

P5.1

P5.2

P5.3

P54

Exercises

For the beam contact problem in Sect. 5.2.1, determine the contact force and
tip deflection using the Lagrange multiplier method. Choose the gap g as a
Lagrange multiplier.

For the beam contact problem in Sect. 5.2.1, determine the contact force and
tip deflection using the Lagrange multiplier method. Model the beam using a
two-node Euler beam element. Compare the results with the results in
Sect. 5.2.1, and explain the reason for different results.

For the frictional contact problem in Sect. 5.2.2, determine the frictional force
and slip displacement using the Lagrange multiplier method. Choose the slip
ugip as a Lagrange multiplier.

During a Newton—Raphson iteration, a rectangular plane element is in contact
with a rigid surface as shown in the figure. Due to the penalty method, the
penetration of g =—1 x 10~ m is observed with penalty parameter w, = 10°.
In the two-dimensional problem, the element has eight degrees of freedom
{Uiys Uiy, Uny, Uny, Usy, Uy, Uay, u4y}T. Calculate the contact force and contact
stiffness matrix in terms of 8 x 1 vector and 8 x 8 matrix, respectively.
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Rigid surface

Fig. P5.4 Contact of a rectangular block

P5.5 A sphere of radius r =8 mm is pressed against a rigid flat plane. Using a
commercial program, determine the contact radius, a, for a given load F =
(30 x 27)N. Assume a linear elastic material with Young’s modulus
E=1,000 N/mm? and Poisson’s ratio = 0.3. Use an axisymmetric model.
Compare the finite element result with the analytical contact radius of
a=1.010 mm.

Fig. P5.5 Contact of a sphere

P5.6 A long rubber cylinder with radius » =200 mm is pressed between two rigid
plates using a maximum imposed displacement of ,,,x =200 mm. Determine
the force—deflection response. Use Mooney-Rivlin material with
A10=0.293 MPa and Ay; =0.177 MPa. Assume a plane strain condition
and symmetry. Compare the results with the target results of F =250 N at
6=100 mm and F =1,400 N at 6 =200 mm.

Fig. P5.6 Rubber cylinder contact problem

P5.7 Two long cylinders of radii Ry =10 mm and R, =13 mm, in frictionless
contact with their axes parallel to each other, are pressed together with a
force per unit length, F =3,200 N/mm. Determine the semi-contact length
b and the approach distance d. Both materials are linear elastic with
E;=30,000 N/mm? and v; =0.25 for Cylinder 1 and E,=29,120 N/mm?>
and v, =0.3 for Cylinder 2. Assume a plane stress condition with a unit
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thickness and symmetry. Compare the results with the target results of
d=—-0.4181 mm and » =1.20 mm.

Symmetric F
model

Fig. P5.7 Hertzian contact problem

P5.8 Deep drawing is a manufacturing process that can create a complex shape out
of a simply shaped plate (blank). The deep-drawing configuration is shown in
the figure, which is composed of a blank, punch, die, and blank holder. The
thickness of the initial blank is 0.78 mm. The die is fixed throughout the entire
process, while the punch moves down by 30 mm to shape the blank. The
holder controls the slip of the blank by applying friction force. The fillet radii
of both punch and die are 5 mm. After the maximum downstroke of the punch,
both the punch and holder are removed. Then, the blank will experience
elastic springback. The objective of this project is to simulate the final
geometry of the blank after springback.

Model the process using an axisymmetric problem. You many use CAX4R
elements. The whole simulation is divided by three steps. (1) The blank holder
is pushed (displacement control) to provide about 100 kN of holding force.
(2) While the blank holder is fixed at the location of step (1), the punch is
moved down by 30 mm. (3) Punch, die, and blank holder are removed so that
the blank is elastically deformed by springback. It is possible to change
processes.

