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Preface

The finite element method (FEM) is one of the numerical methods for solving

differential equations that describe many engineering problems. The FEM, origi-

nated in the area of structural mechanics, has been extended to other areas of solid

mechanics and later to other fields such as heat transfer, fluid dynamics, and

electromagnetism. In fact, FEM has been recognized as a powerful tool for solving

partial differential equations and integrodifferential equations, and in the near

future, it may become the numerical method of choice in many engineering and

applied science areas. One of the reasons for FEM’s popularity is that the method

results in computer programs versatile in nature that can solve many practical

problems with least amount of training.

The availability of undergraduate- and advanced graduate- level FEM courses in

engineering schools has increased in response to the growing popularity of the FEM

in industry. In the case of linear structural systems, the methods of modeling and

solution procedure are well established. Nonlinear systems, however, take different

modeling and solution procedures based on the characteristics of the problems.

Accordingly, the modeling and solution procedures are much more complicated

than that of linear systems, although there are advanced topics in linear systems

such as complex shell formulations.

Researchers who have studied and applied the linear FEM cannot apply the

linearized method to more complicated nonlinear problems such as elastoplastic or

contact problems. However, many textbooks in the nonlinear FEMs strongly

emphasize complicated theoretical parts or advanced topics. These advanced text-

books are mainly helpful to students seeking to develop additional nonlinear FEMs.

However, the advanced textbooks are oftentimes too difficult for students and

researchers who are learning the nonlinear FEM for the first time.

One of the biggest challenges to the instructor is finding a textbook appropriate

to the level of the students. The objective of this textbook is to simply introduce the

nonlinear finite element analysis procedure and to clearly explain the solution

procedure to the reader. In contrast to the traditional textbooks which treat a vast

amount of nonlinear theories comprehensively, this textbook only addresses the
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representative problems, detailed theories, solution procedures, and the computer

implementation of the nonlinear FEM. Especially by using the MATLAB program-

ming language to introduce the nonlinear solution procedure, those readers who are

not familiar with FORTRAN or C++ programming languages can easily understand

and add his/her own modules to the nonlinear analysis program.

The textbook is organized into five chapters. The objective of Chap. 1 is to

introduce basic concepts that will be used for developing nonlinear finite element

formulations in the following chapters. Depending on the level of the students or

prerequisites for the course, this chapter or a part of it can be skipped. Basic

concepts in this chapter include vector and tensor calculus in Sect. 1.2, definition

of stress and strain in Sect. 1.3, mechanics of continuous bodies in Sect. 1.4, and

linear finite element formulation in Sect. 1.5. A MATLAB code for three-

dimensional finite element analysis with solid elements will reinforce mathematical

understanding.

Chapter 2 introduces nonlinear systems of solid mechanics. In Sect. 2.1, funda-

mental characteristics of nonlinear problems are explained in contrast to linear

problems, followed by four types of nonlinearities in solid mechanics: material,

geometry, boundary, and force nonlinearities. Section 2.2 presents different methods

of solving a nonlinear system of equations. Discussions on convergence aspects,

computational costs, load increment, and force-controlled vs. displacement-controlled

methods are provided. In Sect. 2.3, step-by-step procedures in solving nonlinear finite

element analysis are presented. Section 2.4 introduces NLFEA, a MATLAB code for

solving nonlinear finite element equations. NLFEA can handle different material

models, such as elastic, hyperelastic, and elastoplastic materials, as well as large

deformation. Section 2.5 summarizes how commercial finite element analysis pro-

grams control nonlinear solution procedures. This section covers Abaqus, ANSYS,

and NEi Nastran programs.

Chapter 3 presents theoretical and numerical formulations of nonlinear elastic

materials. Since nonlinear elastic material normally experiences a large deforma-

tion, Sect. 3.2 discusses stress and strain measures under large deformation.

Section 3.3 shows two different formulations in representing large deformation

problems: total Lagrangian and updated Lagrangian. In particular, it is shown that

these two formulations are mathematically identical but different in computer

implementation and interpreting material behaviors. Critical load analysis is intro-

duced in Sect. 3.4, followed by hyperelastic materials in Sect. 3.5. Different ways of

representing incompressibility of elastic materials are discussed. The continuum

form of the nonlinear variational equation is discretized in Sect. 3.6, followed by a

MATLAB code for a hyperelastic material model in Sect. 3.7. Section 3.8 summa-

rizes the usage of commercial finite element analysis programs to solve nonlinear

elastic problems, particularly for hyperelastic materials. In hyperelastic materials, it

is important to identify material parameters. Section 3.9 presents curve-fitting

methods to identify hyperelastic material parameters using test data.

Different from elastic materials, some materials, such as steels or aluminum

alloys, show permanent deformation when a force larger than a certain limit

(elastic limit) is applied and removed. This behavior of materials is called plasticity.

viii Preface

http://dx.doi.org/10.1007/978-1-4419-1746-1_1
http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4419-1746-1-1#Sec6
http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec10
http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec15
http://dx.doi.org/10.1007/978-1-4419-1746-1_2
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Sec1
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Sec14
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Sec20
http://dx.doi.org/10.1007/978-1-4419-1746-1_2#Sec21
http://dx.doi.org/10.1007/978-1-4419-1746-1_3
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec12
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec19
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec23
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec32
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec33
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec34
http://dx.doi.org/10.1007/978-1-4419-1746-1_3#Sec40


When the total strain is small (infinitesimal deformation), it is possible to assume

that the total strain can be additively decomposed into elastic and plastic strains.

Sections 4.2 and 4.3 are based on infinitesimal elastoplasticity. In a large structure,

even if the strain is small, the structure may undergo a large rigid-body motion due

to accumulated deformation. In such a case, it is possible to modify infinitesimal

elastoplasticity to accommodate stress calculation with the effect of rigid-body

motion. Since the rate of Cauchy stress is not independent of rigid-body motion,

different types of rates, called objective stress rates, are used in the constitutive

relation, which is discussed in Sect. 4.4. When deformation is large, the assumption

of additive decomposition of elastic and plastic strains is no longer valid.

A hyperelasticity-based elastoplasticity is discussed in Sect. 4.5, in which the

deformation gradient is multiplicatively decomposed into elastic and plastic parts

and the stress–strain relation is given in the principal directions. This model can

represent both geometric and material nonlinearities during large elastoplastic

deformation. Section 4.6 is supplementary to Sect. 4.5, as it derives several expres-

sions used in Sect. 4.5. Section 4.7 summarizes the usage of commercial finite

element analysis programs to solve elastoplastic problems.

When two or more bodies collide, contact occurs between two surfaces of the

bodies so that they cannot overlap in space. Metal formation, vehicle crash,

projectile penetration, various seal designs, and bushing and gear systems are

only a few examples of contact phenomena. In Sect. 5.2, simple one-point contact

examples are presented in order to show the characteristics of contact phenomena

and possible solution strategies. In Sect. 5.3, a general formulation of contact is

presented based on the variational formulation. Section 5.4 focuses on finite

element discretization and numerical integration of the contact variational form.

Three-dimensional contact formulation is presented in Sect. 5.5. From the finite

element point of view, all formulations involve use of some form of a constraint

equation. Because of the highly nonlinear and discontinuous nature of contact

problems, great care and trial and error are necessary to obtain solutions to practical

problems. Section 5.6 presents modeling issues related to contact analysis, such as

selecting slave and master bodies, removing rigid-body motions, etc.

This textbook details how the nonlinear equations are solved using practical

computer programs and may be considered an essential course for those who intend

to develop more complicated nonlinear finite elements. Usage of commercial FEA

programs is summarized at the end of each chapter. It includes various examples in

the text using Abaqus, ANSYS, NEi Nastran, and MATLAB program. Depending

on availability and experience of the instructor, any program can be used as part of

homework assignments and projects. The textbook website will maintain up-to-date

examples with the most recent version of the commercial programs. Each chapter

contains a comprehensive set of homework problems, some of which require

commercial FEA programs.

Prospective readers or users of the text are graduate students in mechanical, civil,

aerospace, biomedical, and industrial engineering and engineering mechanics as well

as researchers and design engineers from the aforementioned fields.
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Chapter 1

Preliminary Concepts

1.1 Introduction

The finite element method (FEM) is one of the numerical methods for solving

differential equations that describemany engineering problems. The FEMoriginated

from the structural mechanics discipline and has since been extended to other areas

of solid mechanics as well as heat transfer, fluid dynamics, and electromagnetism.

In fact, FEM has been recognized as a powerful tool for solving partial differential

equations and integrodifferential equations, and in the near future, it may become the

numerical method of choice in many engineering and applied science areas. One of

the many reasons for the popularity of the FEM is that a minimal amount of training

is required to solve many practical problems with the aid of versatile computer

programs.

The availability of undergraduate- and advanced graduate-level FEM courses in

engineering schools has increased in response to the growing popularity of the FEM

in industry. In the case of linear structural systems, the methods of modeling and

solution procedure are well established. Nonlinear systems, however, take different

modeling and solution procedures based on the characteristics of the problems.

Accordingly, the modeling and solution procedures are much more complicated

than that of linear systems, although there are advanced topics in linear systems

such as complex shell formulations.

Researchers who have studied and applied the linear FEM cannot apply the

linearized method to more complicated nonlinear problems such as elastoplastic or

contact problems. However, many textbooks in the nonlinear FEMs strongly

emphasize complicated theoretical parts or advanced topics. These advanced text-

books are mainly helpful to researchers seeking to develop additional nonlinear

FEMs. However, the advanced textbooks are oftentimes too difficult for students

and researchers who are learning the nonlinear FEM for the first time.

The objective of this textbook is to simply introduce the nonlinear finite element

analysis procedure and to clearly explain the solution procedure to the reader.
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In contrast to the traditional textbooks which treat a vast amount of nonlinear

theories comprehensively, this textbook only addresses the representative problems,

detailed theories, solution procedures, and the computer implementation of the

nonlinear FEM. Especially by using the MATLAB programming language to

introduce the nonlinear solution procedure, those readers who are not familiar

with FORTRAN or C++ programming languages can easily understand and add

his/her own modules to the nonlinear analysis program. This textbook details how

the nonlinear equations are solved using practical computer programs and may be

considered an essential course for those who intend to develop more complicated

nonlinear finite elements.

The objective of this chapter is to introduce basic concepts that will be used for

developing nonlinear finite element formulations in the following chapters. Basic

concepts in this chapter include vector and tensor calculus in Sect. 1.2, definition of

stress and strain in Sect. 1.3, mechanics of continuous bodies in Sect. 1.4, and linear

finite element formulation in Sect. 1.5. Technical contents in this chapter are by no

means rigorous or complete. The readers are referred to advanced textbooks for

detailed explanations and rigorous derivations.

A relatively simple theory is introduced in Sect. 1.4 that can formulate the

structural equilibrium using the energy principle. Since all conservative systems

have potential energy, the energy principle may be applied to find the structural

equilibrium. Structural equilibrium, by the principle of minimum total potential

energy, is considered to be a stationary configuration in which the potential energy

of the structural system is minimized. Since the potential energy of many structural

problems is the positive definite quadratic function of a state variable, such as

displacement, the stationary condition yields a unique global minimum solution.

The stationary condition is further developed to a variational method for a conser-

vative system. An important result is then shown, namely, that if the solution for a

differential equation exists, then that solution is the minimizing solution of the total

potential energy. In addition, the structural problem may have a natural solution

that minimizes the total potential energy even if the structural differential problem

does not have a solution. The energy principles presented in Sect. 1.4 will be

restricted to small strains and displacements so that strain–displacement relation-

ships can be expressed in terms of linear equations; such displacements and

corresponding strains obviously have additive properties. A nonlinear elastic

stress–strain relationship will be discussed in Chap. 3 of this text.

The energy-based formulation of the potential problem is generalized to the

principle of virtual work, which can handle arbitrary constitutive relations.

The principle of virtual work is the equilibrium of the work done by both internal

and external forces with the small, arbitrary, virtual displacements that satisfy

kinematic constraints. For a conservative system, the same results are obtained as

with the principle of minimum total potential energy. The unified approach to

various structural problems is made possible by introducing energy-bilinear and

load-linear forms. As long as energy-bilinear and load-linear forms share the same

properties, then all structural problems in this text can be treated in the samemanner,

even structural problems with different differential operators. The existence and
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uniqueness of a solution can be shown through rigorous mathematical proofs.

The concept of Sobolev space and the bounded property of an energy-bilinear

form are required in the proof. However, in this text, such rigorous mathematical

proofs are avoided and corresponding references are cited.

1.2 Vector and Tensor Calculus

Since vector and tensor calculus are extensively used in computational mechanics,

it is worth reviewing some fundamental concepts and recalling some important

results that will be used in this book. A brief summary of concepts and results

pertinent to the development of the subject is provided within Sect. 1.2 of the text

for the convenience of students. For a thorough understanding of the mathematical

concepts, readers are advised to refer to standard textbooks, e.g., Kreyszig [1] and

Strang [2].

1.2.1 Vector and Tensor

Cartesian vector: In general, a vector is defined as a collection of scalars.

A Cartesian vector is a Euclidean vector defined using Cartesian coordinates.

Each vector, in this text, is considered to be a column vector unless otherwise

specified. A Cartesian vector in two- or three-dimensional space is denoted by a

bold typeface:

u ¼ u1
u2

� �
or u ¼

u1
u2
u3

8<
:

9=
;; ð1:1Þ

where u1, u2, and u3 are components of the vector u in the x-, y-, and z-coordinates,
respectively, as shown in Fig. 1.1. To save space, the above column vector

u can be written as u¼ {u1, u2, u3}
T, in which {•}T denotes the transpose of a vector.

u1

u2

u3

x

y

z

e1
e2

e3Fig. 1.1 Three-

dimensional Cartesian

vector
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The above three-dimensional Cartesian vector can also be denoted using a unit

vector in each coordinate direction. Let e1¼ {1, 0, 0}T, e2¼ {0, 1, 0}T, and

e3¼ {0, 0, 1}T be the unit vectors in the x-, y-, and z-direction, respectively. Then,

u ¼ u1e1 þ u2e2 þ u3e3:

In the above equation, e1, e2, and e3 are called basis vectors. Any vector in the three-

dimensional space V can be represented by a linear combination of the basis

vectors, e.g., w¼w1e1 +w2e2 +w3e3, for all w2V. For notational convenience,

the following summation notation will be used throughout the text:

u ¼ ujej;

where j¼ 1, 2, and 3 for three dimensions or j¼ 1 and 2 for two dimensions. In this

notation, the summation is specified over the range of the repeated index, j. Note
that an index can only be repeated once in a term; therefore, the term uiviei is an
improper instance of index notation. The repeated index is called a dummy index

because it disappears after summation; therefore, ujej¼ uiei.
Using the summation notation, the inner product of two Cartesian vectors can be

calculated by

u � v¼ uieið Þ � vjej
� �

¼ uivj ei � ej
� �

¼ uivjδij
¼ uivi:

ð1:2Þ

In the above derivation, δij is the Kronecker delta symbol, which is defined as

δij ¼ 1 if i ¼ j
0 if i 6¼ j

�
: ð1:3Þ

Using this property, it is straightforward to verify that vjδij¼ vi; i.e., the Kronecker
delta symbol replaces the repeated index with the non-repeated one. Also note that

δjj¼ 2 and δjj¼ 3 for two and three dimensions, respectively, because summation is

specified by the repeated index j.
Cartesian components of a vector can be obtained by using the inner product

with the basis vectors, e.g.,

ej � v ¼ ej � vieið Þ ¼ viδij ¼ vj:

Since this is equivalent to projecting the vector onto the axis of a coordinate, it is

also called a projection.

4 1 Preliminary Concepts



The magnitude of a vector can be calculated by taking the square root of the

inner product of the vector itself as

vk k ¼ ffiffiffiffiffiffiffiffiffi
v � vp

: ð1:4Þ

In general, the magnitude of a vector is called a norm.

Cartesian tensor: The component form of a vector in Eq. (1.1) has a single

index, i.e., uj. In general, it is possible to have multiple indices; for example, the

components of a matrix, aij, have two indices. The notion of a Cartesian tensor is a

generalization of a vector; i.e., a vector is called a rank-1 tensor. Then, it is possible

to define a rank-2 tensor, a rank-3 tensor, etc. In addition, a scalar can be considered

as a rank-0 tensor. The rank of a tensor can be determined by the number of indices;

for example, the components of a rank-4 tensor have four indices, as Cijkl. A basic

rank-2 tensor is the identity tensor, which is defined by 1¼ [δij]. In matrix notation,

the rank-2 identity tensor corresponds to a 3� 3 identity matrix. In particular,

a rank-2 Cartesian tensor is often called a matrix. For example, a stress is a

rank-2 tensor, whose components are defined as

σij
� � ¼ σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

2
4

3
5: ð1:5Þ

A Cartesian tensor can be represented by a component array in terms of a basis

(ei). For example, a rank-2 Cartesian tensor can be written as

T ¼ Tijei � ej; ð1:6Þ

where the symbol, �, is called the dyadic product, which increases the rank by

1. A higher rank tensor can be defined by using multiple dyadic products. Since ei is

a rank-1 tensor, ei� ej and ei� ej� ek� el yield a rank-2 and rank-4 tensor,

respectively. The transpose of T can be defined as TT¼ Tjiei� ej. Note that the

summation rule should be applied for the repeated indices. In this definition,

the stress tensor can be defined as σ¼ σijei� ej, and the matrix in Eq. (1.5) is the

Cartesian components of the stress tensor. The following identities are a direct

consequence of the definition of the dyadic product:

u� v 6¼ v� u,

αuð Þ � v ¼ α u� vð Þ,
u� vþ wð Þ ¼ u� vþ u� w,

u� vð Þ � w ¼ v � wð Þu,
u � v� wð Þ ¼ u � vð Þw:

ð1:7Þ

Note that the inner product is applied to the closest two vectors. The inner product

between rank-m and rank-n tensors yields a rank-(m + n� 2) tensor; therefore, the
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inner product reduces the rank by 2. Table 1.1 compares three different notations

used in this text. For convenience, the symbol “·” can often be omitted for the inner

product, i.e., A �B¼AB.

Example 1.1 (Inner product of two tensors) Consider the inner product of two

rank-2 tensors: C¼A �B. Using the dyadic representation method as in Eq. (1.6),

calculate the Cartesian components of C in terms of that of A and B.

Solution In the dyadic representation, the two tensors can be written as

A¼Aijei� ej and B¼Bklek� el. Therefore, the inner product between them can

be expressed as

C¼ A � B
¼ Aijei � ej
� � � Bklek � elð Þ

¼ AijBklδjkei � el
¼ AikBklei � el:

Therefore, the components of C become Cil¼AikBkl. Note that the same compo-

nents of C can be obtained by matrix multiplication between the components of

A and B. ▄

Symmetric and skew tensors: Rank-2 symmetric and skew tensors can be defined

as

– Symmetric tensor:

S ¼ ST: ð1:8Þ

– Skew tensor:

W ¼ �WT: ð1:9Þ

It is noted that every rank-2 tensor can be uniquely decomposed into a symmetric

and a skew tensor, as

T ¼ SþW; ð1:10Þ

Table 1.1 Comparison of different notations

Direct tensor notation Tensor component notation Matrix notation

α¼ a �b α¼ aibi α¼ aTb

A¼ a� b Aij¼ aibj A¼ abT

b¼A � a bi¼Aijaj b¼Aa

b¼ a �A bj¼ aiAij bT¼ aTA
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where

S ¼ 1

2
Tþ TT
� �

; ð1:11Þ

W ¼ 1

2
T� TT
� �

: ð1:12Þ

Note that the skew tensor W has zero diagonal components and Wij¼�Wji.

The symmetric part of a tensor is often written as S¼ sym(T), while the skew

part is written as W¼ skew(T).

Example 1.2 (Symmetric and skew part of displacement gradient) A displacement

gradient, ∇u, is a rank-2 tensor. Calculate the symmetric and skew part of the

displacement gradient.

Solution The components of the displacement gradient can be defined as

∇u ¼ ∂u
∂x

	 

¼

∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

2
6666664

3
7777775:

Then, the symmetric and skew parts can be obtained as

sym ∇uð Þ ¼

∂u1
∂x1

1

2

∂u1
∂x2

þ ∂u2
∂x1

� �
1

2

∂u1
∂x3

þ ∂u3
∂x1

� �
1

2

∂u1
∂x2

þ ∂u2
∂x1

� �
∂u2
∂x2

1

2

∂u2
∂x3

þ ∂u3
∂x2

� �
1

2

∂u1
∂x3

þ ∂u3
∂x1

� �
1

2

∂u2
∂x3

þ ∂u3
∂x2

� �
∂u3
∂x3

2
6666664

3
7777775;

skew ∇uð Þ ¼

0
1

2

∂u1
∂x2

� ∂u2
∂x1

� �
1

2

∂u1
∂x3

� ∂u3
∂x1

� �
1

2

∂u2
∂x1

� ∂u1
∂x2

� �
0

1

2

∂u2
∂x3

� ∂u3
∂x2

� �
1

2

∂u3
∂x1

� ∂u1
∂x3

� �
1

2

∂u3
∂x2

� ∂u2
∂x3

� �
0

2
6666664

3
7777775:

Note that sym(∇u) is called the strain tensor, while skew(∇u) is called the spin

tensor. ▄
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Contraction and trace: The contraction operator is defined between two tensors

and can be considered as a double inner product. For two rank-2 tensors, the

contraction is defined as

a : b ¼ aijbij ¼ a11b11 þ a12b12 þ � � � þ a32b32 þ a33b33: ð1:13Þ

Note that the result becomes a scalar. In general, the contraction operator reduces

four ranks from the sum of ranks of two tensors. Similar to the magnitude of a

vector, the magnitude (or, norm) of a rank-2 tensor can be defined using the

contraction operator as

ak k ¼ ffiffiffiffiffiffiffiffiffi
a : a

p
: ð1:14Þ

In solid mechanics, the constitutive equation of an elastic material is often given

as a linear relationship between stress and strain. Since stress and strain are rank-2

tensors, the elastic modulus must be defined in terms of rank-4 tensors as

σ ¼ D : ε, σij ¼ Dijklεkl; ð1:15Þ

where Dijkl is a rank-4 tensor that represents the elastic modulus.

The trace of a tensor is part of the contraction operator in which a pair of indices

is under the inner product. In the case of a rank-2 tensor, the trace can be defined as

tr Að Þ ¼ Aii ¼ A11 þ A22 þ A33; ð1:16Þ

where tr(·) stands for the trace operator. In the tensor notation, the trace can be

written as tr(A)¼A : 1¼ 1 :A.

Example 1.3 (Contraction of a symmetric tensor) Let A be a rank-2 symmetric

tensor. Show that A :W¼ 0 and A :T¼A : S, where T is a rank-2 nonsymmetric

tensor, whose symmetric and skew parts are, respectively, S and W.

Solution The contraction between a symmetric and a skew tensor becomes

A : W ¼ AijWij ¼ �AijWji ¼ �AjiWji ¼ �A : W:

In the second equality, the definition of a skew tensor is used, while the definition of

a symmetric tensor is used in the third equality. From the above relation, it is

obvious that A :W¼ 0.

For a nonsymmetric tensor, T, it can be decomposed into a symmetric and a

skew part:

A : T ¼ A : SþWð Þ ¼ A : S:

Note that A :W¼ 0 is used. ▄
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Orthogonal tensor: An important rank-2 tensor is an orthogonal tensor, which

represents the rotation of a vector or coordinate system. Consider a vector, u, in
Fig. 1.2 with two different coordinate systems. The vector can be represented by the

bases of each of the two coordinate systems as

u ¼ uiei ¼ u�j e
�
j :

Then, using the two bases, an orthogonal tensor, β ¼ βij
� �

, can be defined as

βij ¼ e�i � ej: ð1:17Þ

This orthogonal tensor represents the rotational relation between the two coordinate

systems. It is straightforward to show that (no sum on j)

βijej ¼ e�i � ej
� � � ej ¼ e�i :

In a similar way, ej¼ βije�i . Then, using an easy calculation, it is possible to show

that

u� ¼ βu,
u ¼ βTu�: ð1:18Þ

In the above equation, the inner product symbol “·” is omitted, which will be

commonly excluded from this book. Using the above relation, it is easy to show

that βTβ ¼ ββT ¼ 1, which is the property of an orthogonal tensor. The coordinate

transformation of a rank-2 tensor can be written as

T� ¼ βTβT, T�
ij ¼ βikTklβjl: ð1:19Þ

Note that the above equation is not a rotation of a tensor but a rotation of the

coordinate system.

x

y

z′

x*

y*

u

z*

Fig. 1.2 Representation of

a vector in two coordinate

systems

1.2 Vector and Tensor Calculus 9



Permutation: The permutation symbol has three indices, but it is not a tensor.

It is used to

eijk ¼
1 if ijk are an even permutation : 123, 231, 312

�1 if ijk are an odd permutation : 132, 213, 321

0 otherwise

:

8<
:

Note that the permutation is zero when any of two indices have the same value.

The permutation symbol will be used for several important derivations. The following

identity can be useful in deriving the determinant of a tensor:

eijkelmk ¼ δilδjm � δimδjl: ð1:20Þ

Another usage of the permutation symbol is for a vector product of two vectors,

u� v ¼ eieijkujvk: ð1:21Þ

Note that the output of a vector product is another vector that is orthogonal to the

two vectors.

Dual vector of a skew tensor: A rank-2 skew tensor has only three independent

components. Therefore, it is possible that a skew tensor can be defined using a

vector with the permutation symbol as Wij¼� eijkwk, where the components of

W and w are given as

W ¼
0 W12 W13

�W12 0 W23

�W13 �W23 0

8<
:

9=
; ) w ¼

�W23

W13

�W12

8<
:

9=
;:

In addition, for any skew tensor, W, and vector, u, the following property can be

shown:

u �Wu ¼ u �WTu ¼ �u �Wu ¼ 0:

In the first equality, since (u �Wu) is a scalar, it is equivalent to its transpose

(u �WTu). The above relation reveals that Wu and u are orthogonal. Then, we

can obtain the following relation:

Wijuj ¼ �eijkwkuj ¼ eikjwkuj:

Note that the last term is simply the definition of the vector product in Eq. (1.21).

Therefore, in tensor notation,

Wu ¼ w� u: ð1:22Þ

10 1 Preliminary Concepts



In the above equation, w is called a dual vector of the skew tensor W. For a given

skew tensor, the dual vector can be obtained using wi ¼ �1
2
eijkWjk. In practice, the

usage of the vector product is inconvenient because of the permutation symbol.

However, the above relation makes it possible to convert the vector product into the

inner product between a skew tensor and a vector.

1.2.2 Vector and Tensor Calculus

Gradient: Many governing equations of structural mechanics include the deriva-

tive of a field variable with respect to spatial coordinates. Here, a “field” means a

function in the space, such as a temperature or displacement of a structure. The field

variable can be a scalar, vector, or tensor. Therefore, it is a good idea to clearly

define the gradient operator using the tensor notation. The gradient operator is

defined as a vector (or, rank-1 tensor), as

∇ ¼ ∂
∂x

¼ ei
∂
∂xi

: ð1:23Þ

For example, the gradient of a scalar field, ϕ(x), can be written as

∇ϕ ¼ gradϕ ¼ ei
∂ϕ
∂xi

; ð1:24Þ

which is a vector. The gradient of a vector field, u(x), can be defined as

∇u ¼ ei
∂
∂xi

� �
� ujej
� � ¼ ∂uj

∂xi
ei � ej: ð1:25Þ

Note that the gradient of a vector is a rank-2 tensor. For the purpose of notational

convenience, the subscribed comma will often be used for the gradient, i.e.,

vi,j¼∂vi/∂xj. The following divergence is defined so that the gradient of a vector
produces a scalar quantity:

∇ � u ¼ ei
∂
∂xi

� �
� ujej
� � ¼ ∂ui

∂xi
¼ ∂u1

∂x1
þ ∂u2

∂x2
þ ∂u3

∂x3
: ð1:26Þ

The Laplace operator can be defined using the inner product of two gradient

operators as

∇2 ¼ ∇ �∇ ¼ ei
∂
∂xi

� �
� ej

∂
∂xj

� �
¼ ∂

∂xi

∂
∂xi

¼ ∂2

∂x21
þ ∂2

∂x22
þ ∂2

∂x23
: ð1:27Þ
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Example 1.4 (Divergence of a stress tensor) Let σ be the stress tensor given in

Eq. (1.5). The force equilibrium of an infinitesimal component can be written as

∇ �σ¼ 0. Write the force equilibrium equation in component form.

Solution By replacing the vector u in Eq. (1.26) with the stress tensor, the diver-

gence of the stress tensor becomes

∇ � σð Þj ¼
∂σij
∂xi

:

By expanding the above equation for all components, and by putting the divergence

equal to zero, we can obtain the following differential equation for equilibrium:

∂σ11
∂x1

þ ∂σ21
∂x2

þ ∂σ31
∂x3

¼ 0

∂σ12
∂x1

þ ∂σ22
∂x2

þ ∂σ32
∂x3

¼ 0

∂σ13
∂x1

þ ∂σ23
∂x2

þ ∂σ33
∂x3

¼ 0

8>>>>>><
>>>>>>:

:

It will be shown later that the stress tensor is symmetric. Therefore,

σ12¼ σ21, σ23¼ σ32 and σ13¼ σ31. ▄

1.2.3 Integral Theorems

Many equations in solid mechanics are expressed in terms of differential equations.

For example, the force equilibrium of an infinitesimal component can be expressed

in terms of partial differential equations. Since these differential equations are

satisfied at every point in the domain of a structure, they are integrated over the

entire domain; the result is an integral equation. In this section, several theorems

that are useful in deriving the integral equations of solid mechanics are introduced.

The proof of each theorem is out of the scope of this text. Interested readers are

referred to the text by Hildebrand [3].

Divergence theorem: The divergence theorem is a special case of Green’s theorem
for a tensor field. The divergence theorem relates a domain integral to a boundary

integral around the domain. Let Ω be a domain bounded by Γ. If a tensor, A, has

continuous partial derivatives in the domain, the integral of the divergence of

A over the domain can be converted into the integral over the boundary, asZZ
Ω
∇ � AdΩ ¼

Z
Γ
n � AdΓ; ð1:28Þ
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where n is the outward unit normal vector of the boundary, Γ. A variant of the

divergence theorem is the gradient theorem in which the inner product is replaced

with the dyadic product, as

ZZ
Ω
∇AdΩ ¼

Z
Γ
n� AdΓ:

Reynolds transport theorem: The Reynolds transport theorem is related to the

time derivative of an integral equation over a domain in which the integrand, as well

as the domain, varies as a function of time. Consider integrating f¼ f(x, t) over the
time-dependent domain, Ω(t), that is bounded by Γ(t). Then, the time derivative of

the integral of f(x, t) over the domain, Ω(t), can be expressed as

d

dt

ZZ
Ω
f dΩ ¼

ZZ
Ω

∂f
∂t

dΩþ
Z
Γ
n � vð Þf dΓ; ð1:29Þ

where n(x, t) is the outward unit normal vector to the boundary and v(x, t) is

the velocity of the boundary. The first term on the right-hand side (RHS) is

called the partial derivative, and the second term is called the convective term.

Note that the integral on the left-hand side (LHS) is solely a function of time, so that

the total derivative is used.

Integration-by-parts: Integration-by-parts is a theorem that relates the integral of a

product of functions to the integral of their derivative and antiderivative. In the

one-dimensional case, if u(x) and v(x) are two continuously differentiable functions
in the domain (a, b), then the integration-by-parts can be stated as

Z b

a

u xð Þv0
xð Þdx ¼ u xð Þv xð Þ½ �ba �

Z b

a

u
0
xð Þv xð Þdx:

The above relation can be extended to the two- or three-dimensional case. Let Ω be

the domain of integral with the boundary, Γ. Then, the integration-by-parts can be

written as

ZZ
Ω

∂u
∂xi

vdΩ ¼
Z
Γ
uvni dΓ�

ZZ
Ω
u
∂v
∂xi

dΩ;

where ni is the components of the unit normal vector directed outward to the

boundary, Γ. Replacing the scalar function, v, in the above formula with a vector,

vi, and summing over i give the following vector formula:ZZ
Ω
∇u � vdΩ ¼

Z
Γ
u v � nð ÞdΓ�

ZZ
Ω
u∇ � vdΩ: ð1:30Þ
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By replacing u with the constant 1 in the above formula, the divergence theorem in

Eq. (1.28) can be obtained. For the purpose of continuum mechanics, the following

Green’s identity can be obtained by replacing v with ∇v in the above formula:ZZ
Ω
∇u �∇vdΩ ¼

Z
Γ
u∇v � ndΓ�

ZZ
Ω
u∇2vdΩ: ð1:31Þ

One of the important reasons for using integration-by-parts is to relax the

requirement of differentiability. In the above formula, for example, the RHS

requires that v(x) must be a twice differentiable function, while the LHS is well

defined with the first-order partial derivative of v(x). The additional requirement of

differentiability has been shifted to u(x).

Example 1.5 (Divergence theorem) Integrate
R

SF � n dS, where F is a vector field

given as F¼ 2xe1 + y
2e2 + z

2e3 and S is the area of the surface of unit sphere

(x2 + y2 + z2¼ 1), whose unit normal vector is n.

Solution Using the divergence theorem,Z
S

F � ndS¼
ZZ

Ω
∇ � FdΩ

¼ 2

ZZ
Ω
1þ yþ zð ÞdΩ

¼ 2

ZZ
Ω
dΩþ 2

ZZ
Ω
ydΩþ 2

ZZ
Ω
zdΩ

¼ 2

ZZ
Ω
dΩ

¼ 8π

3
:

In the above equation, the integral of odd functions is zero because of symmetry in

the domain. ▄

1.3 Stress and Strain

In the elementary mechanics of materials or physics courses, stress is defined as

force per unit area. While such a notion is useful and sufficient to analyze

one-dimensional structures under a uniaxial state of stress, a complete understand-

ing of the state of stress in a three-dimensional body requires a thorough under-

standing of the concept of stress at a point. Similarly, strain is defined as the change

in length per original length of a one-dimensional body. However, the concept

of strain at a point in a three-dimensional body is quite interesting and is required

for a complete understanding of the deformation a solid undergoes. While stresses

and strains are concepts developed by engineers for better understanding of the
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physics of deformation of a solid, the relation between stresses and strains is

phenomenological in the sense that it is something observed and described as a

simplified theory. Robert Hooke [4] was the first to establish the linear relation

between stresses and strains in an elastic body. Although he explained his theory for

one-dimensional objects, his theory later became the generalized Hooke’s law that

relates the stresses and strains in three-dimensional elastic bodies.

1.3.1 Stress

Surface traction: Consider a solid subjected to external forces and in static

equilibrium, as shown in Fig. 1.3. We are interested in the state of stress at a

point, P, in the interior of the solid. We cut the body of the solid into two halves by

passing an imaginary plane through P. The unit vector normal to the plane is

denoted by n [see Fig. 1.3b]. The left side of the body is in equilibrium because

of the external forces, f1, f2, and f3, and also the internal forces acting on the cut

surface. Surface traction is defined as the internal force per unit area or the force

intensity acting on the cut plane. In order to measure the intensity or traction,

specifically at P, we consider the force, ΔF, acting over a small area, ΔA, that
contains point, P. Then the surface traction, t(n), acting at the point, P, is defined as

t nð Þ ¼ lim
ΔA!0

ΔF
ΔA

: ð1:32Þ

In Eq. (1.32), the right superscript (n), is used to denote the fact that this surface

traction is defined on a plane whose normal is n. It should be noted that at the same

point P, the traction vector, t, would be different on a different plane passing

through P. It is clear from Eq. (1.32) that the units of the traction vector are force

ΔF

n

f1

f2

f3

f1

f2

f3

f4

f6

f5

a b

x y

z

P ΔA

Fig. 1.3 Surface traction acting on a plane at a point
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per unit area, the same as that of pressure. Since t(n) is a vector, one can resolve it

into components and write it as

t nð Þ ¼ t1e1 þ t2e2 þ t3e3: ð1:33Þ

Example 1.6 (Stress in an inclined surface) Consider a uniaxial bar with the cross-

sectional area A¼ 2� 10�4 m2, as shown in Fig. 1.4. If an axial force, F¼ 100 N, is

applied to the bar, determine the surface traction on the plane whose normal is at an

angle, θ, from the axial direction.

Solution To simplify the analysis, let us assume that the traction on the plane is

uniform; i.e., the stresses are equally distributed over the cross section of the bar.

In fact, this is the fundamental assumption in the analysis of bars. The force on the

inclined plane, S, can be obtained by integrating the constant surface traction, t(n),
over the plane, S. In this simple example, direction of the surface traction, t(n), must

be opposite to that of the force, F. Since the member is in static equilibrium, the

integral of the surface traction must be equal to the magnitude of the force, F:

F ¼
ZZ

S

t nð Þ dS ¼ t

ZZ
S

dS ¼ t
A

cos θ
;

∴t ¼ F

A
cos θ ¼ 500 cos θ

N

m2
¼ 500 cos θ Pa:

Note that the unit of traction is Pascal (Pa or N/m2). It is clear that the surface

traction depends on the direction of the normal to the plane. ▄

Stress tensor and Cartesian components: Since the surface traction at a point

varies depending on the direction of the normal to the plane, one can obtain an

infinite number of traction vectors, t(n), and the corresponding normal and shear

stresses for a given state of stress at a point. Fortunately, the state of stress at a point

can be completely characterized by defining traction vectors on three mutually

perpendicular planes passing through the point. From the knowledge of t(n) acting
on three orthogonal planes, one can determine t(n) on any arbitrary plane passing

through the same point. For convenience, these planes are taken as the three planes

that are normal to the x-, y-, and z-axes.

FF

F

n
t(n)

S

θ

Fig. 1.4 Equilibrium of a

uniaxial bar under axial

force
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Let us denote the traction vector on the yz-plane, which is normal to the x-axis, as
t(x). The surface traction can be represented using its components that are parallel to

the coordinate directions as

t xð Þ ¼ t
xð Þ
1 e1 þ t

xð Þ
2 e2þt

xð Þ
3 e3: ð1:34Þ

It may be noted that t
ðxÞ
1 in Eq. (1.34) is the normal stress and t

ðxÞ
2 and t

ðxÞ
3 are the shear

stresses in the y- and z-directions, respectively. In contemporary solid mechanics,

the stress components in Eq. (1.34) are denoted by σ11, σ12 and σ13, where σ11 is the
normal stress and σ12 and σ13 are components of shear stress. In this notation, the first

subscript denotes the plane on which the stress component acts—in this case the

plane normal to the x-axis or simply the x-plane—and the second subscript denotes

the direction of the stress component. We can repeat this exercise by passing two

more planes, normal to y- and z-axes, respectively, through the point, P. Thus, the
surface tractions acting on the plane normal to y-plane will be σ21, σ22 and σ23.
The stresses acting on the z-plane can be written as σ31, σ32 and σ33. In solid

mechanics, the symbols, σ and τ, are often used for normal and shear stresses,

respectively. However, in this text, the same symbol, σ, will be used for both normal

and shear stresses. The stresses can be distinguished using their indices.

The stress components acting on the three planes can be depicted using a cube, as

shown in Fig. 1.5. It must be noted that this cube is not a physical cube and, hence,

has no dimensions. The six faces of the cube represent the three pairs of planes

which are normal to the coordinate axes. The top face, for example, is the +z-plane
and then the bottom face is the �z-plane or whose normal is in the �z-direction.
Note that the three visible faces of the cube in Fig. 1.5 represent the three positive

planes, i.e., planes whose normal are the positive x-, y-, and z-axes. On these faces,

all tractions are shown in the positive direction. For example, the stress component,

σ23, is the traction on the y-plane acting in the positive z-direction. By using these

Cartesian stress components, the rank-2 stress tensor can be defined as

σ ¼ σijei � ej; ð1:35Þ

where σij represents the Cartesian components of a stress tensor, which is defined in

the matrix form in Eq. (1.5). The stress tensor in Eq. (1.35) completely characterizes

the state of stress at a given point.

The sign convention of stress is different from that of regular force vectors. Stress

components, in addition to disclosing the direction of the force, contain information

of the surface on which they are defined. A stress component is positive when both

the surface normal and the stress component are either in the positive or in the

negative coordinate direction. For example, if the surface normal is in the positive

direction and the stress component is in the negative direction, then the stress

component has a negative sign. Positive and negative normal stresses are called

tensile and compressive stresses, respectively. The shear stress is positive when it is
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acting in the positive coordinate direction upon a positive face of the stress cube.

The positive directions of all the stress components are shown in Fig. 1.5.

Symmetry of stress tensor: The nine components of the stress tensor can be

reduced to six components using the symmetry property of the stress tensor.

Consider the infinitesimal cube in Fig. 1.5, which is in equilibrium. In contrast to

the previous section, let us assume that the cube has a very small finite dimension.

The direction of the shear stress, σ12, on the positive x-plane is in the positive

y-direction, while on the positive y-plane, the direction of the shear stress, σ21, is in
the positive x-direction. As the body is in static equilibrium, the sum of the

moments about the z-axis must be equal to zero; this implies that the shear stresses

σ12 and σ21 must be equal to each other. The same is true for the moment

equilibrium on x- and y-axes:

σ12 ¼ σ21, σ23 ¼ σ32, σ13 ¼ σ31:

Therefore, the components of the stress tensor in Eq. (1.5) are revised using

symmetry as

σij
� � ¼ σ11 σ12 σ13

σ12 σ22 σ23
σ13 σ23 σ33

2
4

3
5: ð1:36Þ

Thus, we need only six components to fully represent the stress at a point. In some

instances, stress at a point is written as a 6� 1 pseudo vector as shown below:

σf g ¼

σ11
σ22
σ33
σ12
σ23
σ13

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð1:37Þ

Fig. 1.5 Stress components

in Cartesian coordinate

system
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Cauchy’s Lemma: Knowledge of the six stress components is necessary in order to

determine the components of the surface traction, t(n), acting on an arbitrary plane

with a normal vector, n. Let n be the unit normal vector of the plane on which we

want to determine the surface traction. For convenience, we choose P as the origin

of the coordinate system, as shown in Fig. 1.6, and consider a plane parallel to the

intended plane which passes at an infinitesimally small distance, h, away from P.
Note that the normal to the face, ABC, is also n. We will calculate the tractions on

the plane formed by ABC and then take the limit, as h approaches zero. We will

consider the equilibrium of the tetrahedron, PABC. If A is the area of the triangle,

ABC, then the areas of triangles PAB, PBC, and PAC are given by Anz, Anx, and

Any, respectively. Let t
(n)¼ t

ðnÞ
1 e1 + t

ðnÞ
2 e2 + t

ðnÞ
3 e3 be the surface traction acting on

the face, ABC.

From the definition of surface traction in Eq. (1.32), the force on the surface can

be calculated by multiplying the stresses with the surface area. Since the tetrahe-

dron should be in equilibrium, the sum of the forces acting on its surfaces should be

equal to zero. The force balance in the x-direction yields

X
F1 ¼ t

nð Þ
1 A� σ11An1 � σ21An2 � σ31An3 ¼ 0:

In the above equation, we have assumed that the stresses acting on a surface are

uniform; this will not be true if the size of the tetrahedron is not small. However, the

tetrahedron is infinitesimally small, which is the case as h approaches zero.

By dividing the above equation by A, we obtain the following relation:

t
nð Þ
1 ¼ σ11n1 þ σ21n2 þ σ31n3:

Similarly, the force balance in the y- and z-directions yields

t
nð Þ
2 ¼ σ12n1 þ σ22n2 þ σ32n3,

t
nð Þ
3 ¼ σ13n1 þ σ23n2 þ σ33n3:

x

y

z

B

A

C

σ33σ31

σ32

σ22

σ23
σ21

σ11

σ13

σ12

t(n)
n

P

Fig. 1.6 Surface traction

and stress components

acting on faces of an

infinitesimal tetrahedron, at

a given point P
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From the above equations, it is clear that the surface traction acting on the surface

whose normal is n can be determined if the six stress components are available.

By using tensor notation, we can write the above equations as

t nð Þ ¼ n � σ: ð1:38Þ

Due to the symmetry of the stress tensor, the above relation is equivalent to

t(n)¼ σ � n. The surface traction, t(n), remains unchanged for all surfaces which

pass through the point, P, and have the same normal vector, n, at P; i.e., surfaces
which have a common tangent at P will have the same surface traction. This means

that the stress vector is only a function of the normal vector, n, and is not influenced
by the curvature of the internal surfaces. From this observation, Cauchy’s Lemma

[5], also called the Cauchy reciprocal theorem, states that the surface tractions

acting on opposite sides of the same surface are equal in magnitude and opposite in

direction, i.e.,

t nð Þ ¼ �t �nð Þ; ð1:39Þ

which can easily be shown using Eq. (1.38).

Normal stress and shear stress: The surface traction, t(n), defined by Eq. (1.38)

does not generally act in the direction of n; i.e., t(n) and n are not necessarily parallel

to each other. Thus, we can decompose the surface traction into two components,

one parallel to n and the other perpendicular to n, which will lie on the plane. The

component normal to the plane or parallel to n is called the normal stress and is

denoted by σn. The other component parallel to the plane or perpendicular to n is

called the shear stress and is denoted by τn.
The normal stress can be obtained from the inner product of t(n) and n (see

Fig. 1.7) as

σn ¼ t nð Þ � n ¼ n � σ � n ð1:40Þ

and shear stress can be calculated from the relation

τn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t nð Þ

 

2 � σ2n

q
: ð1:41Þ

σn

τn

t(n)

n

P

Fig. 1.7 Normal and shear

stresses at a point P
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Example 1.7 (Normal and shear stresses on a plate) The state of stress at a

particular point in the xyz coordinate system is given by the following stress

components:

σ ¼
3 7 �7

7 4 0

�7 0 2

2
4

3
5:

Determine the normal and shear stresses on a surface passing through the point and

parallel to the plane given by the equation 4x� 4y+ 2z¼ 2.

Solution To determine the surface traction, t(n), it is necessary to determine the unit

vector normal to the plane. From solid geometry, the normal to the plane is found to

be in the direction of d¼ {4, �4, 2}T with a magnitude of kdk¼ 6. Thus, the unit

normal vector becomes

n ¼ 2

3
, � 2

3
,
1

3

� �T

:

The surface traction can be obtained as

t nð Þ ¼ σ � n ¼ 1

3

3 7 �7

7 4 0

�7 0 2

2
4

3
5 �

2

�2

1

8<
:

9=
; ¼

�5

2

�4

8<
:

9=
;:

By using Eqs. (1.40) and (1.41), the normal and shear stresses can be obtained as

σn ¼ t nð Þ � n ¼ �5� 2

3
� 2� 2

3
� 4� 1

3
¼ �6,

t nð Þ

 

2 ¼ 52 þ 22 þ 42 ¼ 45,

τn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t nð Þ

 

2 � 62

q
¼ 3:

▄

Mean stress and stress deviator: The stress in Eq. (1.36) can be decomposed into

hydrostatic pressure and deviatoric stress. The former is related to the change in

volume, while the latter is related to the change in shape. The hydrostatic pressure,

often called the mean stress, can be defined using the trace of the stress tensor as

p ¼ σm ¼ 1

3
tr σð Þ ¼ 1

3
σ11 þ σ22 þ σ33ð Þ: ð1:42Þ

Note that the hydrostatic pressure is invariant on coordinate transformation in

Eq. (1.19), that is, for σ in xyz coordinates and σ0 for x0y0z0 coordinates, tr(σ)¼
tr(σ0). Therefore, the mean stress has the property of frame indifference.
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On the other hand, the stress deviator is defined by subtracting the mean stress

from the original stress tensor as

s ¼ σ� σm1 ¼
σ11 � σm σ12 σ13

σ12 σ22 � σm σ23
σ13 σ23 σ33 � σm

2
4

3
5: ð1:43Þ

Note that tr(s)¼ 0. Therefore, the stress deviator is called trace-free. The mean

stress and stress deviator are important in representing the plastic behavior of a

material beyond the yield point.

For a formal definition, the stress deviator can be defined by contracting the

original stress with the unit deviatoric tensor of rank-4:

s ¼ Idev : σ;

where Idev is defined as

Idev ¼ I� 1

3
1� 1; ð1:44Þ

where I is a unit symmetric tensor of rank-4, which is defined as

Iijkl¼ (δikδjl+ δilδjk)/2. Note that since Idev is trace-free, it is easy to show that

Idev : 1¼ 0. In addition, the unit deviatoric tensor preserves a deviatoric tensor,

that is, Idev : s¼ s for a deviatoric rank-2 tensor s.

Principal stresses: The normal and shear stresses acting on a plane, which passes

through a given point in a solid, change as the orientation of the plane is changed.

Then a natural question is: Is there a plane on which the normal stress becomes the

maximum? Similarly, we would also like to find the plane on which the shear stress

attains a maximum. These questions have significance in predicting the failure of

the material at a point. In the following, we will provide some answers to the above

questions, without furnishing the proofs. The interested reader is referred to books

on continuum mechanics, e.g., Malvern [6] or Boresi [7] for a more detailed

treatment of the subject.

It can be shown that, at every point in a solid, there are at least three mutually

perpendicular planes on which the normal stress attains an extremum (maximum or

minimum) value. On all of these planes, the shear stresses vanish. Thus, the traction

vector, t(n), will be parallel to the normal vector, n, on these planes, i.e., t(n)¼ σnn.
Of these three planes, one plane corresponds to the global maximum value of the

normal stress and another corresponds to the global minimum. The third plane will

carry the intermediate normal stress. These special normal stresses are called the

principal stresses at that point, the planes on which they act are called the principal
stress planes and the corresponding normal vectors are called the principal stress

directions. The principal stresses are denoted by σ1, σ2, and σ3, such that

σ1� σ2� σ3.
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Based on the above observations, the principal stresses can be calculated, as

follows. When the normal direction to a plane is the principal direction, the surface

normal and the surface traction are in the same direction, i.e., (t(n) || n). Thus, the
surface traction on a plane can be represented by the product of the normal stress,

σn, and the normal vector, n, as

t nð Þ ¼ σnn: ð1:45Þ

By combining Eq. (1.45) with Eq. (1.38) for the surface traction, we obtain

σ � n ¼ σnn: ð1:46Þ

Equation (1.46) represents the eigenvalue problem, where σn is the eigenvalue and
n is the corresponding eigenvector. Equation (1.46) can be rearranged as

σ� σn1ð Þ � n ¼ 0: ð1:47Þ

In the component form, the above equation can be written as

σ11 � σn σ12 σ13
σ12 σ22 � σn σ23
σ13 σ23 σ33 � σn

2
4

3
5 n1

n2
n3

8<
:

9=
; ¼

0

0

0

8<
:

9=
;: ð1:48Þ

Note that a solution, n¼ 0, is not only a trivial solution to the above equation, but

also not physically possible as ||n|| must be equal to unity. The above set of linear

simultaneous equations will have a nontrivial physically meaningful solution if and

only if the determinant of the coefficient matrix is zero, i.e.,

σ11 � σn σ12 σ13
σ12 σ22 � σn σ23
σ13 σ23 σ33 � σn

������
������ ¼ 0: ð1:49Þ

By expanding this determinant, we obtain the following cubic equation in terms of

σn:

σ3n � I1σ
2
n þ I2σn � I3 ¼ 0; ð1:50Þ

where

I1 ¼ σ11 þ σ22 þ σ33,

I2 ¼ σ11 σ12
σ12 σ22

����
����þ σ22 σ23

σ23 σ33

����
����þ σ11 σ13

σ13 σ33

����
����

¼ σ11σ22 þ σ22σ33 þ σ33σ11 � σ212 � σ223 � σ213,
I3 ¼ σj j ¼ σ11σ22σ33 þ 2σ12σ23σ13 � σ11σ223 � σ22σ213 � σ33σ212:

ð1:51Þ
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In the above equation, I1, I2, and I3 are the three invariants of the stress, which can

be shown to be independent of the coordinate system. The three roots of the cubic

equation (1.50) correspond to the three principal stresses. We will denote them by

σ1, σ2, and σ3 in the order of σ1� σ2� σ3.
Once the principal stresses have been computed, we can substitute them, one at

a time, into Eq. (1.48) to obtain n. We will get a principal direction that will

be denoted as n1, n2, and n3, which each corresponds to a principal value.

Note that n is a unit vector, and hence its components must satisfy the following

relation:

ni


 

2 ¼ ni

1

� �2 þ ni
2

� �2 þ ni
3

� �2 ¼ 1, i ¼ 1, 2, 3: ð1:52Þ

It can be shown that the planes on which the principal stresses act are mutually

perpendicular. Let us consider any two principal directions ni and nj, with i 6¼ j. If σi
and σj are the corresponding principal stresses, then they satisfy the following

equations:

σ � ni ¼ σini,
σ � nj ¼ σjnj:

ð1:53Þ

By multiplying the first equation by nj and the second equation by ni, we obtain

nj � σ � ni ¼ σinj � ni,
ni � σ � nj ¼ σjni � nj: ð1:54Þ

Considering the symmetry of σ and the rule for inner product, one can show that

nj �σ � ni¼ ni �σ � nj. Then subtracting the first equation from the second in

Eq. (1.54), we obtain

σi � σj
� �

ni � nj ¼ 0: ð1:55Þ

This implies that if the principal stresses are distinct, i.e., σi 6¼ σj, then

ni � nj ¼ 0; ð1:56Þ

which means that ni and nj are orthogonal. The three planes, on which the principal

stresses act, are mutually perpendicular.
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There are three different possibilities for principal stresses and directions:

(a) σ1, σ2, and σ3 are distinct) principal stress directions are three unique

mutually orthogonal unit vectors.

(b) σ1¼ σ2 6¼ σ3) n3 is a unique principal stress direction, and any two orthog-

onal directions on the plane that is perpendicular to n3 are the other

principal directions.

(c) σ1¼ σ2¼ σ3) any three orthogonal directions are principal stress direc-

tions. This state of stress is called hydrostatic or isotropic state of stress.

Example 1.8 (Principal stresses and principal directions) For the Cartesian stress

components given below, determine the principal stresses and principal directions.

σ ¼
3 1 1

1 0 2

1 2 0

2
4

3
5:

Solution Setting the determinant of the coefficient matrix to zero yields

3� σn 1 1

1 �σn 2

1 2 �σn

������
������ ¼ 0:

By expanding the determinant, we obtain the following characteristic equation:

3� σnð Þ σ2n � 4
� �� �σn � 2ð Þ þ 2þ σnð Þ ¼ � σn þ 2ð Þ σn � 1ð Þ σn � 4ð Þ ¼ 0:

Three roots of the above equation are the principal stresses. They are

σ1 ¼ 4, σ2 ¼ 1, σ3 ¼ �2:

For the case when σn¼ σ3¼�2, we may obtain the following simultaneous equa-

tions, by using the form of Eq. (1.48):

5nx þ ny þ nz ¼ 0,

nx þ 2ny þ 2nz ¼ 0,

nx þ 2ny þ 2nz ¼ 0:

We note that the three equations are not independent; in fact, the second and third

equations are identical. From the first two equations, we can obtain the following

ratios between components:

nx : ny : nz ¼ 0 : �1 : 1:
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By using Eq. (1.52), a unique solution of the following form can be obtained:

n 3ð Þ ¼ 1ffiffiffi
2

p
0

�1

1

8<
:

9=
;:

The same process can be repeated for σ1 and σ2 to obtain the following two

principal directions:

n 1ð Þ ¼ 1ffiffiffi
6

p
�2

�1

�1

8<
:

9=
;, n 2ð Þ ¼ 1ffiffiffi

3
p

1

�1

�1

8<
:

9=
;:

Note that all principal directions are mutually perpendicular. ▄

1.3.2 Strain

When a solid is subjected to forces, it deforms. A measure of the deformation is

provided by strains. Imagine an infinitesimal line segment in an arbitrary direction

which passes through a point in a solid. As the solid deforms, the length of the line

segment changes. The strain, specifically the normal strain, in the original direction

of the line segment is defined as the change in length divided by the original length.

However, the strain at the same point will be different in different directions. In the

following, the concept of strain in a three-dimensional body is developed.

Figure 1.8 shows a body before and after deformation. Let the points, P, Q, and
R, in the undeformed body move to P0, Q0, and R0, respectively, after deformation.

For the convenience of notation, the three coordinate directions are denoted by

P(x1,x2,x3) Q

R P'(x1+u1, x2+u2, x3+u3) 

Q'

R'

x1

x2

x3

Δx1

Δx2

Fig. 1.8 Deformation of

line segments
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x1x2x3 coordinates instead of using the xyz coordinates. The displacement of P can

be represented by three displacement components, u1, u2, and u3 in the x1-, x2-, and
x3-directions. Thus, the coordinates of P

0 are (x1 + u1, x2 + u2, x3 + u3). The functions
u1(x1,x2,x3), u2(x1,x2,x3), and u3(x1,x2,x3) are components of a vector field that is

referred to as the deformation field or the displacement field. The displacements of

the point, Q, will be slightly different from that of P. They can be written as

uQ
1 ¼ u1 þ ∂u1

∂x1
Δx1,

uQ
2 ¼ u2 þ ∂u2

∂x1
Δx1,

uQ
3 ¼ u3 þ ∂u3

∂x1
Δx1:

ð1:57Þ

Similarly, displacements of the point, R, are

uR
1 ¼ u1 þ ∂u1

∂x2
Δx2,

uR
2 ¼ u2 þ ∂u2

∂x2
Δx2,

uR
3 ¼ u3 þ ∂u3

∂x2
Δx2:

ð1:58Þ

The coordinates of P, Q, and R before and after deformation are as follows:

P : x1; x2; x3ð Þ,
Q : x1 þ Δx1, x2, x3ð Þ,
R : x1, x1 þ Δx2, x3ð Þ,
P

0
: x1 þ uP

1 , x2 þ uP
2 , x3 þ uP

3

� � ¼ x1 þ u1, x2 þ u2, x3 þ u3ð Þ,
Q

0
: x1 þ Δx1 þ uQ

1 , x2 þ uQ
2 , x3 þ uQ

3

� �
¼ x1 þ Δx1 þ u1 þ ∂u1

∂x1
Δx1, x2 þ u2 þ ∂u2

∂x1
Δx1, x3 þ u3 þ ∂u3

∂x1
Δx1

� �
,

R
0
: x1 þ uR

1 , x2 þ Δx2 þ uR
2 , x3 þ uR

3

� �
¼ x1 þ u1 þ ∂u1

∂x2
Δx2, x2 þ Δx2 þ u2 þ ∂u2

∂x2
Δx2, x3 þ u3 þ ∂u3

∂x2
Δx2

� �
:

The length of the line segment P0Q0 can be calculated as

P
0
Q

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xP

0
1 � xQ

0

1

� �2
þ xP

0
2 � xQ

0

2

� �2
þ xP

0
3 � xQ

0

3

� �2r
: ð1:59Þ
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By substituting for the coordinates of P0 and Q0, we obtain

P
0
Q

0 ¼ Δx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂u1

∂x1

� �2
þ ∂u2

∂x1

� �2
þ ∂u3

∂x1

� �2r

¼ Δx1 1þ 2 ∂u1
∂x1

þ ∂u1
∂x1

� �2
þ ∂u2

∂x1

� �2
þ ∂u3

∂x1

� �2� �1=2

	 Δx1 1þ ∂u1
∂x1

þ 1

2

∂u1
∂x1

� �2

þ 1

2

∂u2
∂x1

� �2

þ 1

2

∂u3
∂x1

� �2
 !

:

ð1:60Þ

It may be noted that we have used a two-term binomial expansion in deriving an

approximate expression for the change in length. In this chapter, we will consider

only small deformations such that all deformation gradients are very small when

compared to unity, e.g., ∂u1/∂x1
 1, ∂u2/∂x1
 1. Then we can neglect the

higher-order terms in Eq. (1.60) to obtain

P
0
Q

0 	 Δx1 1þ ∂u1
∂x1

� �
: ð1:61Þ

Now we invoke the definition of normal strain as the ratio of the change in length to

the original length in order to derive the expression for strain as

ε11 ¼ P
0
Q

0 � PQ

PQ
¼ ∂u1

∂x1
: ð1:62Þ

Thus, the normal strain, ε11, at a point can be defined as the change in length per unit
length of an infinitesimally long line segment, originally parallel to the x1-axis.
Similarly, we can derive normal strains in the x2- and x3-directions as

ε22 ¼ ∂u2
∂x2

, ε33 ¼ ∂u3
∂x3

: ð1:63Þ

The shear strain, say γ12, is defined as the change in angle between a pair of

infinitesimal line segments that were originally parallel to the x1- and x2-axes. From
Fig. 1.8, the angle between PQ and P0Q0 can be derived as

θ1 ¼ xQ
0

2 � xQ2
Δx1

¼ ∂u2
∂x1

: ð1:64Þ

Similarly, the angle between PR and P0R0 is

θ2 ¼ xR
0

1 � xR1
Δx2

¼ ∂u1
∂x2

: ð1:65Þ
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Using the aforementioned definition of shear strain,

γ12 ¼ θ1 þ θ2 ¼ ∂u1
∂x2

þ ∂u2
∂x1

: ð1:66Þ

Similarly, we can derive shear strains in the x2x3- and x3x2-planes as

γ23 ¼
∂u2
∂x3

þ ∂u3
∂x2

,

γ13 ¼
∂u3
∂x1

þ ∂u1
∂x3

:

ð1:67Þ

The shear strains, γ12, γ23, and γ13, are called engineering shear strains. From the

definition in Eq. (1.66), it is clear that γ12¼ γ21. We define tensorial shear strains as

ε12 ¼ 1

2

∂u1
∂x2

þ ∂u2
∂x1

� �
,

ε23 ¼ 1

2

∂u2
∂x3

þ ∂u3
∂x2

� �
,

ε13 ¼ 1

2

∂u3
∂x1

þ ∂u1
∂x3

� �
:

ð1:68Þ

It may be noted that the tensorial shear strains are one-half of the corresponding

engineering shear strains. It can be shown that the normal strains and the tensorial

shear strains transform from one coordinate system to another by following the

tensor transformation rule in Eq. (1.19).

In the general three-dimensional case, the strain tensor can be defined using the

dyadic product, as

ε ¼ εijei � ej; ð1:69Þ

where the components of the strain tensor are defined as

ε½ � ¼
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

2
4

3
5: ð1:70Þ

As is clear from the definition in Eq. (1.68), the strain tensor is symmetric. Similar

to the stress tensor, the symmetric strain tensor can be represented as a pseudo

vector

εf g ¼

ε11
ε22
ε33
2ε12
2ε23
2ε13

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

ε11
ε22
ε33
γ12
γ23
γ13

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð1:71Þ
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The six components of strain completely define the deformation at a point. Since

strain is a tensor, it has properties similar to the stress tensor. For example, the

normal strain in any arbitrary direction at that point and also the shear strain in any

arbitrary plane passing through the point can be calculated using the same process

as in the stress tensor. Similarly, the transformation of strain, principal strains, and

corresponding principal strain directions can be determined using the procedures

we described for stresses.

Decomposition of strain: The strain tensor can be decomposed into a volumetric

and a distortional part. The former changes the volume of an infinitesimal element,

while the latter changes the shape of the element. For volumetric strain, consider a

unit cube in Fig. 1.9, which undergoes three normal strains (ε11, ε22, and ε33). Since
there is no shape change, all shear strains are zero, for now. Then, the deformed

volume

εV ¼ V � V0

V0

¼ 1þ ε11ð Þ 1þ ε22ð Þ 1þ ε33ð Þ � 1 	 ε11 þ ε22 þ ε33:

Since the magnitudes of strain components are small, the higher-order terms may be

ignored. Therefore, the volumetric strain can be defined as

εV ¼ ε11 þ ε22 þ ε33 ¼ εkk: ð1:72Þ

Or, in tensor notation, εV ¼ 1 : ε, with 1 being the rank-2 identity tensor. Note that

the volumetric strain is a scalar that is three times the value of the average normal

strain.

The deviatoric part of strain can be defined by subtracting the average normal

strain from the diagonal components of the original strain. The deviatoric strain

tensor can be defined as

e ¼ ε� 1

3
εV1,

eij ¼ εij � 1

3
εVδij:

ð1:73Þ

For a formal definition, the deviatoric strain can be defined by contracting the

original strain with the unit deviatoric tensor of rank-4.

Fig. 1.9 Volume change of

a unit cube

30 1 Preliminary Concepts



e ¼ Idev : ε;

where Idev is the unit deviatoric tensor of rank-4, defined in Eq. (1.44).

1.3.3 Stress–Strain Relationship

Finding a relationship between the loads acting on a structure and its deflection has

been of great interest to scientists since the seventeenth century [8]. Robert Hooke,

Jacob Bernoulli, and Leonard Euler are some of the pioneers who developed

various theories to explain the bending of beams and stretching of bars. Forces

applied to a solid create stresses within the body in order to satisfy equilibrium.

These stresses also cause deformation or strains. Accumulation of strains over the

volume of a body manifests as deflections or a gross deformation of the body.

Hence, it is clear that a fundamental knowledge of the relationship between stresses

and strains is necessary in order to understand the global behavior. Navier tried to

explain deformations considering the forces between neighboring particles in a

body, as they tend to separate and come closer. Later this approach was abandoned

in favor of Cauchy’s stresses and strains. Robert Hooke was the first one to propose
the linear uniaxial stress–strain relation, which states that the stress is proportional

to strain. Later, the general relation between the six components of strains and

stresses called the generalized Hooke’s law was developed. The generalized

Hooke’s law states that each component of stress is a linear combination of strains.

It should be mentioned that stress–strain relations are called phenomenological

models or theories as they are based on commonly observed behavior of materials

which may be verified through experimentation. Only recently, with the advance-

ment of computers and computational techniques, have we started to model the

behavior of materials based on the first principles or based on the fundamentals of

atomistic behavior. This new field of study is called computational materials, and it

involves techniques such as molecular dynamic simulations and multiscale model-

ing. Stress–strain relations are also called constitutive relations as they describe the

constitution of the material.

A cylindrical test specimen is loaded along its axis as shown in Fig. 1.10. This

type of loading ensures that the specimen is subjected to a uniaxial state of stress. If

the stress–strain relation of the uniaxial tension test in Fig. 1.10 is plotted, then a

typical ductile material may show a behavior as in Fig. 1.11. The explanation of the

terms in the figure is summarized in Table 1.2.

After the material yields, the shape of the structure permanently changes. Hence,

many engineering structures are designed such that the maximum stress is smaller

than the yield stress of the material. Under this range of the stress, the stress–strain

FF

Fig. 1.10 Uniaxial tension test
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relation can be linearly approximated. The main interest of this text is to study the

behavior of materials beyond the linear relation. However, in this and the following

sections, we will focus on the linear relationship between stress and strain.

Stress–strain relationship for isotropic material: The one-dimensional stress–

strain relation can be extended to the three-dimensional state of stress. The linear

elastic material means the relationship between the stress and strain is linear. Since

both stress and strain tensors are rank-2, the relationship between them requires a

rank-4 tensor. For a general linear elastic material, the stress–strain relationship can

be written as

σ ¼ D : ε, σij ¼ Dijklεkl: ð1:74Þ

The rank-4 tensor, D, is called the elasticity tensor. A general rank-4 tensor in three

dimensions has 81 components. Since the stress and strain tensors are symmetric,

it can be shown that D must be symmetric1; hence, the number of independent

coefficients or elastic constants for an anisotropic material is only 21.

Proportional 
limit

Yield stress

Ultimate 
stress

Strain 
hardening

Necking

Fracture

σ

ε

Young’s 
modulus 

Fig. 1.11 Stress–strain

diagram for a typical ductile

material in tension

Table 1.2 Explanations of uniaxial tension test

Terms Explanation

Proportional

limit

The greatest stress for which the stress is still proportional to the strain

Elastic limit The greatest stress without resulting in any permanent strain on release of

stress

Young’s
modulus

Slope of the linear portion of the stress–strain curve

Yield stress The stress required to produce 0.2 % plastic strain

Strain hardening A region where more stress is required to deform the material

Ultimate stress The maximum stress the material can resist

Necking Cross section of the specimen reduces during deformation

1More specifically, D has major and minor symmetry.
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Many composite materials that are naturally occurring, such as wood or bone, and

man-made materials, such as fiber-reinforced composites, can be modeled as an

orthotropic material with nine independent elastic constants. Some composites

are transversely isotropic and require only five independent elastic constants.

For isotropic materials, the 21 constants in the elasticity tensor can be expressed in

terms of two independent constants called engineering elastic constants. Therefore,

the elasticity tensor for an isotropic material can be written as

D ¼ λ1� 1þ 2μI; ð1:75Þ

where λ and μ are Lame’s constants. In fact, μ is also called the shear modulus. The

Lame’s constants are related to the nominal engineering elastic constants: Young’s
modulus, E, and Poisson’s ratio, ν, as

ν¼ λ

2 λþ μð Þ, E ¼ μ 3λþ 2μð Þ
λþ μ

,

λ¼ Eν

1þ νð Þ 1� 2νð Þ, μ ¼ E

2 1þ νð Þ:
ð1:76Þ

Using index notation, the components of the rank-4 elasticity tensor can be

written as Dijkl¼ λδijδkl + μ(δikδjl+ δilδjk). As the stress and strain tensors are

decomposed into volumetric and deviatoric parts, the elasticity tensor can also

be decomposed as

D ¼ λþ 2

3
μ

� �
1� 1þ 2μIdev; ð1:77Þ

where Idev is the unit deviatoric tensor of rank-4 (see Eq. (1.44)). The advantage of

decomposing volumetric and deviatoric parts is that it is possible to make the

stress–strain relationship from the decomposed parts:

p ¼ 1

3
tr σð Þ ¼ λþ 2

3
μ

� �
tr εð Þ; ð1:78Þ

s ¼ 2μIdev : ε ¼ 2μe: ð1:79Þ

Stress–strain relationship using vector notation: Although the tensor notation is

clear, it can be sometimes cumbersome, especially when implementing it in a

computer code. Therefore, it would be desirable to express the stress–strain rela-

tionship using the pseudo vectors of stress and strain in Eqs. (1.37) and (1.71).

When the stress–strain relation is linear, the relationship can be written in the

matrix form as

σf g ¼ D½ � � εf g; ð1:80Þ

1.3 Stress and Strain 33



where [D] is the elasticity matrix, defined as

D½ � ¼ E

1þ νð Þ 1� 2νð Þ

1� ν ν ν 0 0 0

ν 1� ν ν 0 0 0

ν ν 1� ν 0 0 0

0 0 0 1
2
� ν 0 0

0 0 0 0 1
2
� ν 0

0 0 0 0 0 1
2
� ν

2
6666664

3
7777775: ð1:81Þ

Plane stress and plane strain: The general three-dimensional stress–strain rela-

tions in Eq. (1.74) can be simplified for certain special situations that often occur in

practice. The two-dimensional stress–strain relations can be categorized into two

cases: plane stress and plane strain.

Many practical structures consist of thin plate-like components in order to be

efficient. Assume that a thin plate is parallel to the xy-plane. If we assume that the

top and bottom surfaces of the plate are not subjected to any significant forces in the

z-direction, i.e., the plate is subjected to forces in its plane only, then the transverse

stresses (stresses with a z subscript) vanish on the top and bottom surfaces, i.e.,

σ13¼ σ23¼ σ33¼ 0 on the top and bottom surfaces. If the thickness is small

compared to the lateral dimensions of the plate, then we can assume that the

aforementioned transverse stresses are approximately zero through the entire thick-

ness. The plate is then said to be in a state of plane stress where all stresses are

parallel to the xy-plane and normal to the z-axis. In order to derive the stress–strain

relations for the state of plane stress, we set σ13¼ σ23¼ σ33¼ 0 to obtain

σf g ¼
σ11
σ22
σ12

8<
:

9=
; ¼ E

1� ν2

1 ν 0

ν 1 0

0 0
1

2
1� νð Þ

2
4

3
5 ε11

ε22
γ12

8<
:

9=
;: ð1:82Þ

Similar to plane stress, one can define a state of plane strain in which the strains

with a z subscript are all equal to zero. This situation corresponds to a structure

whose deformation in the z-direction is constrained (i.e., u3¼ 0), so that the

following relation holds: ε13¼ ε23¼ ε33¼ 0. Plane strain can also be used if the

structure is infinitely long in the z-direction. In order to derive the stress–strain

relations for the state of plane strain, we set ε13¼ ε23¼ ε33¼ 0 to obtain

σf g ¼
σ11
σ22
σ12

8<
:

9=
; ¼ E

1þ νð Þ 1� 2νð Þ
1� ν ν 0

ν 1� ν 0

0 0
1

2
� ν

2
4

3
5 ε11

ε22
γ12

8<
:

9=
;: ð1:83Þ

Note that the normal stress, σ33, is not zero in the plane-strain problem, but can be

calculated from ε11 and ε22:

σ33 ¼ Eν

1þ νð Þ 1� 2νð Þ ε11 þ ε22ð Þ: ð1:84Þ
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Although the plane-stress and plane-strain problems are quite different in the

engineering perspective, they are not much different from the viewpoint of a

computer program. Both problems have only three components of stress and strain.

The only difference is the elasticity matrix in Eqs. (1.82) and (1.83). Therefore,

most computer programs do not distinguish between plane-stress and plane-strain

problems. They use the same code, but with different elasticity matrix.

Example 1.9 (Stress distribution of a cantilevered beam) The displacement field

for the thin beam, shown in Fig. 1.12, only considers bending

u x; yð Þ ¼ P

EI
Lx� x2

2

� �
y� νP

6EI
y3,

v x; yð Þ ¼ �νP

2EI
L� xð Þy2 � P

EI

Lx2

2
� x3

6

� �
;

where P is the applied force at the tip, I is the area moment of inertia about the

bending axis, and L is the length of the beam. For an isotropic material with Young’s
modulus, E, and Poisson’s ratio, ν, determine the entire stress field.

Solution Since the thickness of the beam is small, we can assume the plane-stress

condition along the z-direction. From the definition of strain,

εxx ¼ ∂u
∂x

¼ P

EI
L� xð Þy,

εyy ¼ ∂v
∂y

¼ �νP

EI
L� xð Þy,

γxy ¼
∂v
∂x

þ ∂u
∂y

¼ νPy2

2EI
� P

EI
Lx� x2

2

� �	 

þ P

EI
Lx� x2

2

� �
y� νPy2

2EI

	 

¼ 0:

Substituting into Eq. (1.82) yields the stress field

σxx ¼ E

1� ν2
P

EI
L� xð Þy� ν2P

EI
L� xð Þy

	 

¼ P

I
L� xð Þy,

σyy ¼ E

1� ν2
�νP

EI
L� xð Þyþ νP

EI
L� xð Þy

	 

¼ 0,

τxy ¼ 0:

Since the normal stress, σxx, changes linearly in the y-direction, the stress field

represents the bending of a beam. ▄

x

y
L P

Fig. 1.12 Cantilever beam

bending problem
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1.4 Mechanics of Continuous Bodies

Mathematical models of many structural problems are formulated as differential

equations that are satisfied at every point in the domain. These differential equa-

tions are usually obtained from the three fundamental laws of mechanics: conser-

vation of mass, conservation of linear momentum, and conservation of angular

momentum. The conservation of mass can be easily satisfied for a Lagrangian

description of the problem, and the conservation of an angular momentum results

in the symmetry of the stress tensor. Thus, the conservation of linear momentum,

which is a differential equation used to satisfy the force equilibrium, is the major

consideration in the structural problem.

Force equilibrium is imposed on an arbitrary infinitesimal element of a structure

in order to obtain a boundary-valued problem. The smoothness of the solution in

the boundary-valued problem depends on the order of the differential equation.

For example, truss and continuum problems require continuous second-order deriv-

atives of the solution, while beam and plate bending problems require continuous

fourth-order derivatives. However, this section will show that these orders of

differentiability are not necessary in order to represent many types of mechanical

behaviors. In contrast, the variational approach reduces the solution’s smoothness

requirements and provides a general interpretation of the solution. The variational

formulation that has been mathematically obtained can be rigorously related to a

virtual work or energy principle in mechanics.

A complete mathematical theory related to the existence and uniqueness of the

solution was developed by Aubin [9] and Fichera [10] using the Sobolev space and

the properties of a bounded elliptic linear operator. However, the mathematical

comprehension of this functional analysis requires a good deal of effort, with some

physical insights. By contrast, a relatively simple theory is available that can

formulate the structural problem using the energy principle. If the structural system

is conservative, then it has a potential energy. Structural equilibrium is considered

by the principle of minimum potential energy to be a stationary configuration of

the potential energy. Since the potential energy of many structural problems is the

positive definite quadratic function of a state variable (i.e., displacement), the

stationary condition yields a unique global minimum solution.

In Sect. 1.4.2, the principle of minimum potential energy and a variational

method are developed for a conservative structural system. An important result is

then shown; namely, that if the solution for a structural differential equation exists,

then that solution is the minimizing solution of the potential energy. In addition,

even if the structural differential problem does not have a solution, the solution that

minimizes the potential energy may exist and would provide a natural solution to the

structural problem. The energy principles presented here will be restricted to small

strains and displacements so that strain–displacement relationships can be expressed

in linear equations; such displacements and corresponding strains, obviously,

have additive properties. A nonlinear elastic stress–strain relationship will be

discussed in Chap. 3.
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The energy-based formulation of the structural problem in Sect. 1.4.2 is

generalized to the principle of virtual work in Sect. 1.4.3, which can handle

arbitrary constitutive relations. The principle of virtual work is the equilibrium of

the work done by both internal and external forces with the small arbitrary virtual

displacements that satisfy kinematic constraints. For a conservative system, the

results obtained from the principle of virtual work are the same as the results

obtained using the principle of minimum potential energy in Sect. 1.4.2.

1.4.1 Boundary-Valued Problem

Balance of linear momentum: A body in Fig. 1.13 is in static equilibrium under

the applied body force, fb, and the surface traction, t(n). The domain, inside of the

body, is denoted by Ω, whose boundary is Γ. The balance of the linear moment can

be stated as ZZ
Ω
fb dΩþ

Z
Γ
t nð Þ dΓ ¼ 0: ð1:85Þ

Using the property in Eq. (1.38) and the divergence theorem in Eq. (1.28), the

second term in the forgoing equation can be converted into the integral over the

domain as ZZ
Ω
fb dΩ ¼ �

Z
Γ
n � σdΓ ¼ �

ZZ
Ω
∇ � σdΩ:

Since both integrals are written over the same domain, they can be combined asZZ
Ω

∇ � σþ fb
� �

dΩ ¼ 0:

Γs

Γh

Ω

u1 u2

u3

x1

x2

x3

t

f b

Fig. 1.13 Deformable

body under equilibrium
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Therefore, the balance of the linear momentum can be written at every point in the

domain as

∇ � σþ fb ¼ 0, x 2 Ω: ð1:86Þ

The equilibrium state (solution) of the body must satisfy the local momentum

balance equation in Eq. (1.86) as well as boundary conditions. Note that the balance

of the angular momentum becomes identical to the symmetry of the stress tensor,

which is similar to the process in Eq. (1.36).

Boundary-valued problem: Consider the linear elastic structure in Fig. 1.13

under the applied surface-traction t on the boundary, Γs, and under the body force,

fb, in the domain. The whole boundary, Γ, is decomposed into Γ¼Γh
S
Γs and

Γh
T
Γs¼∅. The motion of the structure is fixed (or prescribed) on the essential

boundary, Γh. The purpose of the boundary-valued problem is to find a displace-

ment that satisfies

∇ � σ uð Þ þ fb ¼ 0, x 2 Ω,
u¼ 0, x 2 Γh,

σ � n¼ t, x 2 Γs;

ð1:87Þ

where n is an outward unit normal vector to the surface, Γs. A constitutive relation

is required, such as the one in Eq. (1.74), in order to make the boundary-valued

problem complete. The boundary condition on Γh is called the displacement

boundary condition, whereas the boundary condition on Γs is called the traction

boundary condition. Equation (1.87) is often called the strong form because the

differential equation must be satisfied at every point, x2Ω, and the solution, u,

must be smooth enough such that its second-order derivatives are continuous, i.e.,

u2 [C2(Ω)]3. Although Eq. (1.87) only includes a divergence operator, which is a

first-order derivative, the problem has second-order derivatives because strain

contains derivatives of displacements.

In order to solve for the strong form in Eq. (1.87), the first step is to construct

trial solutions that automatically satisfy a part of the boundary-valued problem, and

then, the solution that satisfies the remaining conditions is found. For example, the

trial solutions that satisfy the differential equation and traction boundary condition

are called the statically admissible stress field. The trial solutions that satisfy the

displacement boundary condition are called the kinematically admissible displace-

ment field. Since the admissible stress field is difficult to construct, the admissible

displacement field is often used to solve for the strong form.

1.4.2 Principle of Minimum Potential Energy

Principle of minimum potential energy: Due to the applied load, the elastic

structure experiences deformation (or displacement), as described by u(x)¼
{u1, u2, u3}

T for x2Ω. The structure resists any deformation by generating internal
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forces. In general, each internal force is proportional to the amount of deformation.

For a given applied load, if the internal force is smaller than the applied force, then

the structure continues to deform in order to equilibrate the two forces. Many

structural problems consist of computing the displacement due to force equilibrium

conditions between the applied load and internal forces.

If the concept of structural force equilibrium is extended to the energy formu-

lation, then a good deal of physical insight can be obtained. Let the displacements

be used as state variables of the problem being considered. The internal force,

generated during deformation, can be thought of as the energy that is stored in the

structure. As the structure deforms, not only does the internal force increase, but the

energy of the structure also increases. This stored energy is called the strain energy

of the structure, which is defined as

U uð Þ � 1

2

ZZ
Ω
σ uð Þ : ε uð ÞdΩ; ð1:88Þ

where the components of the strain tensor are defined as

εij uð Þ ¼ 1

2

∂ui
∂xj

þ ∂uj
∂xi

� �
¼ 1

2
ui, j þ uj, i
� �

; ð1:89Þ

and the constitutive relation for an elastic material in Eq. (1.74) is assumed.

In Eq. (1.89), the subscribed comma represents the derivative with respect to the

spatial coordinate, i.e., ui,j¼∂ui/∂xj. The strain energy,U(u), is the energy required
to produce the displacement, u. For elastic problems, sinceU(u) does not depend on
the path chosen for deformation, U(u) is a function of the displacement, u, only.

If forces are applied to the structure and the structure deforms in the direction of

the applied forces, then work is done by the applied forces. The work done by the

applied load can be defined as

W uð Þ ¼
ZZ

Ω
u � fb dΩþ

Z
Γs

u � tdΓ: ð1:90Þ

The first integral in Eq. (1.90) represents the work done by the body force, fb, while

the second integral is the work done by the surface traction, t. The integrals are

evaluated over the whole domain, Ω, and over the traction boundary, Γs. If any
concentrated force, f, is applied externally, then the surface traction term in

Eq. (1.90) may include the Dirac delta measure. Note that U(u) is a quadratic

function of u, while W(u) is a linear function of u.

Since the strain energy, U(u), is independent of the deformation path, it is the

potential energy that is stored in the structure. If the applied force in Eq. (1.90) is

conservative, then Eq. (1.90) defines the negative value of the potential energy

generated by the applied loads. The applied load is considered to be conservative if

it is independent of deformation, such that the work done by a system of applied

forces in traversing any closed path in the displacement space has to be zero.
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The potential energy of the structure is the difference between the strain energy and

the work done by the applied loads, written as

Π uð Þ ¼ U uð Þ �W uð Þ
¼ 1

2

ZZ
Ω
σ uð Þ : ε uð ÞdΩ�

ZZ
Ω
u � fb dΩ�

Z
Γs

u � tdΓ: ð1:91Þ

The principle of minimum potential energy is as follows: for all displacements

that satisfy the boundary conditions, known as kinematically admissible displace-

ments, those which satisfy the boundary-valued problem in Eq. (1.87), if they exist,

make the total potential energy in Eq. (1.91) stationary on

DA ¼ u 2 C2 Ωð Þ� �3��u ¼ 0 on x 2 Γh, σ � n ¼ t on x 2 Γs
n o

: ð1:92Þ

The principle of minimum total potential energy provides a generalized solution

to the differential equation. For the generalized solution that minimizes the total

potential energy in Eq. (1.91), the solution space, DA, of Eq. (1.92) has to be

extended so that the potential energy in Eq. (1.91) can be well defined. This

space is called the space of finite energy or the space of kinematically admissible

displacements, defined as

ℤ ¼ u 2 H1 Ωð Þ� �3��u ¼ 0 on x 2 Γh
n o

; ð1:93Þ

where H1(Ω) is the Sobolev space of order 1.2 The generalized solution belongs to

the space, ℤ. It is important to point out that the traction boundary condition is not

required to define the space of kinematically admissible displacements because it is

included in the work done by the applied load in Eq. (1.91). Thus, it is easier to

construct the space of kinematically admissible displacements than it is to construct

DA. Generally, if we let the order of differential equation equal 2m, then the

boundary conditions that contain (m� 1)th-order derivatives are called the essential

boundary conditions and derivatives of a higher order than (m� 1) are called the

natural boundary conditions.

Example 1.10 (Equilibrium of a bar) The bar in Fig. 1.14 has length, L; Young’s
modulus, E; and cross-sectional area, A. Assume that displacement is in the form of

u(x)¼ c1x + c2; calculate the displacement (1) by solving the governing differential

equation and (2) by using the stationary condition of the potential energy.

Solution It is important to identify boundary conditions first. Since the bar is fixed

at the left end, it has zero displacement at x¼ 0, which corresponds to the

displacement boundary condition. On the other hand, a force is applied at the

2Hm(Ω) is the Sobolev space of the order m, whose functions are continuously differentiable up to
m� 1, and mth partial derivatives are integrable.
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right end of the bar. In the view of Eq. (1.87), the force can be considered as an

integral of a constant surface traction, t. In addition, using the relation of

F¼ tA¼Aσ11¼EAε11¼EAu0(L ), the differential equation and boundary condi-

tions can be written as

EAu
00 ¼ 0 x 2 0; L½ �,
u¼ 0 x ¼ 0,

EAu
0
Lð Þ ¼ F x ¼ L:

In the above equations, 0 and 00 are used for the first-order and second-order

derivative with respect to x. At x¼ L, the unit normal is n¼ {1, 0, 0}T and the

stress tensor only has the σ11 component.

(1) The governing differential equation is integrated twice to obtain

EAu xð Þ ¼ c1xþ c2:

After applying the two boundary conditions, we have c1¼F and c2¼ 0. There-

fore, the displacement becomes

u xð Þ ¼ Fx

EA
:

(2) To construct kinematically admissible displacements, the candidates must

satisfy the displacement boundary condition, u(0)¼ 0. Therefore, the candidate

displacements become u(x)¼ c1x. The objective is to find a value of c1 that

makes the potential energy of the bar stationary. By considering only σ11 and
ε11 for the bar, the strain energy and the work done by the applied load,

respectively, become

U ¼ 1

2

Z L

0

EA u
0

� �2
dx ¼ 1

2
EALc21,

W ¼ Fu Lð Þ ¼ FLc1:

The potential energy can be obtained fromΠ¼U�W. The stationary condition

of the potential energy can be obtained by differentiating the potential energy

with respect to c1 and making the result equal to zero:

dΠ
dc1

¼ d

dc1
U �Wð Þ ¼ EALc1 � FL ¼ 0;

L

F x 

Fig. 1.14 Equilibrium

of a bar
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which yields the unknown coefficient, c1, that minimizes the potential energy,

as

c1 ¼ F

EA
) u xð Þ ¼ Fx

EA
:

Note that the solution of (2) is identical to that of (1). ▄

Virtual displacement: The virtual displacement, or the variation of u, is a small

arbitrary perturbation of the real displacement u in ℤ. Let the virtual displacement

be η(x) with a small scalar, τ, so that the perturbed state is u+ τη. Since the

perturbed state has to be in ℤ, the perturbation η(x) has to vanish at its essential

boundary; i.e., η(x) satisfies all homogeneous essential boundary conditions (see

Fig. 1.15). Therefore, η(x) also belongs to the space, ℤ. The function, η(x), can be

thought of as a variation of the displacement, u. In order to show this, consider u

+ τη that is defined on ℤ. For a sufficiently small τ, the variation of the displacement

can be defined as

δu ¼ lim
τ!0

1

τ
uþ τηð Þ � uð Þ½ � ¼ d

dτ
uþ τηð Þ

����
τ¼0

¼ η � u: ð1:94Þ

Since the variation, η, is related to the displacement, u, the notation, u, is used

instead of δu to denote the variation of the displacement, u, in this text. This

notational system is preferred in order to avoid an excessive usage of δ, which
typically denotes the Dirac delta measure as well as the Kronecker delta symbol.

An important property of the variation is that it is independent of the differen-

tiation with respect to space coordinates. For example, consider the variation of

strain:

δ
du

dx

� �
¼ d δuð Þ

dx
:

Variational equation: The principle of minimum potential energy, discussed

in the previous section, requires obtaining a stationary condition for the total

potential energy. This principle is closely related to the variational formulation.

Fig. 1.15 Virtual

displacement as a

perturbation of real

displacement
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Let displacement, u2ℤ, be the solution to the structural problem that uniquely

minimizesΠ(u). Consider a functionalΠ that is defined inℤ. For a sufficiently small

τ, if the limit

δΠ u; uð Þ ¼ lim
τ!0

1

τ
Π uþ τuð Þ � Π uð Þ½ � ¼ d

dτ
Π uþ τuð Þ

����
τ¼0

ð1:95Þ

exists, then it is called the first variation of Π at u in the direction of u. If this limit

exists for everyu 2 ℤ,Π is said to be differentiable (i.e., Fréchet differentiable) at u.

If a functional has a first variation, then quantitative criteria can be defined for its

minimization. The focus here is on the necessary conditions for the extrema of the

functional. Presume that u is such that

Π uð Þ � Π wð Þ; ð1:96Þ

for all w in ℤ; then u is said to minimize Π over ℤ. If Eq. (1.96) holds for all w in ℤ
that satisfy ||w� u||� d, for some d> 0, Π is said to have a relative minimum

value at u.

From Eq. (1.96), for anyu 2 ℤ and for any sufficiently small τ, ifΠ has a relative

minimum at u, then

Π uð Þ ¼ min
τ

Π uþ τuð Þ ¼ Π uþ τuð Þjτ¼0; ð1:97Þ

that is, for fixed u andu, the real value function,Π uþ τuð Þ, of the real parameter, τ,
is a minimum at τ¼ 0. If the functional has a first variation, then Π uþ τuð Þ is a

differentiable function of τ, and a necessary condition for a minimum of Π at u is

δΠ u; uð Þ ¼ d

dτ
Π uþ τuð Þ

����
τ¼0

¼ 0; ð1:98Þ

for allu 2 ℤ. The notation, δΠ u; uð Þ, represents a variation ofΠ at u in the direction

of u. Thus, the principle of minimum potential energy is equivalent to the condition

of Eq. (1.98) for all kinematically admissible u.

The potential energy in Eq. (1.91) is composed of the strain energy and the work

done by the applied load. Thus, a variational formulation of the structural problem

can be written, using the first variation of Π(u), as

δΠ u; uð Þ ¼ δU u; uð Þ � δW u; uð Þ ¼ 0; ð1:99Þ

for all u in ℤ. Equation (1.99) is called the variational equation of the structural

problem under consideration. The first term in Eq. (1.99) is obtained from the

definition of U(u) in Eq. (1.88) and the stress–strain relation in Eq. (1.74) as

δU u;uð Þ ¼
ZZ

Ω
ε uð Þ : D : ε uð ÞdΩ � a u; uð Þ; ð1:100Þ
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where a u; uð Þ is called the energy-bilinear form since it is bilinear with respect to its

two arguments u and u. Note that εij uð Þ is made the same as εij(u) in Eq. (1.89) by

substituting u into u. Thus, the energy-bilinear form is symmetric with respect to its

arguments. The variation of the work done by the applied load can be written as

δW u; uð Þ ¼
ZZ

Ω
u � fb dΩþ

Z
Γs

u � tdΓ � ‘ uð Þ; ð1:101Þ

where ‘ uð Þ is called the load-linear form. Only conservative loads are considered

such that ‘ uð Þ is independent of displacement. Thus, the variational formulation of

the structural problem in Eq. (1.99) can be written as

a u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ; ð1:102Þ

where 8u 2 ℤ represents “for all u in ℤ.” If the load-linear form on the right-hand

side of Eq. (1.102) is continuous in the space, ℤ, and if the energy-bilinear form

on the left-hand side of Eq. (1.102) is positive definite on ℤ, then Eq. (1.102) has a

unique solution, u2ℤ.
If a solution exists to the differential equation, then it is also the solution to the

variational equation, Eq. (1.102). However, a solution to Eq. (1.87) may not exist if

the distributed function t is a Dirac delta measure, which means that t is the applied

point load. Nevertheless, the variational equation, Eq. (1.102), still has a solution in

this case, which is called a generalized solution.

Example 1.11 (Equilibrium of a spring) Consider a spring component, which is

fixed at one end and under an applied force, f, at the other end. Calculate the

displacement, u, at the load application point.

Solution The potential energy of the spring can be written as

Π uð Þ ¼ 1

2
ku2 � fu:

If the displacement is perturbed by uþ τu, the perturbed potential energy can be

written as

Π uþ τuð Þ ¼ 1

2
k uþ τuð Þ2 � f uþ τuð Þ:

Then the variation of the potential energy can be obtained by differentiating the

potential energy with respect to τ, as

d

dτ
Π uþ τuð Þ½ � ¼ k uþ τuð Þu� f u:

Now, if the variation of potential energy is evaluated at the original state, i.e.,

at τ¼ 0,
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d

dτ
Π uþ τuð Þ½ �

����
τ¼0

¼ kuu� f u ¼ 0:

Since the displacement variation, u, is arbitrary, the above variational equation

yields

ku ¼ f

which is the same as the equilibrium of the spring component. ▄

Example 1.12 (Equilibrium of a bar) For the bar in Example 1.10, calculate the

displacement, u(x), using the principle of minimum potential energy. Assume that

the virtual displacement is in the same form as the displacement.

Solution As with Example 1.10, the displacement can be assumed to be u(x)¼ cx.
In this form of displacement, the coefficient, c, is the only unknown; that is, the

solution is sought only from linear functions. Obtaining a solution, u(x), is equiv-
alent to determining the coefficient, c. Since the virtual displacement shares the

same property with the displacement, it is natural to assume that the virtual

displacement has the following form: u xð Þ ¼ cx, where c is the coefficient of virtual
displacement. Therefore, the arbitrary virtual displacements, u, imply that the

coefficient, c, is arbitrary.
The variation of strain energy can be obtained

δU ¼ d

dτ

1

2

Z L

0

EA uþ τuð Þ0
h i2

dx

	 

τ¼0

¼ 1

2

Z L

0

2EA uþ τuð Þ0u0
dx

����
τ¼0

¼
Z L

0

EAu
0
u

0
dx:

After substituting u(x)¼ cx andu xð Þ ¼ cx into the above expression, the variation of
strain energy becomes

δU ¼ EALcc:

In the case of the work done by applied load, the variation becomes

δW ¼ d

dτ
F u Lð Þ þ τu Lð Þð Þ½ �τ¼0

¼ Fu Lð Þ
¼ FLc:

Therefore, the necessary condition in Eq. (1.98) can be written as

δΠ ¼ δU � δW ¼ c EALc � FLð Þ ¼ 0
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for all c 2 R, with R being the space of real numbers. Therefore, the unknown

coefficient, c, can be solved from the above variational equation. Finally, the

displacement can be expressed by

u xð Þ ¼ cx ¼ Fx

EA

which is identical to that of Example 1.10. ▄

1.4.3 Principle of Virtual Work

The variational formulation provided by Eq. (1.102), obtained from the principle of

minimum potential energy, is limited in solving elastic problems. In the principle of

virtual work, the constitutive relations, including the elastoplasticity, can be quite

general since we are not assuming that potential energy exists. Let the differential

problem in Eq. (1.87) be satisfied and let the integration-by-parts be justified.

Consider a virtual displacement, u, that satisfies the displacement boundary condi-

tion, i.e.,u ¼ 0on Γh. Note that the displacement variation,u, in Eq. (1.94) is related
to the displacement, u. Even if the same notation, u, is used here, the virtual

displacement is considered a small arbitrary continuous field that satisfies the

problem’s kinematic constraints, while the applied load is kept constant. Since

the differential equation (1.87) is satisfied in the domain, Ω, by multiplying u on

both sides of the differential equation and integrating it, we haveZZ
Ω
u � ∇ � σþ fb
� �

dΩ ¼ 0; ð1:103Þ

for any u in ℤ. In Eq. (1.103), equilibrium of the structural problem is sought in the

sense of integration. The point-wise requirement of differential equations has no

meaning in the variational approach. Since the differential equation, Eq. (1.87), is

obtained from the force equilibrium relation, the term, ∇ �σ + fb, represents the

unbalanced force, and Eq. (1.103) represents the virtual work done by the system

during virtual displacement. Thus, structural equilibrium is considered a vanishing

condition of the virtual work. After integrating by parts, the principle of virtual

work is obtained by using the symmetric property of the stress tensor, σ; the
boundary conditions of Eq. (1.87); and the constitutive relation in Eq. (1.74) asZZ

Ω
u � ∇ � σþ fb
� �

dΩ

¼ �
ZZ

Ω
∇u : σdΩþ

ZZ
Ω
u � fb dΩþ

Z
Γh[Γs

u � σ � ndΓ

¼ �
ZZ

Ω
∇u : σdΩþ

ZZ
Ω
u � fb dΩþ

Z
Γs

u � tdΓ

¼ �
ZZ

Ω
ε uð Þ : D : ε uð ÞdΩþ

ZZ
Ω
u � fb dΩþ

Z
Γs

u � tdΓ
¼ 0:
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where σ � n¼ t on Γs. By using definitions of the energy-bilinear form and the

load-linear form, the principle of virtual work can be stated as

a u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ: ð1:104Þ

Equation (1.104) is the same as the variational formulation in Eq. (1.102). In the

principle of virtual work, the left side of Eq. (1.104) is interpreted as the virtual

work done by internal force, while the right side is seen as virtual work done by the

external applied force. Thus, Eq. (1.104) states that the structure is in equilibrium

when internal and external virtual works are equal during all virtual displacements.

In the derivation of the principle of virtual work in Eq. (1.103), it is assumed that

the differential equation is satisfied at every point within the structure, which is an

unnecessary requirement. Further, consider a virtual work,

δW ¼
ZZ

Ω
u � fb dΩþ

Z
Γ
u � tdΓ: ð1:105Þ

Since u ¼ 0 on Γh, the whole boundary Γ¼Γh
S
Γs is used instead of Γs. Using the

relation of t¼ σ � n and Gauss’ theorem, the virtual work in Eq. (1.105) can be

extended to

ZZ
Ω
u � fb dΩþ

Z
Γ
u � tdΓ ¼

ZZ
Ω
u � fb þ∇ � σ� �

dΩ

þ
ZZ

Ω
σ : ε uð ÞdΩ; ð1:106Þ

where, again, the symmetric property of the stress tensor is used. The first integral

on the RHS of the above equation is the same as in Eq. (1.103), which vanishes.

Thus, the same principle of virtual work as in Eq. (1.104) is obtained. A subtle

difference in this approach is that it is unnecessary to assume a point-wise satis-

faction of the differential equation. As long as the first integral on the RHS

vanishes, the principle of virtual work is well defined.

The difference between the variational formulation and the principle of virtual

work cannot be clearly seen from the conservative system or from the linear elastic

structural problem. However, in developing the variational formulation, we

assumed that potential energy existed in the structure. Thus, the variational formu-

lation is limited to elastic problems. For most of the problems discussed in Chap. 4,

the potential energy of the structural problem does not exist. For those problems,

the principle of virtual work has to be used. However, proving the existence and

uniqueness of a solution in Eq. (1.104) is a difficult procedure that goes beyond the

scope of this text. For a proof of the existence and uniqueness of a solution, the

reader is referred to the articles of Aubin [9] and Fichera [11].
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Example 1.13 (Heat transfer problem) Consider a two-dimensional heat transfer

problem in Fig. 1.16 under the heat source, Q, over the domain, the heat flux, qn, on
the boundary, Sq, and the prescribed temperature, T0, on the boundary, ST.
The governing differential equation of the steady-state heat transfer problem is

∂
∂x

kx
∂T
∂x

� �
þ ∂
∂y

ky
∂T
∂y

� �
þ Q ¼ 0 ð1:107Þ

with the following boundary conditions:

T ¼ T0 prescribedð Þ on ST
qn ¼ �f xnx � f yny on Sq

�
ð1:108Þ

where Fourier law of heat transfer is given as

f x ¼ �kx
∂T
∂x

,

f y ¼ �ky
∂T
∂y

:

Using the principle of virtual work, calculate the variational equation of the steady-

state heat transfer problem.

Solution We associate the above differential equation with test functions

(or “virtual temperatures”) in the space ℤ that satisfies the essential boundary

condition on ST. where

ℤ ¼ T 2 H 1ð Þ Ωð Þ��T xð Þ ¼ 0, 8x 2 ST

n o
: ð1:109Þ

By multiplying Eq. (1.107) with an arbitrary element of ℤ and then integrating over

the domain, Ω, we obtain

Q 

Sq

ST

qn

T = T0

n = {nx, ny}T

domain Ω

Fig. 1.16 Two-

dimensional heat transfer

problem
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Z
Ω

∂
∂x

kx
∂T
∂x

� �
þ ∂
∂y

ky
∂T
∂y

� �
þ Q

	 

T dΩ ¼ 0, 8T 2 ℤ;

where the LHS of the equation can be integrated by parts; in addition, we can use

the property that T ¼ 0 on ST. Thus, in the variational formulation of the steady-

state heat flow problem, the generalized solution, T, must satisfy the following

equation:

Z
Ω

kx
∂T
∂x

∂T
∂x

þ ky
∂T
∂y

∂T
∂y

� �
dΩ ¼

Z
Ω
TQdΩþ

Z
Sq

Tqn dSq, 8T 2 ℤ: ð1:110Þ
▄

Example 1.14 (Beam problem) The governing differential equation of the beam

component is

EI
d4v

dx4
¼ f xð Þ, x 2 0;L½ �; ð1:111Þ

where f(x) is the distributed load. In the case of a cantilevered beam, the boundary

condition can be given by

v 0ð Þ ¼ dv

dx
0ð Þ ¼ d2v

dx2
Lð Þ ¼ d3v

dx3
Lð Þ ¼ 0: ð1:112Þ

Using the principle of virtual work, derive the variational equation.