The following results need to be submitted: (1) deformed shape plots of five
different steps, (2) graph of radial position vs. radial strain, and (3) graph of
radial position vs. thickness change, (4) graph of punch displacement
vs. punch force, and (5) comparison of deformed shapes at the maximum
stroke and after springback.
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: 25 mm
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Fig. P5.8 Deep-drawing problem
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A
Assembly, 57
Associative plasticity, 291

B
Back stress, 282, 334
Backward Euler method, 291
Balance of momentum, 37
Basis vectors, 4
Baushinger effect, 278
Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) method, 107
Bisection, 116
Boundary condition, 38, 54
essential, 54
natural, 54
Boundary valued problem, 38, 54
Bulk modulus, 192

C
Cauchy—Green tensor, 145, 147, 176, 191,
327, 331, 343
left, 147, 327, 331, 343
right, 145, 327, 343
Cauchy’s Lemma, 20
Consistency condition, 372, 380
contact, 380, 409
Constitutive relation, 31
Constrained optimization, 384
contact, 384
Contact force, 372, 410, 417
normal, 410
Contact form, 387

normal, 387
tangential, 387
Contact pair, 413
Contact problem, 367
Contact search, 414
Contact stiffness, 410, 416
Contact tolerance,415
Contraction, 8
Convergence, 94, 421
Convex set, 382
Coulomb friction, 375, 393
Critical displacement, 180
Critical load, 179, 181, 183
actual load factor, 183
load factor, 181
one-point, 181
two-point, 181
Cross product. See Vector, product

D

Deformation field, 27

Deformation gradient, 144, 330
relative, 330

Deviator, 274

Directional derivative, 385

Displacement field, 27

Displacement gradient, 144

Dissipation function, 327, 328

Dissipation inequality, 328

Distortion energy theory, 268

Divergence, 11

Divergence theorem, 12

Dual vector, 10

Dyadic product, 5
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E

Effective plastic strain, 282

Eigenvalue, 23, 182

Eigenvector, 23

Elastic domain, 282, 326

Elasticity matrix, 34

Elasticity tensor, 32

Elastic limit, 32

Elastic modulus, 243

Elastic predictor, 291

Elastoplasticity, 241, 273, 308, 325, 360
finite deformation, 360
finite rotation, 308
infinitesimal, 273
multiplicative plasticity, 325

Euclidean norm, 157

F
Failure envelope, 267
Finite element, 50, 51, 62
shape function, 62
Flow potential, 283
Form, 44
energy bilinear, 44
load linear, 44
Frame indifference, 21
Fréchet differentiable, 43
Free energy, 327, 332
Friction, 374

G

Gap, 370, 390

Gap function, 410

Gauss integration, 65

Gauss’ theorem, 47

Generalized Hooke’s law, 31, 32
Generalized solution, 40
Gradient, 11

Green’s identity, 14

H

Hooke’s law, 15
generalized, 15

Hydrostatic pressure, 192

Hyper-elastic material, 184

I
Impenetrability, 372
Impenetrability condition, 379, 380

Index

Incremental force method, 109
Initial stiffness, 170, 298
Inner product, 4
Integration-by-parts, 13
Interpolation function, 53
Invariant, 185

Isoparametric mapping, 62
Isotropic hardening, 282

J
Jacobian, 94
Jacobian matrix, 116

K

Kinematically admissible displacement, 40
Kinematic hardening, 282, 283

Kronecker delta symbol, 4, 164
Kuhn-Tucker condition, 284, 329

L

Lagrange multiplier, 284, 368, 372, 376
Lagrangian strain, 167

Lame’s constants, 33, 163, 281

Laplace operator, 11

Lie derivative, 327

Load step, 110

Lower and upper (LU) decomposition, 101

M
Master, 371
Master element, 408
Material description, 168
Matrix, 5, 23, 34
determinant, 23
elasticity, 34
Modified Newton—Raphson method, 101-103
Mooney-Rivlin material, 186—187