Solution By multiplying the governing differential equation by a virtual displace-

ment, v 2 ℤ, and integrating over the domain, we obtain

Z L

0

EI
d4v

dx4
vdx ¼

Z L

0

f vdx, 8v 2 ℤ;

where ℤ is the space of kinematically admissible displacements that satisfy the

essential boundary conditions:

ℤ ¼ v 2 H 2ð Þ 0; L½ ���v 0ð Þ ¼ dv

dx
0ð Þ ¼ 0

� �
: ð1:113Þ

Since the order of the differential equation is 4, integration-by-parts is performed

twice to make the order of differentiation between the displacement, v, and the

virtual displacement, v, the same. Now we have

Z L

0

EI
d2v

dx2
d2v

dx2
dxþ EI

d3v

dx3
v

	 
����L
0

� EI
d2v

dx2
dv

dx

	 
����L
0

¼
Z L

0

f vdx, 8v 2 ℤ:
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Using the boundary conditions in Eq. (1.112) and the virtual displacement in

Eq. (1.113), the two boundary terms in the above equation vanish. Thus, the final

expression of the variational equation becomes

Z L

0

EI
d2v

dx2
d2v

dx2
dx ¼

Z L

0

f vdx, 8v 2 ℤ: ð1:114Þ
▄

1.5 Finite Element Method

In general, it is difficult to find an analytic solution that satisfies the variational

equation in the previous section. Instead, the FEM divides the entire domain into a

set of simple sub-domains or finite elements. The finite elements are connected with

adjacent elements by sharing their nodes. Then within each finite element, the

solution is approximated in a simple polynomial form.

FEMs for structural analysis require knowledge of the behavior of each element

in the structure. In this section, a structural analysis based on the finite element

approach is introduced using three-dimensional solid elements. Finite element for-

mulations for other structural elements, such as bars, beams, and plates, can be

found in many textbooks, such as Bathe [12] or Hughes [13]. Apart from the more

intricate algebra that is required for more complex elements, the basic approach for

deriving element equations is identical to the process illustrated in this section.

Once each element is described, the governing equations of the entire structure may

then be derived.

1.5.1 Finite Element Approximation

Differential equations and variational equations, introduced in the previous section,

are difficult to solve, except for a handful of simple cases. When the geometry is

complicated, it is not trivial to solve for u(x) analytically. Since the solution that

satisfies the differential equation and boundary conditions can have a complicated

expression, an infinite series solution may need to be employed. In the FEM, instead

of solving the variational equation analytically, an approximate solution is sought.

The approximate solution u(x) is expressed as a sum of a number of functions that

are called trial functions:

u xð Þ ¼
Xn
i¼1

ciϕi xð Þ; ð1:115Þ
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where n is the number of terms used, ϕi(x) are known trial functions, and ci are
coefficients to be determined by minimizing error between the true and the approxi-

mate solution. Since the approximate solution is a linear combination of the trial

functions, the accuracy of approximation depends on them.

The trial functions and coefficients are chosen such that u(x) must satisfy the

essential boundary conditions of the problem; that is, u(x) must belong to the

space of kinematically admissible displacements, ℤ. Therefore, if the solution to

the variational equation is approximated by a series of functions in the entire domain

of the problem, it is difficult to obtain the trial functions that satisfy the essential

boundary conditions. An important idea of the FEM is to divide the entire domain

into a set of simple sub-domains or finite elements and then to apply the approxi-

mation in Eq. (1.115) on the element level. Then, it is unnecessary to build the trial

functions that satisfy the essential boundary conditions. Instead, only those elements

that include the essential boundary conditions need to have a special treatment.

The finite elements are connected with adjacent elements by sharing their nodes.

Then within each finite element, the solution is approximated using a simple

polynomial form. For example, let us assume that the domain is one-dimensional

and the exact solution is given as a dashed curve in Fig. 1.17.When the entire domain

is divided into sub-domains (finite elements), it is possible to approximate the

solution using piecewise continuous linear polynomials as shown in Fig. 1.17.

Within each element, the approximate solution is linear. Two adjacent elements

have the same solution value at the shared node. As can be seen in the figure, when

more numbers of elements are used, the approximate piecewise linear solution will

converge to the exact solution. In addition, the approximation can be more accurate

if higher-order polynomials are used in each element.

Various types of finite elements can be used, depending on the domain that needs

to be discretized and the order of polynomials that are used to approximate the

solution. Table 1.3 illustrates several types of finite elements that are often used in

one-, two-, and three-dimensional problems.

After dividing the domain into finite elements, the integrations in the variational

equations are performed over each element. For example, let us assume that the

one-dimensional domain (0, 1) is divided into ten equal-sized finite elements. Then,

the integral can be written as a summation of integrals over each element:

where is the integrand.

Exact solution

Approximate solution

x

u(x)

Finite elements

Nodes

Fig. 1.17 Piecewise linear approximation of the solution for one-dimensional problem
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After the domain is divided into a set of simple-shaped elements, the solution

within an element is approximated in the form of simple polynomials. Let us

consider a one-dimensional case in which the domain is discretized by n number

of elements, as shown in Fig. 1.18. For this specific example, each element is

composed of two end nodes. The trial solution is constructed in the element using

the solution values at these nodes.

For example, element e connects two nodes at x¼ xi and x¼ xi+1. If we want to
interpolate the solution using two nodal values, then the linear polynomial is

the appropriate choice because it has two unknowns. Thus, the solution is approxi-

mated by

u xð Þ ¼ a0 þ a1x, xi � x � xiþ1: ð1:116Þ

Note that the trial solution in the above equation is only defined within element e.
Although we can determine two coefficients, a0 and a1, they do not have a physical
meaning. Instead, the unknown coefficients, a0 and a1, in Eq. (1.116) will be

expressed in terms of the nodal solutions, u(xi) and u(xi+1). Although we do not

know these nodal solutions yet, they will be determined later. By substituting these

two nodal values, we have

u xið Þ ¼ ui ¼ a0 þ a1xi
u xiþ1ð Þ ¼ uiþ1 ¼ a0 þ a1xiþ1

�

Table 1.3 Different types of

finite elements
Element Name

1D linear element

2D triangular element

2D rectangular element

3D tetrahedron element

3D hexahedron element

Fig. 1.18 Domain

discretization of

one-dimensional problem
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where ui and ui+1 are the solution values at the two end nodes. Then, by solving the

above equation, the two unknown coefficients, a0 and a1, can be represented by the
nodal solution, ui and ui+1. After substituting the two coefficients into Eq. (1.116),

the approximate solution can be expressed in terms of the nodal solutions as

u xð Þ ¼ xiþ1 � x

L eð Þ|fflfflfflffl{zfflfflfflffl}
N1 xð Þ

ui þ x� xi

L eð Þ|fflffl{zfflffl}
N2 xð Þ

uiþ1;

where L(e)¼ xi+1� xi is the length of element e. Now, the approximate solution for

u(x) in Eq. (1.116) can be rewritten as

u xð Þ ¼ N1 xð Þui þ N2 xð Þuiþ1, xi � x � xiþ1; ð1:117Þ

where the functions N1(x) and N2(x) are called interpolation functions for obvious
reasons. The expression in Eq. (1.117) shows that the solution, u(x), is interpolated
using its nodal values, ui and ui+1. At x¼ xi, N1(x)¼ 1, and at x¼ xi+1, N1(x)¼ 0,

while at x¼ xi+1, N2(x)¼ 1 and at x¼ xi, N2(x)¼ 0. Interpolation functions N1(x)
and N2(x) are also called shape functions, a term used in solid mechanics, as the

functions describe the deformed shape of a solid or structure.

Note that the approximate solution in Eq. (1.117) is similar to that of Eq. (1.115).

In this case, the interpolation function corresponds to the trial function.

The difference is that the approximation in Eq. (1.117) is written in terms of

solution values at nodes, whereas the coefficients ci in the approximation in

Eq. (1.115) do not have any physical meanings. In addition, the interpolation in

Eq. (1.117) is limited to the current element, while the approximation in Eq. (1.115)

is over the entire domain.

In order to explain the accuracy of the approximation, the interpolated solution

and its gradients for two continuous elements are illustrated in Fig. 1.19. Note that in

this particular interpolation, the solution is approximated by a piecewise linear

function and its gradient is constant within an element. Accordingly, the gradients

are not continuous at the element interface. In structural problems, the solution, u(x),
often represents displacement of the structure and its gradient is stress or strain.

Thus, the approximation yields a continuous displacement, but discontinuous stress

and strain between elements. Many commercial finite element programs provide the

stress values at nodes and display a smooth change of stresses across elements.

However, users must be careful because these nodal stress values are the average of

values for different elements connected to a node.

xi xi+1 xi+2

xi xi+1 xi+2

ui ui+1

ui+2u du
dx

Fig. 1.19 Interpolated solution and its gradient
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1.5.2 Finite Element Equations for a One-Dimensional
Problem

Once the finite element approximation is available using interpolation functions, it

can be used to solve for variational equations. For the sake of explanation, a

one-dimensional problem is discussed in this section. Many engineering problems,

such as the deformation of a beam and heat conduction in a solid, can be described

using a differential equation. The differential equation along with boundary condi-

tions is called the boundary-valued problem. A simple, one-dimensional example

of a boundary-valued problem is

d2u

dx2
þ p xð Þ ¼ 0, 0 � x � 1,

u 0ð Þ ¼ 0
du

dx
1ð Þ ¼ 0

)
Boundary conditions:

ð1:118Þ

The above differential equation describes the displacements in a uniaxial bar

subjected to a distributed force p(x) along its axis. The first boundary condition

prescribes the value of the solution at a given point and is called the essential
boundary condition. The term displacement boundary condition or kinematic

boundary condition is also used in the context of solid mechanics. On the other

hand, the second boundary condition prescribes the value of derivative, du/dx, at
x¼ 1, and is called the natural boundary condition. In solid mechanics, the term

force boundary condition or stress boundary condition is also used.

As with the previous section, the principle of virtual work can be used by

multiplying the differential equation with a virtual displacement, u xð Þ, and inte-

grating over the domain as Z 1

0

d2u

dx2
þ p

� �
udx ¼ 0:

The virtual displacement belongs to the space of kinematically admissible displace-

ments, defined as

ℤ ¼ u 2 H 1ð Þ 0; 1½ ���u 0ð Þ ¼ 0
n o

: ð1:119Þ

Since the function p(x) is known, we will take the term containing it to the RHS and

then use integration-by-parts to the term on the LHS to reduce the order of

differentiation of u(x):

du

dx
u

����1
0

�
Z 1

0

du

dx

du

dx
dx ¼ �

Z 1

0

pudx: ð1:120Þ
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The boundary terms on the LHS of the above equation can be simplified by using

the property that u 0ð Þ ¼ 0 at x¼ 0 and the boundary condition of du(1)/dx¼ 0 at

x¼ 1. Note that the above variational equation is also satisfied in the element level,

in which the boundary terms are the values at the element boundary.

Now, finite element approximation is introduced to solve for the above varia-

tional equation. We apply the approximation to one element at a time. Let us

consider a general element, say element e, in Fig. 1.20 which has two nodes, say

i and i+ 1.
The approximate solution within element e is given by

u eð Þ xð Þ ¼ uiN1 xð Þ þ uiþ1N2 xð Þ ¼ N eð Þ � d eð Þ; ð1:121Þ

where d(e)¼ [ui, ui+1]
T is the vector of nodal solutions, and N(e)¼ [N1, N2] is the

vector of interpolation functions for element e from Eq. (1.117). One can also verify

that the above interpolation functions yield

u eð Þ xið Þ ¼ ui,
u eð Þ xiþ1ð Þ ¼ uiþ1;

where ui and ui+1 are nodal solutions at nodes i and i+ 1, respectively. The above

equation is an important property of interpolation.

Since the solution, u(e)(x), and the virtual displacement, u eð Þ xð Þ, belongs to the

same space, ℤ, it is natural to use the same interpolation functions to approximate

the virtual displacement:

u eð Þ xð Þ ¼ uiN1 xð Þ þ uiþ1N2 xð Þ ¼ N eð Þ � d eð Þ
; ð1:122Þ

where d
eð Þ ¼ ui; uiþ1½ �T is the vector of virtual displacements for element e.

From Eq. (1.121) the derivative of u(e)(x) is obtained as

du eð Þ

dx
¼ ui

dN1

dx
þ uiþ1

dN2

dx
:

ix jx

1( )N x 2( )N x

x ( )eL

Element e

Fig. 1.20 One-dimensional

finite element with

interpolation functions
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The above equation can be written in a matrix form as

du eð Þ

dx
¼ dN1

dx

dN2

dx

� �
ui
uiþ1

� �
¼ � 1

L eð Þ
1

L eð Þ

� �
ui
uiþ1

� �
¼ B eð Þ � d eð Þ; ð1:123Þ

where L(e) denotes the length of the element. The same equation can be used to

approximate the derivatives of virtual displacement by replacing the nodal dis-

placements with the nodal virtual displacements.

Now, we apply the finite element approximation into the variational equation on

the element level. By substituting Eqs. (1.122) and (1.123) into Eq. (1.120), we

obtain

d
eð ÞT

Z xj

xi

B eð ÞTB eð Þ dx
	 


d eð Þ ¼ d
eð ÞT
Z xj

xi

N eð ÞTp xð Þdxþ d
eð ÞT � du

dx
xið Þ

þ du

dx
xiþ1ð Þ

8><
>:

9>=
>;:

The above variational equation must be satisfied for all virtual displacements,

u eð Þ xð Þ. Since element e does not belong to any boundary, the virtual displacements

can be any function with the smoothness requirement in Eq. (1.119). In the view of

the interpolation scheme in Eq. (1.122), arbitrary virtual displacements can be

represented by selecting arbitrary nodal values of ui and uiþ1. Therefore, if the

above equation is rearranged by uiAþ uiþ1B ¼ 0, then A and B must vanish

individually, from which we can get the following equation for element e:

Z xj

xi

B eð ÞTB eð Þ dx
	 


d eð Þ ¼
Z xj

xi

N eð ÞTp xð Þdxþ
� du

dx
xið Þ

þ du

dx
xiþ1ð Þ

8><
>:

9>=
>;:

The above equation can be written in matrix form as

k eð Þ
h i

d eð Þ
n o

¼ f eð Þ
n o

þ
� du

dx
xið Þ

þ du

dx
xiþ1ð Þ

8><
>:

9>=
>;; ð1:124Þ

where the coefficient matrix [k(e)] and the vector {f(e)} are defined as

k eð Þ
h i

2�2
¼
Z xiþ1

xi

B eð ÞTB eð Þ dx ¼ 1

L eð Þ
1 �1

�1 1

	 

ð1:125Þ

56 1 Preliminary Concepts



and

f eð Þ
n o

¼
Z xiþ1

xi

p xð Þ N1 xð Þ
N2 xð Þ

� �
dx: ð1:126Þ

In solid mechanics, the coefficient matrix in Eq. (1.125) is called the element

stiffness matrix and the vector in Eq. (1.126) the element force vector. One can

derive an equation similar to Eq. (1.124) for each element e¼ 1, 2, . . .,NE, where
NE is the number of elements.

The RHS of these equations contain terms that are derivatives at the nodes

du(xi)/dx and du(xi+1)/dx, which are not generally known. However, the second

equation for element e can be added to the first equation of element e + 1 to

eliminate this derivative term. To illustrate this point, consider the equations for

elements 1 and 2. Two element matrix equations are

k11 k12
k21 k22

	 
 1ð Þ
u1
u2

� �
¼ f 1

f 2

� � 1ð Þ
þ

� du

dx
x1ð Þ

þ du

dx
x2ð Þ

8><
>:

9>=
>; ð1:127Þ

and

k11 k12
k21 k22

	 
 2ð Þ
u2
u3

� �
¼ f 2

f 3

� � 2ð Þ
þ

� du

dx
x2ð Þ

þ du

dx
x3ð Þ

8><
>:

9>=
>;: ð1:128Þ

We want to combine these two matrix equations into one, which is called the

assembly process. The assembled matrix equation will have three unknowns: u1,
u2, and u3. Therefore, the assembled coefficient matrix will be 3� 3. Equation

(1.127) will be added to the first two rows, while Eq. (1.128) will be added to the

last two rows. When the second equation in Eq. (1.127) and the first equation in

Eq. (1.128) are added together, the boundary term, du(x2)/dx, is canceled. Thus, the
assembled matrix equation becomes

k
1ð Þ
11 k

1ð Þ
12 0

k
1ð Þ
21 k

1ð Þ
22 þ k

2ð Þ
11 k

2ð Þ
12

0 k
2ð Þ
21 k

2ð Þ
22

2
664

3
775

u1

u2

u3

8><
>:

9>=
>; ¼

f
1ð Þ
1

f
1ð Þ
2 þ f

2ð Þ
2

f
2ð Þ
3

8>><
>>:

9>>=
>>;þ

� du

dx
x1ð Þ

0

þ du

dx
x3ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
: ð1:129Þ
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This process can be continued for successive elements, and the 2�NE equations for

the NE elements will reduce to NE+ 1 equations. In fact NE+ 1¼ND, which is equal

to the number of nodes. The ND equations will take the form

k
1ð Þ
11 k

1ð Þ
12 0 . . . 0

k
1ð Þ
21 k

1ð Þ
22 þ k

2ð Þ
11 k

2ð Þ
12 � � � 0

0 k
2ð Þ
21 k

2ð Þ
22 þ k

2ð Þ
11 � � � 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 k

NEð Þ
21 k

NEð Þ
22

2
666664

3
777775

ND�NDð Þ

u1
u2
u3
⋮
uN

8>>>><
>>>>:

9>>>>=
>>>>;

ND�1ð Þ

¼

f
1ð Þ
1

f
1ð Þ
2 þ f

2ð Þ
2

f
2ð Þ
3 þ f

3ð Þ
3

⋮
f
NEð Þ
N

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ND�1ð Þ

þ

� du

dx
x1ð Þ

0

0

⋮
þ du

dx
xNð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ND�1ð Þ

:

ð1:130Þ

In compact form, the above equation is written as

K½ � df g ¼ Ff g: ð1:131Þ

In general, the global matrix [K], will be singular and hence the equations cannot be

solved directly. However, the matrix will be nonsingular after implementing the

boundary conditions. It may be noted that there are ND unknowns in the ND

equations. At the boundaries (x¼ 0 and x¼ 1), either u (the essential boundary

condition) or du/dx (the natural boundary condition) will be specified. We will

illustrate the method in the following example.

Example 1.15 (Three-element solution of a differential equation) Using three

elements of equal length, solve the differential equation given below for p(x)¼ x.

d2u

dx2
þ p xð Þ ¼ 0, 0 � x � 1,

u 0ð Þ ¼ 0

u 1ð Þ ¼ 0

�
Boundary conditions:

Solution Since the elements are of equal length, each element has the length of

L eð Þ ¼ 1
3
. Substituting in Eq. (1.125) the element stiffness matrices for the three

elements can be derived as

k eð Þ
h i

2�2
¼ 1

L eð Þ
1 �1

�1 1

	 

¼ 3 �3

�3 3

	 

, e ¼ 1, 2, 3ð Þ:
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Note that the element stiffness matrices for the three elements are identical.

Now the variable in p(x)¼ x is substituted in Eq. (1.126) to calculate the element

force vectors for the three elements and can be derived as

f eð Þ
n o

¼
Z xiþ1

xi

p xð Þ N1 xð Þ
N2 xð Þ

� �
dx

¼ 1

L eð Þ

Z xiþ1

xi

x xiþ1 � xð Þ
x x� xið Þ

� �
dx

¼ L eð Þ
xi
3
þ xiþ1

6
xi
6
þ xiþ1

3

8><
>:

9>=
>;, e ¼ 1, 2, 3ð Þ:

Substituting for the element lengths and nodal coordinates

f
1ð Þ
1

f
1ð Þ
2

( )
¼ 1

54

1

2

� �
,

f
2ð Þ
2

f
2ð Þ
3

( )
¼ 1

54

4

5

� �
, and

f
3ð Þ
3

f
3ð Þ
4

( )
¼ 1

54

7

8

� �
:

Now, the global matrix, [K], and vector, {F}, can be assembled using

Eq. (1.130) as

In the view of the variational equation, the virtual displacements at the essential

boundary should be zero, which correspond to the first and last rows in this

example, that is, u1 ¼ u4 ¼ 0. Therefore, the first and last rows of the above

assembled matrix equation are unnecessary. In practice, we discard the first and

last rows, as we do not know the RHS of these equations (striking-the-rows).

Furthermore, we note that u1¼ u4¼ 0. Thus, these two variables are removed,

and the first and last columns of matrix [K] are deleted (striking-the-columns).

Then, the four global equations reduce to two equations

6 �3

�3 6

	 

u2
u3

� �
¼ 1

9

1

2

� �
:
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Solving the above matrix equation, we obtain u2¼ 4/18 and u3¼ 5/18. Then using

the interpolation functions in Eq. (1.121), the approximate solution at each element

can be expressed as

u xð Þ ¼

4

27
x, 0 � x � 1

3

4

81
þ 1

27
x� 1

3

� �
,

1

3
� x � 2

3

5

81
� 5

27
x� 2

3

� �
,

2

3
� x � 1

8>>>>>>><
>>>>>>>:

: ð1:132Þ

The exact solution can be obtained by integrating the governing differential

equation twice and applying the two essential boundary conditions to solve for the

constants:

u xð Þ ¼ 1

6
x 1� x2
� �

: ð1:133Þ

The exact and approximate solutions are plotted in Fig. 1.21. The value of the

approximate solution at nodes 2 and 3 coincides with that of the exact solution,

but it is actually a coincidence. Otherwise, one can note that the three-element

solution is a poor approximation of the exact solution, and more elements are

needed to obtain a more accurate solution. This is because the finite element

solution is a linear function between nodes, whereas the exact solution is a cubic

polynomial in x. ▄

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1
x

u(
x)

u-approx.
u-exact

Fig. 1.21 Comparison

of exact and approximate

solution for Example 3.6
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1.5.3 Finite Element Equations for 3D Solid Element

Isoparametric mapping: There are many ways to interpolate a solid component

using finite elements. Here, only the eight-node isoparametric hexahedral element

is taken as an example. For a more detailed discussion of solid elements, refer to

the additional literature on this topic by Zienkiewicz [14], Hughes [15], and

Bathe [16]. Figure 1.22 depicts a three-dimensional, eight-node, isoparametric

solid element. The element consists of eight nodes and three DOFs at each node.

The sequence of node numbers should be given in the same order with the one given

in Fig. 1.22a. Since different elements have different shapes, it would not be a

trivial task to develop the interpolation functions for individual elements. Instead,

the concept of mapping to the reference element will be used. The physical element

in Fig. 1.22a will be mapped into the reference element shown in Fig. 1.22b.

The physical element is defined in x1–x2–x3 coordinates, while the reference

element is defined in ξ–η–ζ coordinates. The reference element is a cube with the

length of each edge being 2 and has the center at the origin. Although the physical

element can have the first node at any corner, the reference element always has the

first node at (�1,�1,�1).

The interpolation functions are defined in the reference element so that different

elements have the same interpolation function. The only difference is the mapping

relation between the two elements. Let uI¼ [uI1, uI2, uI3]
T be the displacement

vector at node I¼ 1, . . ., 8 and let ξI¼ [ξI, ηI, ζI]
T be the corresponding reference

coordinate. For the isoparametric element, the coordinate and the displacement of

the element can be expressed by

x ξð Þ ¼
X8
I¼1

NI ξð ÞxI ð1:134Þ

ξ

η

ζ

(1,1,–1) 

(1,1,1) 

(–1,1,1) 

(–1,1,–1) x1

x2

x3x4

x5

x6

x7x8

x2

x1

x3
(1, –1,–1) 

(1, –1,1) 

(–1, –1,1) 
a b

Fig. 1.22 Eight-node three-dimensional isoparametric solid element. (a) Finite element.

(b) Reference element
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and

u ξð Þ ¼
X8
I¼1

NI ξð ÞuI; ð1:135Þ

where xI is the nodal coordinate and NI(ξ) is the isoparametric shape function,

defined as

NI ξð Þ ¼ 1

8
1þ ξξIð Þ 1þ ηηIð Þ 1þ ζζIð Þ; ð1:136Þ

where (ξI, ηI, ζI) are the values of the reference coordinate corresponding to node

I, whose values are 
1, as shown in Fig. 1.22. Since the above shape functions

are Lagrange interpolation functions, they satisfy the same properties as that of

the one-dimensional element, that is, N1 is equal to 1 at node 1 and 0 at other nodes.

The solid element is defined by the coordinates of eight corner nodes: x1, x2, . . .,
x8. These eight corner nodes are mapped into the eight corner nodes of the

reference element. In addition, every point in the physical element is also

mapped into a point in the reference element. The mapping relation is one to

one such that every point in the reference element also has a mapped point in

the physical element. This mapping relation is called an isoparametric mapping
because the same shape functions are used for interpolating geometry as well as

displacements. The above mapping relation is explicit in terms of x1, x2, and x3,
which means that when ξ, η, and ζ are given, x1, x2, and x3 can be calculated

explicitly from Eq. (1.134). The reverse relation is not straightforward.

Jacobian of mapping: The idea of using the reference element is convenient

because it is unnecessary to build different shape functions for different elements.

The same shape functions can be used for all elements. However, it has its own

drawbacks. The strain energy requires the derivative of displacement, i.e., strains.

As can be seen in Eq. (1.89), the strains are defined as derivatives of displacements

in the physical coordinates. Since displacements are interpolated using shape

functions, it is necessary to differentiate the shape functions with respect to

physical coordinates. Since the shape functions are defined in the reference coor-

dinates, differentiation with respect to the physical coordinates is not straightfor-

ward. In this case, we use a Jacobian relation and the chain rule of differentiation for

that purpose.

The transformation from physical to reference elements can be defined using a

mapping relation. The Jacobian matrix of the mapping can be obtained by taking

the derivative of Eq. (1.134) as

J3�3 ¼ ∂x
∂ξ

¼
X8
I¼1

xI
∂NI ξð Þ
∂ξ

: ð1:137Þ
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Note that ∂NI/∂ξ is a (1� 3) row vector. The Jacobian matrix is used to relate the

derivatives of shape functions between physical and reference coordinates. From

the fact that ξ¼ ξ(x1, x2, x3), η¼ η(x1, x2, x3), and ζ¼ ζ(x1, x2, x3), we can write the

derivatives of NI as follows:

∂NI

∂ξ
¼ ∂NI

∂x1

∂x1
∂ξ

þ ∂NI

∂x2

∂x2
∂ξ

þ ∂NI

∂x3

∂x3
∂ξ

,

∂NI

∂η
¼ ∂NI

∂x1

∂x1
∂η

þ ∂NI

∂x2

∂x2
∂η

þ ∂NI

∂x3

∂x3
∂η

,

∂NI

∂ζ
¼ ∂NI

∂x1

∂x1
∂ζ

þ ∂NI

∂x2

∂x2
∂ζ

þ ∂NI

∂x3

∂x3
∂ζ

:

Using the matrix form, the above equation can be written as

∂NI

∂ξ
∂NI

∂η
∂NI

∂ζ

� �
¼ ∂NI

∂x1

∂NI

∂x2

∂NI

∂x3

� �
∂x1
∂ξ

∂x1
∂η

∂x1
∂ζ

∂x2
∂ξ

∂x2
∂η

∂x2
∂ζ

∂x3
∂ξ

∂x3
∂η

∂x3
∂ζ

2
66666664

3
77777775

or

∂NI

∂ξ
¼ ∂NI

∂x
� J:

By using the inverse relation of the above relation, the spatial derivatives of

shape functions can be obtained as

∂NI

∂x
¼ ∂NI

∂ξ
� J�1: ð1:138Þ

As seen from the above equation, the derivative of the shape function cannot be

obtained if the Jacobian is zero anywhere in the element. In fact, the mapping

relation between (x1, x2, x3) and (ξ, η, ζ) is not valid if the Jacobian is zero or

negative anywhere in the element (�1� ξ, η, ζ� 1). The Jacobian plays an

important role in evaluating the validity of mapping as well as the quality of the

quadrilateral element. The fundamental requirement is that every point in the

reference element should be mapped into the interior of the physical element

and vice versa. When an interior point in the (ξ, η, ζ) coordinates is mapped into

an exterior point in the (x1, x2, x3) coordinates, the Jacobian becomes negative.

If multiple points in (ξ, η, ζ) coordinates are mapped into a single point in (x1, x2, x3)
coordinates, the Jacobian becomes zero at that point. Thus, it is important to
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maintain the element shape so that the Jacobian is positive everywhere in the

element.

Displacement–strain relation: Using the spatial derivatives of shape functions,
the strain vector can be obtained in the following form:

ε uð Þ ¼
X8
I¼1

BIuI; ð1:139Þ

where

BI ¼

NI, 1 0 0

0 NI, 2 0

0 0 NI, 3

NI, 2 NI, 1 0

0 NI, 3 NI, 2

NI, 3 0 NI, 1

2
6666666664

3
7777777775

ð1:140Þ

is the discrete displacement–strain matrix of a solid element. In the above equation,

NI,1 is the spatial derivative of the shape function in Eq. (1.138). The approximation

of the strain variation, ε uð Þ, can be obtained in a similar way by replacing the nodal

displacements with nodal virtual displacements.

Element stiffness matrix and element force vector: Note that all variables in the

physical element are mapped into the reference element. Thus, it would be helpful if

the integration over element domain, Ω(e), can be converted into integration over

the reference element, which can be achieved using the following relation:

ZZZ
Ω eð Þ

dΩ eð Þ ¼
Z 1

�1

Z 1

�1

Z 1

�1

Jj jdξdηdζ:

In order to derive the element stiffness matrix, it is assumed that the entire structural

domain is discretized by a set of finite elements. The energy-bilinear form in

Eq. (1.100) is constructed for each element, and then, they will be assembled to

construct the global stiffness matrix. The energy-bilinear form of the element in

Eq. (1.100) can be approximated as

a u; uð Þ ¼
X8
I¼1

X8
J¼1

uT
I

Z 1

�1

Z 1

�1

Z 1

�1

BT
I DBJ Jj jdξdηdζ

	 

uJ � d

� �T
k½ � df g; (1.141)

where {d}¼ [u11, u12, u13, u21, u22, u23, . . ., u81, u82, u83]
T is the vector of nodal

displacements, d
� �

is the vector of nodal virtual displacements, and [k] is the

24� 24 element stiffness matrix. Instead of having the summation over all eight

nodes in the above equation, it is possible for the displacement–strain matrix to

be augmented for all nodes by [B]¼ [B1, B2, . . ., B8]. Then, the above equation can
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be written without having the summation. The MATLAB code in the following

section will use this convention.

The load form in Eq. (1.101) contains the body force term and the surface

traction term. For simplicity, we only consider the case with the body force.

The load form is discretized without the traction force by

‘ uð Þ ¼
X8
I¼1

uT
I

Z 1

�1

Z 1

�1

Z 1

�1

NI ξð Þfb Jj jdξdηdζ � d
� �T

ff g: ð1:142Þ

By equating the above two equations, the discrete variational equation of a solid

element can be obtained as

d
� �T

k½ � df g ¼ d
� �T

ff g, 8 d
� � 2 ℤh; ð1:143Þ

where ℤh�R24 is the discrete space of kinematically admissible displacements.

Numerical integration: The finite element formulation requires integration over

the domain or over the boundary during the construction of the element stiffness

matrix and element force vector. Analytical integration is limited to simple

one-dimensional problems. Most integrals cannot be evaluated explicitly, and it is

often faster to integrate them numerically rather than to evaluate them analytically.

Among many numerical integration methods that have been proposed, a Gauss

integration rule is commonly used in the finite element formulation due to its

simplicity and accuracy. In this section, a brief introduction to the Gauss integration

rule is provided. A rigorous study of numerical integration, including error esti-

mates, can be found in Chap. 5 of Atkinson [17].

Consider one-dimensional integration of a function f(ξ) over the interval [�1, 1].

Although the integration interval can be arbitrary, the interval [�1, 1], is used

without the loss of generality because it is convenient to apply the interval to the

reference element in the finite element formulation. A general form of Gauss

integration can be written as

Z 1

�1

f ξð Þdξ 	
XNG
i¼1

ωif ξið Þ; ð1:144Þ

where NG is the number of integration points, ξi is the integration point, and ωi is

the nonnegative integration weight. The integration points and weights are chosen

such that the right side of Eq. (1.144) approximates the left side polynomials, f(ξ),
as accurately as possible. In general, an NG-point Gauss integration method inte-

grates (2NG� 1)-order polynomials, exactly. This method is extremely accurate in

most cases, and is the one that is the most frequently used in modern finite element

formulations. Table 1.4 summarizes the integration points and weights for Gauss

integration.
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A multidimensional integration can be constructed by employing the

one-dimensional integration rule on each coordinate separately. In two- and

three-dimensional domains, the Gauss integration rule can be written as

Z 1

�1

Z 1

�1

f ξ; ηð Þdξdη ¼
XNG
i¼1

XNG
j¼1

ωiωjf ξi; ηj
� � ð1:145Þ

and

Z 1

�1

Z 1

�1

Z 1

�1

f ξ; η; ζð Þdξdηdζ ¼
XNG
i¼1

XNG
j¼1

XNG
k¼1

ωiωjωkf ξi; ηj; ζk
� �

; ð1:146Þ

respectively. Figure 1.23 illustrates the integration points in two-dimensional

reference elements. The computational cost of Gauss integration is proportional

to (NG)2 for two-dimensional problems and (NG)3 for three-dimensional problems.

Table 1.4 Gauss integration

points and weights
NG Integration points (ξi) Weights (ωi)

1 0.0 2.0

2 
0.5773502692 1.0

3 
0.7745966692 0.5555555556

0.0 0.8888888889

4 
0.8611363116 0.3478546451


0.3399810436 0.6521451549

5 
0.9061798459 0.2369268851


0.5384693101 0.4786286705

0.0 0.5688888889

ξ

η

ξ

η

ξ

ηa b c

Fig. 1.23 Gauss integration points in two-dimensional reference elements. (a) 1� 1. (b) 2� 2. (c)
3� 3
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1.5.4 A MATLAB Code for Finite Element Analysis

In Chap. 2, a MATLAB code, NLFEA.m, will be introduced, which solves for

nonlinear problems using eight-node hexahedral elements. Detailed usage of

NLFEA.m will be explained in Chap. 2. In general, a nonlinear finite element

analysis code can also solve for linear problems. In this section, MATLAB codes,

SHAPEL.m and ELAST3D.m, are introduced that can solve for linear structural

problems using NLFEA.m. The first code, SHAPEL.m, calculates the shape func-

tions, their derivatives, and determinant of Jacobian of an eight-node hexahedral

element. It takes two input variables, XI and ELXY. The vector, XI, of the

reference coordinates, (ξ, η, ζ), is the location where the shape functions and their

derivatives are calculated, and ELXY is the 3� 8 matrix that contains the nodal

coordinates of eight nodes of the element. Since shape functions are normally

calculated at Gauss integration points, XI often contains the (ξ, η, ζ) coordinates
of the Gauss integration points. The SHAPEL function returns with three variables:

SF array, (8� 1), contains shape functions; GDSF array, (3� 8), contains the

derivative of shape functions; and DET is the Jacobian of the mapping. The user

can check the validity of the mapping using the Jacobian. In the code, GJ array

stores the 3� 3 Jacobian matrix, and XNODE array stores the reference coordinates

(ξI, ηI, ζI) of the eight corner nodes that are used in Eq. (1.136).

The second code, ELAST3D.m, assembles the element stiffness matrices to the

global stiffness matrix. It has several input variables, whose meanings are summa-

rized in Table 1.5. Note that the two logical variables, UPDATE and LTAN, are
introduced to make the program more efficient. When UPDATE is true, then

ELAST3D.m will calculate stresses at each integration point and store them into

the global array, SIGMA. This process is necessary when stress values are printed

out by NLFEA.m.When LTAN is true, then the global stiffness matrix is assembled.

In linear analysis, LTAN should be true all the time. ELAST3D.m calls SHAPEL.m

to calculate the shape functions and their derivatives at each integration point. As

explained in Eq. (1.139), the strain is calculated by multiplying nodal displace-

ments with the derivatives of shape functions as

Table 1.5 Input variables for ELAST3D.m

Variable Array size Meaning

ETAN (6,6) Elastic stiffness matrix Eq. (1.81)

UPDATE Logical variable If true, save stress values

LTAN Logical variable If true, calculate the global stiffness matrix

NE Integer Total number of elements

NDOF Integer Dimension of problem (3)

XYZ (3,NNODE) Coordinates of all nodes

LE (8,NE) Element connectivity
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% Strain

DEPS¼DSP*SHPD’;

DDEPS¼[DEPS(1,1) DEPS(2,2) DEPS(3,3) . . .

DEPS(1,2)+DEPS(2,1)DEPS(2,3)+DEPS(3,2)DEPS(1,3)+DEPS(3,1)]’;

Then, stress can be obtained by multiplying the elastic stiffness matrix with the

strain as

% Stress

STRESS ¼ ETAN*DDEPS;

One thing that is uncommon for linear analysis is the residual force array,

FORCE, which is different from the external applied force. The FORCE array is

required because the linear problem is solved as a nonlinear problem. A detailed

explanation of residual force will be provided in Chap. 2. In order to assemble the

local stiffness matrix into the global stiffness matrix, the IDOF array is used to store

the location of the global DOFs corresponding to the local 24 DOFs. The XG and

WGT arrays store one-dimensional integration points and corresponding weights, as

in Table 1.4. In this implementation, only two-point integration is used for each

coordinate direction.

function [SF, GDSF, DET] = SHAPEL(XI, ELXY)

%********************************************************************

% Compute shape function, derivatives, and determinant of hexahedral

element

%********************************************************************

%%

XNODE=[-1 1 1 -1 -1 1 1 -1;

-1 -1 1 1 -1 -1 1 1;

-1 -1 -1 -1 1 1 1 1];

QUAR = 0.125;

SF=zeros(8,1);

DSF=zeros(3,8);

for I=1:8

XP = XNODE(1,I);

YP = XNODE(2,I);

ZP = XNODE(3,I);

%

XI0 = [1+XI(1)*XP 1+XI(2)*YP 1+XI(3)*ZP];

%

SF(I) = QUAR*XI0(1)*XI0(2)*XI0(3);

DSF(1,I) = QUAR*XP*XI0(2)*XI0(3);

DSF(2,I) = QUAR*YP*XI0(1)*XI0(3);

DSF(3,I) = QUAR*ZP*XI0(1)*XI0(2);

end
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GJ = DSF*ELXY;

DET = det(GJ);

GJINV=inv(GJ);

GDSF=GJINV*DSF;

end

function ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)

%***************************************************************

% Main program computing global stiffness matrix and residual force for

% linear elastic material model.

%***************************************************************

%%

global DISPTD FORCE GKF SIGMA

%

% Integration points and weights (2-point integration)

XG=[-0.57735026918963D0, 0.57735026918963D0];

WGT=[1.00000000000000D0, 1.00000000000000D0];

%

% Stress storage index (No. of integration points)

INTN=0;

%

% Loop over elements, this is main loop for computing K and F

for IE=1:NE

% Element nodal coordinates

ELXY=XYZ(LE(IE,:),:);

% Local to global mapping

IDOF=zeros(1,24);

for I=1:8

II=(I-1)*NDOF+1;

IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+3;

end

DSP=DISPTD(IDOF);

DSP=reshape(DSP,NDOF,8);

%

% Loop over integration points

for LX=1:2, for LY=1:2, for LZ=1:2

E1=XG(LX); E2=XG(LY); E3=XG(LZ);

INTN = INTN + 1;

%

% Determinant and shape function derivatives

[~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY);

FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;

%

% Strain

DEPS=DSP*SHPD’;

DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) …

DEPS(1,2)+DEPS(2,1)DEPS(2,3)+DEPS(3,2)DEPS(1,3)+DEPS(3,1)]’;

%
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% Stress

STRESS = ETAN*DDEPS;

%

% Update stress (Store stress)

if UPDATE

SIGMA(:,INTN)=STRESS;

continue;

end

%

% Add residual force and stiffness matrix

BM=zeros(6,24);

for I=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BM(:,COL)=[SHPD(1,I) 0 0;

0 SHPD(2,I) 0;

0 0 SHPD(3,I);

SHPD(2,I) SHPD(1,I) 0;

0 SHPD(3,I) SHPD(2,I);

SHPD(3,I) 0 SHPD(1,I)];

end

%

% Residual forces

FORCE(IDOF) = FORCE(IDOF) - FAC*BM’*STRESS;

%

% Tangent stiffness

if LTAN

EKF = BM’*ETAN*BM;

GKF(IDOF,IDOF)=GKF(IDOF,IDOF)+FAC*EKF;

end

end, end, end

end

end

Example 1.16 (Uniaxial tension of a cube) Using NLFEA.m in Chap. 2, calculate

displacement and stress of a three-dimensional brick element under uniaxial tension

as shown in Fig. 1.24. Assume an isotropic material with the two Lame’s constants
of λ¼ 110.7 GPa and λ¼ 80.2 GPa.

Solution NLFEA.m can be called with appropriate model definitions as presented

in Chap. 2. A nodal force of 10 kN is applied at the four nodes on the top, while the

bottom four nodes are fixed in such a way that the uniaxial tension condition can be

met, that is, u1x¼ u1y¼ u1z¼ u2y¼ u2z¼ u3z¼ u4z¼ 0. Nodal coordinates are

defined in XYZ array, and element connectivity is in LE array. EXTFORCE stores

externally applied force, and SDISPT stores prescribed displacements. These two

arrays are given in the format such that each row includes [Node, DOF, Value]

format. For linear elastic material, MID ¼ 0 is used with two material constants in
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PROP array, that is, two Lame’s constants PROP ¼ [LAMBDA, MU]. Load

increment array, TIMS, and program parameters are mainly designed for nonlinear

analysis; therefore, they will be discussed in Chap. 2.

%

% One element example

%

% Nodal coordinates

XYZ=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];

%

% Element connectivity

LE=[1 2 3 4 5 6 7 8];

%

% External forces [Node, DOF, Value]

EXTFORCE=[5 3 10.0E3; 6 3 10.0E3; 7 3 10.0E3; 8 3 10.0E3];

%

% Prescribed displacements [Node, DOF, Value]

SDISPT=[1 1 0;1 2 0;1 3 0;2 2 0;2 3 0;3 3 0;4 1 0;4 3 0];

%

% Material properties

% MID:0(Linear elastic) PROP=[LAMBDA NU]

MID=0;

PROP=[110.747E3 80.1938E3];

%

% Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.0 1.0 1.0 0.0 1.0]’;

%

% Set program parameters

ITRA=30; ATOL=1.0E5; NTOL=6; TOL=1E-6;

%

% Calling main function

NOUT = fopen(’output.txt’,’w’);

NLFEA(ITRA,TOL,ATOL,NTOL,TIMS,NOUT,MID,PROP,EXTFORCE,SDISPT,XYZ,LE);

fclose(NOUT);

10kN

x2

x1

x3

1

2
3

4

5

6 7

810kN

10kN10kN

Fig. 1.24 A brick element

under uniaxial tension
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Even if the problem is linear, NLFEA.m will solve it as if it is a nonlinear

problem. However, due to linear relationship between the applied load and dis-

placement, the Newton–Raphson iteration will converge in the first iteration. The

following shows the command-line output after calling NLFEA.m.

Time Time step Iter Residual

1.00000 1.000e+00 2 5.45697e-12

The details of Time and Time step will be discussed in Chap. 2. It shows

Iter¼ 2 because NLFEA.m calculates the internal and external forces at Iter¼
1, and then checks the convergence at Iter¼ 2. Therefore, even if it shows Iter
¼ 2, the actual Newton–Raphson iteration is equal to 1. Residual is the maxi-

mum norm of the difference between the internal and external loads. The conver-

gence is determined based on the magnitude of the residual.

NLFEA.m stores analysis results in output.txt file, which includes nodal dis-

placements and element stress at all integration points. Below is the contents of

output.txt file:

TIME = 1.000e+00

Nodal Displacements

Node U1 U2 U3

1 0.000e+00 0.000e+00 0.000e+00

2 -5.607e-08 0.000e+00 0.000e+00

3 -5.607e-08 -5.607e-08 0.000e+00

4 0.000e+00 -5.607e-08 0.000e+00

5 -5.494e-23 1.830e-23 1.933e-07

6 -5.607e-08 4.061e-23 1.933e-07

7 -5.607e-08 -5.607e-08 1.933e-07

8 -8.032e-23 -5.607e-08 1.933e-07

Element Stress

S11 S22 S33 S12 S23 S13

Element 1

0.000e+00 1.091e-11 4.000e+04 -2.322e-13 6.633e-13 -3.317e-12

0.000e+00 0.000e+00 4.000e+04 -3.980e-13 1.327e-13 -9.287e-13

-3.638e-12 7.276e-12 4.000e+04 -1.592e-12 -2.123e-12 -3.317e-12

0.000e+00 0.000e+00 4.000e+04 2.653e-13 -2.123e-12 5.307e-13

0.000e+00 0.000e+00 4.000e+04 5.638e-13 3.449e-12 -1.327e-12

0.000e+00 0.000e+00 4.000e+04 -1.194e-12 4.776e-12 1.061e-12

0.000e+00 0.000e+00 4.000e+04 -7.960e-13 2.919e-12 -3.449e-12

3.638e-12 3.638e-12 4.000e+04 -5.307e-13 3.715e-12 1.061e-12

*** Successful end of program ***

Since the applied load and boundary conditions are such that the stress of the

cube is in the uniaxial tension in the z-coordinate direction. As expected, the cube is
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extended in z-coordinate direction (u5z¼ u6z¼ u7z¼ u8z¼ 1.933e� 07) based on

nodal displacements. Due to Poisson’s effect, there is lateral contraction

(ux¼ uy¼�5.607e� 08). It is noted that the displacements of those degrees-of-

freedom whose displacement is prescribed in SDISPT array exactly satisfy the

prescribed displacements. However, for other degrees-of-freedom whose values are

not prescribed but supposed to be zero have a very small value, such as

u5y¼ 1.830e� 23 due to numerical error. These values should be interpreted as

zero. Among the six components of stress, only S33 ¼ 4.000e+04N is the only

nonzero stress component; all other components are effectively zero within numer-

ical error. Note that this value of stress is expected as the applied load is 40 kN and

the area is 1. ▄

1.6 Exercises

P1.1 Using Cartesian bases, show that (u� v) � (w� x)¼ (v �w)u� x where u, v,

w, and x are rank-1 tensors.

P1.2 Any rank-2 tensor T can be decomposed by T¼ S +W, where S is the

symmetric part of T and W is the skew part of T. Let A be a symmetric

rank-2 tensor. Show A :W¼ 0 and A :T¼A : S.

P1.3 For a symmetric rank-2 tensor, E, using the index notation, show that

I :E¼E, where I ¼ 1
2
δikδjl þ δilδjk
� �

is a symmetric unit tensor of rank-4.

P1.4 The deviator of a symmetric rank-2 tensor is defined as Adev¼A�Am1,

where Am ¼ 1
3
A11 þ A22 þ A33ð Þ. Find the rank-4 deviatoric identity tensor,

Idev, that satisfies Adev¼ Idev :A.

P1.5 The norm of a rank-2 tensor is defined as Ak k ¼ ffiffiffiffiffiffiffiffiffiffiffi
A : A

p
. Calculate the

following derivative, ∂kAk/∂A. What is the rank of the derivative?

P1.6 A rank-2 unit tensor in the direction of rank-2 tensor A can be defined as

N¼A/kAk. Show that ∂N/∂A¼ [I�N�N]/kAk.
P1.7 Through direct calculation of a rank-2 tensor, show that the following

identity erst det[A]¼ eijkAirAjsAkt is true.

P1.8 For a vector, r¼ x1e1 + x2e2 + x3e3, and its norm, r¼ |r|, prove ∇ � (rr)¼ 4r.

P1.9 A velocity gradient is decomposed into symmetric and skew parts,

∇v ¼ dþ ω, where

dij ¼ 1

2

∂vi
∂xj

þ ∂vj
∂xi

� �
, ωij ¼ 1

2

∂vi
∂xj

� ∂vj
∂xi

� �
:
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Show that

(a) For a symmetric stress tensor, σ :∇v¼ σ : d.
(b) wij ¼ 1

2
eijkemnk

∂vm
∂xn

.

P1.10 A symmetric rank-4 tensor is defined byD¼ λ1� 1+ 2μI, where 1¼ [δij] is a
unit tensor of rank-2 and I ¼ 1

2
δikδjl þ δilδjk
� �

is a symmetric unit tensor of

rank-4. When E is an arbitrary symmetric rank-2 tensor, calculate S¼D :E

in terms of E.

P1.11 Using integration-by-parts, calculate I¼ R x cos(x) dx.
P1.12 Using integration-by-parts, calculate I¼ R ex cos(x) dx.
P1.13 Calculate the surface integral of the vector function, F¼ xe1 + ye2, over the

portion of the surface of the unit sphere, S : x2 + y2 + z2¼ 1, above the xy-
plane, i.e., z� 0. Z

S

F � ndS:

P1.14 Evaluate the surface integral of a vector, F¼ xe1 + ye2 + ze3, over the closed
surface of the cube bounded by the planes, x¼
 1, y¼
 1, z¼
 1, using

the divergence theorem. Z
S

F � ndS:

P1.15 Consider a unit-depth (in z-axis) infinitesimal element as shown in the figure.

Using force equilibrium, derive the governing differential equation in two

dimensions (equilibrium in x- and y-directions). Assume that the uniform

body forces, fB¼ [fB1 , fB2 ], are applied to the infinitesimal element.

x

y 

11
2
dxxσ +11

2
dxxσ −

22
2
dyy

σ
+

22
2
dyy

σ
−

21
2
dyy

τ
+

21
2
dyy

τ
−

12
2
dxx

τ
+

12
2
dxx

τ
−

Fig. P1.15

P1.16 In the above unit-depth (in z-axis), infinitesimal element, show that the stress

tensor is symmetric using moment equilibrium.
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P1.17 The principal stresses at a point in a body are given by σ1¼ 4, σ2¼ 2

and σ3¼ 1, and the principal directions of the first two principal stresses

are given byn 1ð Þ ¼ 1ffiffi
2

p 0, 1, � 1ð Þandn 2ð Þ ¼ 1ffiffi
2

p 0; 1; 1ð Þ. Determine the state of

stress at the point, i.e., the six components of a stress tensor.

P1.18 Find the principal stresses and the corresponding principal stress directions

for the following cases of plane stress:

(a) σ11¼ 40 MPa, σ22¼ 0 MPa, σ12¼ 80 MPa.

(b) σ11¼ 140 MPa, σ22¼ 20 MPa, σ12¼�60 MPa.

(c) σ11¼�120 MPa, σ22¼ 50 MPa, σ12¼ 100 MPa.

P.1.19 Determine the principal stresses and their associated directions, when the

stress matrix at a point is given by

σ½ � ¼
1 1 1

1 1 2

1 2 1

2
4

3
5MPa:

P1.20 Let the x0y0z0 coordinate system be defined using the three principal direc-

tions obtained from Problem P1.19. Determine the transformed stress

matrix, [σ]x0y0z0, in the new coordinate system.

P1.21 The stress–strain relationship for a three-dimensional isotropic solid is given

as σij ¼ Kδijδkl þ 2μ δikδjl � 1
3
δijδkl

� �� �
εkl, where K is the bulk modulus and μ

is the shear modulus. In practice, stress and strain are written in the vector

forms such that {σ}¼ {σ11, σ22, σ33, σ12, σ23, σ12}
T and {ε}¼ {ε11, ε22,

ε33, γ12, γ23, γ12}
T. Then, the stress–strain can be written as {σ}¼ [D]{ε}.

Write the expression of a 6� 6 elasticity matrix, [D], in terms of K and μ.

P1.22 For steel, the following material data are applicable: Young’s modulus,

E¼ 207 GPa, and shear modulus, G¼ 80 GPa. For the strain matrix at a

point, shown below, determine the symmetric 3� 3 stress matrix.

ε½ � ¼
0:003 0 �0:006
0 �0:001 0:003

�0:006 0:003 0:0015

2
4

3
5:

P1.23 A strain rosette consisting of three strain gages was used to measure the

strains at a point in a thin-walled plate. The measured strains in the three

gages are εA¼ 0.001, εB¼�0.0006, and εC¼ 0.0007. Note that gage C is at

45� with respect to the x-axis.

(a) Determine the complete state of strains and stresses (all six components)

at that point. Assume that E¼ 70 GPa, and ν¼ 0.3.

(b) What are the principal strains and their directions?

(c) What are the principal stresses and their directions?

(d) Show that the principal strains and stresses satisfy the stress–strain relations.
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Fig. P1.23

P1.24 A rectangular plastic specimen of size 100� 100� 10 mm3 is placed in a

rectangular metal cavity. The dimensions of the cavity are

101� 101� 9 mm3. The plastic is compressed by a rigid punch until it is

completely inside the cavity. Due to the Poisson’s effect, the plastic also

expands in the x- and y-directions and fills the cavity. Calculate all stress and
strain components and the force exerted by the punch. Assume that there is

no friction between all contacting surfaces. The metal cavity is rigid. Elastic

constants of the plastic are E¼ 10 GPa and ν¼ 0.3.

Rigid punch 

Plastic

Rigid die 

Rigid punch 

Plastic
Rigid die 

F 

Fig. P1.24

P1.25 Repeat Problem P1.24 with the elastic constants of the plastic defined as

E¼ 10 GPa and ν¼ 0.485.

P1.26 The strain energy and work done by applied loads are given in the following

equations. When the solution is expressed by u(x)¼ c1x+ c2x
2, calculate the

solution using the principle of minimum potential energy.

U ¼ 1

2

Z 1

0

u
0

� �2
dx, W ¼

Z 1

0

udxþ u 1ð Þ:

P1.27 The governing differential equation for the bar component in the figure is

given as
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� EA xð Þu, 1ð Þ, 1 ¼ f xð Þ, x 2 0; lð Þ,
u 0ð Þ ¼ 0,

u, 1 lð Þ ¼ 0;

where the subscribed comma denotes the differentiation with respect to the

spatial coordinate, i.e., u,1¼ du/dx. Derive the weak form using the principle

of virtual work.

x, u
E, A(x)

f(x) 

l
x = 0 x = l

Fig. P1.27

P1.28 Derive theweak formof a two-dimensional, steady-state heat transfer problem.

P1.29 Derive the weak form of a simply supported beam problem.

P1.30 When the potential energy of P1.29 is given, derive the variational equation

using the principle of minimum potential energy.

Π ¼
Z L

0

1

2
EI v, 11ð Þ2 � fv

� �
dx:

P1.31 Derive the principle of virtual work for the simply supported Kirchhoff plate

element from the governing equation:

D u, 11 þ νu, 22ð Þ½ �, 11 þ D u, 22 þ νu, 11ð Þ½ �, 22 þ 2 1� νð Þ Du, 12½ �, 12 ¼ f :

P1.32 Consider a bar element as shown in the figure. The cross-sectional areas are

A1 and A2 at nodes 1 and 2, respectively, and vary linearly. In addition, the

gravitational acceleration is applied along the axial direction of the bar, such

that the distributed load per unit length is f(x)¼ ρgA(x), where ρ is the

density and g is the gravitational acceleration. Construct the discrete varia-

tional equation for the element.

x, u1 E, A(x)

f(x) 

L

u2 

1 2
−1 +1 

ξ 

Finite Element 

a b

Reference Element 

Fig. P1.32
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P1.33 For the Euler beam element shown in the figure, derive the interpolation

functions, NI(ξ), stiffness matrix, k, and nodal force vector, f. Assume that

the uniformly distributed load is f(x)¼ f. Note that the reference element is

defined in the domain, ξ¼ [�1, 1].

−1 +1 

ξ 

u1

E, μ, I, A

f(x)

l

u2

1 2

θ2θ1

x1 x2

Finite Element Reference Element 

a b

Fig. P1.33

P1.34 Below is the governing differential equation of one-dimensional bar under

uniformly distributed load. Using one bar element, calculate the displace-

ment at x¼ L and x ¼ 1
2
L. Compare these displacements with that of the exact

calculation. (Note: the exact solution can be calculated by integrating the

differential equation twice.)

�EAu, 11 ¼ f , x 2 0; Lð Þ,
u 0ð Þ ¼ 0,

u, 1 Lð Þ ¼ 0:

P1.35 An Euler beam element shown in the figure is under a uniformly distributed

couple, C. Calculate the equivalent nodal forces. Using a simply supported

beam under a uniform couple, show that the reaction forces are equal and

opposite in directions with the equivalent nodal forces

C

L
1 2

x1 x2

Fig. P1.35

P1.36 Integrate the following function using one-point and two-point numerical

integration (Gauss quadrature). Explain how to integrate it. The exact inte-

gral is equal to 2. Compare the accuracy of the numerical integration with the

exact one.

I ¼
Z π

0

sin xð Þ dx:
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Chapter 2

Nonlinear Finite Element Analysis Procedure

2.1 Introduction to Nonlinear Systems in Solid Mechanics

In order to explain nonlinear systems, it is necessary to define linear systems first.

A linear system is defined such that the relationship between input and output is

linear. Specifically, in structural mechanics, the relationship between applied

loads (input) and displacements (output) is linear. When an applied load is

doubled, the displacement will also be doubled. Thus, it is unnecessary to solve

the linear system again when a different magnitude of load is applied. This

property makes it possible to use the method of superposition. Mathematically,

linearity can be explained using a linear operator. A general operator, A, is called
linear when it satisfies A(αu + βw)¼ αA(u) + βA(w) for any u and w in DA and

for any scalars α and β. Even if it is abstract, nonlinear systems are defined as

everything else that is not linear. Therefore, it is important to understand charac-

teristics of linear systems in order to understand that of nonlinear systems.

Figure 2.1 shows a linear relationship between input x and output y. In structural
mechanics, input x represents applied loads or applied heat, while output

y symbolizes displacements, stresses, or temperatures. For example, let x1 and x2
be transverse loads applied at two different locations of a beam, and let y be the

reaction moment at the wall. Let the reaction moment at the wall be y1 when only x1
is applied, vice versa, y2 is the reaction when only x2 is applied. Then, when a

combined load 2x1+ 3x2 is applied to the beam, there is no need to solve the system

again. Because of linearity, the reaction moment under the combined load becomes

2y1+ 3y2, which is basically the principle of superposition. This is very useful,

especially when the magnitude of load varies frequently.

In order to understand linear structural systems further, consider the diagram in

Fig. 2.2, which illustrates the flow of physical quantities in structural systems. First,

when loads are applied to the system, it generates local stresses in order to

equilibrate against the globally applied loads. In an elastic system, stresses are

generated by deforming its shape, during which strains are generated. Strains at

© Springer Science+Business Media New York 2015
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every point are accumulated (or integrated) to yield displacements in the global

level. In such a case, the structural system is called linear when all relationships

among loads, stresses, strains, and displacements are linear. If any of them is not

linear, then the structural system becomes nonlinear.

Then, let us consider a simple example of uniaxial tension of a bar in order to

understand the linear relationship among the abovementioned physical quantities.

First, when a load, F, is applied as shown in Fig. 2.2a, the bar elongates. In addition,
because of Poisson’s effect, the original cross-sectional area, A0, of the bar shrinks

to A. Then, the stress generated by the load, F, can be calculated by dividing the

load by the cross-sectional area, A, i.e., σ¼F/A. However, the cross-sectional area
depends on the load; as the load increases, the area decreases. Therefore, the

relationship, σ¼F/A(F), is nonlinear between σ and F. However, if the load is

small enough so that the difference between A0 and A is ignorable, then it is possible

to approximate the stress as σ¼F/A0. Based on this approximation, now the

relationship between load and stress becomes linear. This approximation becomes

Input x
(load, heat)

Output y
(displ, temp)

y = ax 

x1 y1

x2 y2

2x1 2y1

2y1+3y22x1+3x2

x1 x2

y

y = ax 

Fig. 2.1 Illustration of linear systems

a b c

Force Stress Strain Displacement

Linear Linear Linear

Global Global Local Local

F/2 

F/2 

A0 A 

E 

σ

ε

σ = Eε

L0 δL 

L 

Fig. 2.2 Linearity in structural systems
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invalid if the elongation increases significantly such that the change in cross section

cannot be ignorable.

Next, consider the relationship between stress and strain. For general metallic

materials, such as aluminum or steel, Fig. 2.2b illustrates the stress–strain curve that

can normally be obtained from uniaxial tension tests. Initially, the stress is

increased linearly proportional to the strain. In this region, the stress and strain

relationship is linear and reversible; that is, if the stress varies, the strain also varies

along the straight line. The slope of this straight line corresponds to Young’s
modulus. Therefore the relation between stress and strain is linear, i.e., σ¼Eε.
When the stress reaches a threshold, called the yield strength, the relationship

becomes nonlinear and its behavior is irreversible. Therefore, in order to be a linear

relationship between stress and strain, the stress must be less than the yield strength.

Lastly, the relationship between strain and displacement must be linear. Con-

sider the elongation of the bar, again, in Fig. 2.2c. The original length, L0, of the bar
is increased by δL and ends up as the final length of L. In this case, δL is called the

displacements or deformation. Then, the strain is defined as the change in length,

i.e., ε¼ δL/L. However, since the deformed length, L, already includes the dis-

placement, δL, the relationship becomes nonlinear. Similar to the case of force and

stress, if the displacement is small, then the definition of strain can be approximated

by ε¼ δL/L0 so that the relationship between displacement and strain can be linear.

This approximation is only valid when the displacement is small compared to the

length of the bar.

As discussed above, many phenomena in physics show nonlinear behaviors, and

linear systems are approximation of nonlinear systems under limited conditions.

For example, the relation between the deflection of a beam and applied load at its tip

is linear when the deflection is small. This includes small strain, small displace-

ment, and small rotation in solid mechanics. However, as the deflection becomes

large, the relation becomes nonlinear. In this sense, a linear system is an approx-

imation of a nonlinear one. Many engineering applications can be solved by

considering them as linear. For example, it is not expected to have large deflections

in bridges or buildings. In such cases, linear analysis works well for estimating

deflections and stresses. In fact, the same system can be solved using nonlinear

analysis, but the result will not be much different.

In addition, solving linear systems has several advantages compared to solving

nonlinear ones. First, linear systems are easier to solve. All the linear systems in the

previous chapter can be solved using the system of linear equations in the form of

[K]{Q}¼ {F}. Nonlinear systems, on the other hand, cannot be solved in such a

simple form. In fact, nonlinear systems are often solved using a sequence of linear

analyses. Thus, the computational cost of a linear analysis is usually much less than

that of a nonlinear analysis. Second, once the problem is well posed, the solution of

a linear system always exists and it is unique. However, there is no guarantee that a

nonlinear system has a unique solution. In addition, as described before, solutions

from linear systems can be superimposed onto each other to produce a solution to

other linear systems.
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If a structural system is solved using the linearity assumption, the results may

end up physically erroneous. For example, consider a cantilevered beam under a

couple at the tip as shown in Fig. 2.3. The magnitude of the couple is big enough so

that the beam undergoes a large deformation. In reality, it is not difficult to imagine

that the beam will go through deformation as shown in Fig. 2.3a. In this case, the

length of the neutral axis remains constant even if the beam goes through a large

deformation. However, if a linear assumption is used, then the beam will deform as

shown in Fig. 2.3b, which elongates the length of the beam, significantly. This

happens because the assumption of linearity ignores the effect of bending moments

on the rotation of the neutral axis. Because of that, in linear systems, the length

of the beam is always measured in the undeformed geometry. In such a case,

the assumption of linearity is obviously not valid, and linear analysis leads to

erroneous results.

The assumption of linearity can also cause a difficulty that should not happen in

practice. For example, consider two trusses that are connected through pin-joints as

shown in Fig. 2.4. Since a truss is a two-force member, it can only support an axial

force. When a vertical load, F, is applied at the center joint, the two trusses will

rotate until they find equilibrium against the load. In that case, the vertical compo-

nent of axial forces in the two trusses is in equilibrium with the vertical load. Due to

the assumption of linearity, however, linear analysis uses the undeformed geometry

as a reference, and these two-force members cannot support the vertical load.

Therefore, linear analysis will fail to solve the system.

Although linear systems are easy to solve, many engineering applications cannot

be modeled as a linear system. In solid mechanics, such a situation usually occurs

when the deformation is large, material response is complex, boundary conditions

a b
M M

Real beam Linear beam

Fig. 2.3 Deformation of a beam under a couple

Fig. 2.4 Deformation of trusses under a vertical load

84 2 Nonlinear Finite Element Analysis Procedure



vary, etc. For example, a stamping process of sheet metals involves a large

deformation of the blank, complex contact conditions between the blank and die,

and permanent deformation of the material. It is clear that such a complex problem

cannot be solved using linear analysis. Unfortunately, there is no easy criterion for

when a problem can be modeled as linear or nonlinear. The choice of linear or

nonlinear analysis often depends on the purpose of the analysis and the level of

allowable errors. An important objective of this text is to address when an engi-

neering problem should be modeled as a nonlinear system.

Although there are many different ways of categorizing different nonlinearities, it

is generally accepted that four different sources of nonlinearity exist in solid mechan-

ics. Figure 2.5 illustrates the occurrence of these nonlinearities in their relations

among applied loads, stresses, strains, displacements, and boundary conditions.

2.1.1 Geometric Nonlinearity

Geometric nonlinearities, in general, represent the cases when the relations among

kinematic quantities (i.e., displacement, rotation, and strains) are nonlinear. Such

nonlinearities often occur when deformation is large. Figure 2.6a shows an example

of geometric nonlinearity when a couple is applied at the tip of a cantilevered beam.

Due to the large rotation, linear analysis cannot be used to accurately represent the

deformation. It is clear that the relation between the applied couple and the tip

displacement is nonlinear, as shown in Fig. 2.6b.

For the linear problems in the previous chapter, the relation between strain and

displacement is linear. For example, in the case of a one-dimensional bar element,

this relation can be written as

ε xð Þ ¼ du xð Þ
dx

: ð2:1Þ

If the displacement is doubled, the strain will also be doubled, which is a funda-

mental property of linear problems. Note that the above relation is valid only when

displacement and its gradient are infinitesimal. As these quantities become large,

Displacement Strain Stress 

Prescribed 
displacement 

Applied  
force 

Nonlinear  
displacement-strain 

Nonlinear  
stress-strain 

Nonlinear displ. BC Nonlinear force BC 

Fig. 2.5 Nonlinearities in solid mechanics
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the above relation is not accurate, and the following definition of strain needs to be

introduced:

E xð Þ ¼ du

dx
þ 1

2

du

dx

� �2

: ð2:2Þ

Note that a higher-order term exists in the definition of strain. Due to this higher-

order term, the relation between displacement and strain becomes nonlinear. It can

be easily observed that when (du/dx)� 1, the two strains become identical, i.e.,

ε(x)�E(x). In fact, Eq. (2.1) is an approximation of Eq. (2.2) under the condition of

infinitesimal deformation. As shown in Fig. 2.7, however, the difference between

the two strains becomes larger as the magnitude of strain increases. At 5 % strain,

for example, the error between the two strains is 2.5 %, while the error becomes

15 % at 30 % strain.
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Fig. 2.6 Bending of a cantilever beam under large deformation
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In general, structural equilibrium is written in the form of an integral equation.

Although it is not clearly mentioned in the previous chapter, one of the most

important assumptions of linear systems is that, due to infinitesimal deformation,

the difference between the deformed and undeformed domains is ignored. Thus, the

integration is performed over the undeformed domain in linear systems. In the

precise sense, however, this equilibrium should be satisfied in the deformed

domain—the structure is in equilibrium after deformation. Then, a dilemma occurs

when the deformed domain is used for integration. The equilibrium equation,

written in integral form over the deformed domain, solves for an unknown dis-

placement, and this displacement determines the deformed domain. Such a depen-

dency between the displacement and the deformed domain is an important criterion

to identify geometric nonlinearities. In Chap. 3, detailed discussions of how to

consider the effect of a deformed domain will be presented.

2.1.2 Material Nonlinearity

Material nonlinearity represents the case when the relation between stress and strain

is not linear. This relation is often referred to as the constitutive relation. In linear

systems, this relation is written as

σf g ¼ D½ � εf g; ð2:3Þ

where [D] is the elastic modulus matrix. Since [D] is constant, the relation between

stress and strain is linear—if the strain is doubled, the stress will also be doubled.

This relation represents a general behavior of elastic materials under an infinites-

imal deformation. When the stress–strain relation cannot be represented by a

constant matrix, [D], it is called a nonlinear material. In such a material, the elastic

modulus matrix depends on the current status of deformation. In some cases, it also

depends on the past history of deformation. In Chap. 3, nonlinear elastic and

hyperelastic materials are discussed. These materials are fundamentally elastic—

deformation disappears upon removing applied loads. Thus, there exists a strain

energy density that depends on deformation. Figure 2.8a illustrates the linear and

nonlinear elastic responses using a one-dimensional spring device. Assuming that

both the length and cross-sectional area of the device are unitary, displacement

becomes strain and applied load becomes stress. In the case of linear springs, the

strain energy density is a quadratic form of strain, defined as1

1Here the symbol E is used for the elastic modulus of a material, while E(x) in Eq. (2.2) represents
nonlinear strain.
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U ¼ 1

2
Eε2 ð2:4Þ

and the stress–strain relation can be defined by differentiating the strain energy

density as

σ ¼ dU

dε
¼ Eε: ð2:5Þ

In the case of nonlinear springs, the strain energy density is a more complex form

than that of Eq. (2.4), and the stress–strain relation becomes nonlinear.

Another important type of material nonlinearity is the plastic behavior of

materials. This is a common behavior of metal-type materials in which the material

deforms elastically up to a certain limit. After that, the material shows permanent

deformation, which remains upon removing applied loads. Figure 2.8b illustrates

the plastic behavior of a material using a one-dimensional spring and a friction

device. The friction device does not slip until the stress reaches a limit value, called

the yield stress, σY. When the stress is less than the yield strength, the displacement

increases in the same way as a linear spring with slope, E. When the stress

reaches the yield strength, the displacement increases without requiring a further

increase in stress. The device cannot support stress higher than the yield strength.

1 ε
σ

E

ε

σ

E Linear spring

Nonlinear spring

σ
E η

σ
E

σ

σ

σ
ε

ε

σ

E

a

b

c

Fig. 2.8 Material nonlinearity models. (a) Linear and nonlinear elastic spring models. (b) Elasto-
plastic spring model. (c) Visco-elastic spring model
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Upon removal of the stress, the displacement reduces with the same slope, E.
As can be found in Fig. 2.8b, a permanent deformation remains after completely

removing the applied stress. As is clear in the above explanation, the stress–strain

relation depends on the past history of deformation. In addition, it is difficult

to express the stress–strain relation in a simple form. Rather, the relation

is determined at an instance of the deformation path. Thus, in general, the stress–

strain relation is given in the form of stress rate vs. strain rate. This material

behavior is called elastoplasticity. In Chap. 4, detailed discussions on elastoplastic

material will be presented.

Another popular material nonlinearity is viscoelasticity, described in Fig. 2.8c.

Mathematically it can be modeled using a spring and a dash pot. This material

shows a time-dependent behavior. For example, when strain ε is applied instantly at
time t¼ 0 and remains constant, the stress responds as a linear spring initially and

gradually decreases as a function of time. This behavior is common for human

tissues, polymers, glasses, etc.

2.1.3 Kinematic Nonlinearity

Kinematic nonlinearity is also called boundary nonlinearity, as the displacement

boundary conditions depend on the deformations of the structure. In general,

structural equations solve for unknown displacements in the domain with given

applied loads and prescribed displacement boundary conditions. When the bound-

ary conditions change as a function of displacements, both the displacements and

boundary conditions are unknown. In such a case, it is difficult to solve the

structural equations as both sides of [K]{Q}¼ {F} have unknown terms. In gen-

eral, there are two possible cases for kinematic nonlinearity. The first one is when

the location on the boundary where boundary conditions are applied is known, but

the values are unknown. Diffusion in porous media is an example in which the

amount of diffusion on the boundary is a part of the solution. The determination of

the boundary conditions is a key part of the solution process. The second case is that

both the location on the boundary where boundary conditions are applied and the

values on the boundary conditions are unknown. The most common example is the

contact constraint between two bodies. As two bodies are in contact, the displace-

ments on the contact boundary are limited such that they cannot penetrate each

other. At the same time, it is usually unknown which part of the boundary will be

in contact. This kind of problem is more difficult than the first type. Figure 2.9

shows the deformation of a rubber cylinder through contact with a rigid wall.

Initially, the contact occurs at a point. As the cylinder deforms, however, the size

of the contact boundary increases. As expected, the relation between vertical

displacement and applied force is also nonlinear. In Chap. 5, detailed discussions

on contact problems are presented.
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2.1.4 Force Nonlinearity

Similar to kinematic nonlinearity, force nonlinearity occurs when the applied forces

depend on deformation. Since force is a vector, its magnitude and/or direction can

change according to the deformation of a structure. Force nonlinearity is often

accompanied by geometric nonlinearity. The most common example in solid

mechanics is pressure loads of fluids. In the deployment of an airbag, for example,

the direction and magnitude of pressure loads vary according to the deployment

shape of the airbag. Although the contact condition is considered as boundary

nonlinearity, the contact force can also be considered as force nonlinearity. As

contact boundary varies, the contact force on the boundary also varies. Thus, in the

contact problem, both the contact boundary and contact forces are unknown.

Figure 2.10 shows a cantilevered beam under a pressure load that follows the

deformation of the beam. In this case, the magnitude of the pressure load remains

constant, but its direction changes according to the deflection of the beam. This type

of load is called a follower load.

The most general case is when all four nonlinearities are present in a single

problem. However, this may result in a very complex formulation, and the compu-

tational cost could be prohibitive. In practical problems, usually only one or two

types of nonlinearities are considered at the same time. In the following chapters,

different nonlinearities will be discussed.

Example 2.1 (Cup-drawing process) For the cup-drawing process as shown in

Fig. 2.11, identify all nonlinearities.

Contact boundary Displacement 

F
or

ce

dmax

Fig. 2.9 Deformation of a rubber cylinder through a contact with rigid walls

Fig. 2.10 Follow-up pressure load of a beam under large deformation
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Solution The cup-drawing process in Fig. 2.11 starts from a circular blank made of

a thin metallic plate, such as aluminum or steel. The blank is placed between a die

and a blank-holder. The die is fixed and a vertical load is applied to the blank-

holder. After that, a punch moves down to make a cup shape out of the blank.

During this process, the blank will go through plastic deformation and have a

permanent shape change. Once the punch moves down to the maximum depth,

the punch and blank-holder are removed. At this point, the blank will recover some

part of the plastic deformation through the process called springback. The process

objective is to produce a specific shape after springback by controlling the applied

load at the blank-holder and fillet radii of punch and die.

First, since the blank will go through a permanent deformation, material

nonlinearity exists, similar to the elastoplastic material in Fig. 2.8b. In this process,

it is important to control the maximum plastic strain so that it is less than the limit

plastic strain in order to prevent tearing of material. Second, the geometry of the

deformed blank will be significantly different from that of the initial one. Therefore,

geometric nonlinearity exists in the process. In this particular process, the blank will

experience not only a large strain but also a large rotation. Therefore, it is important

to distinguish the difference between deformed and undeformed geometries. Lastly,

kinematic nonlinearity exists between the blank and other parts, such as the punch,

the die, and the blank-holder. Since the blank will gradually slide on the die and

blank-holder, the contact region will gradually change. In addition, the contact

between the punch and the blank is the main driver for the drawing process. Since

three nonlinearities simultaneously exist in a single analysis, the cup-drawing

process is particularly difficult to solve. ▄

2.2 Solution Procedures for Nonlinear Algebraic Equations

Before discussing the finite element formulation for nonlinear problems, it is

important to understand some of the solution procedures that are commonly

employed to solve the system of nonlinear equations. The solution procedure may

even influence the formulation of the problem.
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Fig. 2.11 Illustration of cup-drawing process
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Consider the following system of nonlinear equations:

P uð Þ ¼ f; ð2:6Þ

where u¼ {u1, u2, . . . , un}
T is a vector of unknowns, f¼ {f1, f2, . . . , fn}

T is a vector

of known quantities, and P(u)¼ {P1(u), P2(u), . . . ,Pn(u)}
T is a vector of nonlinear

functions of u. In structural applications, u is often the displacement vector, f is the

applied force vector, and P(u) is the internal force vector. Thus, Eq. (2.6) is the

equilibrium between internal and applied forces. In the linear problems in Chap. 1,

the internal force vector is a linear function of u such that P(u)¼K · u withK being

a constant stiffness matrix. Then, solving a system of linear equations is equivalent

to calculating the inverse matrix of K and multiplying it with the vector,

f. In practice, instead of calculating the inverse matrix, different matrix solution

techniques are used, such as LU-decomposition [1].

Since P(u) is a nonlinear function of u, nonlinear analysis focuses on how to

solve Eq. (2.6) accurately and effectively. The solution methods applicable to

general nonlinear functions are all iterative. Starting from an initial estimate, u0,

the increment, Δu, of the solution is obtained by solving a system of linear

equations. Linearization is involved in this process. After obtaining the increment,

the solution is iteratively updated until a specified convergence criterion is satisfied.

Different methods are available according to the way to calculate the increment,

Δu; several of these will be discussed in the following subsections.

Example 2.2 (System of nonlinear springs) Consider two serially

connected nonlinear springs, as shown in Fig. 2.12. The stiffness of both springs

depends on the elongation of springs such that k1¼ 50 + 500u [N/m] and k2¼ 100

+ 200u [N/m] with u being the elongation of the spring. The equation for a spring

element is

k �k
�k k

� �
u1
u2

� �
¼ f 1

f 2

� �
;

where u1 and u2 are nodal displacements at the two nodes. When a force of

F¼ 100 N is applied at the tip, construct the system of nonlinear equations in the

form of Eq. (2.6) using the two spring elements.

Solution Since spring 1 is fixed on the wall, its elongation is equivalent to u1, while
for spring 2, the elongation is u2 – u1. In the normal assembly process, the wall is

considered as an additional DOF and it is deleted when the displacement boundary

condition is applied. However, it is also possible that the fixed DOF is deleted

k1 k2

u1 u2

FFig. 2.12 Two nonlinear

springs
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before assembly and only free DOFs are used for assembly. Using the given

stiffness of springs, the assembled matrix equation becomes

50þ 500u1 þ 100þ 200 u2 � u1ð Þ �100� 200 u2 � u1ð Þ
�100� 200 u2 � u1ð Þ 100þ 200 u2 � u1ð Þ

� �
u1

u2

� �
¼ 0

F

� �
:

Note that the above equations are not linear as the stiffness matrix contains

unknown variables. After multiplying the stiffness matrix and the vector of

unknowns, the following system of nonlinear equations is obtained:

300u21 þ 400u1u2 � 200u22 þ 150u1 � 100u2 ¼ 0

200u21 � 400u1u2 þ 200u22 � 100u1 þ 100u2 ¼ 100
:

(
ð2:7Þ

Figure 2.13 shows the two nonlinear functions along with contour lines

whose values correspond to zero. The constant value on the right-hand side of

the second equation is moved to the left-hand side in the figure. Then, the

solution of the system of nonlinear equations becomes the intersection point of

these contour lines. Since multiple contour lines exist, it is possible that multiple

solutions may exist. In addition, it is also possible that no solution exists in a certain

situation. In general, there is no analytical way of finding the solution of a system

of nonlinear equations unless the equations are very simple. In the following

subsections, several methods of solving the system of nonlinear equations are

discussed. ▄

2.2.1 Newton–Raphson Method

This method is popular in numerical analysis to find the roots of nonlinear

equations. Basically, most numerical methods for solving a system of nonlinear

equations assume an initial estimate, u0, and find its increment, Δu, so that the

new estimate, u0 +Δu, is close to the solution to Eq. (2.6). In order to find the

Fig. 2.13 Surface plots of the system of nonlinear equations with zero-level contour
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increment, the nonlinear equations are locally approximated by linear ones. This

process is repeated until the original nonlinear equations are satisfied. Suppose an

approximate solution at the ith iteration is known and is designated by ui. The
solution at the next iteration can be approximated using the first-order Taylor series

as follows:

P uiþ1
� 	 � P ui

� 	þK i
T ui
� 	 � Δui ¼ f; ð2:8Þ

where Ki
T(u

i)� (∂P/∂u)i is the Jacobian matrix at the ith iteration, commonly

known as the tangent stiffness matrix in structural applications and Δui is

the solution increment. The goal is to calculate Δui and iteratively update the

solution, ui+1. After rearranging the terms, the system of linearized equations can

be obtained as

K i
TΔu

i ¼ f � P ui
� 	

: ð2:9Þ

Equation (2.9) is similar to the matrix equation of linear systems, except that (1) the

coefficient matrix, Ki
T(u

i), is not constant, but a function of ui; (2) the equation

solves for the increment, Δui, not the total solution, u; and (3) the right-hand side is
not the applied force, but rather the difference between the applied force and

internal force. This difference is often referred to as a residual. After solving for

the displacement increment, Δui, a new approximate solution is obtained as

follows:

uiþ1 ¼ ui þ Δui: ð2:10Þ

In general, this solution will not satisfy the system of nonlinear equations exactly

and there will be some residual or unbalance force defined as follows:

Riþ1 ¼ f � P uiþ1
� 	

: ð2:11Þ

If the unbalance force is smaller than a given tolerance, the solution, ui+1, can be

accepted as the accurate solution, and the process stops. Otherwise, the process is

repeated until this residual becomes very small. The termination criterion is

expressed in the normalized form as follows:

conv ¼
Xn

j¼1
Riþ1
j


 �2

1þ
Xn

j¼1
f j


 �2
: ð2:12Þ

A constant, 1, is added to the denominator to avoid division by zero when there are

no applied loads. The iterations are terminated when the convergence parameter,

conv, becomes less than a given tolerance (say 0.01). Sometimes, different criteria

can be applied to determine the convergence of the iterative procedure. One is
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based on the solution increment. When the increment of the solution is much

smaller than the initial increment, then it is assumed that the solution is converged.

The solution-based termination criterion becomes

conv ¼
Xn

j¼1
Δuiþ1

j


 �2

1þ
X n

j¼1
Δu0j


 �2
: ð2:13Þ

However, this criterion can be plausible when the convergence is merely slow.

Since stresses or forces are derivatives from displacements in structural problems, it

is easy to make the displacement converge rather than the force. In practice, many

commercial programs monitor both criteria to determine whether the solution has

converged or not. More detailed convergence criteria will be discussed later.

Instead of the sum of squares in the above two convergence criteria, it is also

possible to use the maximum absolute value.

The algorithm of Newton–Raphson method is as follows:

1. Set tolerance¼ 0.001, k¼ 0, max_iter¼ 20, and initial estimate u¼ u0

2. Calculate residual R¼ f – P(u)

3. Calculate conv in Eq. (2.12). If conv� tolerance, stop

4. If k>max_iter, stop with error message

5. Calculate Jacobian matrix KT in Eq. (2.8)

6. If the determinant of KT is zero, stop with error message

7. Calculate solution increment Δu by solving Eq. (2.9)

8. Update solution by u¼ u+Δu
9. Set k¼ k+ 1

10. Go to Step 2

Two iterations of the procedure for a system with a single DOF are illustrated

graphically in Fig. 2.14. In the case of a single DOF, the Jacobian matrix becomes

ui ui+1 u

Dui+1

f P(u)

i
TK

ui+2 un

Solution

1i
TK
+

Fig. 2.14 Newton–

Raphson method for

nonlinear equation P(u)¼ f
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the slope of the nonlinear function, P(u). The solution converges rapidly when the

starting point is close to the solution. When the current iteration is close to the

solution, this method shows a quadratic convergence. Let uexact be the exact

solution, and un and un+1 be the two consecutive approximations of the solution

from the Newton–Raphson method. Then, the method converges quadratically

when there exists a constant c> 0 such that

uexact � unþ1j j � c uexact � unj j2: ð2:14Þ

Since the left-hand side is the error at the (n+ 1)th iteration and the right-hand side

is the square of the error at the nth iteration, errors in the Newton–Raphson method

reduce very quickly. In practice, since the exact solution is usually unknown, the

solution at the converged iteration is often considered as uexact. In order to show that

a numerical algorithm has a quadratic convergence, it is required to show that the

following ratio approaches a constant value c:

lim
n!1

uexact � unþ1j j
uexact � unj j2 ¼ c: ð2:15Þ

In practice, it is often enough to show that the convergence criterion in Eq. (2.12)

reduces quadratically at each iteration.

Example 2.3 (Roots of a system of nonlinear equations) Find the two nodal

displacements of the nonlinear springs in Example 2.2 using the Newton–Raphson

method. Use the convergence tolerance of 1	 10�5, and the initial estimate,

u0¼ {0, 0}T. Also, estimate the convergence rate.

Solution In order to solve the system of nonlinear equations in Eq. (2.7), it is

necessary to calculate the Jacobian matrix first. By differentiating Eq. (2.7), the

Jacobian matrix can be written as

KT ¼ ∂P1=∂u1 ∂P1=∂u2
∂P2=∂u1 ∂P2=∂u2

� �
¼ 600u1 þ 400u2 þ 150 400 u1 � u2ð Þ � 100

400 u1 � u2ð Þ � 100 400 u2 � u1ð Þ þ 100

� �
:

It can be shown that the Jacobian matrix is positive definite when the two nodal

displacements satisfy the following relation:

u2 � u1 þ 0:25 
 0:

Physically, if a positive force is applied, u2 will always be larger than u1, and the

system should be stable. Below is the MATLAB program that solves the nonlinear

spring problem.

96 2 Nonlinear Finite Element Analysis Procedure



%

% Example 2.3 Two nonlinear springs (Newton-Raphson method)

%

tol = 1.0e-5; iter = 0; c = 0;

u = [0; 0];

uold = u;

f = [0; 100];

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2)

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = f - P;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

fprintf(’\n iter u1 u2 conv c’);

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

while conv > tol && iter < 20

Kt = [600*u(1)+400*u(2)+150 400*(u(1)-u(2))-100

400*(u(1)-u(2))-100 400*u(2)-400*u(1)+100];

delu = Kt\R;

u = uold + delu;

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2);

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = f - P;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

c = abs(0.9-u(2))/abs(0.9-uold(2))^2;

uold = u;

iter = iter + 1;

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

end

Table 2.1 shows the convergence iteration history from the Newton–Raphson

method. Note that the algorithm converges at the sixth iteration at which the

convergence criterion in Eq. (2.12) becomes smaller than the tolerance. Since the

initial slope of the Jacobian matrix is small, the initially predicted displacements

are much larger than the actual displacements. As the MATLAB program iterates,

the displacements converge to the accurate values, which is uexact¼ {0.4, 0.9}T.

The last column of Table 2.1 shows the constant, c, in Eq. (2.15), which converges

to the value of 1.1. Thus, the algorithm has a quadratic convergence rate. Note that

the residual reduction is also approximately quadratic. Figure 2.15 shows the force–

displacement curves of the nonlinear springs. The stiffness of the springs gradually

increases as the displacements increase. ▄

Table 2.1 Convergence

history of two nonlinear

springs using the Newton–

Raphson method

Iteration u1 u2 conv c

0 0.0000 0.0000 9.999E�01 –

1 2.0000 3.0000 3.280E+02 –

2 1.0244 1.6244 1.981E+01 0.164

3 0.5814 1.0873 9.282E�01 0.357

4 0.4261 0.9261 1.455E�02 0.744

5 0.4007 0.9007 1.033E�05 1.048

6 0.4000 0.9000 6.462E�12 1.109
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The Newton–Raphson method does not always guarantee convergence to the

accurate solution. First, it assumes that the solution increment in Eq. (2.9) is

relatively small. As the number of iterations increases, Δu becomes smaller and

eventually approaches zero at the accurate solution. However, this assumption is

violated when the Jacobian matrix becomes singular, or the determinant of matrix

KT is zero. In such a case, Δu becomes infinite and the solution diverges (see Step

6 in the algorithm). This means, in a single DOF system, that the slope of P(u)
becomes zero and the residual cannot be reduced. Numerically, similar behavior

can be observed when the matrix is nearly singular.

Second, as shown in Fig. 2.16, the method may diverge or oscillate between two

points if the starting point is too far away from the exact solution. This also happens

when the curvature of the P(u) curve changes its sign between two consecutive

iterations. In such a case, it is possible that the Newton–Raphson algorithm may

result in an infinite loop. In order to prevent an infinite loop, themaximum number of

iterations is set and the algorithm stops with an error message when the number of

iterations reaches the maximum number of iterations (see Step 4 in the algorithm).

Example 2.4 (Divergence of the Newton–Raphson method) Find a root of the

following nonlinear equation using the Newton–Raphson method:
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Fig. 2.15 Force–

displacement curves for two

nonlinear springs
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Fig. 2.16 Convergence

difficulty in Newton–

Raphson iteration
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P uð Þ ¼ uþ tan �1 5uð Þ: ð2:16Þ

Use the convergence tolerance of 1	 10�5 and the initial estimate u0¼ 0.5.

Solution Since the problem has a single variable, the problem becomes a nonlinear

algebraic equation. It is trivial that the exact solution will be u¼ 0. The derivative

of P(u) with respect to u becomes

dP

du
¼ 1þ 5 cos 2 tan �1 5uð Þ� 	

:

Below is the list of MATLAB program that solves the above nonlinear equation for

up to 20 iterations.

%

% Example 2.4 Divergence of the Newton-Raphson method.

%

xdata=zeros(40,1);

ydata=zeros(40,1);

tol = 1.0e-5;

iter = 0;

u = 0.5;

uold = u;

c=0;

P = u+atan(5*u);

R = -P;

conv= R^2;

xdata(1)=u;

ydata(1)=P;

while conv > tol && iter < 20

Kt = 1+5*(cos(atan(5*u)))^2;

delu = R/Kt;

u = uold + delu;

P = u+atan(5*u);

R = -P;

conv= R^2;

uold = u;

iter = iter + 1;

xdata(2*iter)=u; ydata(2*iter)=0;

xdata(2*iter+1)=u; ydata(2*iter+1)=P;

end

%

plot(xdata,ydata);

hold on;

x=[-1:0.1:1];

y=x+atan(5*x);

plot(x,y)
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Figure 2.17 shows the convergence history of the Newton–Raphson method for

up to 20 iterations. In this case, the approximate solution moves away from the

exact one as the number of iterations increases, and eventually, the method

diverges. The initial estimate of u0¼�.4990807536 will make the algorithm

oscillate between the two points. The method will converge quickly if the initial

estimate is less than that. ▄
When the system of nonlinear equations has multiple solutions, this method may

converge to different solutions depending on the initial estimate. This does not

occur often in structural problems because, in most cases, the starting point is u¼ 0.

The Jacobian matrix of structural mechanics problems is normally positive

definite. Physically, this means that in order to increase the displacement, the

applied force should increase. However, in some cases, the displacement may

increase without the applied force increasing. Or, displacement continuously

increases while the applied force decreases. This causes structural instability.

Common examples are bifurcation and snap-through behaviors. Figure 2.18

shows the snap-through behavior of elastic inclined slender beams. Both ends are

clamped. The plot shows the relation between the applied force and the vertical

displacement at the force application point. Initially, the applied force increases

along with the tip displacement (region AC). In this region, the beams are stable,

and the Jacobian matrix is positive definite. When they reach point C, the Jacobian

matrix becomes singular, and the force cannot increase beyond FC. Between points

C and E, the tip displacement continuously increases while the force decreases. The

system is unstable in this region. Beyond E, the beams become stable again with a

positive definite Jacobian matrix. When the Newton–Raphson method is used, it

can only solve for the response in the region, AC. For example, for a given force,

FB, it always yields point B, not point D. Special techniques are required to follow

the force–displacement curve.

Fig. 2.17 Divergence

of the Newton–Raphson

method
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2.2.2 Modified Newton–Raphson Method

The Newton–Raphson method requires that at each iteration, the Jacobian matrix

should be formed and the system of linearized equations should be solved for the

increment of the solution. Computationally, these are expensive tasks. In the finite

element framework, building the tangent stiffness matrix and solving the matrix

equation are the two most computationally intensive procedures. The modified

Newton–Raphson method is an attempt to make these procedures less expensive.

Instead of formulating a new tangent stiffness matrix at each iteration, the initial

tangent stiffness matrix is repeatedly used for all iterations. This obviously avoids

the need to reformulate the tangent stiffness matrix at each iteration. In addition,

this can also reduce the computational time required for solving the matrix equa-

tion. In solving a matrix equation, the matrix is first decomposed into lower- and

upper-triangular forms (LU-decomposition). After that, the vector on the right-hand

side is used to solve for the solution (forward and backward substitutions). The

LU-decomposition procedure is computationally expensive, while the forward and

backward substitutions are relatively inexpensive. For example, if the dimension of

the matrix is N	N, the computational cost for the LU-decomposition procedure is

proportional to N2, while the forward and backward substitutions are proportional

to N. When the modified Newton–Raphson method is used, the LU-decomposed

matrix is kept and only the forward and backward substitutions are used with

different residuals at each iteration. As illustrated in Fig. 2.19, the method usually

requires a greater number of iterations for convergence than that of the regular

Newton–Raphson method. However, the overall computational cost to obtain the

solution can be made less because each iteration is much faster than that of the

regular Newton–Raphson method. The method is also a little more stable and is not

prone to divergence.

To improve convergence, it is possible to develop a hybrid scheme in which a

few iterations are performed with the initial tangent stiffness matrix, after which a

new tangent stiffness is formed. The only drawback of this scheme is that it is

difficult to decide how many constant tangent stiffness iterations to perform before

reformulating a new tangent stiffness matrix.
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Fig. 2.18 Snap-through behavior of inclined slender beams
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Example 2.5 (Nonlinear springs [modified Newton–Raphson method]) Using the

modified Newton–Raphson method, solve the displacements of the two nonlinear

springs in Example 2.2. Use the initial estimate, u0¼ {0.3 0.6}T. Compare the

number of iterations with that of Example 2.3. Also, check the convergence rate.

Solution Below is the MATLAB program for solving the problem. Note that the

tangent stiffness matrix is calculated only once before the convergence loop.

tol = 1.0e-5;

iter = 0;

u = [0.3; 0.6];

uold = u;

c = 0;

f = [0; 100];

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2)

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = f - P;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

fprintf(’\n iter u1 u2 conv c’);

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

Kt = [600*u(1)+400*u(2)+150 -400*u(2)+400*u(1)-100

400*u(1)-400*u(2)-100 400*u(2)-400*u(1)+100];

while conv > tol && iter < 20

delu = Kt\R;

u = uold + delu;

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2);

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = f - P;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

c = abs(0.9-u(2))/abs(0.9-uold(2))^2;

uold = u;

iter = iter + 1;

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

end

ui ui+1 u

f P(u)

i
TK

un

Solution

Fig. 2.19 Modified

Newton–Raphson method
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Since the tangent stiffness matrix changes significantly as the displacements vary,

the algorithm will diverge with the initial estimate of u0¼ {0, 0}T. However, that

does not mean that the modified Newton–Raphson method is less stable than the

regular Newton–Raphson method. Table 2.2 shows the convergence history of the

modified Newton–Raphson algorithm. Although it converges in the sixth iteration,

this happens because the initial estimate is close to the exact solution. In fact, the

convergence criterion, conv, reduces slower than that of the regular Newton–

Raphson method. The last column shows the constant in Eq. (2.15). It is clear that

the method does not provide a convergent constant, which indicates that the algo-

rithm does not have a quadratic convergence. ▄

2.2.3 Incremental Secant Method

In the regular Newton–Raphson method, the tangent stiffness matrix is calculated at

every iteration, while the modified Newton–Raphson method requires calculating it

once or after a certain number of iterations. As discussed before, constructing this

matrix and solving the matrix equation are the two main sources of computational

cost. Although the modified Newton–Raphson method is computationally efficient,

it can cause problems as it uses the fixed tangent stiffness matrix (e.g., refer to

Example 2.5 with initial estimate, u0¼ {0, 0}T). The main purpose of the incre-

mental secant method is to remove these two tasks so that the computational cost

can be reduced, while achieving a certain level of convergence rate that is greater

than one. The role of the tangent stiffness matrix is to make the equation converge

quickly, while that of the residual is to monitor the accuracy. The algorithms iterate

until the residual vanishes, which means that the system of nonlinear equations is

satisfied within the range of the tolerance. If the tangent stiffness matrix is not

accurate, then the algorithm converges slower. As long as the solution increments

are in the right direction, the algorithm will eventually converge to the right

solution after performing more iterations. The idea of the incremental secant

method is to approximate the tangent stiffness matrix without high computational

costs. This is achieved by progressively updating the tangent stiffness matrix using

the secant direction between two consecutive solutions. An important aspect, while

approximating the tangent stiffness matrix, is that it maintains the positive definite

Table 2.2 Convergence

history of two nonlinear

springs using the modified

Newton–Raphson method

Iteration u1 u2 conv c

0 0.3000 0.6000 2.848E–01 –

1 0.4143 0.9507 1.464E–02 –

2 0.3956 0.8812 2.378E–03 0.563

3 0.4012 0.9063 3.260E–04 7.328

4 0.3997 0.8978 4.711E–05 17.77

5 0.4001 0.9008 6.561E–06 158.03
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property. In addition, computational cost can be further reduced if the inverse of the

tangent stiffness matrix is approximated directly.

The main idea of the incremental secant method can be explained clearly using a

single variable example. In Eq. (2.9), the Jacobian matrix is defined as the deriv-

ative of the nonlinear function, P(u), with respect to the unknown variable, u. The
secant matrix can be obtained by using the finite difference method in approximat-

ing the Jacobian matrix as

K i
s ¼

P uið Þ � P ui�1ð Þ
ui � ui�1

: ð2:17Þ

Note that as ui�1 approaches ui, the secant stiffness approaches the tangent stiffness
of the Newton–Raphson method. For the first iteration, the secant method uses the

same tangent stiffness matrix with the Newton–Raphson method. After the first

iteration, secant stiffness is used in the subsequent iterations instead of the tangent

stiffness. The procedure is illustrated in Fig. 2.20. In the case of a single variable

problem, the secant direction is the one that connects the two consecutive solutions.

The solution increment for the ith iteration is expressed as follows:

Δui ¼ ui � ui�1

P uið Þ � P ui�1ð Þ f � P ui
� 	� 	

: ð2:18Þ

The convergence rate of the secant method is 1.618, which is the golden

ratio. Considering that the Newton–Raphson method has a quadratic convergence,

it is faster than the secant method. However, the Newton–Raphson method requires

the evaluation of both P(u) and its derivative, KT(u), at every iteration, while

the secant method only requires the evaluation of P(u). Thus, each iteration

of the secant method is much faster than that of the Newton–Raphson method.

Those methods that approximate the Jacobian matrix are called quasi-Newton

methods. They are less expensive than the Newton–Raphson method as they do

not require calculating the Jacobian, but they converge slower than the Newton–

Raphson method.
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Example 2.6 (Nonlinear algebraic equation [secant method]) Using the secant

method, find a root of the nonlinear equation in Example 2.4. Use the initial

estimate, u0¼ 2.0, and convergence tolerance of 1	 10–5. Check the

convergence rate.

Solution Below is the MATLAB program for solving the nonlinear equation. Note

that the exact Jacobian is used at the first iteration and the secant Jacobian for the

following iterations:

%

% Example 2.6 Nonlinear algebraic equation (secant method)

%

tol = 1.0e-5; iter = 0; c = 0;

u = 2.0; uold = u;

P = u+atan(5*u); Pold = P;

R = -P; conv= R^2;

fprintf(’\n iter u conv c’);

fprintf(’\n %3d %7.5f %12.3e %7.5f’,iter,u,conv,c);

Ks = 1+5*(cos(atan(5*u)))^2;

while conv > tol && iter < 20

delu = R/Ks;

u = uold + delu;

P = u+atan(5*u);

R = -P;

conv= R^2;

c = abs(u)/abs(uold)^2;

Ks = (P - Pold)/(u - uold);

uold = u;

Pold = P;

iter = iter + 1;

fprintf(’\n %3d %7.5f %12.3e %7.5f’,iter,u,conv,c);

end

Using the Newton–Raphson method, the nonlinear algebraic equation in

Eq. (2.16) diverges when the initial estimate is larger than 0.5. However, the secant

method is able to converge even if the initial estimate is 2.0. When the initial

estimate of 0.5 is used, the method converges in two iterations. Table 2.3 shows the

convergence history of the secant method. It is clear that the secant method is more

stable than the Newton–Raphson method and does not diverge because the secant

stiffness at the first iteration is adjusted toward the exact solution. The method does

not show a quadratic convergence because the ratio in Eq. (2.15) does not approach

a constant value (refer to the last column of Table 2.3). However, the convergence

criterion reduces faster than that of the modified Newton–Raphson method.

Figure 2.21 shows the convergence history of the secant method. ▄
Although it is clear how the secant matrix is constructed in the one variable case,

multivariable cases are less straightforward. One of the first methods in solving for

multivariable nonlinear equations is the one proposed by Broyden [2]. The idea is

that the Jacobian matrix is calculated only at the first iteration, and after that, it is
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updated at every iteration using the rank-one update. The solution increment for the

ith iteration is expressed as follows:

K i
sΔu

i ¼ �Ri; ð2:19Þ

where Ki
s is the secant stiffness matrix and Ri¼P(ui)� f is the vector of the

residual at the ith iteration. Note that the sign in the definition of the residual is

intentionally changed from that in Eq. (2.11) in order to make the following

algorithm simpler. Using the solutions at two consecutive iterations, ui�1 and ui,
the secant stiffness matrix is updated. The updated matrix then needs to satisfy the

following secant equation:

K i
s � ui � ui�1

� 	 ¼ R ui
� 	� R ui�1

� 	
: ð2:20Þ

Thus, the objective of the secant method is to update the secant stiffness matrix with

the known increments in the solution and the known terms on the right-hand side.

Unfortunately, this process is not unique and many different matrices satisfy the

relationship. Broyden initially suggested updating the stiffness matrix by taking the

Table 2.3 Convergence

history of nonlinear algebraic

equation using the secant

method

Iteration u1 conv c

0 2.0000 1.205E+01 –

1 �1.3074 7.433E+00 0.327

2 0.1476 6.136E�01 0.086

3 �0.1771 8.136E�01 8.133

4 �0.0033 4.025E�04 0.107

5 0.0006 1.338E�05 54.511

6 0.0000 5.393E�14 0.104
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solution to the secant equation that modifies the matrix minimally. The Broyden’s
method results in the following form of a rank-one update:

K i
s ¼ Ki�1

s þ ΔR�Ki�1
s Δu

Δuk k2 ΔuT; ð2:21Þ

where ΔR¼R(ui)�R(ui� 1) and Δu¼ ui� ui� 1. Once the secant stiffness matrix

is updated, Eq. (2.19) is used to solve for the new increment. Then, the new

approximate solution is updated according to

uiþ1 ¼ ui þ Δui: ð2:22Þ

Now, the process moves to the next iteration, and it is repeated until the residual

satisfies the convergence criterion in Eq. (2.12).