N
Natural coordinate, 379
contact problem, 379
Necking, 32
Neo—Hookean material, 186
Newton—Raphson method, 93, 168
Nonlinear elastic problem, 162
Nonlinearity, 162, 241, 367
boundary, 367
force, 90-91
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geometric, 85-87, 164

kinematic, 89-90

material, 87-89, 241
Nonlinear solution procedure, 91
Norm, 5, 8
Normal gap, 380

(0}
Objective rate, 360
Operator, linear, 81

P
Penalty, 368, 372, 377
Penalty method, 386
Penalty parameter, 373, 386
Penetration, 372
Permutation, 10, 156
Plane strain, 34
Plane stress, 34
Plastic consistency

parameter, 283
Plastic corrector, 291
Plastic modulus, 246, 284, 334
Poisson’s ratio, 33
Polar decomposition, 150
Potential energy, 166, 384, 386
Principal stress direction, 22, 24
Principal stretch, 332
Principle of minimum potential

energy, 39
Principle of virtual work, 46
Projection, 4, 290, 380
Proportional limit, 32

R

Reference element, 65
Residual, 94, 116

Residual load, 170, 299
Return mapping, 292, 333, 360
Reynolds transport theorem, 13
Rigid-body motion, 421

Rigid body rotation, 315
Rotation tensor, 150

S

Secant method, 104

Secant stiffness matrix, 107
Shape function, 53

Shear modulus, 33
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Slave, 371

Slave-master, 368

Slave node, 399

Slip, 375, 393

Slip condition, 394

Sobolev space, 40

Solution, 44, 52
generalized, 44
trial, 52

Spatial description, 174

Spatial velocity gradient, 327

Spin tensor, 315

Stick, 375

Stick condition, 395

Stiffness matrix, 57, 64, 296
consistent, 296
solid, 64

Strain, 7, 26, 28-30, 145, 147, 167,

170, 174, 268, 332, 334

deviatoric, 30, 268
effective plastic, 334
elastic principal stretch, 332
engineering, 174
engineering shear, 28
Eulerian, 147
infinitesimal, 145, 172
Lagrangian, 145, 167, 170
normal, 28
shear, 28
symmetric, 29
tensorial shear, 28
volumetric, 30

Strain energy, 39, 163, 281
elastic, 281

Strain energy density, 268
distortion, 268

Strain hardening, 32

Stress, 17, 18, 20-22, 24, 31, 32, 159,

160, 174, 268, 291, 314, 316, 326

Cauchy, 159, 174, 314
deviatoric, 21, 268
first Piola—Kirchhoff, 159, 318
invariant, 24
Kirchhoff, 160, 326
mean, 21
normal, 20
principal, 22
second Piola—Kirchhoff, 159
shear, 20
symmetry, 18
tensor, 17
trial, 291
ultimate, 32
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Stress (cont.)
uniaxial, 31
yield, 32
Stress rate, 315
Jaumann, 315
Stress vector, 15
Stretch tensor, 150
Strong form, 38
Structural energy form, 168, 185,
298, 337
elastic, 168
elastoplasticity, 298
finite deformation, 337
nonlinear, 175
St. Venant—Kirchhoff material, 163
Surface traction, 15

T
Tangential slip, 379, 380
Tangential traction force, 387
Tangent modulus, 243
Tangent operator, 297, 336, 337
consistent, 297, 337
material, 336
spatial, 336
Tangent stiffness matrix, 94
Tensor, 5-7, 9, 10, 17, 32
Cartesian, 5
elasticity, 32
identity, 5
orthogonal, 9
skew, 6, 10
spin, 7
stress, 17

Index

symmetric, 6
Tensor product, 269
Time step, 110
Total Lagrangian formulation, 168
Trace, 8, 268
Transpose, 3
Trial function, 50

U
Updated Lagrangian formulation, 174

\'%
Variational equation, 43, 167
Variational inequality, 383
Vector, 3, 10

dual, 10

product, 10
Virtual displacement, 42
Virtual work, 391

contact, 391

w
Weak form, 44, 115, 166, 249, 298, 383
Work, 39

Y
Yield criterion, 282

von Mises, 282
Yield function, 282, 327
Yield surface, 282
Young’s modulus, 33, 83
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