Theabove updating formula can save computational timeoncalculating the stiffness

matrix at every iteration, while Eq. (2.19) still needs to be solved at each iteration.

Instead of updating the secant stiffness matrix, it is possible to update the inverse of

the secant stiffness matrix directly to save computational cost in solving the matrix

equation. For example, Eq. (2.19) can be rewritten as

Δui ¼ � K i
s

� 
�1
Ri � �H i

sR
i: ð2:23Þ

Thus, the inverse matrix, Hi
s, is updated directly, starting from the initial inverse of

the stiffness matrix. Broyden used the Sherman–Morrison formula to update the

inverse of the secant stiffness matrix as

H i
s ¼ Hi�1

s þ Δui �Hi�1
s ΔR

Δuið ÞTHi�1
s ΔR

Δui
� 	T

Hi�1
s


 �
: ð2:24Þ

In general, the stiffness matrix for solid mechanics is symmetric and positive

definite. However, the updated secant matrix in Eq. (2.21) and its inverse in

Eq. (2.24) are not symmetric. In order to make the updated matrix symmetric and

positive definite, additional constraints are required. The BFGS (Broyden, Fletcher,

Goldfarb, and Shanno) method [3] satisfies these properties and is the most widely

and successfully used for unconstrained optimization and very useful for finite

element analysis. The main drawback of this method is that it may become unstable

when the number of iterations increases. In practice, the secant stiffness matrix is

reset to the stiffness matrix of the Newton–Raphson method after a certain number

of iterations. The procedure can also be implemented carefully to maintain the

sparsity of the stiffness matrix.

Example 2.7 (Nonlinear springs [secant method]) Using the Broyden’s method,

solve the displacements of the two nonlinear springs in Example 2.2. Use the initial
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estimate, u0¼ {0.1, 0.1}T. Compare the number of iterations with that of Example

2.3. Also, check the convergence rate.

Solution Below is the MATLAB program for solving the nonlinear equation. The

initial estimate is set to u0¼ {0.1, 0.1}T because if it starts with {0, 0}T, it

converges to a different solution.

%

% Example 2.7 Two nonlinear springs (Secant method)

%

tol = 1.0e-5; iter = 0; c = 0;

u = [0.1; 0.1]; uold = u;

f = [0; 100];

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2)

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = P - f; Rold = R;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

fprintf(’\n iter u1 u2 conv c’);

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

Ks = [600*u(1)+400*u(2)+150 -400*u(2)+400*u(1)-100

400*u(1)-400*u(2)-100 400*u(2)-400*u(1)+100];

while conv > tol && iter < 20

delu = -Ks\R;

u = uold + delu;

P = [300*u(1)^2+400*u(1)*u(2)-200*u(2)^2+150*u(1)-100*u(2);

200*u(1)^2-400*u(1)*u(2)+200*u(2)^2-100*u(1)+100*u(2)];

R = P - f;

conv= (R(1)^2+R(2)^2)/(1+f(1)^2+f(2)^2);

c = abs(0.9-u(2))/abs(0.9-uold(2))^2;

delR = R - Rold;

Ks = Ks + (delR-Ks*delu)*delu’/norm(delu)^2;

uold = u; Rold = R;

iter = iter + 1;

fprintf(’\n %3d %7.5f %7.5f %12.3e %7.5f’,iter,u(1),u(2),conv,c);

end

Table 2.4 shows the convergence history of the Broyden’s method. The algo-

rithm converges in the fifth iteration. Note that the algorithm does not provide a

converging constant, c, in Eq. (2.12). Thus, the convergence rate is less than two.

But, it can be easily verified that the convergence rate is greater than one. This is

common for most quasi-Newton methods in which the convergence rate is between

one and two. ▄
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2.2.4 Incremental Force Method

Among practically available numerical methods for solving systems of nonlinear

equations, the Newton–Raphson method is the fastest with a quadratic conver-

gence, which is achieved when the initial estimate is close to the solution. Most

other methods also have a similar trend. Thus, choosing an initial estimate close to

the solution is an important strategy for helping the methods to converge faster.

In solid mechanics problems, the initial estimate is usually set to the undeformed

shape of the structure; i.e., all displacements are initially zero. In a stable system,

the magnitude of displacement is proportional to the applied load. In linear struc-

tures, for example, when the applied load is doubled, displacements are

also doubled. In nonlinear structures, this proportionality is generally true even

if the relation between the applied load and displacement is nonlinear; i.e., a

small magnitude of displacement is expected when the applied load is

small. Since the initial estimate usually starts from zero displacement, the Newton–

Raphson method converges quickly to the solution when the applied load is small.

The convergence difficulty occurs with large applied loads that cause a large

magnitude of displacement.

The idea of the incremental force method is to apply the load in increments.

Within each load increment, the procedure is the same as the standard Newton–

Raphson method. The next load increment is applied after the solution

corresponding to the previous load increment has converged. The converged

solution at each increment is then used as an initial estimate of the next increment.

Figure 2.22 illustrates the procedure for a single degree-of-freedom case. In the first

increment, the nonlinear equation is solved assuming that the applied load is Δf1,
starting from the initial estimate of u0¼ 0. The magnitude of this increment is

chosen such that the numerical method can converge quickly to the solution, u1. In
the second increment, the applied load increases to Δf1 +Δf2, and the initial

estimate of u1 is used, i.e., the converged solution from the previous increment.

Again, the magnitude of the increment, Δf2, is chosen such that the numerical

method can converge quickly to the solution, u2. The above procedure is repeated
until the applied load increment reaches the full magnitude. Note that the solutions

at the end of each load increment are all valid ones; they are the response of the

system at the given level of load.

Table 2.4 Convergence

history of nonlinear springs

using the Broyden’s method

Iteration u1 u2 conv c

0 0.1000 0.1000 1.010E+00 –

1 0.7000 1.7000 4.040E+00 1.250

2 0.3000 0.6333 1.995E�01 0.417

3 0.3727 0.8273 1.766E�02 1.023

4 0.4035 0.9094 3.170E�04 1.779

5 0.3999 0.8997 3.046E�07 3.307
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The load increments do not have to be uniform, especially when the

nonlinearity of the system is not uniform throughout the entire load increments.

Many systems are often mildly nonlinear at most load increments, but are

highly nonlinear at others. For example, in the elastoplastic material, the response

is mildly nonlinear when the material state is either elastic or plastic, but it

becomes highly nonlinear when the material state changes from elastic to plastic.

In such a case, the highly nonlinear portion will control the size of the

load increments if a uniform increment is used. This is an unnecessary and

wasteful use of computational resources. It is possible to divide the load into

three regions—elastic, elastic–plastic, and plastic regions—and a relatively large

load increment is used for the first and last regions, while a small load increment is

used for the elastic–plastic region.

Even if the solution at the last load increment is the goal, it is often important to

calculate the solutions in the intermediate load increments. First, the history of the

response can provide insight into the problem, such as the relation between the

applied load and displacement. In addition, when a structure has instability before

reaching the final load step, such as bifurcation or snap through, the solutions in the

intermediate load steps play an important role in estimating the bifurcation point or

the critical load. Path dependence is another important reason to divide the entire

load by a number of load steps. In the path-dependent problem, load increments

greatly affect the accuracy of the results. For example, in plasticity, excessively

large load steps may allow the stress to stay out of the yield surface or may not catch

the change of the material state from elastic to plastic.

2.2.4.1 Load Increment in Commercial Software

In commercial finite element programs, the load increment is often referred to as a

load step or time step. The term “time step” is sometimes used because most

commercial software uses the same program for solving both the static and dynamic

problems. In solving a static problem, the term time should be understood as

“pseudo-time,” not physical time. In order to solve nonlinear structural problems

using a finite element method, it is necessary to specify the starting time, ending
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Fig. 2.22 Incremental

force method
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time, and time increment. In static analysis, the time interval controls how the

applied load increases. At the starting time (Tstart), the applied load is zero, and it

increases proportionally until the ending time (Tend) at which the full magnitude is

applied. Thus, at the nth increment, the applied load is calculated by

Fn ¼ Tn � Tstart

Tend � Tstart

F, n ¼ 1, . . . ,N; ð2:25Þ

where F is the full magnitude of the applied load, and Tn is the time at the nth
increment, which is calculated by

Tn ¼ n	 ΔT � Tend; ð2:26Þ

where ΔT is the time increment. The last time step N is determined such that TN is

less than or equal to Tend. If TN is less than Tend, an additional time increment is

performed at Tend. In most cases, the time starts at zero, i.e., Tstart¼ 0, except for the

case where multiple loads are applied in a sequence. For example, in order to

calculate a permanent deformation of a bar, a force that can cause plastic deforma-

tion is applied in the first load, and then it is reduced to zero in the second load. In

such a case, the starting time of the second load is the ending time of the first load.

2.2.4.2 Automatic Time Stepping

In many cases, it is not trivial to estimate appropriate time steps. Time steps that are

too small can help convergence, but it will take quite an amount of computational

cost to finish solving the entire load increment. On the other hand, if the time step is

too large, the numerical method may not converge, and the iteration will stop when

it reaches the maximum allowed iterations. There is no good guideline of how to

choose an appropriate time step. It depends on the level of nonlinearity of the

system. The best way of checking if the load step used is too small or too large is to

count the number of iterations. When the standard Newton–Raphson method is

used, the load step is considered to be appropriate if the solution converges in the

fifth or sixth iteration. If the solution converges faster than that, the load step can be

considered too small and can be increased without reducing the convergence much.

On the other hand, if the convergence occurs beyond the tenth iteration, the load

step is too large and it would be better if a smaller load step is used. Many

commercial programs have the capability of adaptively adjusting the size of time

steps by monitoring the number of convergence iterations.

Although adaptive time stepping is a useful tool to gradually control the size of

time steps, it is possible that the iteration may not converge if nonlinearity is

suddenly introduced. For example, in a contact problem, two bodies are discon-

nected in one load increment and then in contact in the following increment. Thus,

the two bodies suddenly experience a contact force in the interface. The time step
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needs to be small enough in order to capture this sudden change in contact force.

Let us assume that the current time step is large enough so that the iteration does not

converge. In such a case, it is possible to go back to the previously converged time

and to reduce the size of the time step by half. If the iteration does not converge with

the new time step, it is further reduced by half. This reduction can be repeated until

the iteration converges. Once the iteration converges with the reduced time step, a

regular adaptive time stepping can be resumed in the following increments. If the

formulation or physics of the problem has a fundamental difficulty, the solution

may not converge, no matter how many reductions are done. In order to prevent the

situation when the time step approaches zero, most commercial programs have the

maximum allowed number of reductions and the programs stop with an error

message when this number is reached.

2.2.4.3 Force Control vs. Displacement Control

So far, the solution of nonlinear equations for structural problems is explained as

equilibrium under applied loads. The objective of the nonlinear spring examples is to

find the displacements of the springs for the load at the end. Referring to Fig. 2.23a,

the force-controlled solution procedure finds the displacements, u1, u2, . . . , un, when
the force increases to F1, F2, . . . ,Fn. Since a one-to-one relation exists between the

force and displacement, the opposite procedure also works well: finding the reaction

forces F1, F2, . . . ,Fn, when displacement increases to u1, u2, . . . , un. This is called a
displacement-controlled solution procedure. Mathematically, these two procedures

are equivalent, but practically, the displacement-controlled procedure can be more

stable than the force-controlled one. Consider the load–displacement curve in

Fig. 2.23b. The load starts reducing after it reaches the maximum point at C. This

type of softening behavior occurs in elastoplastic material due to necking. If the

force-controlled procedure is employed, it is not easy to reach point D in the curve as

the structure reaches equilibrium at B with the given load FB. However, in the
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displacement-controlled procedure, it is possible to reach point D by gradually

increasing the displacement and finding the reaction force. Another important aspect

of nonlinear problems is that the behavior of the system is unknown in advance.

Thus, if a load that is greater than FC is applied, then the iteration will not converge

as no solution exists. However, in the displacement-controlled procedure, the

solution can be converged in a broader range of displacements.

Example 2.8 (Displacement-controlled solution procedure) For the nonlinear

springs in Example 2.2, plot the force–displacement curve by increasing the

displacement, u2, from zero to 0.9 with nine increments.

Solution The system of nonlinear equations for the two springs is written below

300u21 þ 400u1u2 � 200u22 þ 150u1 � 100u2 ¼ 0

200u21 � 400u1u2 þ 200u22 � 100u1 þ 100u2 ¼ F
:

�
ð2:27Þ

Since the displacement, u2, is controlled, the applied force, F, and displacement, u1,
are unknown now. In such a case, it is possible to solve the first equation for u1 and
then, to use the second equation to solve for F. Thus, the problem becomes a

nonlinear algebraic equation. Below is the MATLAB program that solves for the

nonlinear equation.

%

% Example 2.8 Displacement controlled procedure

%

tol = 1.0e-5; conv = 0; u1 = 0; u1old = u1;

fprintf(’\n step u1 u2 F’);

% Displacement increment loop

for i=1:9

u2 = 0.1*i;

P = 300*u1^2+400*u1*u2-200*u2^2+150*u1-100*u2;

R = -P;

conv = R^2;

% Convergence loop

iter = 0;

while conv > tol && iter < 20

Kt = 600*u1+400*u2+150;

delu1 = R/Kt;

u1 = u1old + delu1;

P = 300*u1^2+400*u1*u2-200*u2^2+150*u1-100*u2;

R = -P;

conv= R^2;

u1old = u1;

iter = iter + 1;

end

F = 200*u1^2-400*u1*u2+200*u2^2-100*u1+100*u2;

fprintf(’\n %3d %7.5f %7.5f %7.3f’,i,u1,u2,F);

end
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The program has two loops: the outer loop is for load increments and the inner

loop is for convergence iterations. Each increment requires about two or three

iterations. Once the iteration is converged, the reaction force is calculated from the

second equation in Eq. (2.27). Figure 2.24 shows the force–displacement curve for

the nonlinear springs. It is identical with Fig. 2.15 that is created using the force-

controlled procedure. ▄

2.3 Steps in the Solution of Nonlinear Finite Element
Analysis

As discussed in the previous sections, there are several aspects in which the solution

procedure of nonlinear problems is different from that of linear problems. Although

different procedures are required for different types of nonlinear problems, the

basic steps for nonlinear static problems are outlined in this section.

In structural finite element analysis, unknown variables are usually nodal dis-

placements. In iterative algorithms, the displacement increments are calculated at

each iteration and the total displacements are updated using the increments until

they converge. Thus, the most important step in the solution process is calculating

the incremental displacements. In the following, it is assumed that the k� 1th

iteration is completed, which means that all states at the k� 1th iteration are

available and the displacement vector, dk, is given.

2.3.1 State Determination

For the given displacement vector, dk, it is necessary to calculate the current states

of the system, such as strains and stresses for structural problems. In order to
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simplify the following explanations, the entire structure is modeled by one finite

element, and the solution of the structure is approximated by a vector, dk¼ {d1,
d2, . . . , dn}

T, of the nodal displacements. Accordingly, it is also assumed that there

is a suitable vector of interpolation functions, N(x)¼ {N1, N2, . . . ,Nn}
T. Then, the

displacement at a point x in the structure can be approximated by

uk xð Þ ¼ N xð Þ � dk ð2:28Þ

It is noted that the interpolation function, N(x), is often given in the reference

coordinate (see Sect. 1.5). The element strain vector can be computed by appropri-

ate differentiation as follows:

εk ¼ B � dk; ð2:29Þ

where B is the strain–displacement matrix. In general, stress is a function of strain.

For nonlinear problems, this relation can be written in the following form:

σk ¼ f εk
� 	

: ð2:30Þ

When the material is linear elastic, the above relation is equivalent to Eq. (2.3).

In some materials, the above stress calculation involves the entire history of

deformation.

2.3.2 Residual Calculation

Once the state of the structure is determined, the next step is to check if the structure

is in equilibrium or not. If it is in equilibrium, the nodal forces due to internal

stresses must be equal and opposite in direction to the applied nodal forces. More

specifically, the weak form of structural equilibrium can be written asZZZ
Ω
ε uð ÞTσdΩ ¼

ZZ
Γs

uTtdΓþ
ZZZ

Ω
uTfb dΩ; ð2:31Þ

which must be satisfied for all virtual displacements, u, that satisfy the essential

boundary conditions. In the Galerkin approximation method, the virtual displace-

ment is interpolated using a similar form as in Eq. (2.28), and thus, the virtual strain,

ε uð Þ, as in Eq. (2.29). By substituting these into the weak form, we have

d
T

ZZZ
Ω
BTσdΩ ¼

ZZ
Γs

NTtdΓþ
ZZZ

Ω
NTfb dΩ

� �
: ð2:32Þ

2.3 Steps in the Solution of Nonlinear Finite Element Analysis 115

http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec14


Since (2.32) must be satisfied for arbitrary virtual displacements, d, it is equivalent

to the following equation:ZZZ
Ω
BTσdΩ ¼

ZZ
Γs

NTtdΓþ
ZZZ

Ω
NTfb dΩ: ð2:33Þ

The left-hand side represents the equivalent nodal forces due to internal stresses,

while the right-hand side represents equivalent nodal forces due to applied forces. If

the above equation is satisfied for the given displacements, then the structure is in

equilibrium. However, when the structure is not in equilibrium, the difference

between them is defined as a vector of residuals as

Rk ¼
ZZ

Γs

NTtdΓþ
ZZZ

Ω
NTfb dΩ�

ZZZ
Ω
BTσk dΩ: ð2:34Þ

The superscript, k, is used to denote that the structure is not in equilibrium at the kth
iteration. In practice, the integrals in the residual are calculated using numerical

integration, such as Gauss quadrature in Sect. 1.5.

2.3.3 Convergence Check

The purpose of nonlinear finite element analysis is to satisfy the equilibrium

equation, such as the one in Eq. (2.31), which is equivalent to making the vector

of residuals in Eq. (2.34) to vanish. The iteration stops when the magnitude of the

residual vector is less than a specific tolerance. In that case, the iteration converges

and the solution is the current displacement. However, the iterations may not

converge in some cases no matter how many iterations are conducted. In order to

prevent an infinite loop of the convergence iteration, the program usually stops

when the iteration counter reaches the maximum allowed number of iterations. In

that case, the algorithm stops with an error message. In order to prevent stopping the

algorithm with errors, the force can be halved and the convergence is tried again,

which is called the bisection method. The bisection method can be repeated

until either the iteration converges or the maximum allowed number of bisections

is reached.

2.3.4 Linearization

Linearization is one of the most important steps in solving nonlinear equations.

In this step, the Jacobian matrix is calculated for the Newton–Raphson method, or

116 2 Nonlinear Finite Element Analysis Procedure

http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Sec14


the previous Jacobian matrix is updated in the secant method. In structural prob-

lems, the Jacobian matrix is often called the tangent stiffness matrix because it is a

tangent line of the force–displacement curve in a single DOF case. For practical

applications, the structural equations from the finite element method are not given

in the form of simple polynomials as in Example 2.2. Thus, linearization is the most

complicated procedure, theoretically and computationally. In the following chap-

ters, linearization of different nonlinearities will be discussed in detail. It is noted

that errors in the tangent stiffness can cause slow convergence or sometimes

divergence. The accuracy of the solution is controlled by residuals.

2.3.5 Solution

Once the tangent stiffness matrix and the vector of residuals are calculated, the

following system of linear equations is solved for incremental displacement:

K k
T � Δdk ¼ Rk; ð2:35Þ

where Δdk is the vector of incremental displacements. In order to have a unique

solution to the above equation, the tangent stiffness matrix must be positive definite.

Then, the total displacement is updated by

dkþ1 ¼ dk þ Δdk: ð2:36Þ

Now, the kth iteration is completed and the procedure is repeated for the (k+ 1)th
iteration.

Example 2.9 (Nonlinear bar) A rubber bar of length L¼ 1 m is under an axial force,

F¼ 10 kN, as shown in Fig. 2.25. The material has the following nonlinear stress–

strain relation: σ¼E·tan�1(mε), where the material constants E¼ 100 MPa
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Fig. 2.25 Newton–Raphson iteration of a nonlinear bar
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and m¼ 40. A uniform stress distribution is assumed over the cross

section, A¼ 10�4 m2, and the axial force is also assumed uniformly distributed.

Assuming an infinitesimal deformation, perform the first two Newton–Raphson

iterations to find the strain, stress, and displacement at the tip (node 2) of the

element.

Solution The discrete weak form of the bar element can be written as

d
T
Z L

0

BTσAdx ¼ d
T
F;

where d¼ [d1, d2]
T is the vector of nodal displacements, d is the vector of virtual

nodal displacements, BT¼ [�1, 1]/L is the displacement–strain matrix, and F¼
[F1, F2]

T is the vector of applied forces. In order to simplify the following steps, the

essential boundary condition can be applied in advance, i.e., d1 ¼ d1 ¼ 0. For

simplicity of notation, d¼ d2 and F¼F2 will be used in the following derivations.

Then, the above discrete weak form becomes a scalar equation. The residual now

becomes

R ¼ F�
Z L

0

σA

L
dx

) R ¼ F� σ dð ÞA:

Note that the residual is nothing but the equilibrium between external and internal

forces: P(d)¼F. Due to the nonlinear stress–strain relation, the Newton–Raphson

method is used to find the displacement, d, to eliminate the residual. The Jacobian

becomes

dP

dd
¼ dσ dð Þ

dd
A ¼ dσ

dε

dε

dd
A:

The first derivative on the right-hand side can be calculated by differentiating the

stress–strain relation and the second derivative from the displacement–strain rela-

tion. Using these relations, we have

dP

dd
¼ 1

L
mAE cos 2

σ

E


 �
:

Then, the Newton–Raphson equation at the kth iteration becomes

1

L
mAE cos 2

σk

E

� �� �
Δdk ¼ F� σkA:
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Iteration 1: d0¼ ε0¼ σ0¼ 0. Then, the above equation becomes

mAE

L
Δd0 ¼ F;

which yields Δd0¼ 0.025. Then, all variables are updated at the new configuration,

as

d1 ¼ d0 þ Δd0 ¼ 0:025 m,

ε1 ¼ d1=L ¼ 0:025,
σ1 ¼ Etan �1 mε1ð Þ ¼ 78:5 MPa:

Iteration 2: The Newton–Raphson equation becomes

mAE

L
cos 2

σ1

E

� �� �
Δd1 ¼ F� σ1A;

which yields Δd1¼ 0.0107. Then, all variables are updated at the new configura-

tion, as

d2 ¼ d1 þ Δd1 ¼ 0:0357 m,

ε2 ¼ d2=L ¼ 0:0357,
σ2 ¼ Etan �1 mε2ð Þ ¼ 96 MPa:

Iteration 3 will yield a stress value of σ¼ 99.7 MPa, which is only 0.3 % different

from the exact solution. ▄

2.4 MATLAB Code for a Nonlinear Finite Element
Analysis Procedure

Although the previous section summarized five important steps in a nonlinear

finite element analysis procedure, it is important to understand how these

steps are executed in sequence. Figure 2.26 shows a flowchart for a nonlinear

finite element analysis procedure. A MATLAB program, NLFEA, is also listed as

an example. The procedure assumes the incremental force method with

the Newton–Raphson method. The bisection method is used when the Newton–

Raphson method failed to converge. The modified Newton–Raphson method

and automatic time stepping method can easily be implemented by modifying

the current implementation.
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Fig. 2.26 Flowchart for nonlinear finite element procedure
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function NLFEA(ITRA,TOL,ATOL,NTOL,TIMS,NOUT,MID,PROP,EXTFORCE,SDISPT,

XYZ,LE)

%********************************************************************

% MAIN PROGRAM FOR HYPERELASTIC/ELASTOPLASTIC ANALYSIS

%********************************************************************

%%

global DISPDD DISPTD FORCE GKF %Global variables

%

[NUMNP, NDOF] = size(XYZ); % Analysis parameters

NE = size(LE,1);

NEQ = NDOF*NUMNP;

%

DISPTD=zeros(NEQ,1); DISPDD=zeros(NEQ,1); % Nodal displacement &

increment

if MID >= 0, ETAN=PLSET(PROP, MID, NE); end % Initialize material

properties

%

ITGZONE(XYZ, LE, NOUT); % Check element connectivity

%

% Load increments [Start End Increment InitialLoad FinalLoad]

NLOAD=size(TIMS,2);

ILOAD=1; % First load increment

TIMEF=TIMS(1,ILOAD); % Starting time

TIMEI=TIMS(2,ILOAD); % Ending time

DELTA=TIMS(3,ILOAD); % Time increment

CUR1=TIMS(4,ILOAD); % Starting load factor

CUR2=TIMS(5,ILOAD); % Ending load factor

DELTA0 = DELTA; % Saved time increment

TIME = TIMEF; % Starting time

TDELTA = TIMEI - TIMEF; % Time interval for load step

ITOL = 1; % Bisection level

TARY=zeros(NTOL,1); % Time stamps for bisections

%

% Load increment loop

%---------- ----------- ------- ----------- ---–- -----------

ISTEP = -1; FLAG10 = 1;

while(FLAG10 == 1) % Solution has been converged

FLAG10 = 0; FLAG11 = 1; FLAG20 = 1;

%

CDISP = DISPTD; % Store converged

displacement

%

if(ITOL==1) % No bisection

DELTA = DELTA0;

TARY(ITOL) = TIME + DELTA;

else % Recover previous bisection

ITOL = ITOL-1; % Reduce the bisection level

DELTA = TARY(ITOL)-TARY(ITOL+1); % New time increment
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TARY(ITOL+1) = 0; % Empty converged bisection

level

ISTEP = ISTEP - 1; % Decrease load increment

end

TIME0 = TIME; % Save the current time

%

% Update stresses and history variables

UPDATE=true; LTAN=false;

if MID ==0, ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE);

elseif MID > 0, PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE);

elseif MID < 0, HYPER3D(PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE);

else fprintf(NOUT,’\t\t *** Wrong material ID ***\n’); return;

end

%

% Print results

if(ISTEP>=0), PROUT(NOUT, TIME, NUMNP, NE, NDOF); end

%

TIME = TIME + DELTA; % Increase time

ISTEP = ISTEP + 1;

%

% Check time and control bisection

while(FLAG11 == 1) % Bisection loop start

FLAG11 = 0;

if ((TIME-TIMEI)>1E-10) % Time passed the end time

if ((TIMEI+DELTA-TIME)>1E-10) % One more at the end time

DELTA=TIMEI+DELTA-TIME; % Time increment to the end

DELTA0=DELTA; % Saved time increment

TIME=TIMEI; % Current time is the end

else

ILOAD=ILOAD+1; % Progress to next load step

if(ILOAD>NLOAD) % Finished final load step

FLAG10 = 0; % Stop the program

break;

else % Next load step

TIME=TIME-DELTA;

DELTA=TIMS(3,ILOAD);

DELTA0=DELTA;

TIME = TIME + DELTA;

TIMEF = TIMS(1,ILOAD);

TIMEI = TIMS(2,ILOAD);

TDELTA = TIMEI - TIMEF;

CUR1 = TIMS(4,ILOAD);

CUR2 = TIMS(5,ILOAD);

end

end

end

%

% Load factor and prescribed displacements
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FACTOR = CUR1 + (TIME-TIMEF)/TDELTA*(CUR2-CUR1);

SDISP = DELTA*SDISPT(:,3)/TDELTA*(CUR2-CUR1);

%

% Start convergence iteration

%--------------------------------------------------------------

ITER = 0;

DISPDD = zeros(NEQ,1);

while(FLAG20 == 1)

FLAG20 = 0;

ITER = ITER + 1;

% Check max iteration

if(ITER>ITRA), error(’Iteration limit exceeds’); end

%

% Initialize global stiffness K and residual vector F

GKF = sparse(NEQ,NEQ);

FORCE = sparse(NEQ,1);

%

% Assemble K and F

UPDATE=false; LTAN=true;

if MID ==0, ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE);

elseif MID> 0, PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE);

elseif MID < 0, HYPER3D(PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE);

end

%

% Increase external force

if size(EXTFORCE,1)>0

LOC = NDOF*(EXTFORCE(:,1)-1)+EXTFORCE(:,2);

FORCE(LOC) = FORCE(LOC) + FACTOR*EXTFORCE(:,3);

end

%

% Prescribed displacement BC

NDISP=size(SDISPT,1);

if NDISP~=0

FIXEDDOF=NDOF*(SDISPT(:,1)-1)+SDISPT(:,2);

GKF(FIXEDDOF,:)=zeros(NDISP,NEQ);

GKF(FIXEDDOF,FIXEDDOF)=PROP(1)*eye(NDISP);

%

FORCE(FIXEDDOF)=0;

if ITER==1, FORCE(FIXEDDOF) = PROP(1)*SDISP(:); end

end

% Check convergence

if(ITER>1)

FIXEDDOF=NDOF*(SDISPT(:,1)-1)+SDISPT(:,2);

ALLDOF=1:NEQ;

FREEDOF=setdiff(ALLDOF,FIXEDDOF);

RESN=max(abs(FORCE(FREEDOF)));

OUTPUT(1, ITER, RESN, TIME, DELTA)

%
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if(RESN<TOL)

FLAG10 = 1;

break;

end

%

if ((RESN>ATOL)||(ITER>=ITRA)) % Start bisection

ITOL = ITOL + 1;

if(ITOL<NTOL)

DELTA = 0.5*DELTA;

TIME = TIME0 + DELTA;

TARY(ITOL) = TIME;

DISPTD=CDISP;

fprintf(1,’Not converged. Bisecting load increment %3d\n’,ITOL);

else

error(’Max No. of bisection’);

end

FLAG11 = 1;

FLAG20 = 1;

break;

end

end

%

% Solve the system equation

if(FLAG11 == 0)

SOLN = GKF\FORCE;

DISPDD = DISPDD + SOLN;

DISPTD = DISPTD + SOLN;

FLAG20 = 1;

else

FLAG20 = 0;

end

if(FLAG10 == 1), break; end

end %20 Convergence iteration

end %11 Bisection

end %10 Load increment

%

% Successful end of program

fprintf(NOUT,’\t\t *** Successful end of program ***\n’);

end

_____________________________________________________________________

function OUTPUT(FLG, ITER, RESN, TIME, DELTA)

%********************************************************************

% Print convergence iteration history

%********************************************************************

%%

if FLG == 1

if ITER>2

fprintf(1,’%27d %14.5e \n’,ITER,full(RESN));

else
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fprintf(1,’\n \t Time Time step Iter \t Residual \n’);

fprintf(1,’%10.5f %10.3e %5d %14.5e \n’,TIME,DELTA,ITER,full(RESN));

end

end

end

_____________________________________________________________________

function PROUT(NOUT, TIME, NUMNP, NE, NDOF)

%********************************************************************

% Print converged displacements and stresses

%********************************************************************

%%

global SIGMA DISPTD

%

fprintf(NOUT,’\r\n\r\nTIME = %11.3e\r\n\r\nNodal Displacements\r\n’,

TIME);

fprintf(NOUT,’\r\n Node U1 U2 U3’);

for I=1:NUMNP

II=NDOF*(I-1);

fprintf(NOUT,’\r\n%5d %11.3e %11.3e %11.3e’,I,DISPTD(II+1:II+3));

end

fprintf(NOUT,’\r\n\r\nElement Stress\r\n’);

fprintf(NOUT,’\r\n S11 S22 S33 S12 S23 S13’);

for I=1:NE

fprintf(NOUT,’\r\nElement %5d’,I);

II=(I-1)*8;

fprintf(NOUT,’\r\n%11.3e %11.3e %11.3e %11.3e %11.3e %11.3e’,SIGMA

(1:6,II+1:II+8));

end

fprintf(NOUT,’\r\n\r\n’);

end

_____________________________________________________________________

function ETAN=PLSET(PROP, MID, NE)

%********************************************************************

% Initialize history variables and elastic stiffness matrix

% XQ : 1-6 = Back stress alpha, 7 = Effective plastic strain

% SIGMA : Stress for rate-form plasticity

% : Left Cauchy-Green tensor XB for multiplicative plasticity

% ETAN : Elastic stiffness matrix

%********************************************************************

%%

global SIGMA XQ

%

LAM=PROP(1);

MU=PROP(2);

%

N = 8*NE;

%

if MID > 30

SIGMA=zeros(12,N);

2.4 MATLAB Code for a Nonlinear Finite Element Analysis Procedure 125



XQ=zeros(4,N);

SIGMA(7:9,:)=1;

ETAN=[LAM+2*MU LAM LAM ;

LAM LAM+2*MU LAM ;

LAM LAM LAM+2*MU];

else

SIGMA=zeros(6,N);

XQ=zeros(7,N);

ETAN=[LAM+2*MU LAM LAM 0 0 0;

LAM LAM+2*MU LAM 0 0 0;

LAM LAM LAM+2*MU 0 0 0;

0 0 0 MU 0 0;

0 0 0 0 MU 0;

0 0 0 0 0 MU];

end

end
_______________________________________________________

function VOLUME = ITGZONE(XYZ, LE, NOUT)

%********************************************************************

% Check element connectivity and calculate volume

%********************************************************************

%%

EPS=1E-7;

NE = size(LE,1);

VOLUME=0;

for I=1:NE

ELXY=XYZ(LE(I,:),:);

[~, ~, DET] = SHAPEL([0 0 0], ELXY);

DVOL = 8*DET;

if DVOL < EPS

fprintf(NOUT,’\n??? Negative Jacobian ???\nElement connectivity\n’);

fprintf(NOUT,’%5d’,LE(I,:));

fprintf(NOUT,’\nNodal Coordinates\n’);

fprintf(NOUT,’%10.3e %10.3e %10.3e\n’,ELXY’);

error(’Negative Jacobian’);

end

VOLUME = VOLUME + DVOL;

end

end

_______________________________________________________

The analysis procedure is composed of three nested loops. The first one (loop 10)

is the loop for load steps and load increments. In general, the entire solution

procedure is composed of NLOAD load steps. Multiple load steps are useful when

cyclic loadings are applied. Each load step is composed of several load increments.
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This corresponds to the incremental force method in Sect. 2.2.4, in which the total

applied load is divided by a number of increments.

The second one (loop 11) is for bisection. As discussed before, the Newton–

Raphson method can have a difficulty in converging when the starting point is far

from the solution. Therefore, the convergence can be improved by reducing the

amount of the load increment. Whenever the convergence iteration fails to con-

verge, the load increment is halved, and then, loop 11 is repeated starting from the

previously converged point. Since the solution may not converge no matter how

small the load increment is, the bisection process stops after the maximum number

of bisections is reached. For the purpose of bisection, it is necessary to store the

previously converged displacement (CDISP).
The third, innermost loop (loop 20) is for convergence iteration. This

corresponds to the Newton–Raphson iteration. The major part of this loop is

devoted to calculating the residual vector, FORCE, and the tangent matrix, GKF.
If the residual becomes less than a threshold, it is considered that the iteration has

been converged. In such a case, the loop ends, and the procedure moves to the next

load increment. If iterations do not converge, then bisection is invoked by reducing

the load increment by half.

Since MATLAB copies variables when they are sent as an argument of a

function, it takes a lot of computer memory and time. Therefore, it is better to

define them as a global variable when the size of a variable is large. In the current

implementation, several variables are defined as global variables, as summarized in

Table 2.5.

During nonlinear analysis, NLFEA calls for four functions: OUTPUT, PROUT,
ETAN, and ITGZONE. OUTPUT function is used to print out iteration history to the

MATLAB screen, while PROUT prints out analysis results (displacements and

stresses) to the output file. Both ETAN and ITGZONE are called only once before

Newton–Raphson iteration starts. ETAN is to calculate the initial elastic stiffness for

linear elastic and elastoplastic materials, i.e., when MID>¼ 0. ITGZONE checks

the determinant of element Jacobian matrix and stops NLFEA if the determinant is

negative, which indicates that either element has a negative volume or the element

connectivity is not correct.

The input data include nodal coordinates, element connectivity, force and dis-

placement boundary conditions, material parameters, and control parameters for the

solution procedure. The following sample input data are for one element under

z-directional extension. Note that at the end of input data file, NLFEA is called.

Table 2.5 Global arrays for NLFEA.m program

Name Dimension Contents

GKF NEQ	NEQ Tangent matrix

FORCE NEQ	 1 Residual vector

DISPTD NEQ	 1 Displacement vector

DISPDD NEQ	 1 Displacement increment

SIGMA 6	 8	NE Stress at each integration point

XQ 7	 8	NE History variable at each integration point
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%

% Extension of single element example

%

% Nodal coordinates

XYZ=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];

%

% Element connectivity

LE=[1 2 3 4 5 6 7 8];

%

% External forces [Node, DOF, Value]

EXTFORCE=[5 3 10.0; 6 3 10.0; 7 3 10.0; 8 3 10.0];

%

% Prescribed displacements [Node, DOF, Value]

SDISPT=[1 1 0;1 2 0;1 3 0;2 2 0;2 3 0;3 3 0;4 1 0;4 3 0];

%

% Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.0 0.5 0.1 0.0 0.5; 0.5 1.0 0.1 0.5 1.0]’;

%

% Material properties

%PROP=[LAMBDA MU BETA H Y0]

MID=1;

PROP=[110.747, 80.1938, 0.0, 5., 35.0];

%

% Set program parameters

ITRA=20; ATOL=1.0E5; NTOL=5; TOL=1E-6;

%

% Calling main function

NOUT = fopen(’output.txt’,’w’);

NLFEA(ITRA,TOL,ATOL,NTOL,TIMS,NOUT,MID,PROP,EXTFORCE,SDISPT,XYZ,LE);

fclose(NOUT);
_______________________________________________________

Nodal coordinates and element connectivity: The current implementation

assumes that the node numbers are in sequence. Then, the nodal coordinates are

defined using NNODE	 3 matrix XYZ. Since the current implementation only

supports eight-node hexahedral elements, element connectivity is defined using

NELEN	 8 matrix LE.
Applied forces and prescribed displacements: Both applied forces and pre-

scribed displacements are given in the format of [node, DOF, value]. DOF is the

coordinate direction: 1, 2, or 3. The external force, EXTFORCE, may not be

required, but the prescribed displacements, SDISPT, must be defined in order to

remove the rigid-body motion error in static problems.

Load steps and increments: The TIMS array is used to define load steps and

load increments. Each row of TIMS array represents a load step. Each load step has

the start time, end time, and increment, which is used for load increment. The initial

and final factors are the load factors that will vary during the current load step.
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For example, the following TIMS array has 10 increments during which the load

increases from 0 to 50 % of the total load.

TIMS¼[0.0, 1.0, 0.1, 0.0, 0.5]

The end time of the previous load step and the start time of the following load

step must be the same. Otherwise, the program will not function properly. The same

is true for the load factors.

Material properties: The current implementation supports three types of

nonlinear materials: linear elastic material (MID¼ 0), Mooney-Rivlin

hyperelasticity (MID¼ –1), and infinitesimal elastoplasticity (MID¼ 1).2 For a

linear elastic material, two Lame’s constants are enough to define the material

properties: PROP¼ [LAMBDA, MU]. For hyperelasticity, material properties are

composed of two material constants, A10 and A01, and a bulk modulus, D:

PROP¼ [A10, A01, D]. For elastoplasticity, the required material properties are

two Lame’s constants (λ and μ), hardening type (β), plastic modulus (H ), and initial

yield strength (Y0). The meaning of these properties will be discussed in Chaps. 3

and 4.

Analysis control parameters: There are several parameters that control the

analysis procedure. ITRA is the maximum number of convergence iterations in the

Newton–Raphson method. If the number of iterations reaches ITRA, it is consid-
ered that the analysis cannot converge, and the bisection is invoked. During the

convergence iteration, if the residual increases larger than ATOL, then it is consid-

ered that the solution is diverging, and the bisection process is invoked. The total

number of bisections is limited by NTOL. That is, if the convergence iterations do
not converge after NTOL consecutive bisections, the program stops with an error

message. The convergence iteration is considered converged when the norm of the

residual is less than TOL. Once the solution is converged at each load increment,

nodal displacements and stresses at integration points are printed to an output file

designated by NOUT.

Example 2.10 (Tension of an elastoplastic bar) An elastoplastic bar in the dimen-

sion of 1 cm	 1 cm	 2 cm is under axial load as shown in Fig. 2.27. Using two

eight-node finite elements, solve for displacements and stresses for both elements.

Assume material properties of λ¼ 110.7 GPa, μ¼ 80.2 GPa, σY¼ 400 MPa, and

H¼ 100 MPa.

Solution Since the total applied load is 44 kN, it can be expected that the material

will be beyond its yield strength of 400 MPa. In order to capture the transition of

material states, the load steps are divided into two parts. In TIMS array,

TIMS¼[0.0 0.8 0.4 0.0 0.8;

0.8 1.1 0.1 0.8 1.1]’;

2 In Chap. 4, different plasticity models can be used by changing MID¼ 1, 2, and 31.
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The first load step is for elastic portion. Assuming that the exact load at yield is

unknown, 8 kN at each node is applied at the first load step with 4 kN increment.

Therefore, only two increments are performed in the first load step. In the second

load step, the applied load is increased between 8 and 11 kN with the increment of

1 kN. In order to show how the load factor is working, the input file intentionally

applied 10 kN at each node, and the load factor is increased by 1.1, so that the total

applied load is 11 kN at the end.

A nodal force of 10 kN is applied at the four nodes on the top, while the bottom

four nodes are fixed in such a way that the uniaxial tension condition can be met;

that is, u1x¼ u1y¼ u1z¼ u2y¼ u2z¼ u3z¼ u4z¼ 0. Nodal coordinates are defined in

XYZ array, and element connectivity is in LE array. EXTFORCE stores externally

applied force, and SDISPT stores prescribed displacements. These two arrays are

given in the format such that each row includes [Node, DOF, Value] format. For

elastoplastic material, MID¼ 1 is used with five material constants in PROP array;

they are two Lame’s constants, LAMBDA and MU; hardening parameters, BETA
and H; and initial yield strength, Y0. Detailed explanation of elastoplastic material

properties will be presented in Chap. 4.

PROP¼[110.7E9 80.2E9 0.0 1.E8 4.0E8]

The problem definition and calling NLFEA are listed as follows:

%

% Two-element example

%

% Nodal coordinates

XYZ=[0 0 0; 1 0 0; 1 1 0; 0 1 0;

0 0 1; 1 0 1; 1 1 1; 0 1 1;

0 0 2; 1 0 2; 1 1 2; 0 1 2]*0.01;

11kN

x21

5

6

8

7

4

2
x1 3

x3

9

10

11kN11kN

11kN
12

11

Fig. 2.27 Two brick

elements under uniaxial

tension
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%

% Element connectivity

LE=[1 2 3 4 5 6 7 8;

5 6 7 8 9 10 11 12];

%

% External forces [Node, DOF, Value]

EXTFORCE=[9 3 10.0E3; 10 3 10.0E3; 11 3 10.0E3; 12 3 10.0E3];

%

% Prescribed displacements [Node, DOF, Value]

SDISPT=[1 1 0;1 2 0;1 3 0;2 2 0;2 3 0;3 3 0;4 1 0;4 3 0];

%

% Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.0 0.8 0.4 0.0 0.8; 0.8 1.1 0.1 0.8 1.1]’;

%

% Material properties PROP=[LAMDA MU BETA H Y0]

MID=1;

PROP=[110.747E9 80.1938E9 0.0 1.E8 4.0E8];

%

% Set program parameters

ITRA=70; ATOL=1.0E5; NTOL=6; TOL=1E-6;

%

% Calling main function

NOUT = fopen(’output.txt’,’w’);

NLFEA(ITRA,TOL,ATOL,NTOL,TIMS,NOUT,MID,PROP,EXTFORCE,SDISPT,XYZ,LE);

fclose(NOUT);
_______________________________________________________

The Newton–Raphson iteration will be performed at each load increment of each

load step. The following output shows the iteration history:

Time Time step Iter Residual

0.40000 4.000e-01 2 3.80851e-12

Time Time step Iter Residual

0.80000 4.000e-01 2 4.32010e-12

Time Time step Iter Residual

0.90000 1.000e-01 2 3.97904e-12

Time Time step Iter Residual

1.00000 1.000e-01 2 3.63798e-12

Time Time step Iter Residual

1.10000 1.000e-01 2 6.66390e+02

3 1.67060e-09

During the first load step, since the stress is less than the yield strength, the

material behavior is identical to a linear elastic material. Therefore, the Newton–

Raphson iteration converges at the first iteration at Time¼ 0.4 and 0.8. During the
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second load step, the material is still elastic at Time¼ 0.9 and 1.0, where they also

converge at the first iteration. At Time¼ 1.1, however, the material becomes plastic

and the iteration converges at the second iteration. The iteration converges very fast

in this case because both elements are under the uniform stress condition and the

plastic hardening model is linear.

The nodal displacements and element stresses are saved in output.txt file. These

results are stored at every load increment. Table 2.6 summarizes displacements and

stresses at each load increment. Since the two elements are in the same loading

condition, it is expected that both elements have the same constant stresses. Also,

the material is elastic until the load factor¼ 1.0, at which the material is in the

initial yield state. At load factor¼ 1.1, the material deforms plastically until it can

support the stress of 440 MPa. The stress after yielding continuously increases due

to plastic hardening modulus, H, albeit the slope is much smaller that the initial

stress–strain curve. That is why the displacements dramatically increase between

load factors 1.0 and 1.1. ▄

2.5 Nonlinear Solution Controls Using Commercial Finite
Element Programs

Although many commercial finite element analysis programs are available, only

three popular programs (Abaqus, ANSYS, and NEiNastran) are discussed in this

section. All three programs provide both a graphical user interface (GUI) and text

input file for defining the solution controls. Figure 2.28 shows the steps of defining

nonlinearity in the flow of nonlinear modeling and analysis using commercial

software. It is obvious that material nonlinearity is defined at the stage of defining

material properties and force nonlinearity at load conditions. Kinematic

nonlinearity, such as contact conditions, is defined at the stage of defining displace-

ment boundary conditions. However, many commercial programs consider contact

conditions separately from displacement boundary conditions, and they can be

defined separately. It is difficult to see how to define geometric nonlinearities at

the stage of defining a load case, but it is common for users to select the large

deformation option when a load case is defined. The detailed description of these

individual nonlinearities will be discussed in the following chapters.

Table 2.6 Displacements and stresses of elastoplastic bar

Load factor u5z u9z S33 Elem1 (MPa) S33 Elem2 (MPa) State

0.4 7.73	 10�6 1.55	 10�5 160 160 Elastic

0.8 1.55	 10�5 3.09	 10�5 320 320 Elastic

0.9 1.74	 10�5 3.48	 10�5 360 360 Elastic

1.0 1.93	 10�5 3.87	 10�5 400 400 Elastic

1.1 4.02	 10�3 8.04	 10�3 440 440 Plastic
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Since the input data through the GUI are eventually converted into a text input

file, the latter is used in the following explanations. The purpose is not to provide

complete usage instructions for the programs. Rather, it focuses on how to apply the

solution control methods in the previous sections. For detailed usage, the readers

are referred to the manual of the particular program.

2.5.1 Abaqus

The input file of Abaqus consists of keywords. For example, the keyword, *NODE,
defines nodal coordinates, and*ELEMENT defines element type and connectivity. The

keyword, *STEP, is used for the solution control of the current load. The definition of
*STEP ends with the *END STEP keyword. In *STEP, users can specify analysis

type, boundary conditions, applied loads, and output controls. This is different from

the time steps that are used in this textbook. It is similar to the load case in Nastran.

*STEP, INC¼100 (default)

TITLE

Geometric modeling

Material definition 

Element properties

Mesh generation

Boundary conditions

Load conditions

Load case

Launch solution

Post-processing 

Material nonlinearity

Kinematic nonlinearity

Force nonlinearity

Geometric nonlinearity

Fig. 2.28 Nonlinearity definition in the analysis flow
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This keyword starts a new step. By default, the maximum allowable number of

increments is 100. The *STEP keyword is followed by the keyword defining the

analysis procedure.

*STATIC, DIRECT

DT, TEND, DTMIN, DTMAX

The *STATIC keyword specifies that the analysis type is nonlinear static. If the

parameter, DIRECT, is given, then a fixed time increment, DT, is used until the

ending time, TEND. If this parameter is omitted, automatic time stepping will be

used starting from the initial time increment DT. When the second line is omitted,

DT and TEND will be set to one, i.e., a single load increment. When the automatic

time stepping scheme is used, the time increment can reduce until DTMIN and can

increase up to DTMAX.

*END STEP

This command finishes defining the current analysis step. Abaqus can apply

multiple loads in sequence by defining the corresponding steps sequentially.

2.5.2 ANSYS

The input file of ANSYS consists of three sections for static analysis: preprocessing

(/PREP7), solution (/SOLU), and postprocessing (/POST1). The solution controls

are defined in the /SOLU phase.

SOLCONTROL, ON(default)/OFF

This command activates (ON) or deactivates (OFF) optimized defaults for a set

of commands applicable to nonlinear solutions. It is recommended to use the

default value (ON) for reliable and efficient default solution settings.

AUTOTS, ON(default)/OFF

This command determines if the time step is determined automatically by

ANSYS, or a fixed time step that is given in DETIM or NSUBST command is used.

Default: ANSYS determines time stepping when SOLCONTROL is ON. No
automatic time stepping occurs when SOLCONTROL is OFF.

TIME, TIME

This command specifies the time at the end of the current load. The starting time

is either zero (for the first load) or the end time of the previous load. Since it is not a
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physical time for static analysis, it is recommended that each load has a unit time;

i.e., the first load has TIME¼ 1, and the second load has TIME¼ 2.

DELTIM, DTIME, DTMIN, DTMAX

This command specifies the load increments (time steps) for the current load. If

both AUTOTS and SOLCONTROL are OFF, the fixed time step size DTIME is used.

The advantage is that the users can obtain the analysis results at the specific load

increments. However, the analysis may stop due to non-convergence if the

nonlinearity is high at any load increment section.

If AUTOTS is ON, the program uses DTIME as an initial time step, and the

following time steps are calculated according to automatic time stepping procedure,

which can reduce possible non-convergence problems. When SOLCONTROL is ON,
the program automatically sets up the minimum and maximum size of the time

steps. When it is OFF, users need to provide these values in DTMIN and DTMAX.

NSUBST, NSBSTP, NSBMX, NSBMN

This command plays the same role as the DELTIM command. Instead of speci-

fying the time step size, it provides the number of load increments in NSBSTP. If
TIME¼ 1, then the corresponding time step size can be calculated from 1/NSBSTP.
The same time stepping procedure is applied when AUTOTS¼ON and/or

SOLCONTROL¼ON. NSBMX and NSBMN correspond to DTMAX and DTMIN.

NEQIT, NEQIT

Specifies the maximum number of equilibrium iterations for nonlinear analyses.

If the number of iterations becomes NEQIT, the program will either stop with an

error message or cutback time step if AUTOTS is ON.

CNVTOL, Lab, VALUE, TOLER, NORM, MINREF

This command specifies convergence criteria for nonlinear analyses. For struc-

tural problems, Lab¼U (displacements) or F (forces) are frequently used. VALUE

is a typical value of displacements or forces, and TOLER is the tolerance to

consider the nonlinear iteration convergence. The default value of TOLER is 0.05

(5 %) for Lab¼U, and 0.005 (0.5 %) for Lab¼ F. Since the displacements and

forces are vectors, their magnitudes are calculated using NORM and compared with

TOLER. The square root of the square sum (L2-norm) is used when NORM¼ 2

(default), while the sum of absolute values is used when NORM¼ 1 (L1-norm).

ANSYS monitors this convergence criterion and plots a graph during each iteration.

SOLVE

Once all solution controls are set, this command starts solving the system of

nonlinear equations.
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2.5.3 NEiNastran

There are several different variations of NASTRAN programs. In this textbook,

NEiNastran from NEi software is used. The model input file of NASTRAN consists

of two sections: case control and bulk data. The input file starts with the case control

section, which ends with the BEGIN BULK entry. The bulk data section starts with

the BEGIN BULK entry and ends with the ENDDATA entry. Definitions of nodes and

elements, boundary conditions, applied loads, and material properties are given in

the bulk data section. The case control section specifies how the loads and boundary

conditions will be used for a particular load case. It also controls outputs. The bulk

data entry is given in a fixed column format, where each parameter is specified in

8 columns.

SOL NLSTATIC

This command specifies that the solution type is nonlinear static. This is in the

case control section and usually the first entry in the input file.

NLPARM¼1

This case control entry specifies that the NLPARM entry in the bulk data section

is used for the current load. It is possible that the users can define multiple NLPARM
entries with different identification numbers and use a particular one for the

current load.

BEGIN BULK

This entry shows that the case control section is over and the bulk data section

starts.

NLPARAM

This entry controls the solution procedure of nonlinear analysis. The parameters

of the NLPARM entry are as follows:

NLPARM ID NINC KMETHOD KSTEP MAXITER CONV INTOUT

EPSU EPSP EPSW

ID is a unique identification number that can be activated by the NLPARM¼ ID

entry in the case control section. The entire load is divided by NINC increments.

The parameter, KMETHOD (AUTO, SEMI, ITER), determines how often the

stiffness matrix should be calculated in the modified Newton–Raphson method.

AUTO: the program decides when to calculate stiffness matrix, SEMI: the stiffness
matrix is always calculated at the first iteration and follows the same procedure as

AUTO, and ITER: calculate the stiffness matrix at every KSTEP number of
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iterations. In each load increment, the number of iterations is limited by MAXITER.
The convergence criteria are specified in the CONV parameter using any combina-

tion of U (displacement), P (force), and W (work). The tolerances of these criteria

are given in EPSU, EPSP, and EPSW. If INTOUT is YES, the program will output

intermediate results.

ENDDATA

This entry shows that the bulk data section is over. This is usually the last entry

of the input file.

2.6 Summary

In this chapter, different types of nonlinearities in solid mechanics are introduced,

including geometric, material, kinematic, and force nonlinearities. Geometric

nonlinearity usually occurs when deformation is large, so that the undeformed and

deformed states are significantly different. Material nonlinearity occurs in the con-

stitutive relation, i.e., stress–strain relation. Hyperelastic, elastoplastic, or viscoelastic

materials are examples of nonlinear materials. Kinematic nonlinearity usually occurs

on the boundary of a structure by constraining deformation. The contact constraint is

the most common example of kinematic nonlinearity. Force nonlinearity occurs when

the applied force depends on deformation. A common example is when a pressure

load is applied to a surface that undergoes a large deformation.

General procedures for solving a system of nonlinear equations are introduced in

Sect. 2.2. The key concept is to reduce the magnitude of the residuals at every

iteration using the Jacobian matrix. The Newton–Raphson, modified Newton–

Raphson, and secant and incremental force methods are introduced. The Newton–

Raphson method shows a quadratic convergence when the initial estimate is close

to the solution. The convergence rates of all other methods are between one and

two. However, the Newton–Raphson method has the highest computational costs

because it calculates the Jacobian matrix at every iteration. The Newton–Raphson

method may have difficulty in convergence, or the solution may diverge if the

initial estimate is too far from the solution. In order to improve the convergence, the

incremental force method gradually increases the applied force and uses the

previously converged solution as an initial estimate for the following load incre-

ment. In commercial finite element programs, this incremental force method is

further improved by automatically adjusting the size of load increments such that

the Newton–Raphson iteration converges quickly. It is also discussed that the

displacement-controlled method is more stable than the force-controlled method

for nonlinear structural systems. The solution control commands for three different

commercial finite element programs are briefly introduced in Sect. 2.4.
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2.7 Exercises

P2.1. Find the roots of the following nonlinear vector equations using the Newton–

Raphson method:

P uð Þ � u1 þ u2
u21 þ u22

� �
¼ 3

9

� �
� f:

Use the initial estimate u0¼ {1, 5}T and convergence tolerance¼ 10–5.

Discuss the convergence rate.

P2.2. Using the modified Newton–Raphson method, solve the nonlinear equations

in P2.1. Compare the convergence rate with the Newton–Raphson method.

P2.3. Using the Broyden’s method, solve the nonlinear equations in P2.1. Compare

the convergence rate with the Newton–Raphson method.

P2.4. Using the incremental force method, solve the equations in P2.1. Use five

equal-interval load steps.

P2.5. Consider a uniform bar with a constant Young’s modulus, E¼ 100 MPa;

cross-sectional area, A¼ 2	 10–4 m2; and a unit length, L¼ 1 m. The applied

force F¼ 10 kN is large enough such that the relation between displacement

and strain is nonlinear:

ε uð Þ ¼ du

dx
þ 1

2

du

dx

� �2

:

Using a single two-node bar element, calculate the displacement at the tip and

strain of the element. Use an increment force method with 10 equal force

increments.

Hint: The virtual strain can be obtained through variation of the strain as

ε uð Þ ¼ du

dx
þ du

dx

du

dx
:

F = 10kN

L = 1m

1 2

x

Fig. P2.5
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P2.6. Solve Problem P2.5 using the secant method. Do not use the incremental

force method. Discuss about the convergence rate.

P2.7. Consider a uniform bar with a cross-sectional area, A¼ 2	 10–4 m2, and a

unit length, L¼ 1 m. The bar shows elastoplastic material behavior, as

depicted in the figure. The plastic deformation starts at yield stress

σY¼ 400 MPa. In the elastic region, the Young’s modulus is E¼ 200 GPa,

while in the plastic region, the tangent stiffness is ET¼ 20 GPa. When a

force, F¼ 50 kN, is applied at the end, calculate the tip displacement and

stress of the element using one bar element. Use 10 equal-interval force

increments. Plot the force–displacement curve. Assume the displacement–

strain relation is linear.

F

L

1 2

x E

ET

Fig. P2.7

P2.8. Consider the three nonlinear springs in the figure. The stiffness of each spring

is given by k1¼ 500 + 50u, k2¼ 200 + 100u, and k3¼ 500 + 100u, where u is

the elongation of the spring. Solve the displacements at nodes 1 and 2 using

the Newton–Raphson method when F¼ 100.

k1

k2

u1

u2

F
k3

Fig. P2.8

P2.9. Consider a uniform bar in the figure. The stress–strain relation and

displacement–strain relation are linear. However, the Young’s modulus of

the material varies according to the strain.

σ ¼ E uð Þε uð Þ, ε uð Þ ¼ du

dx
, E uð Þ ¼ E0 1� du

dx

� �
:

When one element is used to model the bar, formulate the nonlinear equation

with the tip displacement being unknown. Solve the tip displacement using

the incremental force method with 10 equal-interval increments. Use
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E0¼ 1.0 GPa, A¼ 10�4 m2, and F¼ 25 kN. Plot the force–displacement

curve. Test what happens when F¼ 30 kN, and explain why.

F = 10kN

L = 1m

1 2

x

Fig. P2.9
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Chapter 3

Finite Element Analysis for Nonlinear
Elastic Systems

3.1 Introduction

In the previous chapter, different nonlinearities are briefly discussed along with

solution procedures. In this and the following chapters, specific nonlinearities will

be discussed in detail. In general, nonlinear systems in solid mechanics can be

categorized by mild and rough nonlinearities. Mild nonlinearity has smooth, path-

independent nonlinear relations between stress and strain. Nonlinear elasticity,

geometric nonlinearity, and deformation-dependent loads belong to this category.

On the other hand, rough nonlinearity includes equality and/or inequality con-

straints in the constitutive relation or kinematic conditions. Elastoplasticity and

contact problems belong to this category. In this chapter, finite element formula-

tions for mild nonlinear systems are developed. Rough nonlinearity will be

discussed in the following chapters.

An important aspect of the problems in this chapter is that they undergo large

deformation, which includes large strain, displacement, and rotation. In linear

structural systems, it is assumed that the magnitude of deformation is infinitesimal

such that there is no significant difference between the deformed and undeformed

shapes. Thus, stress and strain are defined in the undeformed shape, and also the

weak form is integrated over the same shape. Under this assumption, the relation

between displacement and strain becomes linear. However, for large deformation,

the difference between the deformed and undeformed shapes is large enough that

they cannot be treated the same. Thus, the previous definitions of stress and strain

should be modified from the assumption of small deformation. In addition, in linear

structural systems, the relation between stress and strain is assumed linear when

strain is small. However, this relation becomes nonlinear as deformation increases.

Even though several methods for solving nonlinear equations were introduced in

the previous chapter, most were based on the Newton–Raphson method, except

for the secant method. These solution procedures require calculating the residual

and tangent stiffness matrix at each iteration. The residual is calculated from the
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weak form of structural systems, and the tangent stiffness matrix is calculated by

differentiating it. This chapter will focus on how to calculate this residual and

tangent stiffness matrix for a given nonlinear elasticity model. Since the main

purpose of this chapter is to introduce the basic procedure of nonlinear elastic

structural systems, only parts of nonlinear elastic and hyperelastic models will be

introduced in this book. More detailed discussions on the topic can be found in the

books by Belytschko et al. [1] and Wriggers [2].

In general, the structural equilibrium equation—the weak form—is written based

on a frame of reference. The structural geometry at any stage of deformation can be a

frame of reference, but due to simplicity, either the initial, undeformed geometry or

current deformed geometry is often used as a frame of reference. In addition, proper

definitions of stress and strain must be used according to the frame of reference.

When the equilibrium equation is written at the undeformed geometry, it is called the

total Lagrangian formulation. On the other hand, when it is written at the deformed

geometry, it is called the updated Lagrangian formulation. Although these two

formulations refer to different frames of reference, they represent the same structural

equilibrium. Thus, these two formulations are theoretically identical [3]. However,

the numerical implementation of these two formulations becomes different as they

use different measures of stress and strain as well as different integration domains.

3.2 Stress and Strain Measures in Large Deformation

When deformation is infinitesimal, there is no noticeable difference between the

undeformed and deformed geometries. All quantities such as stresses, strains, and

displacements are referred to at the original undeformed geometry. However, in

reality, the structure is in equilibrium after deformation. Thus, to be precise, the

equilibrium equation must be written at the deformed geometry, but this difference

is ignored by the infinitesimal deformation assumption. In the case of large defor-

mation, however, the difference between undeformed and deformed geometries is

significant, and thus, is not ignorable. Thus, it is important to understand how to

represent a large deformation of a material and how to define stress and strain in

such a case. The behavior of material under deformation is studied in continuum

mechanics. This section presents a brief review of important continuum mechanics

concepts related to large displacement problems. For detailed discussions on

continuum mechanics, the readers are referred to the book by Malvern [4].

3.2.1 Deformation Gradient

Consider a general solid that is subjected to some forces and displacements so that

its geometry changes from the initial (or undeformed) to the current (or deformed)

state as shown in Fig. 3.1. This deformation is denoted by a mapping Φ(X,t) where
X¼ [X1, X2, X3] is a material point in the undeformed geometry and t denotes the
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deformation process, with t¼ 0 being the undeformed geometry. In continuum, this

mapping is one-to-one, and Φ and Φ�1 are continuously differentiable. The points

in the initial geometry are denoted by vectors with uppercase letters and those in the

current geometry by lowercase letters. In particular consider a point P, identified by
vector X, in the initial undeformed geometry that is mapped to a point Q, identified
by vector x¼ [x1, x2, x3], in the current deformed geometry. The description of the

mapping from initial to current geometry is symbolically written as follows:

x1 ¼ x1 X1;X2;X3ð Þ
x2 ¼ x2 X1;X2;X3ð Þ
x3 ¼ x3 X1;X2;X3ð Þ

;

or

x ¼ Φ X; tð Þ: ð3:1Þ

The above equation says that for a given point P in the undeformed geometry, a

unique point Q exists in the deformed geometry. Referring to Fig. 3.1, the above

mapping relation can be written as

x ¼ Φ X; tð Þ ¼ Xþ u X; tð Þ; ð3:2Þ

where u(X,t) is the displacement of point P.
In Fig. 3.1, neighboring points P0 and Q0 at infinitesimal distances from P and

Q are denoted by vectors dX and dx, respectively, in the two geometries. The vector

dX deforms to dx. Assuming continuous mapping, the relationship between differ-

ential elements dX and dx can be expressed as follows:

dx ¼ ∂x
∂X

dX ) dx ¼ FdX; ð3:3Þ

Fig. 3.1 Undeformed (Ω0)

and deformed (Ωx)

geometries of a body
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where F is known as the deformation gradient and is written explicitly as follows:

Fij ¼ ∂xi
∂Xj

: ð3:4Þ

Using the relation in Eq. (3.2), the deformation gradient can be written as

F ¼ 1þ ∂u
∂X

¼ 1þ∇0u; ð3:5Þ

where the term ∂u/∂X is called the displacement gradient. For the notational

simplicity, ∇0¼∂/∂X represents the gradient operator at the undeformed geome-

try, such that (∇0u)ij¼∂ui/∂Xj. If F¼ 1, then dx¼ dX, which means that there is

no deformation. Even if an infinitesimal volume in the undeformed geometry can

increase or decrease its size, it cannot shrink to a point, i.e., a zero volume.

Mathematically, this means that the determinant of deformation gradient must be

positive:

detF � J > 0: ð3:6Þ

This property is important to make a valid mapping of Φ(X,t) during large

deformation.

Example 3.1 (Uniform extension) Consider a cube undergoing uniform extensions

in all three directions, so that

x1 ¼ λ1X1, x2 ¼ λ2X2, x3 ¼ λ3X3; ð3:7Þ

where λi are the principal stretches. What is the condition of λs to be a valid

mapping? Calculate the deformation gradient F. In addition, calculate the deformed

volume of an infinitesimal cube that has an initial volume of dV0¼ dX1dX2dX3.

What is the requirement of preserving the volume?

Solution From the requirement of continuity in mapping, all stretches must be

positive, i.e., λi> 0. If λi are constants or functions of time t only, then the

deformation is uniform. The deformation gradient may be found from Eq. (3.4) as

F ¼
λ1 0 0

0 λ2 0

0 0 λ3

2
64

3
75:

If λ1¼ λ2¼ λ3, the cube undergoes a uniform expansion or contraction in all direc-

tions and is referred to as a uniform dilatation. The volume of the cube is initially

dV0¼ dX1dX2dX3 and is now dVx¼ dx1dx2dx3¼ λ1λ2λ3dX1dX2dX3¼ λ1λ2λ3dV0.

When there is no volume change, λ1λ2λ3¼ 1. ▄
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3.2.2 Lagrangian and Eulerian Strains

Since undeformed and deformed geometries are different, the engineering strain from

infinitesimal deformation cannot be used for large deformation. In addition, since the

definition of strain includes derivative of displacementwith respect to the coordinates

of reference frame, either undeformed or deformed geometry must be used as a

reference. Two different definitions of strain will be discussed in the following.

3.2.2.1 Lagrangian Strain

Lagrangian strain uses undeformed geometry as a reference. Consider the two

differential elements, dx and dX, in Fig. 3.1. The vector dX is deformed to dx.

The change in squares of length of these two vectors can be expressed as follows:

dxk k2 � dXk k2 ¼ dxTdx� dXTdX

¼ dXTFTFdX� dXTdX

¼ dXT FTF� 1
� �

dX;

ð3:8Þ

where 1 is a 3� 3 identity tensor. Since dXTdX is the square of the length of vector

dX, the quantity in the parentheses, (FTF� 1), measures the change in squared

lengths with respect to the square of the initial length. The term FTF is an important

quantity and is defined as a right Cauchy–Green deformation tensor:

C ¼ FTF: ð3:9Þ

From the last relation in Eq. (3.8), the Lagrangian strain can be defined as

E ¼ 1

2
C� 1ð Þ: ð3:10Þ

The factor 1/2 is used to make the definition identical to the engineering strains in

case of infinitesimal strains. When there is no deformation, F¼ 1 and thus,E¼ 0. In
terms of displacement gradient, the Lagrangian strain tensor can be written as

E ¼ 1

2

∂u
∂X

þ ∂uT

∂X
þ ∂uT

∂X
∂u
∂X

� �
¼ 1

2
∇0uþ∇0u

T þ∇0u
T∇0u

� �
: ð3:11Þ

It is obvious from the definition that the Lagrangian strain E is symmetric. In

addition, when the displacement gradient is small, then it approaches the following

infinitesimal strain tensor:

ε ¼ 1

2
∇0uþ∇0u

T
� �

: ð3:12Þ
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However, physically, ε cannot be an exact measure of deformation because it does

not remain constant in rigid-body rotations.

Example 3.2 (Strains in a rigid-body rotation) In a counterclockwise rigid-body

rotation through an angle α about the X3-axis, the transformation relation can be

given by

x1 ¼ X1 cos α� X2 sin α
x2 ¼ X1 sin αþ X2 cos α
x3 ¼ X3

; ð3:13Þ

Compare the infinitesimal strain ε with the Lagrangian strain E.

Solution From the given transformation relation, the displacements can be calcu-

lated by

u1 ¼ X1 cos α� X2 sin α� X1

u2 ¼ X1 sin αþ X2 cos α� X2

u3 ¼ 0:
;

The infinitesimal strain in Eq. (3.12) can be written as

ε ¼ 1

2

∂ui
∂Xj

þ ∂uj
∂Xi

� �
¼

cos α� 1 0 0

0 cos α� 1 0

0 0 0

2
4

3
5:

In order to calculate the Lagrangian strain, the deformation gradient is calculated

first by differentiating the transformation relation as

F ¼ ∂xi
∂Xj

� �
¼

cos α sin α 0

� sin α cos α 0

0 0 1

2
4

3
5:

The Lagrangian strain in Eq. (3.10) can be written as

E ¼ 1

2
FTF� 1
� � ¼ 0 0 0

0 0 0

0 0 0

2
4

3
5:

Note that the Lagrangian strain is not affected by the rigid-body rotation, but the

infinitesimal strain varies. ▄
In the above example, ε11 and ε22 are not zero. However, if α is small, then these

quantities are small and may be neglected. Although the infinitesimal strain tensor

is not an exact measure of deformation, it is convenient for use in the applications

involving small strains. An advantage of this strain tensor is its linear relation with
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respect to the displacement gradient. This allows for the application of the tech-

niques of linear analysis in solving boundary-value problems in the linear theory of

elasticity and helps keep the equations of the theory of plasticity simple. Neverthe-

less, using Eq. (3.12), it is necessary to keep in mind that the rigid-body rotation has

to be small.

3.2.2.2 Eulerian Strain

In Eq. (3.8), the change in length is expressed with respect to the undeformed

differential element dX. If the deformed differential element dx is used as a

reference, the change in squares of length of these two vectors can be expressed

as follows:

dxk k2 � dXk k2 ¼ dxTdx� dXTdX

¼ dxTdx� dxTF�TF�1dx

¼ dxT 1� F�TF�1
� �

dx

¼ dxT 1� b�1
� �

dx;

ð3:14Þ

where the left Cauchy–Green deformation tensor b is defined as

b ¼ FFT: ð3:15Þ

Using the left Cauchy–Green deformation tensor, the Eulerian strain tensor can be

defined as

e ¼ 1

2
1� b�1
� �

: ð3:16Þ

From a similar approach, it can be shown that

e ¼ 1

2

∂u
∂x

þ ∂uT

∂x
� ∂uT

∂x
∂u
∂x

� �
¼ 1

2
∇xuþ∇xu

T �∇xu
T∇xu

� �
; ð3:17Þ

where∇x¼∂/∂x represents the gradient operator at the current geometry, such that

(∇xu)ij¼∂ui/∂xj. As with the Lagrangian strain, the Eulerian strain is also sym-

metric and approaches the infinitesimal strain when the displacement gradient is

small.

Example 3.3 (Large displacement and rotation) A four-node element undergoes

large displacement and rotation in the XY plane, as shown in Fig. 3.2. The element is

rotated counterclockwise by 90�, its length is stretched to 2, and width is reduced to
0.7. Calculate the deformation gradient, Lagrangian strain, Eulerian strain, and

engineering strain.
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Solution Using the bilinear shape function in the reference coordinate (s,t), the
mapping relation for the undeformed element can be written as

X ¼
X4
I¼1

NI s; tð ÞXI ¼ 3

4
sþ 1ð Þ

Y ¼
X4
I¼1

NI s; tð ÞYI ¼ 1

2
tþ 1ð Þ

8>>>><
>>>>:

;

and the mapping relation for the deformed element can be written as

x s; tð Þ ¼
X4
I¼1

NI s; tð ÞxI ¼ 0:35 1� tð Þ

y s; tð Þ ¼
X4
I¼1

NI s; tð ÞyI ¼ sþ 1

8>>>><
>>>>:

:

For convenience of notation, let us define the following vectors: X¼ {X,Y}T, x¼
{x,y}T, s¼ {s,t}T. Then, using the chain rule of differentiation, we can calculate the
deformation gradient as

F ¼ ∂x
∂X

¼ ∂x
∂s

∂s
∂X

¼ 0 �:35
1 0

� �
4=3 0

0 2

� �
¼ 0 �0:7

4=3 0

� �
:

It can be easily verified that the above deformation gradient transforms a vector

{1.5,0}T into {0,2}T and {0,1}T into {�0.7,0}T.

From the definition of the Lagrangian strain in Eq. (3.10), E can be defined as

E ¼ 1

2
FTF� 1
� � ¼ 0:389 0

0 �0:255

� �
:

1.5

1.0

X

Y

Undeformed element

Deformed element
2.0

0.7

Fig. 3.2 Finite element

under large deformation and

rotation
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Since the Lagrangian strain has only nonzero diagonal components, the original

rectangular shape is maintained. However, the length in the original X-direction
increases, whereas it decreases in the original Y-direction.

The Eulerian strain can be calculated from Eq. (3.16):

e ¼ 1

2
1� F�TF�1
� � ¼ �0:52 0

0 0:22

� �
:

Note that since the Eulerian strain also has nonzero diagonal components, the

original rectangular shape maintains. However, since the frame of reference is

different from that of the Lagrangian strain, the magnitudes of diagonal components

are different.

In order to calculate engineering strain, it is first necessary to calculate the

displacements at each node. By subtracting the nodal coordinates between

the deformed and undeformed geometries, the following nodal displacement can

be obtained:

u1 ¼ 0:7 u2 ¼ �0:8 u3 ¼ �1:5 u4 ¼ 0:0
v1 ¼ 0:0 v2 ¼ 2:0 v3 ¼ 1:0 v4 ¼ �1:0

:

Then, the displacements of the element can be calculated using the shape functions

as

u ¼
X4
I¼1

NIuI ¼ 1

4
�1:6� 3s� 1:4tð Þ

v ¼
X4
I¼1

NIvI ¼ 1

4
2þ 4s� 2tð Þ:

The displacement gradient can be calculated from the chain rule of differentiation as

∇0u ¼ ∂u
∂s

∂s
∂X

¼ 1

4

�3 �1:4

4 �2

2
4

3
5 4

3
0

0 2

2
4

3
5 ¼ 1

4

�4 �2:8
16

3
�4

2
4

3
5:

The engineering strain can be calculated from the definition in Eq. (3.12)

ε ¼ 1

2
∇0uþ∇0u

T
� � ¼ �1 0:32

0:32 �1

� �
:

Since the engineering strain cannot handle rigid-body rotation, the shear strain term

exists even if the deformed shape remains a rectangle. In addition, both normal

components show compression, even though the actual deformation is tension in

one side and compression in the other side. Thus, engineering strain is not appro-

priate for large deformation and rigid-body rotation. ▄
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3.2.3 Polar Decomposition

If the deformation gradient F is nonsingular, there exists a unique orthogonal tensor

Q and unique positive-definite symmetric tensors U and V such that

F ¼ Q � U ¼ V �Q; ð3:18Þ

where Q is a rotation tensor (rigid-body rotation) and U and V are right and left

stretch tensors, respectively. Note that U and V have the same eigenvalues (prin-

cipal stretches) but different eigenvectors (principal axes of deformation). From

continuum mechanics, it can be further verified that the eigenvectors of U is the

same with those of C. In fact, the relationship between U and C is

U2 ¼ C, U ¼
ffiffiffiffi
C

p
: ð3:19Þ

This can be easily shown from the definition of C¼FTF¼UQTQU¼U2. Thus,

U will have the same eigenvectors with C, and its eigenvalues are square roots of

the eigenvalues of C. In practice, U can be calculated from eigenvectors and

eigenvalues of C. Let E1, E2, and E3 be eigenvectors and λ21, λ
2
2, and λ23 be

eigenvalues of C, respectively. Then, the following two matrices can be

constructed:

Φ ¼ E1 E2 E3½ �, Λ ¼
λ21 0 0

0 λ22 0

0 0 λ23

2
4

3
5: ð3:20Þ

From the spectral decomposition, the right Cauchy–Green deformation tensor can

be written as C¼ΦΛΦT, and the left stretch tensor can be calculated by

U ¼ Φ
ffiffiffiffi
Λ

p
ΦT,

ffiffiffiffi
Λ

p
¼

λ1 0 0

0 λ2 0

0 0 λ3

2
4

3
5: ð3:21Þ

If a new coordinate system is established using the three eigenvectors—the eigen-

vectors are mutually orthogonal—then Λ becomes the right Cauchy–Green

deformation tensor in that coordinate system.

In order to explain the polar decomposition physically, let us consider a general

deformation denoted by dx¼F·dX+ c, where c represents the rigid-body transla-

tion. We can decompose the deformation into

dx ¼ F � dXþ c ¼ Q � U � dXþ c ð3:22Þ
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Equation (3.22) shows that the current configuration can be obtained by

(1) stretching in the principal directions, (2) rigid-body rotation, and then (3) trans-

lation. Whereas, if the left stretch tensor is used, dx can be decomposed by

dx ¼ F � dXþ c ¼ V �Q � dXþ c ð3:23Þ

Equation (3.23) shows that the deformed geometry can be obtained by (1) rigid-

body rotation, (2) stretching in the principal directions, and then (3) translation.

The above decomposition of deformation can further be explained using eigen-

vectors and eigenvalues. Let Ei with i¼ 1,2,3 be the three eigenvectors of U and λi
with i¼ 1,2,3 be the corresponding eigenvalues. In addition, let ei with i¼ 1,2,3 be

the three eigenvectors of V. The deformation process is illustrated in Fig. 3.3. The

first path is to rotate the eigenvector Ei to ei and then to stretch to λi in the direction
of ei. This process is equivalent to Eq. (3.23) with c¼ 0. The second path is to

stretch to λi in the direction of Ei and then to rotate the eigenvectors Ei to ei. This

process corresponds to Eq. (3.22) with c¼ 0. It is clear that two process yields the

same deformation.

Example 3.4 (Simple shear deformation) Consider a simple shear problem

defined by

x1 ¼ X1 þ kX2, x2 ¼ X2, x3 ¼ X3 ð3:24Þ

where k ¼ 2=
ffiffiffi
3

p
. (a) Find F, U, V, andQ. (b) Draw pictures showing the deformed

states of the initially rectangular element at each stage of deformation. Compare the

results obtained from the right stretch and left stretch tensors. (c) Study the

deformation of a diagonal of the initially rectangular element using X2¼X1tanθ

l

l

l

l

l

l

l

Fig. 3.3 Polar decomposition of deformation
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with θ¼ 45o. (d) Study the deformation of a circle in the initially rectangular

element using X2
1 +X

2
2 ¼ a2.

Solution

(a) For a given deformation in Eq. (3.24), the deformation gradient and the right

Cauchy–Green deformation tensor can be calculated as

F ¼
1

2ffiffiffi
3

p 0

0 1 0

0 0 1

2
64

3
75, C ¼ FTF ¼

1
2ffiffiffi
3

p 0

2ffiffiffi
3

p 7

3
0

0 0 1

2
6664

3
7775:

After calculating eigenvalues and eigenvectors of C, the two matrices in

Eq. (3.20) can be calculated as

Φ ¼

1

2
�

ffiffiffi
3

p

2
0ffiffiffi

3
p

2

1

2
0

0 0 1

2
666664

3
777775, Λ ¼

3 0 0

0
1

3
0

0 0 1

2
664

3
775: ð3:25Þ

It is easy to check that C¼ΦΛΦT. Now, the right stretch tensor can be

calculated by

U ¼ Φ
ffiffiffiffi
Λ

p
ΦT ¼

ffiffiffi
3

p

2

1

2
0

1

2

5

2
ffiffiffi
3

p 0

0 0 1

2
666664

3
777775:

The rotation tensor and the left stretch tensor can be calculated from Eq. (3.18) as

Q ¼ FU�1 ¼

ffiffiffi
3

p

2

1

2
0

�1

2

ffiffiffi
3

p

2
0

0 0 1

2
66664

3
77775, V ¼ FQT ¼

5
ffiffiffi
3

p

6

1

2
0

1

2

ffiffiffi
3

p

2
0

0 0 1

2
66664

3
77775

(b) The deformation stages are plotted using a square element, as shown in Fig. 3.4.

In the QU decomposition, the square is first stretched in its eigenvector

directions and then rotated by 30� in the clockwise direction. In the VQ
decomposition, the square is first rotated by 30� in the clockwise direction
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and then stretched in the eigenvector directions. However, both decompositions

yield the same final deformed geometry.

(c) Consider a straight line X2¼X1tanθ. From the deformation in Eq. (3.24), X1

and X2 can be written in terms of deformed coordinates: X1¼ x1 – kx2, X2¼ x2.
Thus, the initially straight line deforms to

x2 ¼ x1 � kx2ð Þ tan θ ) x1 ¼ 1

tan θ
þ 2ffiffiffi

3
p

� �
x2

Note that the initially straight line deforms to another straight line. For exam-

ple, let θ¼ 45�, and then this line will deform to another line with angle α:

tan α ¼ x2
x1

¼ 1

1þ k
) α � 24:9�

(d) The original equation of circle can be written in terms of deformed

coordinates as

X2
1 þ X2

2 ¼ a2 ) x1 � kx2ð Þ2 þ x22 ¼ a2

x21 � 2kx1x2 þ 1þ k2
� �

x22 ¼ a2

Note that the original circle deforms to an ellipse. ▄

Fig. 3.4 Polar decomposition of simple shear deformation
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3.2.4 Deformation of Surface and Volume

3.2.4.1 Volume Changes

The change in volume cannot be ignorable in large deformation. In addition, many

materials show different behaviors between volume-changing deformation (dilata-

tion) and volume-preserving deformation (distortion). Thus, it is important to

express the change in volume in terms of deformation. Consider an infinitesimal

volume element that is composed of three vectors in the undeformed geometry

dV0¼ dX1�(dX2� dX3), which is deformed to dVx¼ dx1�(dx2� dx3). Using the

definition of deformation gradient, i.e., dx¼FdX, the relation between dV0 and

dVx can be obtained as

dVx ¼ JdV0; ð3:26Þ

where J¼ |F|¼ det(F) is the determinant of deformation gradient (see Problem

P3.2). Using the relationship in Eq. (3.26), we can calculate the volumetric strain by

dVx � dV0

dV0

¼ J � 1: ð3:27Þ

Note that if a material is incompressible, then J¼ 1. From the above relation, it is

clear that J must be positive because it is impossible for a deformed volume to be

zero or negative. In addition, the above relation can provide an important transfor-

mation in the integral of weak form. For example, if a function f is to be integrated

over the deformed domain, then using Eq. (3.26), the integral domain can be

changed to the undeformed geometry asZZZ
Ωx

f dΩ ¼
ZZZ

Ω0

fJ dΩ: ð3:28Þ

The above relation yields a very convenient way of solving nonlinear equations. Since

the deformed geometryΩx is unknown, it is difficult to perform integration on the left-

hand side. However, the integral on the right-hand side is performed over the known

initial geometryΩ0. The determinant J contains all the effects of changing geometry.

3.2.4.2 Area Changes

Similar to the change in volume, the change in the surface area can also be

expressed in terms of deformation. The change in surface area is especially impor-

tant when a pressure load is applied on the surface and is dependent on the surface

area. Let N be a unit normal vector on infinitesimal area dS0 of the parallelogram
shown in Fig. 3.5, with two edges (dX1 and dX2) on an undeformed surface S0. Let
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n be a unit normal vector on an infinitesimal area dSx of deformed surface Sx, with
edges dx1 and dx2. The objective is to find a relationship between dS0 and dSx when
both surfaces are smooth.

The edges dx1 and dx2 can be represented by using the deformation gradient and

the edges on the initial boundary as

dx1 ¼ FdX1

dx2 ¼ FdX2
: ð3:29Þ

Since the mapping between dS0 and dSx are one-to-one, the inverse mapping F�1

exists. Using F�1, the inverse relations can be obtained as

dX1 ¼ F�1dx1

dX2 ¼ F�1dx2
: ð3:30Þ

Then, the infinitesimal areas of two boundaries can be denoted by using a vector

product as

NdS0 ¼ dX1 � dX2

ndSx ¼ dx1 � dx2
: ð3:31Þ

The above vector notation can be represented in Cartesian rectangular components

as

NidS0 ¼ eijkdX
1
j dX

1
k

nrdSx ¼ erstdx
1
sdx

2
t

; ð3:32Þ

dSx
dx1

n

Sx
xdS0

dX1

N

S0

X

F(X)

dX2 dx2

Fig. 3.5 Differential surfaces in the undeformed and deformed configurations
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where eijk is a permutation symbol, defined as

eijk ¼
0 when any two indices are equal

þ1 when i, j, k are an even permutation of 1, 2, 3

�1 when i, j, k are an odd permutation of 1, 2, 3

8><
>: : ð3:33Þ

From the first equation of Eq. (3.32), and by using Eq. (3.30),

NidS0 ¼ eijk
∂Xj

∂xs

∂Xk

∂xt
dx1sdx

2
t : ð3:34Þ

Multiplying both sides of Eq. (3.34) by ∂Xi/∂xr and summing on i, the following

relation can be obtained:

∂Xi

∂xr
NidS0 ¼ eijk

∂Xi

∂xr

∂Xj

∂xs

∂Xk

∂xt
dx1sdx

2
t : ð3:35Þ

For any 3� 3 matrix with elements amn, the following identity can be proved by

direct calculation:

erstdet amn½ � ¼ eijkairajsakt: ð3:36Þ

Since the deformation gradient F has ∂x/∂X as elements, the following relations

hold:

eijk Fj j ¼ erst
∂xr
∂Xi

∂xs
∂Xj

∂xt
∂Xk

erst F
�1

		 		 ¼ eijk
∂Xi

∂xr

∂Xj

∂xs

∂Xk

∂xt

: ð3:37Þ

By substituting the second part of Eq. (3.37) into Eq. (3.35) and by recalling that

|F�1|¼ |F|�1, the following simplified form can be obtained:

∂Xi

∂xr
NidS0 ¼ Fj j�1erstdx

1
sdx

1
t ; ð3:38Þ

which can be rewritten using Eq. (3.32) as

ndSx ¼ JF�T � NdS0: ð3:39Þ
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Thus, n is parallel to F�T·N. The explicit form of n can be obtained by normalizing

the right side of Eq. (3.39) as

n ¼ F xð Þ�TN Xð Þ
F xð Þ�T

N Xð Þ

 

 ; ð3:40Þ

where ||a||¼ (aTa)1/2 is the Euclidean norm. By applying Eq. (3.40) to Eq. (3.39),

we finally obtain the desired relation between dΓ0 and dΓx as

dSx ¼ J F xð Þ�T
N Xð Þ

 

dS0: ð3:41Þ

Note that the deformed surface dSx depends on not only J but also the unit normal

vector of the undeformed surface.

Example 3.5 (Extension of an incompressible bar) Consider a bar under uniaxial

tension, as shown in Fig. 3.6. The initial length and cross-sectional area are L0 and
A0¼ h0� h0, respectively. A force is applied at the tip such that the deformed length

and cross-sectional area of the bar become L and A¼ h� h, respectively. When the

material is incompressible, calculate the deformed cross-sectional dimension h and area
A in terms of L, L0, and h0.

Solution Since the bar will maintain its rectangular shape, there is no shear

deformation. In addition, since both X2 and X3 directions are unconstrained, and

the cross section remains a square; i.e., the principal stretches in these two direc-

tions will be the same. Thus, the relation between undeformed and deformed

geometries can be written as

x1 ¼ λ1X1, x2 ¼ λ2X2, x3 ¼ λ3X3:

From the given deformation, the principal stretches can be written as

λ1 ¼ L

L0
, λ2 ¼ λ3 ¼ h

h0
;

and the deformation gradient can be obtained as

Fig. 3.6 Extension of an incompressible bar
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F ¼
λ1 0 0

0 λ2 0

0 0 λ3

2
4

3
5:

The determinant of the deformation gradient becomes

J ¼ Fj j ¼ λ1λ2λ3 ¼ L

L0

h

h0

� �2

¼ LA

L0A0

;

Thus, from the incompressible condition

J ¼ 1 ) h ¼ h0

ffiffiffiffiffi
L0
L

r
, A ¼ A0

L0
L
: ▄

3.2.5 Cauchy and Piola-Kirchhoff Stresses

Stress is one of the most important quantities in solid mechanics. It is used in the

equilibrium of a structure and also to determine the failure of a material. Similar to

strain, stress also depends on the frame of reference. Different stresses can be defined

based on the frame of reference used. In general, stress is defined by force acting on

an infinitesimal area. In linear analysis, it was unnecessary to distinguish the

deformed area from the undeformed area because of the infinitesimal deformation

assumption. However, when deformation is large, it is important to clarify what area

is used in defining stress. In fact, depending on the area used, the definition of stress

changes. Since the undeformed and deformed geometries are used as frames of

reference, the areas from these two geometries will be used in defining stresses.

Referring to Fig. 3.7, the stress vector at point Q in the current deformed

geometry can be written using the area of the differential element ΔSx, the force

Δf acting on it, and the unit normal n of the area as

P

N

∆S0

Q nx

∆f

Initial geometry Current  geometry

∆S

Fig. 3.7 Stress vectors in the initial and deformed geometries
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t ¼ lim
ΔSx!0

Δf
ΔSx

¼ σn; ð3:42Þ

where σ is known as the Cauchy stress tensor with a dimension of 3� 3. The

Cauchy stress tensor refers to the current deformed geometry as a reference for both

the force and area, and therefore it is often called the true stress.

A different stress vector can be defined by considering the same force Δf but the
differential area ΔS0 and the unit normal N in the undeformed geometry as

T ¼ lim
ΔS0!0

Δf

ΔS0
¼ PTN; ð3:43Þ

where P is known as the first Piola-Kirchhoff stress tensor with a dimension of

3� 3. Different from the Cauchy stress, the first P–K stress P is not symmetric. In

fact, σ refers to the current geometry for both force and area, whereas P refers to the

force in the current geometry and the area in the initial geometry.

Since a differential surface area in the current geometry with unit normal n is

related to its counterpart in the initial geometry through Eq. (3.39), the first Piola-

Kirchhoff stress is also related to the Cauchy stress. In order to develop this

relationship, the infinitesimal force is written in terms of two stresses as

df ¼ σndSx ¼ PTNdS0: ð3:44Þ

Using the relation in Eq. (3.39), the following relationship between P and σ can be

obtained:

P ¼ JF�1σ: ð3:45Þ

The first Piola-Kirchhoff stress tensor has one undesirable property: it is not

symmetric. By post-multiplyingPwith the transpose of the inverse of the deformation

gradient, a symmetric tensor can be obtained. This pseudo stress tensor is called the

second Piola-Kirchhoff stress tensor and will be denoted by S. Thus, from definition,

S ¼ PF�T ¼ JF�1σF�T: ð3:46Þ

If the second Piola-Kirchhoff stress tensor is known, the Cauchy stress tensor can be

obtained by inverting the relationship as follows:

σ ¼ 1

J
FSFT: ð3:47Þ

In Eq. (3.47), the denominator J is related to the volume change between the

undeformed and deformed geometries. It is inconvenient to calculate stress with the

effect of the determinant because it also depends on the deformation. Thus, a new

stress measure can be defined that has a similar transformation relationship with
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Eq. (3.47), except for the determinant. This new stress is called Kirchhoff stress and

is defined as

τ ¼ Jσ ¼ FSFT: ð3:48Þ

Referring to Eq. (3.28), the convenience of the Kirchhoff stress can be obvious. The

weak form of a structural system is in fact a balance between the internal virtual

work and the external virtual work. In large deformation systems, the internal

virtual work can be defined asZZZ
Ωx

σ : εdΩ ¼
ZZZ

Ω0

τ : εdΩ: ð3:49Þ

Thus, by using the Kirchhoff stress, the integral can be performed in the

undeformed geometry. The Kirchhoff stress tensor is exactly the same as the

Cauchy stress tensor, except that it refers to the undeformed domain.

It should be emphasized that the Piola-Kirchhoff stresses are just convenient

mathematical quantities. They are not directly related to the surface tractions in the

deformed geometry as are the Cauchy’s stresses. In linear analysis, the displace-

ments are assumed to be small and no distinction is made in the initial and deformed

geometries, and hence Piola-Kirchhoff and Cauchy stresses become identical, i.e.,

σ� τ�P� S.

The stresses produced in a body are related to material straining. Rigid-body

rotations and translations obviously do not cause any stresses regardless of their

magnitudes. Thus, the constitutive equations are valid for any stress and strain

measures which are invariant under rigid-body motions. It can be shown that the

second Piola-Kirchhoff stress and Lagrangian strain are invariant under large rigid-

body rotations and translations. Thus, the relationship between them can be written

using constitutive equations. In particular, if the material is assumed to remain

elastic, then the generalized Hooke’s law can be used to relate the stress and strain,

which will be discussed in the following section.

Example 3.6 (Cauchy stress and the second Piola-Kirchhoff stress) Consider the

uniaxial tension of a bar in Example 3.5. When the applied load at the end of the bar

is F, calculate the Cauchy stress and the first and second Piola-Kirchhoff stresses.

Assume that the applied force is uniformly distributed over the cross section.

Solution Since the applied force F is uniformly distributed over the cross section,

the Cauchy stress becomes

σ ¼
F=A 0 0

0 0 0

0 0 0

2
4

3
5:
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Since all components are zero except for σ11, only the first component will be

discussed in the following calculations. From the relation in Eq. (3.45), the first

Piola-Kirchhoff stress can be calculated by

P11 ¼ JF�1σ
� �

11
¼ F

A

1

λ1
¼ F

A

A

A0

¼ F

A0

:

Note that the first Piola-Kirchhoff stress is defined with respect to the undeformed

cross-sectional area A0. Using Eq. (3.47), the second Piola-Kirchhoff stress can be

calculated as

S11 ¼ JF�1 � σ � F�T
� �

11
¼ F

A

1

λ21
¼ F

A

A2

A2
0

¼ FA

A2
0

¼ F

A0λ1
:

Note that the second Piola-Kirchhoff stress does not have clear physical meaning.

In the case of extension, i.e., λ> 1, the magnitude of the three stresses is such that

σ11>P11> S11. In the case of compression, i.e., λ< 1, they are σ11<P11< S11. ▄

3.3 Nonlinear Elastic Analysis

As a first step toward formulating nonlinear structural systems, a simple elastic

system is introduced in this section. Among different nonlinearities in the previous

chapter, only geometric nonlinearity will be discussed. In other words, the structure

may experience large deformation, but the stress–strain relation is still linear. Of

course, the linear stress–strain relation does not indicate a linear system because

different measures of stress and strain are used for large deformation systems. Out

of various possible combinations, the second Piola-Kirchhoff stress and Lagrangian

strain will be used in the following derivations of nonlinear elastic systems.

One of the unique properties of elasticity is that a potential exists such that the

structure is in equilibrium under deformation at which the potential has a minimum

value. In such a case, the principle of minimum potential energy can be used to

derive the equilibrium equation of nonlinear elastic structures, and the strain energy

density can be differentiated with respect to strain in order to obtain stress.

The solution procedure usually requires a (incremental) linearization procedure,

such as the Newton–Raphson method in Chap. 2. Based on the reference frame used

for the linearization, two formulations will be introduced: the total Lagrangian

(material) and the updated Lagrangian (spatial). Through consistent linearization

and transformation, it will be shown that the two are equivalent.
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3.3.1 Nonlinear Static Analysis: Total Lagrangian
Formulation

In this section, a structural equilibrium equation and its linearization will be

developed for nonlinear elastic systems using undeformed geometry as a frame of

reference. Figure 3.8 shows the initial and deformed geometries of a structure. Even

if the goal is to find the final equilibrium geometry when the total force is applied to

the structure, the applied force is often incrementally increased and solved for

intermediate equilibrium. In Chap. 2, this incremental force was explained using a

load step or a time step. Let us consider a static system that is composed of N load

steps. Before reaching the final load step, the current load step is denoted by n. We

will denote the nth load as tn. For variables that depend on load steps, we will use a
left superscript to denote the variable at a specific load step. For example, 0Ω(X)
and nΩ(x) represent the initial and current domains, respectively. In many cases, for

notational convenience, we will omit left superscript n unless needed for clarity.

In starting the nth load step, the applied load is increased and structural equilib-

rium is sought using iterative methods, such as the Newton–Raphson method. It is

further assumed that up to the kth iteration has been finished. The objective is to find
the incremental displacement at the (k+ 1)th iteration so that the residual force

vanishes. With this status at hand, a nonlinear equilibrium equation and incremental

solution procedure are developed in the following subsections.

Fig. 3.8 Configuration change during deformation
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3.3.1.1 Constitutive Relation

The constitutive theory, or stress–strain relation, describes the macroscopic behav-

ior of a material between deformation (strain) and internal force (stress) caused by

deformation. Since the behavior of real materials is in general very complex, it is

approximated using physical observations of the material’s response. This approx-
imation can be done separately for different material responses (e.g., elastic, plastic,

or viscoplastic).

A structural material is called elastic when a strain energy density W exists such

that the stress can be obtained by differentiating W with respect to strain. For this

approach, appropriate stress and strain measures must be used. For example, when

engineering strain is used in defining W, the Cauchy stress must be used as a stress

measure. In the same sense, the second Piola-Kirchhoff stress must be used when the

Lagrangian strain is used. Since the reference frame of the total Lagrangian formula-

tion is undeformed geometry, it is convenient to use the Lagrangian strain in defining

the strain energy density. Then, the second Piola-Kirchhoff stress can be obtained by

differentiating the strain energy density with respect to the Lagrangian strain.

Even if complex material responses can be introduced, such as hyperelastic

material models in Sect. 3.5, a simple form of constitutive relation is first intro-

duced. To take a simple example using St. Venant–Kirchhoff nonlinear elastic

material [5] , consider the following form of the strain energy density:

W Eð Þ ¼ 1

2
E : D : E; ð3:50Þ

where the notation “:” is the contraction operator of tensors, such that a:b¼ aijbij,
with summation in repeated indices, andD is the fourth-order constitutive tensor for

isotropic materials, defined by

D ¼ λ1	 1þ 2μI

Dijkl ¼ λδijδkl þ μ δikδjl þ δilδjk
� � : ð3:51Þ

This is basically the same as linear elastic materials. In Eq. (3.51), λ and μ are

Lame’s constants for isotropic materials, 1 is the second-order unit tensor, 	 is the

symbol for the tensor product, and I is the fourth-order unit symmetric tensor

defined as Iijkl¼ (δikδjl+ δilδjk)/2. Two Lame’s constants in the above equation can

be expressed using regular elastic constants for the isotropic material as

λ ¼ νE

1þ νð Þ 1� 2νð Þ, μ ¼ E

2 1þ νð Þ; ð3:52Þ

where E is Young’s modulus and ν is Poisson’s ratio. Among four constants, only

two are independent for an isotropic material.
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The constitutive relation can be obtained by differentiating Eq. (3.50) with

respect to the Lagrangian strain E, to obtain

S � ∂W Eð Þ
∂E

¼ D : E ¼ λ tr Eð Þ1þ 2μE; ð3:53Þ

where S is the second Piola-Kirchhoff stress. Note that the relation between stress

S and strain E is linear. In practice, not many materials will show the linear stress–

strain relation as in Eq. (3.53) when the strain is large. Thus, the constitutive

relation in Eq. (3.53) is restricted to a small strain. As has seen in Example 3.3,

because the Lagrangian strain is not affected by rigid-body motions, this constitu-

tive relation can accurately represent deformation with rigid-body motions. In fact,

using polar decomposition, the deformation gradient can be decomposed into

F¼Q�U where Q is the rotational tensor and U is the stretch tensor. Then, only

the stretch tensor should affect the strain. In fact, the Lagrangian strain can be

written in terms of the stretch tensor by

E ¼ 1

2
U2 � 1
� �

: ð3:54Þ

Example 3.7 (St. Venant–Kirchhoff material) For the simple shear deformation in

Example 3.4, calculate the first and second Piola-Kirchhoff stresses and Cauchy

stress as a function of shear parameter k. Plot the shear stress components from the

three stresses as a function of parameter k. Assume isotropic St. Venant–Kirchhoff

material between the second Piola-Kirchhoff stress and the Lagrangian strain. The

two constants are E¼ 100 MPa and ν¼ 0.25.

Solution From the given deformation in Example 3.4, the Lagrangian strain can be

calculated as

E ¼ 1

2
C� 1ð Þ ¼ 1

2

0 k 0

k k2 0

0 0 0

2
4

3
5:

Convert the two material constants to the Lame’s constants because they are

convenient to use:

λ ¼ νE

1þ νð Þ 1� 2νð Þ ¼ 40MPa, μ ¼ E

2 1þ νð Þ ¼ 40MPa:

Thus, from Eq. (3.53),

S ¼ D : E ¼ λ tr Eð Þ1þ 2μE ¼ 20
k2 2k 0

2k 3k2 0

0 0 k2

2
4

3
5MPa:

164 3 Finite Element Analysis for Nonlinear Elastic Systems



Note that in addition to the shear component S12, normal components also exist.

These normal components are all second order. Thus, if the shear deformation is

small, they will approach zero quickly and recover the infinitesimal deformation

theory. The first Piola-Kirchhoff and Cauchy stresses can be calculated from the

relation in Eqs. (3.45) and (3.47) as

P ¼ SFT ¼ 20

3k2 2k 0

2k þ 3k3 3k2 0

0 0 k2

2
64

3
75MPa;

σ ¼ 1

J
FSFT ¼ 20

5k2 þ 3k4 2k þ 3k3 0

2k þ 3k3 3k2 0

0 0 k2

2
4

3
5MPa:

Note that all three stresses have the same linear shear stress component and all other

terms are higher orders. Since the higher-order terms will decrease quickly for

small k values, they all recover the infinitesimal simple shear deformation. The first

Piola-Kirchhoff stress is not symmetric, and the Cauchy stress is different from the

stress in linear analysis. Indeed, the Cauchy stress here is the current stress at the

deformed geometry, while the stress in linear analysis is from small deformation

assumption. Figure 3.9 shows the plot of shear stress components. Note that in the

St. Venant–Kirchhoff material, the second Piola-Kirchhoff stress is linear, while

other stresses are nonlinear. ▄

3.3.1.2 Boundary Conditions

To obtain a well-defined mathematical problem, boundary conditions must be

added to the equilibrium equation, which prescribes the displacement field u on

Γg and the surface tractions fS on ΓS in the following forms:

-0.4 0.2 0.4-0.2 0.0

20

10

0

-10

-20

2nd P-K stress

Shear parameter k
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r s
tre

ss

Cauchy stress

Fig. 3.9 Shear component

of the second P–K and

Cauchy stresses
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u ¼ g on Γh

t ¼ PTN on Γs:
ð3:55Þ

Mathematically, the first is called the essential boundary condition and the second

the natural boundary condition. Note that even if the second Piola-Kirchhoff stress

is used as a stress measure, the first Piola-Kirchhoff stress is used in the traction

boundary condition as the latter is based on physical forces. Using the displacement

boundary conditions, the solution space  and the space ℤ of kinematically

admissible displacements are defined as

 ¼ u j u 2 H1 Ωð Þ� �N
,ujΓh ¼ g

n o
; ð3:56Þ

and

ℤ ¼ u j u 2 H1 Ωð Þ� �N
,ujΓh ¼ 0

n o
; ð3:57Þ

where H1(Ω) is the space of functions whose first-order derivatives are bounded in

the energy norm. The space ℤ is the same as solution space, except that it satisfies
the homogeneous essential boundary conditions.

3.3.1.3 Principle of Minimum Potential Energy

The weak form of a nonlinear elastic system can be obtained from the principle of

minimum potential energy. The potential energy of an elastic system is the differ-

ence between the stored strain energy ∏int and the work done by external forces

∏ext. The strain energy can be obtained by integrating the strain energy density

function in Eq. (3.50) over the undeformed initial geometry. The work done by

applied forces can be obtained by multiplying displacement with the applied forces.

For simplicity, it is assumed that the applied forces are conservative, which means

that the applied load is independent of deformation. Therefore, these forces can be

transformed to the undeformed geometry.

Using the strain energy and work done by applied forces, the potential energy of

an elastic system can be obtained as

Π uð Þ ¼ Πint uð Þ � Πext uð Þ
¼
ZZ

0Ω
W Eð Þ dΩ�

ZZ
0Ω
uTfb dΩ�

Z
0Γs

uTtdΓ;
ð3:58Þ
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where fb is the body force, t is the surface traction force on the boundary 0Γs, and
E is the Lagrangian strain, defined as

E ¼ 1

2
FTF� 1
� � ¼ 1

2
∇0u

T þ∇0uþ∇0u
T∇0u

� �
: ð3:59Þ

The principle of minimum potential energy holds that displacement field u 2  in

the equilibrium minimizes Eq. (3.58). In order to find the displacement at the mini-

mum potential energy, a perturbation method is often used. Let us assume that the

displacement field u is perturbed in the direction ofu (arbitrary) and τ is the parameter

that controls the perturbation size. The perturbed displacement is denoted by

uτ ¼ uþ τu: ð3:60Þ

Note that u corresponds to the virtual displacement in the principle of virtual work.

In the above equation, the perturbed solution uτ also belongs to the solution space.
Accordingly, the variation u must satisfy the homogeneous essential boundary

condition, i.e., u 2 ℤ.
Then, the first variation of the potential energy can be obtained by taking the

first-order variation of ∏(u) in the direction of u, as

Π u; uð Þ � d

dτ
Π uþ τuð Þ

				
τ¼0

; ð3:61Þ

where the overhead bar symbol represents the first-order variation of a function.

The process of variation is similar to the differentiation of a function. Note that

∏(u) only depends on the displacement u, whereas Π u; uð Þ depends on both u and

its variation u. Using the potential energy in Eq. (3.58) and equating the first

variation to zero, the following variational equation can be obtained:

Π u; uð Þ ¼
ZZ

0Ω

∂W Eð Þ
∂E

: E dΩ�
ZZ

0Ω
uTfb dΩ�

Z
0Γs

uTtdΓ ¼ 0: ð3:62Þ

In the above equation, the variation of the work done by applied loads is straight-

forward as it is linear with respect to the displacement u. For the variation of the

strain energy, using the chain rule of differentiation, the strain energy density is

differentiated with respect to the Lagrangian strain, and then the variation of the

Lagrangian strain is taken from its definition in Eq. (3.59) as

E u;uð Þ ¼ d
dτE uþ τuð Þ		

τ¼0

¼ 1

2
∇0uþ∇0u

T þ∇0u
T∇0uþ∇0u

T∇0u
� �

¼ sym ∇0u
T þ∇0u

T∇0u
� �

¼ sym ∇0u
TF

� �
; ð3:63Þ
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where sym(•) denotes the symmetric part of a tensor. Note that E u; uð Þ is a bilinear
function of u and u, even if E(u) is nonlinear. The principle of minimum potential

energy says that if the system is in equilibrium, the variation in Eq. (3.62) must

vanish for all u that belongs to the space ℤ of kinematically admissible displace-

ments. This is similar to the idea that a function has its minimum value when its

slope becomes zero.

Since the variational equation (3.62) is similar to that of linear systems, the same

notation will be used here. Thus, the variational equation for the nonlinear elastic

system can be written as

a u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ; ð3:64Þ

where a u; uð Þ is the energy form and ‘ uð Þ is the load form, defined as

a u; uð Þ ¼
ZZ

0Ω
S uð Þ : E u; uð Þ dΩ; ð3:65Þ

and

‘ uð Þ ¼
ZZ

0Ω
uTfB dΩþ

Z
0Γs

uTtdΓ: ð3:66Þ

The only difference is that the energy form a u; uð Þ is nonlinear with respect to its

arguments. Note that the derivative of strain energy density with respect to

Lagrangian strain becomes the second Piolar-Kirchhoff stress from Eq. (3.53).

The variational equation in Eq. (3.64) is indeed the weak form of nonlinear

elastic systems. It is called the material description or the total Lagrangian formu-

lation, since the stress S and the strain E use the initial undeformed geometry as a

reference. Note that a u; uð Þ and ‘ uð Þ are linear with respect to u but are nonlinear

with respect to displacement u. Nonlinearity comes from the fact that the stress and

strain implicitly depend on u.

3.3.1.4 Linearization (Tangent Stiffness)

The nonlinear variational equation (3.64) cannot be solved easily due to the

nonlinearity involved in the displacement–strain relation. A general nonlinear equa-

tion can be solved using a Newton–Raphson iterative method through a sequence of

linearization. Let us assume that equilibrium in Eq. (3.64) is not satisfied. Then, the

difference between the left- and right-hand sides is defined as a residual,

R ¼ a u; uð Þ � ‘ uð Þ: ð3:67Þ

In the Newton–Raphson method, the Jacobian of the residual is required in each

iteration. Since the Jacobian in a one-dimensional problem is nothing but a tangent
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line at the current solution, it is often called a tangent stiffness, and the process is

called linearization. Let the linearization of a function f(x) in the direction Δu be

denoted as

L f½ � � d

dω
f xþ ωΔuð Þ

				
ω¼0

¼ ∂f
∂x

T

Δu: ð3:68Þ

Note that this process is similar to the variation of a function in Eq. (3.61) by

substituting Δu for u. If right superscript k denotes the iteration counter, then the

linear incremental solution procedure of the nonlinear equation f(xk+1)¼ 0 becomes

∂f
∂xk

T

Δuk ¼ �f xk
� �

ukþ1 ¼ uk þ Δuk ð3:69Þ
xkþ1 ¼ Xþ ukþ1:

Thus, for a nonlinear elastic system, Eq. (3.67) is solved iteratively until the

residual term vanishes. Figure 3.10 illustrates a one-dimensional example of the

Newton–Raphson iterative method.

The nonlinear equation (3.64) can be linearized following the same procedure

explained in Eq. (3.69). Since the load form in Eq. (3.66) is independent of

displacement, it is unnecessary to linearize it. Linearization of the energy form in

Eq. (3.65) can be written as

L a u; uð Þ½ � ¼
ZZ

0Ω
ΔS : Eþ S : ΔE
� �

dΩ; ð3:70Þ

where ΔS is the stress increment andΔE is the increment of strain variation. For the

St. Venant–Kirchhoff material, the stress–strain relation is linear, and thus, the

increment of stress can be written as

ΔS ¼ ∂S
∂E

: ΔE ¼ D : ΔE; ð3:71Þ

xkxk+1 x
Δuk

f(xk)

f(xk+1)

f
x

∂

∂

Fig. 3.10 Newton–

Raphson method for

nonlinear equation f¼ 0
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whereD is the fourth-order constitutive tensor in Eq. (3.51) andΔE is the increment

of Lagrangian strain. By noting that the increment of deformation gradient is

ΔF¼∇0Δu from Eq. (3.5), the increment of Lagrangian strain and its variation

can be obtained as

ΔE u,Δuð Þ ¼ sym ∇0ΔuTF
� � ð3:72Þ

and

ΔE Δu,uð Þ ¼ sym ∇0u
T∇0Δu

� �
: ð3:73Þ

Thus, the linearization of the energy form in (3.70) can be explicitly derived with

respect to displacement and its variation as

L a u; uð Þ½ � ¼
ZZ

0Ω
E : D : ΔEþ S : ΔE
� �

dΩ � a
 u;Δu,uð Þ: ð3:74Þ

The notation a
 u;Δu, uð Þ is used such that the form implicitly depends on the total

displacement u and is bilinear with respect to Δu and u. The first integrand of

a
 u;Δu, uð Þ in Eq. (3.74) depends on the stress–strain relation. Since it is similar to

the stiffness term in linear systems, it is called the tangent stiffness. On the other

hand, the second integrand does not exist in linear systems. It only appears in

geometric nonlinear problems. Since it has the stress term, it is called the initial

stress stiffness.

Let the current load step be tn and let the current iteration counter be k. Assuming

that the applied loads are independent of displacement, the linearized incremental

equation of Eq. (3.64) is obtained as

a
 nuk;Δuk,u
� � ¼ ‘ uð Þ � a nuk; u

� �
, 8u 2 ℤ; ð3:75Þ

and the total displacement is updated using

nukþ1 ¼ nuk þ Δuk ð3:76Þ

Note that incremental equation (3.75) is in the form of [nKk]∙{Δuk}¼ {nRk} after

discretization using finite elements, which will be discussed in Sect. 3.6. Equation

(3.75) is solved iteratively until the residual vanishes, which means that the original

nonlinear equation (3.64) is satisfied.

Example 3.8 (Uniaxial bar: total Lagrangian formulation) Using the total

Lagrangian formulation, solve displacement at the tip, stress, and strain of the

uniaxial bar in Fig. 3.11 under tip force F¼ 100 N. Use a two-node bar element.

Assume St. Venant–Kirchhoff material with E¼ 200 Pa and cross-sectional area

A¼ 1.0 m2.
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Solution Since Node 1 of the bar element is fixed, u2 is the only free degree of

freedom. In addition, since the length of the element is a unit, the approximation of

displacement gradient and its variation become

du

dX
¼ u2,

du

dX
¼ u2:

Since the problem is one-dimensional, it is sufficient to consider S11 for stress and
E11 for strain. First, the strain energy density of the St. Venant–Kirchhoff material

is given as

W E11ð Þ ¼ 1

2
E � E11ð Þ2

where E is Young’s modulus and the Lagrangian strain E11 is defined as

E11 ¼ du

dX
þ 1

2

du

dX

� �2

¼ u2 þ 1

2
u2ð Þ2:

Note that the strain is a nonlinear function of displacement. For the elastic material,

the second Piola-Kirchhoff stress can be calculated by

S11 ¼ ∂W
∂E11

¼ E � E11 ¼ E u2 þ 1

2
u2ð Þ2

� �
:

The variation of the Lagrangian strain becomes

E11 ¼ du

dX
þ du

dX

du

dX
¼ u2 1þ u2ð Þ:

Thus, the energy form can be obtained as

a u; uð Þ ¼
Z L0

0

S11E11AdX ¼ S11AL0 1þ u2ð Þu2:

L0=1m

1 2 F = 100N 

x

Fig. 3.11 Uniaxial bar

analysis using the total

Lagrangian formulation
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Note that both stress and strain are constant within the element. Since the applied

load is a concentrated force at the tip, no integration is required. The load form

simply becomes

‘ uð Þ ¼ u2F:

The difference between the energy and load forms can be defined as a residual R,
and the nonlinear variational equation satisfies when the residual becomes zero:

R ¼ u2 S11AL0 1þ u2ð Þ � Fð Þ ¼ 0

for any arbitrary u2.
In order to solve the nonlinear variational equation using the Newton–Raphson

method, the following increments of stress and strain variation are required:

ΔS11 ¼ EΔE11 ¼ E 1þ u2ð ÞΔu2
ΔE11 ¼ u2Δu2

Thus, the linearization of the energy form becomes

a
 u;Δu, uð Þ ¼
Z L0

0

E11 � E � ΔE11 þ S11 � ΔE11

� �
AdX

¼ EAL0 1þ u2ð Þ2u2Δu2 þ S11AL0u2Δu2
:

Let the current iteration counter be k. Since the linearized variational equation must

satisfy for all u2, the coefficients of u2 must be equal to zero:

E 1þ uk
2

� �2 þ Sk
11

h i
AL0Δuk

2 ¼ F� Sk
11 1þ uk

2

� �
AL0

After solving for the incremental displacement, the total displacement is updated by

ukþ1
2 ¼ uk

2 þ Δuk
2 :

The iteration continues until the convergence criterion discussed in Chap. 2 is

satisfied. Below is a MATLAB program that solves for the uniaxial bar using the

total Lagrangian formulation. Table 3.1a shows the convergence history using the

Newton–Raphson method. Note that the converged stress is 75.6 Pa, which is

smaller than the infinitesimal assumption stress of 100 Pa. This happens due to

the nonlinear displacement–strain relation.

It is interesting to note that without the initial stiffness term, S11ALu2Δu2, the
Newton–Raphson method converges in the fifth iteration, as shown in Table 3.1b.

However, it does not show a quadratic convergence. As discussed before, if there is

an error in the Jacobian matrix, the algorithm may still converge but with a lower

convergence rate.
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%

% Example 3.8 Uniaxial bar–total Lagrangian formulation

%

tol = 1.0e-5; iter = 0; E = 200;

u = 0; uold = u; f = 100;

strain = u + 0.5*u^2;

stress = E*strain;

P = stress*(1+u);

R = f - P;

conv= R^2/(1+f^2);

fprintf(’\n iter u1 E11 S11 conv’);

fprintf(’\n %3d %7.5f %7.5f %8.3f %12.3e %7.5f’,iter,u,strain,stress,

conv);

while conv > tol && iter < 20

Kt = E*(1+u)^2 + stress;

delu = R/Kt;

u = uold + delu;

strain = u + 0.5*u^2;

stress = E*strain;

P = stress*(1+u);

R = f - P;

conv= R^2/(1+f^2);

uold = u;

iter = iter + 1;

fprintf(’\n %3d %7.5f %7.5f %8.3f %12.3e %7.5f’,iter,u,strain,stress,

conv);

end
▄

Table 3.1 Convergence

history of uniaxial bar

using the total Lagrangian

formulation

Iteration u Strain Stress conv

(a) With initial stiffness

0 0.0000 0.0000 0.000 9.999E� 01

1 0.5000 0.6250 125.000 7.655E� 01

2 0.3478 0.4083 81.664 1.014E� 02

3 0.3252 0.3781 75.616 4.236E� 06

(b) Without initial stiffness

0 0.0000 0.0000 0.000 9.999E� 01

1 0.5000 0.6250 125.000 7.655E� 01

2 0.3056 0.3252 70.448 6.442E� 03

3 0.3291 0.3833 76.651 3.524E� 04

4 0.3238 0.3762 75.242 1.568E� 05

5 0.3250 0.3770 75.541 7.314E� 07
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3.3.2 Nonlinear Static Analysis: Updated Lagrangian
Formulation

A spatial description or an updated Lagrangian formulation uses stress and strain

measures, such as the Cauchy stress σ and the engineering strain ε, defined at the

current geometry. Although the term engineering strain is used, it is different from

the one in linear systems. In the updated Lagrangian formulation, the engineering

strain is defined in the deformed geometry, which is under large deformation. Thus,

the strain is not a linear function of displacement in this case. From the assumption

that the applied loads are independent of deformation, the load form ‘ uð Þ is the same

as that of the total Lagrangian formulation in Eq. (3.66). Thus, only the energy form

will be discussed in the following derivation. The updated Lagrangian formulation

requires the relation between Cauchy stress and engineering strain. However, the

original constitutive relation is given in terms of the second Piola-Kirchhoff stress

and Lagrangian stress as in Eq. (3.53). The linear relation between S and E does not

mean a linear relation between σ and ε (refer to Fig. 3.9). Thus, instead of

developing a nonlinear relation between σ and ε, the linear relation between

S and E will be used in the following derivations.

The relation between material tensors S;E
� �

and spatial tensors σ; εð Þ can be

obtained through transformation as

S ¼ JF�1σF�T ð3:77Þ
E ¼ FTε uð ÞF; ð3:78Þ

where ε uð Þ is the variation of the engineering strain at the current geometry. From

the definition of the variation of Lagrangian strain in Eq. (3.63), the variation of

engineering strain can be calculated by transforming the Lagrangian strain variation

to the current geometry as1

ε uð Þ ¼ F�TEF�1

¼ F�T1

2

∂uT

∂X
Fþ FT ∂u

∂X

� �
F�1

¼ 1

2

∂uT

∂x
þ ∂u

∂x

� �
� sym ∇nuð Þ

ð3:79Þ

where ∇n¼∂/∂x is the gradient operator at the current deformed geometry. Note

that Eq. (3.79) is different from the variation of the engineering strain in linear

systems with small deformations because it is defined in the current geometry under

the assumption of large deformation. Even if u is independent of displacement, the

1 This transformation is often called a “push-forward,” while the reverse transformation is called a

“‘pull-back.”
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denominator x depends on displacement. In that sense, the above strain variation is

a nonlinear function of displacement.

Although it is possible to derive the energy form for the updated Lagrangian

formulation starting from a strain energy density that is defined in terms of

engineering strain, it would be difficult to have equivalent strain energy densities

that are in a quadratic form for both the Eulerian and engineering strains. In fact, it

will be shown that for the same material, the constant constitutive tensor for the

total Lagrangian formulation is not constant anymore in the updated Lagrangian

formulation. Thus, instead of deriving an equivalent strain energy density for the

updated Lagrangian formulation, the one for the total Lagrangian formulation is

used in the following derivations. Using Eqs. (3.77) and (3.78), the energy form

a u; uð Þ in Eq. (3.65) can be expressed in terms of the spatial description as

a u; uð Þ ¼
ZZ

0Ω
S : E dΩ ¼

ZZ
0Ω

JF�1σF�T
� �

: FTε uð ÞF� �
dΩ

¼
ZZ

nΩ
σ : ε uð Þ dΩ: ð3:80Þ

In Eq. (3.80), the property dnΩ¼ Jd0Ω has been used to change the integral domain

from 0Ω to nΩ. Using the above definition of the energy form, the nonlinear

variational equation for the updated Lagrangian formulation has the same form as

Eq. (3.64), namely,

a u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ: ð3:81Þ

However, the expression of a u; uð Þ is different from that of Eq. (3.65).

The linearization of Eq. (3.81) involves Cauchy stress, which is not easy to

linearize because the Cauchy stress is defined on current geometry that changes

according to deformation. In addition, the integral domain also depends on defor-

mation. These difficulties can be overcome by transforming the linearization in the

material description, given in Eq. (3.74), to the spatial description. The integrands

of Eq. (3.74) are transformed into the deformed geometry using the same “push-

forward” method described in Eq. (3.80) as

S : ΔE ¼ J F�1σF�T
� �

: sym ∇0u
T∇0Δu

� �
¼ Jσ : sym ∇nu

T∇nΔu
� �

� Jσ : η Δu, uð Þ
ð3:82Þ

and

E : D : ΔE
� � ¼ FTε uð ÞF� �

: D : FTε Δuð ÞF� �
¼ Jε uð Þ : c : ε Δuð Þ ; ð3:83Þ

where c is the fourth-order spatial constitutive tensor. The relation between the

material and spatial constitutive tensors is given by
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cijkl ¼ 1

J
FirFjsFkmFlnDrsmn: ð3:84Þ

In the case of St. Venant–Kirchhoff nonlinear elastic material from Eq. (3.51), by

using the left Cauchy–Green deformation tensor G¼F�FT, the spatial constitutive

tensor becomes

cijkl ¼ 1

J
λGijGkl þ μ GikGjl þ GilGjk

� �� �
: ð3:85Þ

Note that c is not constant for the updated Lagrangian formulation and that in

addition σ 6¼ c : ε. Linearization of the energy form in the updated Lagrangian

formulation can be obtained from Eqs. (3.82) and (3.83) as

L a u; uð Þ½ � ¼
ZZ

nΩ
ε uð Þ : c : ε Δuð Þ þ σ : η Δu, uð Þ½ � dΩ � a
 u;Δu, uð Þ: ð3:86Þ

The same notationa
 u;Δu,uð Þ is used with the total Lagrangian formulation so that

the configuration implicitly depends on total displacement u and a
 u;Δu,uð Þ is

linear with respect to Δu and u.

If the current time step is tn, the current iteration counter is k, and the external

force is independent of displacement, then the linearized equation (3.81) can be

obtained as

a
 nuk;Δuk,u
� � ¼ ‘ uð Þ � a nuk; u

� �
, 8u 2 ℤ: ð3:87Þ

Note that when the above terms are calculated, the integration is performed over the

domain based on deformation at the kth iteration. It is not the current geometry in a

precise sense. However, as the iteration converges, the difference between two

consecutive iterations becomes ignorable. Thus, at converged, the iteration satisfies

the updated Lagrangian description.

Provided that appropriate constitutive relations are used, as in Eq. (3.84), the two

linear formulations, Eqs. (3.75) and (3.87), are theoretically equivalent but with

different expressions. The choice of method should depend on how effective the

numerical implementation is and how convenient it is to generate the constitutive

relation. For example, the strain measure of a total Lagrangian formulation is more

complicated than that of the updated Lagrangian formulation. However, the con-

stitutive relation in Eq. (3.51) can easily be used in the total Lagrangian formulation

without transforming the constitutive relation into the deformed geometry, as in

Eq. (3.84). In the case of elastoplasticity, the plastic evolution process always

occurs at the current geometry. Because it is difficult to express plastic evolution

in terms of material stress measures, the updated Lagrangian formulation is a more

attractive option for this case.

With a small deformation problem, it is possible to approximate F for 1. From

this approximation and from their definitions, the two stress measures (S and σ)
become identical, and the same is true for the two strain measures (E and ε).
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Example 3.9 (Uniaxial bar: updated Lagrangian formulation) Solve the uniaxial

bar in Example 3.8 using the updated Lagrangian formulation. Assume that the

change in cross-sectional area is ignored in one-dimensional bar.

Solution In the updated Lagrangian formulation, the current length L¼ L0 + u2 of
the bar is used to define the finite element. The approximation of displacement

gradient and its variation then become

du

dx
¼ u2

1þ u2
,

du

dx
¼ u2

1þ u2

For a one-dimensional bar, the deformation gradient and its determinant become a

scalar and can be calculated by

F11 ¼ dx

dX
¼ 1þ u2, J ¼ 1þ u2

The second Piola-Kirchhoff stress S11 and the variation of Lagrangian strain E11 are

used to calculate Cauchy stress and the variation of engineering strain as

σ11 ¼ 1

J
F11S11F11 ¼ E u2 þ 1

2
u22

� �
1þ u2ð Þ

ε11 uð Þ ¼ F�T
11 E11F

�1
11 ¼ u2

1þ u2

Using the above two expressions, the energy form in the updated Lagrangian

formulation becomes

a u; uð Þ ¼
Z L

0

σ11ε11 uð ÞAdx ¼ σ11Au2

Note that the relation L¼ 1 + u2 is used in the above integration. Although the above
energy seems different from that of the total Lagrangian formulation in Example

3.8, it is identical because σ11¼ S11(1 + u2). Since the applied load is a concentrated
force at the tip, no integration is required. The load form simply becomes

‘ uð Þ ¼ u2F

The difference between the energy and load forms can be defined as a residual R,
and the nonlinear variational equation satisfies when the residual becomes zero:

R ¼ u2 σ11A� Fð Þ ¼ 0

for any arbitrary u2.
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In order to linearize the energy form, the transformation relations in Eqs. (3.82)

and (3.83) are used. First, the spatial constitutive tensor c has a single component as

c1111 ¼ 1

J
F11F11F11F11E ¼ 1þ u2ð Þ3E

Thus,

Z L

0

ε11 uð Þc1111ε11 Δuð ÞAdx ¼ EA 1þ u2ð Þ2u2Δu2
Z L

0

σ11η11 Δu; uð ÞAdx ¼ σ11A

1þ u2
u2Δu2

Thus, the linearization of the energy form becomes

a
 u;Δu; uð Þ ¼
Z L

0

ε11 uð Þc1111ε11 Δuð Þ þ σ11η Δu; uð Þð ÞAdx
¼ EA 1þ u2ð Þ2u2Δu2 þ σ11

1þ u2
Au2Δu2

Again, the above linearization of the energy form is identical to that of the total

Lagrangian formulation by considering the relation between σ11 and S11. The
Newton–Raphson iteration scheme is identical to that of the total Lagrangian

formulation. Below is the list of MATLAB program that solves for the uniaxial

bar using the updated Lagrangian formulation. Table 3.2 shows the convergence

history using the Newton–Raphson method. Note that the history of displacement is

identical to that of the total Lagrangian formulation because the same constitutive

relation is used for both formulations. However, the histories of strain and stress are

different because different measures of stress and strain are used. Note that the

stress converges at 100 Pa, which is the true stress (F¼ 100 N and A¼ 1.0 m2). The

engineering strain is smaller than the Lagrangian strain as it is defined with respect

to the current length, and the latter has a higher-order term.

Table 3.2 Convergence

history of uniaxial bar using

the updated Lagrangian

formulation

Iteration u Strain Stress conv

0 0.0000 0.0000 0.000 9.999E� 01

1 0.5000 0.3333 187.500 7.655E� 01

2 0.3478 0.2581 110.068 1.014E� 02

3 0.3252 0.2454 100.206 4.236E� 06
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%

% Example 3.9 Uniaxial bar–updated Lagrangian formulation

%

tol = 1.0e-5; iter = 0; E = 200;

u = 0; uold = u; f = 100;

strain = u/(1+u);

stress = E*(u+.5*u^2)*(1+u);

P = stress;

R = f - P;

conv= R^2/(1+f^2);

fprintf(’\n iter u1 E11 S11 conv’);

fprintf(’\n %3d %7.5f %7.5f %8.3f %12.3e %7.5f’,iter,u,strain,stress,

conv);

while conv > tol && iter < 20

Kt = E*(1+u)^2 + stress/(1+u);

delu = R/Kt;

u = uold + delu;

strain = u/(1+u);

stress = E*(u+.5*u^2)*(1+u);

P = stress;

R = f - P;

conv= R^2/(1+f^2);

uold = u;

iter = iter + 1;

fprintf(’\n %3d %7.5f %7.5f %8.3f %12.3e %7.5f’,iter,u,strain,stress,

conv);

end

▄

3.4 Critical Load Analysis

As shown in Fig. 3.18, structural instability occurs when the load–displacement curve

has a negative slope; i.e., displacement rapidly increaseswithout increase of the applied

loads. The force-controlled method cannot find a solution because either the structure

cannot support the loads beyond a certain level or the next stable state is too far from

the current state. Even if the displacement-controlled method can help convergence, it

cannot find an appropriate solution inmany cases especially when the system hasmany

degrees of freedom. In practice, since instability is not a preferred state, it is not

important for the analysis to follow through this state. Instead, it is oftenmore important

to predict when the instability initiates, i.e., what maximum load the structure can

support before becoming unstable. This maximum load is called a critical load.

From the one-dimensional load–displacement curve, such as the one in Fig. 3.18,

the slope of the tangent stiffness becomes zero at the critical load. For systems

with many degrees of freedom, the tangent stiffness matrix becomes singular.

Thus, based on the incremental equilibrium equation in the previous section, the

variational equation of a linear eigenvalue problem can be formulated for stability
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analysis in nonlinear structural systems to evaluate the stability status. [6, 7] These

problems differ in the assumption made between a critical load factor and the

estimated critical load. The critical load factor of a nonlinear structural system

can be evaluated by solving a linear eigenvalue problem at any pre-buckling

equilibrium configuration. The formulation of a stability analysis may include the

effect of large displacements, large rotations, large strains, and material nonlinear-

ities with appropriate kinematic and constitutive descriptions. The critical load can

be found by using the property that at least two adjacent states exist at the critical

load. [8] The mathematical basis for such a situation immediately follows from

incremental equilibrium equations; that is, the left-hand side of Eq. (3.75) or

Eq. (3.87) vanishes at the critical limit point. For a single-variable problem, the

slope of the displacement–load curve becomes zero. To make it easier to follow the

derivations, the linearized energy form in Eq. (3.74) can be divided into two parts:

A u;Δu,uð Þ ¼
ZZ

0Ω
E : D : ΔE
� �

dΩ ð3:88Þ

and

G u;Δu, uð Þ ¼ �
ZZ

0Ω
S : ΔE
� �

dΩ: ð3:89Þ

With the critical displacement cru at the critical limit point tn¼ tcr, the stability

equation becomes

a
 cru; y; y
� � � A cru; y; y

� �� G cru; y; y
� � ¼ 0, 8y 2 ℤ ð3:90Þ

Note that eigen-function y and its variation y are used instead of incremental

displacement Δu and its variation. Since the right-hand side is zero, if the tangent

stiffness matrix after discretizing a
 cru; y; y
� �

is positive definite, a trivial solution

y¼ 0 is expected. Nontrivial eigen-function y is expected only when the tangent

stiffness matrix becomes singular, which serves to identify a point of instability;

that is, if the final equilibrium state is at the critical limit point, then solution ymust

be nontrivial.

Note that Eq. (3.90) cannot be solved from the start because it is based on the

displacement cru, which is unknown. In this case, the incremental force method is

useful because the applied loads gradually increase until the instability occurs.

However, it does not guarantee that the critical load and the corresponding dis-

placement can be found. It is assumed that the incremental force method is

performed up to load step tn at which the corresponding load is np. Since the

incremental force method cannot converge beyond the critical load, it is clear that

tn is pre-buckling state, i.e., np� pcr. In order to find the critical load, it is first

represented by a scalar multiple of the pre-buckling load np, i.e., pcr¼ ζnp, where
the scalar ζ is called the critical load factor. The left-hand side of Eq. (3.90) is then

evaluated at the critical limit point using the information that is available at the final

180 3 Finite Element Analysis for Nonlinear Elastic Systems



pre-buckling equilibrium state at load step tn. Linear extrapolation can be used to

approximate the left-hand side of Eq. (3.90) to form an eigenvalue problem. After

solving the eigenvalue problem, the lowest eigenvalue is considered to be an

estimate nζ of the critical load factor ζ. Assuming a proportional conservative static

loading, the estimated critical load vector npcr can be expressed with the given load
vector np and the critical load factor nζ. Two commonly used approaches, one- and

two-point linear eigenvalue approaches, are formulated in the variational form, and

expressions of the corresponding estimated critical load are presented in the

following subsections.

3.4.1 One-Point Approach

The goal of the one-point approach is to approximate the critical state using the

state at load tn. Utilizing the information at the equilibrium state at load step tn,
Eq. (3.90) can be rewritten as an eigenvalue problem. By linearizing the nonlinear

relation between energy form G and the additional load increment at the critical

limit point, G is approximated using the critical load factor nζ at load tn:

G cru; y; y
� � ¼ nζG nu; y; y

� �
: ð3:91Þ

Referring to Eq. (3.89), the stress crS at the critical state is approximated by nζnS. In
addition, by neglecting the variations of energy form A due to the loading change,

A cru; y; y
� �

can be written as A nu; y; y
� �

. Then, Eq. (3.90) becomes an eigenvalue

problem, which can be called a one-point linear eigenvalue problem, in the form of

A nu; y; y
� �� nζG nu; y; y

� � ¼ 0, 8y 2 ℤ: ð3:92Þ
Solving this eigenvalue problem at a given load level np that is lower than the true

critical load pcr leads to the following estimated critical load:

npcr ¼ nζ np: ð3:93Þ
Note that the above estimate will be accurate if the load np is close to the actual

critical load. Thus, it is important to make the load increment small so that the final

pre-buckling load is close enough. However, since pcr is unknown, small load

increment will be computationally expensive.

3.4.2 Two-Point Approach

Utilizing the information at the last two states, at load step tn�1 and tnwhere tn is the
load step at the final equilibrium state, Eq. (3.90) can be rewritten as an eigenvalue

problem for the two-point approach. With the assumption that from load step tn�1
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onward the energy form (A�G) changes linearly up to one additional load incre-

ment but with the same ratio between the two states at tn�1 and tn, the energy form

can be written as

A cru; y; y
� �� G cru; y; y

� � ¼ B n�1u; y; y
� �þ ζE n�1unz; y; y

� �
; ð3:94Þ

where the energy forms B and E are defined as

B n�1u; y; y
� � � A n�1u; y; y

� �� G n�1u; y; y
� � ð3:95Þ

E n�1unu; y; y
� � � B nu; y; y

� �� B n�1u; y; y
� �

; ð3:96Þ

and ζ is the critical load factor at time tn. Consequently, Eq. (3.94) becomes a

two-point linear eigenvalue problem, written as

B n�1u; y; y
� �þ ζE n�1unu; y; y

� � ¼ 0, 8y 2 ℤ: ð3:97Þ
Solving this problem at a given load level np that is lower than the true critical load
pcr leads to an estimated critical load

pcr ¼ n�1p þ ζΔp: ð3:98Þ

In Eqs. (3.92) and (3.97), ζ� 1 is the smallest eigenvalue, and y is the

corresponding eigen-function. Note that if the load step tn is at the critical limit

point, then ζ¼ 1 in Eqs. (3.92) and (3.97), and these two equations become

identical to Eq. (3.90). The stability analysis of Eq. (3.92) or Eq. (3.97) can be

applied to any pre-buckling configurations, and the estimated critical load becomes

more accurate as the final equilibrium configuration approaches the critical limit

point. The estimated critical loads for both approaches are not conservative, that is,

they are larger than the true critical load npcr� pcr. A stability analysis equation for

linear structural systems can be obtained as a special case of the nonlinear stability

equation, with the assumption of linearly elastic material and a small displacement.

3.4.3 Stability Equation with Actual Critical Load Factor

Consider a structural system with the equilibrium path shown in Fig. 3.12. The

critical limit point in Fig. 3.12 is a relative maximum point in the nonlinear

load–displacement curve and defines the boundary between the pre-buckling and

the post-buckling equilibrium paths. Assume that the magnitude of the total applied

load vector p0 is larger than the magnitude of the critical load vector pcr and that

unlike the previous cases, the critical load vector pcr occurs at the final pre-buckling
equilibrium state at load step tn¼ tcr, i.e., pcr¼ np. Note that the load vectors pcr, p0,
and np have the same directions, since they are assumed to be proportional loadings.

The magnitude of the critical load is unknown before the system is analyzed.
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With the energy form a u; uð Þ in the final pre-buckling equilibrium configuration

at time tn¼ tcr and the load form ‘ uð Þ which is the virtual work done by the total

applied load vector p0, the equilibrium equation (3.64) can be rewritten as

a nu; u
� � ¼ β‘ uð Þ, 8u 2 ℤ; ð3:99Þ

where the actual critical load factor β is defined as the ratio of the magnitude of the

critical load vector pcr¼ np to themagnitude of the total applied load vector p0, that is,

pcr ¼ βp0: ð3:100Þ

The actual critical load factor β� 1.0 can be evaluated only after the critical load is

known. When the total applied load vector p0 is equal to the critical load vector

pcr¼ np, β¼ 1 and the equilibrium equation (3.99) is the same as the equilibrium

equation (3.64). Note that the actual critical load factor β does not depend on the

configuration at tn and is not related to the estimated critical load factor nζ which

varies with configuration tn.

3.5 Hyperelastic Materials

As has been shown in Sect. 3.3, material behavior is described by its constitutive

relation when subjected to deformation or deformation history. Different constitu-

tive relations can represent different material behaviors. The St. Venant–Kirchhoff

material in Sect. 3.3 provides a linear relation between stress and strain, which is a

simple extension of the one used for linear elastic materials. Unfortunately, this

model provides meaningful results only when the strains are small because most

materials show a nonlinear relation for large deformation. It is important to employ

a constitutive model that is appropriate for the material, the structure, and the finite

element formulation.

When the material status can completely be describable with a given total strain,

the constitutive relation is called hyperelasticity. In such a material, a strain energy

Load p

pcr
np

 post-buckling  pre-buckling 

Displacement ucru

Critical limit point p0

Fig. 3.12 Equilibrium path

of nonlinear structural

system
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density exists as a function of strain, and stress can be obtained by differentiating

the strain energy density with respect to strain. This material model is independent

of deformation history; i.e., the same deformation is expected if the final load is the

same. Rubberlike materials or human tissues belong in this category. On the other

hand, when the constitutive relation is given in terms of the stress and strain rates, it

is called hypoelasticity, which is often used in describing the plastic behavior of

materials. In such a material, the deformation history must be followed to calculate

stress because two states that have the same strain may have different stresses

depending on the loading history. Hyperelastic materials will be discussed in this

section, while hypoelastic materials will be discussed in Chap. 4. In this section, the

static response of hyperelastic materials is formulated based on the material

description, i.e., the total Lagrangian formulation. Different hyperelastic materials

will be introduced, but the main development will be explained using the Mooney-

Rivlin material, which is the most popular material model. In general, hyperelastic

materials exhibit the property of being incompressible during finite deformation;

i.e., the volume of the material is preserved. This is a common behavior of many

elastic materials in finite deformation. Numerically, a constraint, J¼ 1, needs to be

imposed to make the material incompressible. However, this causes numerical

difficulties called volumetric locking. Due to incompressibility, the hydrostatic

portion of stress cannot be calculated from the volumetric strain. The penalty

method [9], the selective reduced integration method [10], and the mixed formula-

tion method [11] have been successfully used for incompressible and nearly

incompressible materials.

If a strain energy density exists, such that stress can be obtained from the

derivative of the strain energy with respect to strain, the system is called path

independent. Thus, it is theoretically possible to solve the nonlinear equilibrium

equation for the given total magnitude of applied load. However, this equation is

still solved by using the incremental force method with a number of load steps to

finally reach the total applied load for computational purposes. The hyperelasticity

problem contains both material nonlinearity from constitutive relations and geo-

metric nonlinearity from kinematics.

3.5.1 Strain Energy Density

Modeling engineering materials at large deformations is still an active research

area. Without elaborating details of material modeling procedures, a method that

can describe the behavior of isotropic elastic materials which undergo finite defor-

mation is presented. In hyperelasticity, the stored strain energy density is used to

compute stress. For isotropic materials, the constitutive relation has to be indepen-

dent of the coordinate frame selected because the material has the same property for

all directions. For example, the strain component E11 cannot be used for the

constitutive relation because its value depends on the coordinate system. Thus, it

is natural that the strain energy density is defined using invariants of strain or

184 3 Finite Element Analysis for Nonlinear Elastic Systems

http://dx.doi.org/10.1007/978-1-4419-1746-1_4


alternatively that of the deformation tensor. When the undeformed state is used as

the frame of reference, the three invariants of the right Cauchy–Green deformation

tensor C in Eq. (3.9) are given as

I1 ¼ tr Cð Þ ¼ λ21 þ λ22 þ λ23; ð3:101Þ

I2 ¼ 1

2
trCð Þ2 � tr C2

� �h i
¼ λ21λ

2
2 þ λ22λ

2
3 þ λ23λ

2
1; ð3:102Þ

and

I3 ¼ detC ¼ λ21λ
2
2λ

2
3; ð3:103Þ

where λ21, λ
2
2, and λ23 are three eigenvalues of the left Cauchy–Green deformation

tensor C. From polar decomposition, it has been shown that λ1, λ2, and λ3 are three
eigenvalues of the left stretch tensor U—also called the principal stretches. The

above three invariants will remain unchanged for different coordinate systems. In

order to be a valid deformation, the three invariants must be positive (refer to

Example 3.1). The square root of I3 in Eq. (3.103) measures the volume change of

the material. If the material is incompressible, it is clear that I3¼ 1. The three

invariants are identical for both the left and right Cauchy–Green deformation

tensors. When there is no deformation, i.e., λ1¼ λ2¼ λ3¼ 1, I1¼ I2¼ 3, and I3¼ 1.

Example 3.10 (Invariants) Show that the three invariants of the left Cauchy–Green

deformation tensor G are equal to those of C when the three eigenvalues of the

deformation gradient are λ1, λ2, and λ3.

Solution The three invariants will remain constant for different coordinate sys-

tems. Thus, it is possible to choose the three principal directions of the deformation

gradient as basis vectors for the new coordinate system X0Y0Z0 so that the deforma-

tion gradient will only have diagonal components:

FX0Y0Z0 ¼
λ1 0 0

0 λ2 0

0 0 λ3

2
64

3
75

Then the right and left Cauchy–Green deformation tensors become identical

CX0Y0Z0 ¼ FTF
� �

X0Y0Z0 ¼
λ21 0 0

0 λ22 0

0 0 λ33

2
4

3
5, GX0Y0Z0 ¼ FFT

� �
X0Y0Z0 ¼

λ21 0 0

0 λ22 0

0 0 λ33

2
4

3
5;

and the three invariants of the two tensors are identical. ▄
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Using the three invariants, a general form of strain energy density can be defined

in the following polynomials:

W I1; I2; I3ð Þ ¼
X1

mþnþk¼1

Amnk I1 � 3ð Þm I2 � 3ð Þn I3 � 1ð Þk; ð3:104Þ

whereAmnk are coefficients of polynomials. In general, deformation of amaterial can

be decomposed into volumetric and distortional parts. If the material is incompress-

ible, i.e., I3¼ 1, then the volumetric part of the strain energy density is eliminated,

and only the first two terms contribute to the strain energy density. This part of the

stored energy is called the distortional strain energy density and is defined as

W1 I1; I2ð Þ ¼
X1

mþn¼1

Amn I1 � 3ð Þm I2 � 3ð Þn: ð3:105Þ

Note that Eq. (3.105) does not impose the incompressibility condition. A separate

constraint must be used to make the material incompressible. All the models listed

above account for nonconstant shear modulus. However, caution needs to be

exercised on inclusion of higher-order terms to fit the data, since this may result

in unstable energy functions, yielding nonphysical results outside the range of the

experimental data. Section 3.9 will discuss about how to find hyperelastic material

parameters by fitting experimental data. Various hyperelastic material models are

proposed using Eq. (3.105). Some examples are as follows.

Neo–Hookean model: This model has only one nonzero parameter, A10, and all

other parameters are zero. Using the undeformed state as a frame of reference, the

strain energy density can be defined as

W1 I1ð Þ ¼ A10 I1 � 3ð Þ: ð3:106Þ

In order to be equivalent to the linear elastic material in small deformation, the

parameter A10 is related to the shear modulus by A10¼ μ/2. The stress–strain

relation becomes linear with a proportional constant of 2A10¼ μ. However, this
model will show a nonlinear relationship when the deformation becomes larger due

to the nonlinear displacement–strain relation. This model gives a good correlation

with the experimental data up to 40 % strain in uniaxial tension and up to 90 %

strains in simple shear. This model is often used to describe the behavior of cross-

linked polymers.

Mooney-Rivlin model: This model is an extension of the Neo–Hookean model

by including the effect of the second invariant. The expression of the strain energy

density has two nonzero parameters as

W1 I1; I2ð Þ ¼ A10 I1 � 3ð Þ þ A01 I2 � 3ð Þ ð3:107Þ

This model is the most popular in finite element analysis of hyperelastic materials,

not because of accuracy but because of its simplicity. The Mooney-Rivlin model is
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good up to 100 % strain of tensile test, but has some difficulty in describing the

compression mode of deformation. Moreover, the Mooney-Rivlin model fails to

account for the hardening of the material at large strains.

Yeoh model: This model only uses I1 and the experimental results are fitted

using a cubic function as

W1 I1ð Þ ¼ A10 I1 � 3ð Þ þ A20 I1 � 3ð Þ2 þ A30 I1 � 3ð Þ3: ð3:108Þ

This model corresponds well with experiments for large strain. Since only the first

invariant is used, the Yeoh model is often called the reduced polynomial model.

Ogden model: This model uses the principal stretches (the three eigenvalues of

the deformation gradient) to define the distortional strain energy density as

W1 λ1; λ2; λ3ð Þ ¼
XN
i¼1

μi
αi

λαi1 þ λαi2 þ λαi3 � 3
� � ð3:109Þ

where N, μi, and αi are material parameters. N usually goes up to three. Note that

when the material is incompressible, the three principal stretches are not indepen-

dent, i.e., λ1λ2λ3¼ 1. By comparing with the linear elastic material, the initial shear

modulus can be obtained by

μ ¼ 1

2

XN
i¼1

αiμi ð3:110Þ

WhenN¼ 1 and α1¼ 1, it becomes the Neo–Hookean material. WhenN¼ 2, α1¼ 2,

and α2¼�2, it becomes the Mooney-Rivlin material. The model gives a good

correlation with test data in simple tension up to 700 %. The model accommodates

nonconstant shear modulus and slightly compressible material behavior. As strain

increases, the material shows hardening when α> 2, while softening when α< 2.

Example 3.11 (Stress–strain relationship for Neo–Hookean model) Plot the nom-

inal stress–strain relationship for a Neo–Hookean model under uniaxial tension and

compression and compare it with linear elastic material with the same modulus.

Assume material parameter A10¼ 10MPa and incompressibility.

Solution Let us suppose that a uniaxial load is stretched so that λ1¼ λ where λ is an
arbitrary stretch along the rod’s length. From the assumption of incompressibility,

λ1λ2λ3¼ 1 and λ2¼ λ3. Therefore, λ2 ¼ λ3 ¼ 1=
ffiffiffi
λ

p
. From Eq. (3.106), the strain

energy density of the Neo–Hookean material model becomes

W ¼ A10 I1 � 3ð Þ ¼ A10 λ21 þ λ22 þ λ23 � 3
� � ¼ A10 λ2 þ 2

λ
� 3

� �
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The nominal stress (first Piola-Kirchhoff stress) in the direction of stretch can be

obtained by differentiating the strain energy density with respect to the principal

stretch as

P ¼ ∂W
∂λ

¼ 2A10 λ� 1

λ2

� �
¼ μ 1þ ε� 1

1þ εð Þ2
 !

Figure 3.13 shows the stress–strain curve for the Neo–Hookean material, along with

a linear elastic material. Since Poisson’s ratio for the incompressible material is 0.5,

Young’s modulus will be E¼ 3 μ. Both curves share the same tangent line at ε¼ 0,

but the error increases as the strain increases. One thing to note is that the Neo–

Hookean model shows a quite different behavior in compression from the linear

elastic material behavior. ▄

Example 3.12 (Relation between Mooney-Rivlin and Ogden models) Write the

material parameters μ1 and μ2 in the Ogden model in terms of A10 and A01 in the

Mooney-Rivlin model. Use N¼ 2, α1¼ 2, and α2¼�2 for the Ogden model.

Solution From Eq. (3.109), the Ogden model with two terms can be rewritten as

W1 λ1; λ2; λ3ð Þ ¼ μ1
2

λ21 þ λ22 þ λ23 � 3
� �� μ2

2
λ�2
1 þ λ�2

2 þ λ�2
3 � 3

� �
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Fig. 3.13 Stress–strain relationship for Neo–Hookean material
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From the definition of the invariants, the first term is identical to the first term of the

Mooney-Rivlin material. Thus, μ1¼ 2A10. For the second term, using the

incompressibility condition λ1λ2λ3¼ 1, it can be rewritten as

λ�2
1 þ λ�2

2 þ λ�2
3 ¼ λ22λ

2
3 þ λ21λ

2
3 þ λ21λ

2
2 ¼ I2:

Thus, the second term is also identical to the second term of the Mooney-Rivlin

material. Therefore, μ2¼�2A01. From Eq. (3.110), the equivalent shear modulus

for small deformation can be calculated by

μ ¼ 1

2
α1μ1 þ α2μ2ð Þ ¼ μ1 � μ2 ¼ 2 A10 þ A01ð Þ:

▄

Example 3.13 (Strain energy density for St. Venant–Kirchhoff material) Show that

St. Venant–Kirchhoff material has the following strain energy density:

W Eð Þ ¼ λ

2
tr Eð Þ½ �2 þ μ tr E2

� �� � ð3:111Þ

by deriving the material constitutive tensor D¼ λ1	 1 + 2μI.

Solution First, the second Piola-Kirchhoff stress is calculated by differentiating the

strain energy density with respect to the Lagrangian strain:

S ¼ ∂W Eð Þ
∂E

¼ λtr Eð Þ∂tr Eð Þ
∂E

þ μ
∂tr E2
� �
∂E

For the first term on the right-hand side, the following properties are used: tr(E)¼
1:E and

∂tr Eð Þ
∂E

¼ 1 ) λtr Eð Þ∂tr Eð Þ
∂E

¼ λ1 1 : Eð Þ ¼ λ 1	 1ð Þ : E:

For the second term, it is convenient to use index notation to derive the following

relation:

∂EijEji

∂Ekl
¼ δikδjlEji þ Eijδjkδil ¼ Elk þ Elk ¼ 2Elk

) ∂tr E2
� �
∂E

¼ 2E ¼ 2I : E
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Since I is the fourth-order unit tensor, contraction with any second-order tensor will

yield the tensor itself. Thus, the second Piola-Kirchhoff stress can be written as

S ¼ λtr Eð Þ∂tr Eð Þ
∂E

þ μ
∂tr E2
� �
∂E

¼ λ 1	 1ð Þ : Eþ 2μE

¼ λ 1	 1ð Þ þ 2μI½ � : E
¼ D : E:

Note that the material constitutive tensor D is identical to that in Eq. (3.51). ▄

3.5.2 Nearly Incompressible Hyperelasticity

Incompressibility of a material can cause many difficulties in the constitutive

relation, especially when it is combined with nonlinearities such as large displace-

ments, large strains, and contact. Perfect incompressibility, which corresponds to

Poisson’s ratio of one-half, is an idealization to make modeling more amenable for

obtaining closed-form solutions. In the real world, natural as well as filled rubbers

are slightly compressible, thereby, facilitating development of algorithms for nearly

incompressible behavior of elastomers. “Near-incompressibility” means that

Poisson’s ratio is not exactly one-half, but close to it. For example, 0.49 or higher

values are often used for the nearly incompressible behavior of elastomers.

As discussed previously, the hydrostatic pressure portion of stress causes volume

change (dilatation). However, if the material is incompressible, the volume remains

constant for different values of pressure. In other words, stress cannot be obtained

by differentiating the strain energy density because the hydrostatic pressure portion

of stress cannot be determined from deformation.

It has been observed from experiments that many rubberlike materials show

nearly incompressible properties. It means that only a small volume change occurs

under a large hydrostatic pressure. In such materials, the near-incompressibility can

be imposed by using a large bulk modulus, which relates hydrostatic pressure to

volumetric strain. Since the material is stiff in dilatation and soft in distortion, it is

necessary to separate these two parts in order to reduce numerical difficulties

associated with a large difference in stiffness. This has to be done in the level of

strain energy density.

In the previous section, it is discussed that the third invariant I3 is related to

dilatation, while the other two invariants, I1 and I2, are related to distortion.

However, I1 and I2 do not remain constant during dilatation (see Example 3.13).
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In order to separate the distortion part from dilatation, it is necessary to introduce

the so-called reduced invariants, J1, J2, and J3, defined by

J1 ¼ I1I3
�1=3, J2 ¼ I2I3

�2=3, J3 ¼ I3
1=2; ð3:112Þ

where I1, I2, and I3 are the three invariants of the right Cauchy–Green deformation

tensor C. It can be easily verified that J1 and J2 are constant under pure dilatation;
they are only related to distortion, while J3 is related to dilatation. Of course, when

the material is purely incompressible, the reduced invariants are the same with the

invariants of C.

Using the reduced invariants, it is possible to separate the distortion effect from

dilatation in defining the strain energy density, as

W J1; J2; J3ð Þ ¼ W1 J1; J2ð Þ þW2 J3ð Þ; ð3:113Þ
whereW1(J1,J2) is the distortional strain energy density andW2(J3) is the dilatational
strain energy density. The distortional energy density can be defined using Eq. (3.105)

by substituting the reduced invariants for the original invariants. An example of the

dilatational energy density is related to the bulk modulus of the material as

W2 J3ð Þ ¼ K

2
J3 � 1ð Þ2; ð3:114Þ

where K is the bulk modulus. The relationship between the bulk modulus and

Lame’s constants for an isotropic material can be written as

K ¼ λþ 2

3
μ: ð3:115Þ

The above relation is valid for linear elastic materials. For general nearly incom-

pressible materials, a large value of the bulk modulus is used—two or three orders

of magnitude larger than material parameters in the distortional part. The material

becomes incompressible as the bulk modulus approaches infinity.

Example 3.14 (Dilatation) A dilatation status is defined by a constant deformation

for every direction. In terms of deformation, this status can be represented by

x1 ¼ λX1, x2 ¼ λX2, x3 ¼ λX3;

where λ> 0 is the stretch ratio. It is clear that all deformation is volumetric and

there is no shear deformation. Show that W1(J1,J2) in the form of Eq. (3.105)

vanishes in such a volumetric deformation.

Solution First, the deformation gradient and the right Cauchy–Green deformation

tensor are defined by

F ¼
λ 0 0

0 λ 0

0 0 λ

2
4

3
5, C ¼ FTF ¼

λ2 0 0

0 λ2 0

0 0 λ2

2
4

3
5:
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It is clear that the three principle stretches are all the same and have the value of λ2.
Thus, the three invariants of the deformation tensor can be calculated as

I1 ¼ λ2 þ λ2 þ λ2 ¼ 3λ2

I2 ¼ 3λ4

I3 ¼ λ6:

Note that all three invariants are not constant under dilatation. Using the formula in

Eq. (3.112), the reduced invariants becomes

J1 ¼ 3λ2

λ2
¼ 3, J2 ¼ 3λ4

λ4
¼ 3, J3 ¼ λ3:

Note that J1 and J2 are constant under pure dilatation. Thus, the distortional part of
the strain energy density for volumetric change becomes

W1 J1; J2ð Þ ¼ 0; ▄

3.5.2.1 Mooney-Rivlin Material Model

The Mooney-Rivlin model is one of the most popular models that are often used for

modeling rubberlike materials. Although a very simple material model is discussed

here, the method can be extended to general hyperelastic material models. With the

near-incompressibility constraint, the strain energy density is defined using the

reduced invariants as

W J1; J2; J3ð Þ ¼ A10 J1 � 3ð Þ þ A01 J2 � 3ð Þ þ K

2
J3 � 1ð Þ2

� W1 J1; J2ð Þ þ W2 J3ð Þ;
ð3:116Þ

where A10 and A01 are the material constants and K is the bulk modulus. For a small

strain, 2(A10 +A01) is equivalent to the shear modulus, and 6(A10 +A01) to Young’s
modulus for a three-dimensional solid, and 8(A10 +A01) is equivalent to the Young’s
modulus for a two-dimensional solid.

Since W1 is independent of dilatation, volumetric deformation is only related to

W2. The hydrostatic pressure is defined as the derivative ofW2 with respect to J3, as

p � ∂W J1; J2; J3ð Þ
∂J3

¼ ∂W2 J3ð Þ
∂J3

¼ K J3 � 1ð Þ: ð3:117Þ

Note that the term J3� 1 is equivalent to volumetric strain in small deformation

(see Problem P3.10). Thus, the above relation recovers the linear elastic relation for

small deformation. Since a large value of K is used to impose near-
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incompressibility, numerical instability can result in computing the pressure from

the displacement.

For the constitutive relation, stress can be obtained by differentiating the strain

energy density in Eq. (3.116) with respect to strain. Since the material description is

used, Eq. (3.116) is differentiated with respect to the Lagrangian strain to obtain the

second Piola-Kirchhoff stress as

S ¼ ∂W
∂E

¼ ∂W1

∂J1

∂J1
∂E

þ ∂W1

∂J2

∂J2
∂E

þ ∂W2

∂J3

∂J3
∂E

ð3:118Þ

From the definition of the strain energy density, the second Piola-Kirchhoff stress

can be rewritten as

S ¼ A10J1,E þ A01J2,E þ K J3 � 1ð ÞJ3,E; ð3:119Þ

where the subscribed comma denotes derivative, i.e., J1,E¼∂J1/∂E. Thus, the next
task is to obtain the expression of J1,E, J2,E, and J3,E in terms of the Lagrangian

strain. To this end, the derivatives of the reduced invariants with respect to

Lagrangian strain can be written as

J1,E ¼ I1,E I3ð Þ�1=3 � 1

3
I1 I3ð Þ�4=3I3,E

J2,E ¼ I2,E I3ð Þ�2=3 � 2

3
I2 I3ð Þ�5=3I3,E

J3,E ¼ 1

2
I3ð Þ�1=2I3,E;

ð3:120Þ

where the derivatives of the invariants can be obtained from

I1,E ¼ 21

I2,E ¼ 2 I11� Cð Þ
I3,E ¼ 2I3C

�1:
ð3:121Þ

The formulation in this section is called the penalty method in imposing the

near-incompressibility constraints because the penalty parameter (i.e., the bulk

modulus K ) is used. As discussed earlier, this formulation will experience numer-

ical instability when the hydrostatic pressure is calculated from displacement,

which is called volumetric locking. Such instability stems from the fact that a

small change in displacement can cause a large change in pressure due to the large

magnitude of the bulk modulus. Even if various numerical techniques are available

to eliminate/reduce volumetric locking, selective reduced integration, mixed for-

mulation, and a perturbed Lagrangian formulation will be discussed in the follow-

ing subsection.
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3.5.2.2 Selective Reduced Integration

The strain energy density in Eq. (3.116) is composed of two parts: distortion and

dilatation. After finite element discretization, let Ks and Kp be the distortion and

dilatation stiffness matrices, respectively. Due to a large magnitude of bulk mod-

ulus in the penalty method, the stiffness of the dilatation part is much larger than

that of the distortion part. Thus, if Kp is not singular, the incremental equation

(Ks+Kp)Δu¼R will yield Δu¼ 0. Thus, the residual on the right-hand side is

unable to be reduced, and the effect of Ks is ignored due to the large difference in

stiffness values. In this case, the stiffness is called over-constrained, and this

phenomenon is called “volumetric locking.”

The selective reduced integration method is the most convenient way of reduc-

ing volumetric locking in the near-incompressibility constraint. The basic idea is to

make the dilatation stiffnessKp singular so that the distortion stiffnessKs can affect

the calculation of incremental displacement. Stiffness matrices are nonsingular

(after applying appropriate boundary conditions) if a regular integration order is

used. However, when integration is performed with one order less than the regular

one, it is found that the stiffness matrix becomes singular and the finite element

equation yields acceptable incremental solutions. For example, when a

two-dimensional quadrilateral element is used for a Mooney-Rivlin material, Ks

is calculated using the 2� 2 Gauss quadrature rule, while Kp is integrated using the

1� 1 quadrature rule. The same reduced integration scheme should be used for

stress calculation: the distortion part (S¼A10J1,E+A01J2,E) with 2� 2 and the

dilatation part (S¼K(J3� 1)J3,E) with 1� 1 quadrature rule.

3.5.2.3 Mixed Formulation

In themixed formulation, the hydrostatic pressure is treated as an independent variable

instead of calculating it fromEq. (3.117). Thus, the strain energy density also depends

on the hydrostatic pressure, and it is unnecessary to define the bulk modulus.

This hydrostatic pressure is in fact a Lagrange multiplier in the mixed formulation.

In the mixed formulation, the dilatational strain energy density is defined as

W2 J3; pð Þ ¼ p J3 � 1ð Þ: ð3:122Þ

The advantage of the mixed formulation is that the pressure is not dependent on the

displacement so there is no numerical instability involved. However, the constitu-

tive relation becomes positive semi-definite and a special treatment is required in

solving the matrix equation.

194 3 Finite Element Analysis for Nonlinear Elastic Systems



3.5.2.4 Perturbed Lagrangian Formulation

As explained in the mixed formation section, the pressure plays the role of

Lagrange multiplier in imposing the constraint. In the perturbed Lagrangian for-

mulation, the product of a small constant with the sum of the squares of the

Lagrange multipliers is added to the mixed formulation. The inverse of the bulk

modulus is often used for the small constant. In the perturbed Lagrangian formu-

lation, the dilatational strain energy density function is defined as

W2 J3; pð Þ ¼ p J3 � 1ð Þ � 1

2K
p2: ð3:123Þ

If the Lagrange multiplier is removed in the element level through static conden-

sation, then the perturbed Lagrangian formulation becomes identical to the penalty

method. However, a reduced integration scheme is often employed for the pressure

terms. In such a case, the perturbed Lagrangian formulation is the same as the

selected reduced integration method.

Example 3.15 (Stress calculation in the perturbed Lagrangian formulation) When

the dilatational strain energy density function is defined as Eq. (3.123), write the

expression of stress as in Eq. (3.119) for the perturbed Lagrangian formulation.

Also, show that the perturbed Lagrangian stress becomes identical to that of the

penalty method when the pressure variable is eliminated in the element level.

Solution Using Eq. (3.123), the strain energy density for the perturbed Lagrangian

formulation can be written as

W J1; J2; J3; pð Þ ¼ A10 J1 � 3ð Þ þ A01 J2 � 3ð Þ þ p J3 � 1ð Þ � 1

2K
p2

Differentiating it with respect to the Lagrangian strain yields the second Piola-

Kirchhoff stress as

S ¼ ∂W
∂E

¼ A10J1,E þ A01J2,E þ pJ3,E

Note that the hydrostatic pressure p is an independent variable. In the variational

equation with displacement and pressure variables, an additional equation is

required for the pressure variable, which can be obtained by differentiating

W with respect to p and equating the terms to zero:

∂W
∂p

¼ J3 � 1� p

K


 �
¼ 0

If the above equation is used to eliminate the pressure variable in the element level,

it simply becomes p¼K(J3� 1), which is equivalent to the pressure term in the

penalty method. ▄
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3.5.2.5 Algorithm for Stress Calculation

In computer programming, it is convenient to use vector and matrix notation rather

than tensor notation. Thus, in the following algorithm, vector and matrix notation

will be used. Below is the procedure of stress calculation for the Mooney-Rivlin

hyperelastic material. The inputs are the Lagrangian strain and material parameters,

and the outputs are the six components of the second Piola-Kirchhoff stress:

1. For given strain {E}¼ {E11, E22, E33, E12, E23, E13}
T and given material

constants (A10, A01, and K ) for the penalty method, or material constants (A10

and A01) and the hydrostatic pressure p for the mixed formulation method,

perform the following calculation.

2. Set {1}¼ {1, 1, 1, 0, 0, 0}T and {C}¼ 2� {E} + {1}.

3. Calculate the three invariants:

I1 ¼ C1 þ C2 þ C3:

I2 ¼ C1 � C2 þ C1 � C3 þ C2 � C3 � C4 � C4 � C5 � C5 � C6 � C6:

I3 ¼ C1 � C2 � C4 � C4ð Þ � C3 þ C4 � C6 � C1 � C5ð Þ � C5 þ C4 � C5 � C2 � C6ð Þ � C6:

4. Calculate the derivatives of invariants with respect to the Lagrangian strain:

I1,Ef g ¼ 2� 1f g:

I2,Ef g ¼ 2� C2 þ C3,C3 þ C1,C1 þ C2, � C4, � C5, � C6f gT:

I3,Ef g ¼ 2� �C2C3 � C5C5,C3C1 � C6C6,C1C2 � C4C4,

C5C6 � C3C4,C6C4 � C1C5,C4C5 � C2C6

�
T:

5. Calculate the derivatives of the reduced invariants.

J1,Ef g ¼ I
�1=3
3 I1,Ef g � 1

3
I1I

�4=3
3 I3,Ef g

J2,Ef g ¼ I
�2=3
3 I2,Ef g � 2

3
I2I

�5=3
3 I3,Ef g

J3,Ef g ¼ 1

2
I
�1=2
3 I3,Ef g;

6. Calculate the second Piola-Kirchhoff stress from Eq. (3.119):

Sf g ¼ A10 J1,Ef g þ A01 J2,Ef g þ p J3,Ef g:

When the penalty method is used, then use K(J3� 1) instead of p.

196 3 Finite Element Analysis for Nonlinear Elastic Systems



3.5.3 Variational Equation and Linearization

Once the stress is calculated from the strain energy density, the energy form of the

variational equation can readily be obtained using the nonlinear elasticity formu-

lation developed in Sect. 3.3, which is rewritten here as

a u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ; ð3:124Þ

where the energy and load forms are defined as

a u; uð Þ ¼
ZZ

0Ω
S uð Þ : E u; uð Þ dΩ ð3:125Þ

and

‘ uð Þ ¼
ZZ

0Ω
uTfb dΩþ

Z
0Γs

uTtdΓ: ð3:126Þ

The definitions of the above two forms are identical to those of the nonlinear elastic

equation. However, the second Piola-Kirchhoff stress is calculated from Eq. (3.119)

for hyperelastic materials. Note that the undeformed state is used as a frame of

reference.

As discussed before, the load form is independent of deformation when it is

conservative. The energy form is nonlinear through the constitutive relation and

strain tensor. Linearization of the second Piola-Kirchhoff stress can be expressed in

terms of the displacement increment as

ΔS ¼ W,E,E : ΔE ¼ D : ΔE ð3:127Þ

where D is the fourth-order constitutive tensor at the current load step, referring to

the undeformed state, and ΔE is the Lagrangian strain increment. Note that the

constitutive tensor D for the St. Venant–Kirchhoff material was constant, as in

Eq. (3.51). However, it is now a function of deformation for the hyperelastic

material.

The constitutive tensor D can be obtained by differentiating the second Piola-

Kirchhoff stress in Eq. (3.119) to obtain

D ¼ ∂S
∂E

¼ A10J1,EE þ A01J2,EE þ K J3 � 1ð ÞJ3,EE þ KJ3,E 	 J3,E ð3:128Þ

where J1,EE¼∂2 J1/∂E∂E is the second-order derivative of the reduced invariant

with respect to the Lagrangian strain. The same notation is used for J2,EE and J3,EE.
The last term, J3,E	 J3,E, is a tensor product using J3,E twice. Note that the

constitutive tensor has major and minor symmetries, i.e., Dijkl¼Dklij and
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Djijl¼Djilk. Unfortunately, the expressions of the second-order derivatives are

lengthy. From Eq. (3.120),

J1,EE ¼ I1,EEI
�1

3

3 � 1

3
I
�4

3

3 I1,E 	 I3,E þ I3,E 	 I1,Eð Þ þ 4

9
I1I

�7
3

3 I3,E 	 I3,E � 1

3
I1I

�4
3

3 I3,EE

J2,EE ¼ I2,EEI
�2

3

3 � 2

3
I
�5

3

3 I2,E 	 I3,E þ I3,E 	 I2,Eð Þ þ 10

9
I2I

�8
3

3 I3,E 	 I3,E � 2

3
I2I

�5
3

3 I3,EE

J3,EE ¼ �1

4
I
�3

2

3 I3,E 	 I3,E þ 1

2
I
�1

2

3 I3,EE

ð3:129Þ
where the second-order derivatives of the invariants can be obtained from

I1,EE ¼ 0

I2,EE ¼ 41	 1� I

I3,EE ¼ 4I3C
�1 	 C�1 � I3C

�1IC�1

ð3:130Þ

where Iijkl¼ (δikδjl+ δilδjk)/2 is a symmetric fourth-order identity tensor.

Once the constitutive tensor is calculated, linearization of the energy form yields

the same expression as in Eq. (3.74), which is rewritten here as

a
 u;Δu,uð Þ �
ZZ

0Ω
E : D : ΔEþ S : ΔE
� �

dΩ: ð3:131Þ

Compared to the St. Venant–Kirchhoff material, the only differences are the

expressions of the constitutive tensor and the second Piola-Kirchhoff stress. Thus,

the same Newton–Raphson iterative method can be used for solving hyperelasticity

problems.

The stress in Eq. (3.119) and material stiffness in Eq. (3.128) can easily be

implemented in computer programs. Below is the MATLAB programs, Mooney,

that calculates the second Piola-Kirchhoff stress and material stiffness for a given

deformation gradient. The mixed and perturbed Lagrangian formulations require

slight modification of the program.

PROGRAM Mooney
%

% 2nd PK stress and material stiffness for Mooney-Rivlin material

%

function [Stress D] = Mooney(F, A10, A01, K, ltan)

% Inputs:

% F = Deformation gradient [3x3]

% A10, A01, K = Material constants

% ltan = 0 Calculate stress alone; 1 Calculate stress and material stiffness

% Outputs:

% Stress = 2nd PK stress [S11, S22, S33, S12, S23, S13];

% D = Material stiffness [6x6]
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%

X12 = 1/2; X13 = 1/3; X23 = 2/3; X43 = 4/3; X53 = 5/3; X89 = 8/9;

%

C = F’*F;

C1=C(1,1); C2=C(2,2); C3=C(3,3); C4=C(1,2); C5=C(2,3); C6=C(1,3);

I1 = C1+C2+C3;

I2 = C1*C2+C1*C3+C2*C3-C4^2-C5^2-C6^2;

I3 = det(C);

J3 = sqrt(I3);

J3M1 = J3 - 1.0D+00;

%

I1E = 2*[1 1 1 0 0 0]’;

I2E = 2*[C2+C3, C3+C1, C1+C2, -C4, -C5, -C6]’;

I3E = 2*[C2*C3-C5^2, C3*C1-C6^2, C1*C2-C4^2, . . .

C5*C6-C3*C4, C6*C4-C1*C5, C4*C5-C2*C6]’;

%

W1 = I3^(-X13); W2 = X13*I1*I3^(-X43); W3 = I3^(-X23);

W4 = X23*I2*I3^(-X53); W5 = X12*I3^(-X12);

%

J1E = W1*I1E - W2*I3E;

J2E = W3*I2E - W4*I3E;

J3E = W5*I3E;

%

Stress = A10*J1E + A01*J2E + K*J3M1*J3E;

%

% Material stiffness

%

D = zeros(6);

if ltan == 1

%

I2EE = [0 4 4 0 0 0; 4 0 4 0 0 0; 4 4 0 0 0 0;

0 0 0 -2 0 0; 0 0 0 0 -2 0; 0 0 0 0 0 -2];

I3EE = [ 0 4*C3 4*C2 0 -4*C5 0;

4*C3 0 4*C1 0 0 -4*C6;

4*C2 4*C1 0 -4*C4 0 0;

0 0 -4*C4 -2*C3 2*C6 2*C5;

-4*C5 0 0 2*C6 -2*C1 2*C4;

0 -4*C6 0 2*C5 2*C4 -2*C2];

%

W1 = X23*I3^(-X12); W2 = X89*I1*I3^(-X43); W3 = X13*I1*I3^(-X43);

W4 = X43*I3^(-X12); W5 = X89*I2*I3^(-X53); W6 = I3^(-X23);

W7 = X23*I2*I3^(-X53); W8 = I3^(-X12); W9 = X12*I3^(-X12);

%

J1EE = -W1*(J1E*J3E’ + J3E*J1E’) + W2*(J3E*J3E’) - W3*I3EE;

J2EE = -W4*(J2E*J3E’ + J3E*J2E’) + W5*(J3E*J3E’) + W6*I2EE - W7*I3EE;

J3EE = -W8*(J3E*J3E’) + W9*I3EE;

%

D = A10*J1EE + A01*J2EE + K*(J3E*J3E’) + K*J3M1*J3EE;

end

return;

_____________________________________________________________________
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3.6 Finite Element Formulation for Nonlinear Elasticity

So far, formulations and solution procedures of nonlinear elastic and hyperelastic

problems have been discussed in the continuum domain. In practice, the structure is

discretized by finite elements and the equilibrium equations are applied to these

elements. In this section, finite element discretization is discussed using a four-

node, plane-strain, quadrilateral solid element. Different types of elements have

different schemes of interpolation, which will only affect the displacement–strain

relation. The same algorithm for stress calculation and constitutive tensor can be

used for different types of elements.

Figure 3.14 shows a quadrilateral element defined in the undeformed state.

Even if a real structure is composed of many elements, for the simplicity of

explanation, it is assumed that the structure is modeled by one element. In the

total Lagrangian formulation, all interpolation functions are calculated in the

undeformed geometry. In the computer implementation of the nonlinear finite

element program, matrix–vector notation is more convenient than tensor notation.

In matrix–vector notation, a second-order symmetric tensor (e.g., stress and strain)

is expressed using a vector, while a fourth-order symmetric tensor (e.g., constitutive

tensor) is expressed using a matrix. For example, the stress and strain vectors are

defined as

Sf g ¼ S11 S22 S12f gT ð3:132Þ

and

Ef g ¼ E11 E22 2E12f gT: ð3:133Þ

In the above definitions, the symmetric property of the tensor is used.

In the displacement-based implementation of finite elements, the displacement

vector u¼ {u1, u2}
T is given for each node of an element. Subscript I will be used to

denote the node such that uI will be the displacement vector at node I. The displace-
ment within the element can be calculated using the following interpolation scheme:

Finite Element Reference Element 
X1

X2

1 2

3
4

ξ

η

(–1,–1) (1,–1) 

(1,1) (–1,1)

Fig. 3.14 Quadrilateral plane solid element
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u ¼
XNe

I¼1

NI ξð ÞuI; ð3:134Þ

where Ne is the number of nodes of the element, ξ¼ {ξ, η}T is the natural coordinate
vector at the reference element [see Fig. 3.14], andNI(ξ) is the interpolation or shape
function. In the iso-parametric mapping method, the material coordinates within the

element are also interpolated using the same interpolation function. In the material

description, the reference coordinate X¼ {X1, X2}
T is interpolated using

X ¼
XNe

I¼1

NI ξð ÞXI ð3:135Þ

where XI¼ {XI1, XI2}
T is the nodal coordinate of node I at the undeformed

geometry.

In order to express the nonlinear equation in terms of nodal displacements, it is

first necessary to interpolate the displacement gradient vector. Using the interpola-

tion scheme in Eq. (3.134), the displacement gradient can be expressed as

∇0u ¼ ∂u
∂X

¼
XNe

I¼1

∂NI ξð Þ
∂X

uI; ð3:136Þ

where the derivatives of the interpolation function can be obtained using the chain

rule of differentiation and the Jacobian relation, as explained in Eq. (1.139) in

Chap. 1. The only difference is that the undeformed coordinate X should be used.

Using index notation, the components of displacement gradient can be written as

ui, j ¼
XNe

I¼1

NI, j ξð ÞuIi ð3:137Þ

where NI,j is the derivative of NI with respect to Xi and uIi is the component of uI. In

the following, a subscribed commawill be used for differentiation with respect to Xi.

From the displacement gradient, the deformation gradient can be calculated using

Eq. (3.5). The following vector form of the displacement gradient is defined first:

∇0u ¼ u1,1 u1,2 u2,1 u2,2f gT ð3:138Þ

Then, the deformation gradient can be written as

Ff g ¼ F11 F12 F21 F22f gT ¼ 1þ u1,1 u1,2 u2,1 1þ u2,2f gT: ð3:139Þ

3.6 Finite Element Formulation for Nonlinear Elasticity 201

http://dx.doi.org/10.1007/978-1-4419-1746-1_1


For a given displacement gradient, the Lagrangian strain can be calculated by

Ef g ¼
E11

E22

2E12

8>><
>>:

9>>=
>>; ¼

u1,1 þ 1

2
u1,1u1,1 þ u2,1u2,1ð Þ

u2,2 þ 1

2
u1,2u2,1 þ u2,2u2,2ð Þ

u1,2 þ u2,1 þ u1,2u1,1 þ u2,1u2,2

8>>>><
>>>>:

9>>>>=
>>>>;
: ð3:140Þ

Using the Lagrangian strain, the second Piola-Kirchhoff stress can be obtained by

differentiating the strain energy density function with respect to E. For example, in

the case of the St. Venant–Kirchhoff material, the second Piola-Kirchhoff stress can

be calculated from Eq. (3.53), while the hyperelastic material can be calculated

from Eq. (3.119).

Next, the variation of Lagrangian strain E in Eq. (3.63) can be written in vector

notation as

E
� � ¼ BN½ � d

� � ð3:141Þ

where d
� � ¼ d11 d12 d21 d22 � � � d42

� �T
is the variation of nodal dis-

placements and [BN] is the nonlinear displacement–strain matrix defined as

BN½ � ¼

F11N1,1 F21N1,1 F11N2,1 F21N2,1 � � � F11N4,1 F21N4,1

F12N1,2 F22N1,2 F12N2,2 F22N2,2 � � � F12N4,2 F22N4,2

F11N1,2

þF12N1,1

F21N1,2

þF22N1,1

F11N2,2

þF12N2,1

F21N2,2

þF22N2, 1

� � �
F11N4,2

þF12N4,1

F21N4, 2

þF22N4,1

2
666664

3
777775:

ð3:142Þ

Note that the nonlinear displacement–strain matrix [BN] is clearly different from

[B] in linear systems in Chap. 1. The latter remains unchanged for a given element

and given integration point, while the former changes according to displacement as

it contains the components of deformation gradient.

Using Eq. (3.141) and the second Piola-Kirchhoff stress in Eq. (3.132), the

discrete version of the energy form can be derived as

a u; uð Þ ¼
ZZ

0Ω
S : EdΩ ¼ d

� �TZZ
0Ω

BN½ �T Sf gdΩ � d
� �T

f int
� �

; ð3:143Þ

where {fint} is the discrete internal force vector. Note that both the tensor and

matrix–vector notations are used in the equation.
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In addition, the discrete external force vector can be derived from the definition

of the load form as

‘ uð Þ ¼
ZZ

0Ω
uTfb dΩþ

Z
0Γs

uTtdΓ

¼
XNe

I¼1

uT
I

ZZ
0Ω
NI ξð Þfb dΩþ

Z
0Γs

NI ξð ÞtdΓ
( )

� d
� �T

fextf g:
ð3:144Þ

When concentrated nodal forces are applied, they can directly be added to the

corresponding locations in {fext}. Since the applied loads are assumed to be

independent of deformation, the external force {fext} is a fixed vector. Thus, the

discrete version of solving the nonlinear variational equation is to find the internal

force that has the same value as the external force, i.e.,

d
� �T

f int dð Þ� � ¼ d
� �T

fextf g, 8 d
� � 2 ℤh; ð3:145Þ

where ℤh is the discrete counter part of space ℤ. Since the displacement variation is

zero at the nodes where displacements are prescribed, Eq. (3.145) satisfies

{fint(d)}¼ {fext} for all nodes whose displacements are not prescribed.

Since the internal force is a nonlinear function of deformation, Eq. (3.145) needs

to be solved using an iterative method, such as the Newton–Raphson method,

which requires the Jacobian matrix or, equivalently, the tangent stiffness matrix.

In the total Lagrangian formulation, the tangent stiffness matrix corresponds to

discretization of the linearized energy form in Eq. (3.74).

As we discussed in Sect. 3.2.1, the incremental Lagrangian strain has a similar

expression as

ΔEf g ¼ BN½ � Δdf g: ð3:146Þ

Then, the first term in the structural energy form can be written as

ZZ
0Ω
E : D : ΔEdΩ ¼ d

� �T ZZ
0Ω

BN½ �T D½ � BN½ �dΩ
" #

Δdf g; ð3:147Þ

where the 3� 3 matrix [D] is the matrix version of the constitutive tensor D in

Eq. (3.51). In the case of the St. Venant–Kirchhoff material, the matrix [D] becomes

D½ � ¼
λþ 2μ λ 0

λ λþ 2μ 0

0 0 μ

2
64

3
75 ð3:148Þ

In the case of the Mooney-Rivlin material, the matrix [D] can be calculated from the

matrix version of Eq. (3.128) (see Problem P3.27).
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The second term, the initial stiffness, of the linearized energy form can be

written as

ZZ
0Ω
S : ΔEdΩ ¼ d

� �T ZZ
0Ω

BG½ �T Σ½ � BG½ �dΩ
" #

Δdf g ð3:149Þ

where

Σ½ � ¼
S11 S12 0 0

S12 S22 0 0

0 0 S11 S12
0 0 S12 S22

2
664

3
775 ð3:150Þ

BG½ � ¼
N1,1 0 N2,1 0 N3,1 0 N4,1 0

N1,2 0 N2,2 0 N3,2 0 N4,2 0

0 N1,1 0 N2,1 0 N3,1 0 N4,1

0 N2,1 0 N2,2 0 N3,2 0 N4,2

2
664

3
775 ð3:151Þ

Different from [BN], [BG] provides a linear relation between displacement and

strain. This is expected because its counterpart in continuum,ΔE Δu,uð Þ, is bilinear
with respect to displacement variation and displacement increment.

Using Eqs. (3.147) and (3.149), the tangent stiffness matrix can be calculated as

KT½ � ¼
ZZ

0Ω
BN½ �T D½ � BN½ � þ BG½ �T Σ½ � BG½ �
h i

dΩ ð3:152Þ

In general, the above integration as well as the one in the internal force in

Eq. (3.143) are evaluated using the Gauss quadrature rule. Normally, 2� 2 inte-

gration points are used for a quadrilateral element. In the case of a hyperelastic

material with near-incompressibility constraint, however, the dilatation part may

cause volumetric locking if 2� 2 integration points are used. In order to relieve

volumetric locking, in practice, 2� 2 + 1 integration points are used in which an

additional point is added at the center of the element such that the distortion part is

calculated at 2� 2 points and the dilatation part at the element center.

The discretized version of incremental equation in Eq. (3.75) can now be written

in the form of finite element matrix equation as

d
� �T

KT½ � Δdf g ¼ d
� �T

fext � f int
� �

, 8 d
� � 2 ℤh ð3:153Þ

The above linear system of equations needs to be solved iteratively until the

residual force (right-hand side) vanishes. Different methods of solving nonlinear

equations in Chap. 2 can be used. For example, in the case of the modified Newton–

Raphson method, the tangent stiffness matrix [KT] at the first iteration is repeatedly

used. In the case of the incremental force method, the external force vector {fext}

is divided by the number of increments, and the Newton–Raphson method is

employed at each load increment.
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3.7 MATLAB Code for Hyperelastic Material Model

In this section, a MATLAB code, HYPER3D.m, is introduced that can solve for

nonlinear elastic problems with the hyperelastic material model using the total

Lagrangian formulation. The code can be called from NLFEA.m in Chap. 2. As

explained in Fig. 2.26, the main function of HYPER3D.m is to build the tangent

stiffness matrix, [K], and the residual force vector, {R}. Then, NLFEA.m will solve

for the displacement increment as a part of the Newton–Raphson iteration.

HYPER3D.m shares most of its input variables with that of ELAST3D.m in

Chap. 1, which was explained in Table 1.5. Only difference is that MID and PROP are

used instead of ETAN. The current implementation does not use MID inside of

ELAST3D.m, which is an integer for the material identification number. In order

to use HYPER3D.m, MID should be a negative integer, such as -1. The array PROP

stores hyperelastic material constants. The current implementation uses Mooney-

Rivlin material, which uses three material properties, PROP¼ [A10, A01, K]. As with

ELAST3D.m in Chap. 1, the logical variable, UPDATE, is used to store the calculated

stresses in the global array SIGMA, and the logical variable, LTAN, is used to calculate

the tangent stiffness matrices and store them in the global array GKF. The residual

force, FORCE, will always be calculated.

In order to assemble the local stiffness matrix into the global stiffness matrix, the

IDOF array is used to store the location of the global DOFs corresponding to the

local 24 DOFs. The XG and WGT arrays store one-dimensional integration points and

corresponding weights, as in Table 1.4. In this implementation, only two-point

integration is used for each coordinate direction.

At each integration point of an element, the derivatives of finite element shape

functions are calculated by calling SHAPEL.m. Since the total Lagrangian formu-

lation is used, the derivatives are evaluated with respect to the undeformed

geometry. Using the derivatives of shape functions, the deformation gradient, F,

is calculated using Eq. (3.5). Then, using the deformation gradient, F, and

hyperelastic material properties in PROP, the second Piola-Kirchhoff stress and

tangent stiffness matrix are calculated by calling the Mooney.m function.

In the total Lagrangian formulation, the stress–strain relation is nonlinear, and

the nonlinear displacement–strain matrix, BN, in Eq. (3.142) and the linear

displacement–strain matrix, BG, in Eq. (3.151) are stored in BN(6,24) and

BG(9,24) arrays, respectively. In order to save computational time, the residual

force array, FORCE, is always calculated, while the tangent stiffness array, GKF, is

calculated only when the logical variable, LTAN, is true. This functionality can be

used when the modified Newton–Raphson iteration is used. Since the total Lagrang-

ian formulation uses the Lagrangian strain and the 2nd Piola-Kirchhoff stress,

function CAUCHY is used to convert the 2nd Piola-Kirchhoff stress to Cauchy

stress, which is used in printouts.
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function HYPER3D(PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE)

%********************************************************************

% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR

% HYPERELASTIC MATERIAL MODELS

%********************************************************************

%%

global DISPTD FORCE GKF SIGMA

%

% Integration points and weights

XG=[-0.57735026918963D0, 0.57735026918963D0];

WGT=[1.00000000000000D0, 1.00000000000000D0];

%

% Index for history variables (each integration pt)

INTN=0;

%

%LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F

for IE=1:NE

% Nodal coordinates and incremental displacements

ELXY=XYZ(LE(IE,:),:);

% Local to global mapping

IDOF=zeros(1,24);

for I=1:8

II=(I-1)*NDOF+1;

IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+3;

end

DSP=DISPTD(IDOF);

DSP=reshape(DSP,NDOF,8);

%

%LOOP OVER INTEGRATION POINTS

for LX=1:2, for LY=1:2, for LZ=1:2

E1=XG(LX); E2=XG(LY); E3=XG(LZ);

INTN = INTN + 1;

%

% Determinant and shape function derivatives

[~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY);

FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;

%

% Deformation gradient

F=DSP*SHPD’ + eye(3);

%

% Computer stress and tangent stiffness

[STRESS, DTAN] = Mooney(F, PROP(1), PROP(2), PROP(3), LTAN);

%

% Update plastic variables
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if UPDATE

STRESS=CAUCHY(F, STRESS);

SIGMA(:,INTN)=STRESS;

continue;

end

%

% Add residual force and tangent stiffness matrix

BN=zeros(6,24);

BG=zeros(9,24);

for I=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BN(:,COL)=[SHPD(1,I)*F(1,1) SHPD(1,I)*F(2,1) SHPD(1,I)*F(3,1);

SHPD(2,I)*F(1,2) SHPD(2,I)*F(2,2) SHPD(2,I)*F(3,2);

SHPD(3,I)*F(1,3) SHPD(3,I)*F(2,3) SHPD(3,I)*F(3,3);

SHPD(1,I)*F(1,2)+SHPD(2,I)*F(1,1)

SHPD(1,I)*F(2,2)+SHPD(2,I)* F(2,1) SHPD(1,I)*F(3,2)+SHPD(2,I)*F(3,1);

SHPD(2,I)*F(1,3)+SHPD(3,I)*F(1,2)

SHPD(2,I)*F(2,3)+SHPD(3,I)* F(2,2) SHPD(2,I)*F(3,3)+SHPD(3,I)*F(3,2);

SHPD(1,I)*F(1,3)+SHPD(3,I)*F(1,1)

SHPD(1,I)*F(2,3)+SHPD(3,I)* F(2,1) SHPD(1,I)*F(3,3)+SHPD(3,I)*F(3,1)];

%

BG(:,COL)=[SHPD(1,I) 0 0;

SHPD(2,I) 0 0;

SHPD(3,I) 0 0;

0 SHPD(1,I) 0;

0 SHPD(2,I) 0;

0 SHPD(3,I) 0;

0 0 SHPD(1,I);

0 0 SHPD(2,I);

0 0 SHPD(3,I)];

end

%

% Residual forces

FORCE(IDOF) = FORCE(IDOF) - FAC*BN’*STRESS;

%

% Tangent stiffness

if LTAN

SIG=[STRESS(1) STRESS(4) STRESS(6);

STRESS(4) STRESS(2) STRESS(5);

STRESS(6) STRESS(5) STRESS(3)];

SHEAD=kron(eye(3),SIG);

%

EKF = BN’*DTAN*BN + BG’*SHEAD*BG;

GKF(IDOF,IDOF)=GKF(IDOF,IDOF)+FAC*EKF;

end

end; end; end;

end

end
_____________________________________________________________________
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function STRESS=CAUCHY(F, S)

%********************************************************************

% CONVERT 2ND PK STRESS INTO CAUCHY STRESS

%********************************************************************

%%

PK=[S(1) S(4) S(6);S(4) S(2) S(5);S(6) S(5) S(3)];

DETF = det(F);

PKF = PK*F’;

ST = F*PKF/DETF;

STRESS=[ST(1,1) ST(2,2) ST(3,3) ST(1,2) ST(2,3) ST(1,3)]’;

end
_____________________________________________________________________

Example 3.16 (Hyperelastic analysis using MATLAB) Consider a unit cube as

shown in Fig. 3.15. An eight-node solid element is used to model the cube. The

positive X1 face (Face 4) is extended with a stretch ratio λ¼ 6.0. The following

boundary conditions are given: u1¼ 0 at Face 6, u2¼ 0 at Face 3, and u3¼ 0 at Face

1. Using NLFEA, calculate the relation between the stretch ratio and Cauchy stress.

Use the incompressible Mooney-Rivlin hyperelastic material with A10¼ 80 MPa,

A01¼ 20 MPa, and K¼ 107 MPa. Use 20 load increments. Compare the results with

the analytical solution.

Solution The following MATLAB script defines an eight-node solid element with

boundary conditions. Since this is a displacement-controlled problem, EXTFORCE

array is empty. Instead, SDISPT array has nonzero prescribed displacements for

those nodes at Face 4. In order to make stretch ratio¼ 6, the displacement should be

5.0. The total load is divided by 20 increments in TIMS array.

1

2

65

4 3

78

X1

X2

X3 Face 3

Face 1

Face 4

Face 6

Fig. 3.15 Extension of an

incompressible unit cube

208 3 Finite Element Analysis for Nonlinear Elastic Systems



%

% Ex 3-16 Hyperelastic tension example

%

% Nodal coordinates

XYZ=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];

%

% Element connectivity

LE=[1 2 3 4 5 6 7 8];

%

% No external force

EXTFORCE=[];

%

% Prescribed displacements [Node, DOF, Value]

SDISPT=[1 1 0;4 1 0;5 1 0;8 1 0; % u1=0 for Face 6

1 2 0;2 2 0;5 2 0;6 2 0; % u2=0 for Face 3

1 3 0;2 3 0;3 3 0;4 3 0; % u3=0 for Face 1

2 1 5;3 1 5;6 1 5;7 1 5]; % u1=5 for Face 4

%

% Load increments [Start End Increment InitialFactor FinalFactor]

TIMS=[0.0 1.0 0.05 0.0 1.0]’;

%

% Material properties

MID=-1;

PROP=[80 20 1E7];

%

% Set program parameters

ITRA=30; ATOL=1.0E5; NTOL=6; TOL=1E-6;

%

% Calling main function

NOUT = fopen(’output.txt’,’w’);

NLFEA(ITRA,TOL,ATOL,NTOL,TIMS,NOUT,MID,PROP,EXTFORCE,SDISPT,XYZ,LE);

fclose(NOUT);
_____________________________________________________________________

The convergence history shows an important capability of NLFEA. In the first

increment (Time ¼ 0.05), the residual is 1.175E5, which is larger than ATOL ¼ 1.0E5.

Therefore, NLFEA considers that the residual is too high, as which the load increment

is bisected. After reducing the load increment to 0.025, the iteration converges in four

iterations. Once the iteration converges, the bisection recovers the initial time incre-

ment. Therefore, after Time ¼ 0.05, the time increment is recovered to 0.05. The

residual during the iteration shows a nice quadratic convergence as the residual

changes by several orders of magnitude in each iteration. The convergence iteration

is considered to be converged when the residual is less than TOL ¼ 1E-6.

Time Time step Iter Residual

0.05000 5.000e-02 2 1.17493e+05

Not converged. Bisecting load increment 2

3.7 MATLAB Code for Hyperelastic Material Model 209



Time Time step Iter Residual

0.02500 2.500e-02 2 2.96114e+04

3 2.55611e+02

4 1.84747e-02

5 1.51867e-10

Time Time step Iter Residual

0.05000 2.500e-02 2 2.48106e+04

3 1.69171e+02

4 7.67766e-03

5 2.39898e-10

Time Time step Iter Residual

0.10000 5.000e-02 2 8.45251e+04

3 1.88898e+03

4 8.72537e-01

5 1.86783e-07

. . .

Time Time step Iter Residual

1.00000 5.000e-02 2 8.55549e+03

3 8.98726e+00

4 9.88176e-06

5 1.66042e-09
_____________________________________________________________________

Figure 3.16 shows the relationship between the stretch ratio and Cauchy stress.

Stress increases nonlinearly. It is noted that due to incompressibility, the volume of

stretched cube can be calculated by 6� (1-0.5917)� (1-0.5917)¼ 1.00025, which

is almost identical to the initial volume. ▄
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Fig. 3.16 Stress–extension ration graph for the extension of a unit cube
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3.8 Nonlinear Elastic Analysis Using Commercial Finite
Element Programs

In this section, nonlinear elastic analysis procedures using three commercial finite

element programs are discussed. Since controlling load steps was already discussed

in Chap. 2, defining nonlinear materials (including hyperelastic materials) will be

discussed in this section.

3.8.1 Usage of Commercial Programs

3.8.1.1 Abaqus

*STEP, NLGEOM¼YES

The *STEP keyword was discussed in Chap. 2. In addition to specifying the

maximum allowable load increments, the option can also be used to include

geometrically nonlinear effects. By setting the NLGEOM parameter to YES, Abaqus

considers the effects of large deformation and rotation.

Abaqus does not support the St. Venant–Kirchhoff material. Instead, if the

material is defined as linear elastic with Young’s modulus and Poisson’s ratio,

and NLGEOM parameter, it is considered as a nonlinear elastic material with a

constant relation between Cauchy stress and engineering strain at the deformed

state (a hypoelastic constitutive relation).

*MATERIAL, NAME¼MOONEY

*HYPERELASTIC, MOONEY-RIVLIN

A10, A01,

In order to define a hyperelastic material in Abaqus, the *HYPERELASTIC key-

word is used with the material definition. This keyword defines the material type

and parameters. Since Abaqus uses a mixed formulation for incompressibility, there

is no need to define the bulk modulus. Abaqus supports the Arruda–Boyce, Marlow,

Mooney-Rivlin, Neo–Hookean, Ogden, polynomial, Yeoh, and user-defined

hyperelastic material models.

3.8.1.2 ANSYS

NLGEOM, ON

This command activates geometric nonlinear analysis. This affects the integra-

tion domain, stiffness matrix, and stress and strain calculations. The integration
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domain is updated to the current deformed domain. The stiffness matrix changes

according to the current displacement. Large strain effects and the nonlinear stress–

strain relation are used.

ANSYS does not support the St. Venant–Kirchhoff material. Instead, if the

material is defined as a linear elastic with Young’s modulus and Poisson’s ratio,
and NLGEOM is ON, it is considered as a nonlinear elastic material with a constant

relation between Cauchy stress and engineering strain at the deformed state.

TB,HYPER,1,,2,MOONEY

TBDATA,1,A10

TBDATA,2,A01

TBDATA,3,2/K

The first command, TB, defines a Mooney-Rivlin material with two parameters.

In fact, ANSYS allows 2, 3, 5, and 9 parameter models based on Eq. (3.105). The

following three TBDATA commands provide the values of the parameters. Note that

the number of TBDATA is three because the last parameter is the incompressibility

parameter, which corresponds to 2/K with K being the bulk modulus. ANSYS also

provides polynomial, Neo–Hookean, Ogden, Arruda–Boyce, Gent, Yeoh, Blatz–Ko

foam, Ogden compressible foam, and user-defined hyperelastic models.

3.8.1.3 NEiNastran

PARAM, LGDISP, 1

This BULKDATA command activates geometric nonlinear analysis. This

affects the integration domain, stiffness matrix, and stress and strain calculations.

The integration domain is updated to the current deformed domain. The stiffness

matrix changes according to the current displacement. Large strain effects and

nonlinear stress–strain relation are used.

MATHP

This entry defines hyperelastic material parameters. The parameters of the

MATHP entry are as follows:

MATHP MID A10 A01 D1

NA ND

A20 A11 A02 D2

A30 A21 A12 A03 D3

A40 A31 A22 A13 A04 D4

A50 A41 A32 A23 A14 A05 D5

TAB1 TAB2 TAB3 TAB4 TABD
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MID is a unique identification number of the material. By default, the model

assumes the two-parameter Mooney-Rivlin material with A10 and A01. D1 is the

half of the bulk modulus. When more than two parameters are used, it is necessary

to define NA and ND, which specify the order of distortional and dilatational strain

energy polynomials. Depending on NA and ND, additional coefficients A20, A11, etc.,

should be defined. When test data are available, DTAB1, TAB2, TAB3, TAB4, and TABD

can be used to input test data so that NEiNastran can calculate coefficients using a

regression method.

Example 3.17 (Hyperelastic analysis using Abaqus) Consider a unit cube as shown

in Fig. 3.15. Using Abaqus, calculate the relation between the stretch ratio and

Cauchy stress. Use the incompressible Mooney-Rivlin hyperelastic material with

A10¼ 80 MPa and A01¼ 20 MPa. Use 20 load increments. Compare the results with

the analytical solution.

Solution Below is the list of Abaqus commands used to solve the uniform exten-

sion of a cube. C3D8RH in Abaqus is a hybrid eight-node linear brick element with

reduced integration and hourglass control. The element has the hydrostatic pressure

as an independent variable. The *SOLID SECTION keyword assigns the material

(named MOONEY in this example) to the element via the ELSET parameter. In

order to apply the stretch ratio of 6.0, the displacement at Face 4 needs to increase

by 5.0 m.

The following figure shows the initial and deformed geometry of the cube. The

stress–stretch ratio curve shows that the numerical results agree well with the

analytical results.
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ABAQUS 
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Deformed cube

*HEADING *HYPERELASTIC, MOONEY-RIVLIN

- Mooney-Rivlin Uniaxial tension 80., 20.,

*NODE,NSET=ALL *STEP,NLGEOM,INC=20

1, UNIAXIAL TENSION

2,1. *STATIC,DIRECT

3,1.,1., 1.,20.

4,0.,1., *BOUNDARY,OP=NEW

3.8 Nonlinear Elastic Analysis Using Commercial Finite Element Programs 213



5,0.,0.,1. FACE1,3

6,1.,0.,1. FACE3,2

7,1.,1.,1. FACE6,1

8,0.,1.,1. FACE4,1,1,5.

*NSET,NSET=FACE1 *EL PRINT,F=1

1,2,3,4 S,

*NSET,NSET=FACE3 E,

1,2,5,6 *NODE PRINT,F=1

*NSET,NSET=FACE4 U,RF

2,3,6,7 *OUTPUT,FIELD,FREQ=1

*NSET,NSET=FACE6 *ELEMENT OUTPUT

4,1,8,5 S,E

*ELEMENT,TYPE=C3D8RH,ELSET=ONE *NODE OUTPUT

1,1,2,3,4,5,6,7,8 U,RF

*SOLID SECTION,ELSET=ONE,MATERIAL=MOONEY *END STEP

*MATERIAL,NAME=MOONEY

▄
_____________________________________________________________________

3.8.2 Modeling Examples of Nonlinear Elastic Materials

In this section, several analysis problems are used to discuss about modeling issues

as well as verifying the accuracy of analysis results with that of literature.

Hyperelastic thick cylinder under internal pressure [12]: An infinitely long

cylinder in Fig. 3.17a is made of Mooney-Rivlin material with A10¼ 80 psi and

A01¼ 20 psi. The material is nearly incompressible where the compressibility is
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Fig. 3.17 Hyperelastic thick cylinder under internal pressure
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equivalent to Poisson’s ratio of 0.49. An internal pressure of Pi¼ 150 psi is applied.

The inner and outer radii of the cylinder are, respectively, Ri¼ 7.0in and

Ro¼ 18.625 in. The objective is to find the radial displacement at the inner radius

and the radial stress at radius R¼ 8.16in (center of 1st element) and to compare the

results with the target values in Table 3.3.

Since the cylinder is infinitely long, it is impossible to model the entire cylinder

in the axial direction. Therefore, an approximation must be adopted in this direc-

tion. From the fact that the cylinder is infinitely long, it is reasonable to assume that

there is no deformation in the axial direction, which corresponds to the plane-strain

condition. Therefore, it is expected that the results will be independent of axial

location z. In the circular cross section, it is also expected that the results will be

only a function of radius and independent of angular position θ. This type of

problem is called axisymmetric. Therefore, it would be unnecessary to model the

entire circular region. In addition, if the entire circular region is modeled, it would

be difficult to apply to displacement boundary conditions. All rigid-body motions

must be removed in static analysis.

The problem statement does not provide the bulk modulus for incompressibility.

Since Poisson’s ratio is given, this information needs to be used to estimate the bulk

modulus. The results are not particularly sensitive to this value because the material

is unconfined. First, the Young’s modulus can be approximated by E¼ 6(A10 +A01).

Then, using the definition of bulk modulus, it can be calculated from

K ¼ E

3 1� 2νð Þ ¼
600

0:06
¼ 10, 000 psi

The problem can be solved by different modeling strategies. In the following, the

problem can be modeled using 3D solid element, 2D plane-strain elements, and

axisymmetric elements. It is suggested to try with different element types and

compare the results with each other.

(a) 3D solid element: The advantage of using 3D solid elements is that it closely

models the real geometry. 8-node or 20-node hexahedron or 10-node tetra-

hedron elements can be used to model the cylindrical geometry. Since the

results do not vary along the z-axis, it would be enough to have a single

element in that direction. In order to apply the plane-strain condition, the

z-directional displacements are fixed. Since there is no systematic way to

apply the axisymmetric condition for 3D solid element, the first suggestion

is to model the first quadrant of the circular cross section (see Fig. 3.17b).

The advantage of this model is that it is straightforward to apply boundary

conditions. In order to have the same effect with the full circular geometry,

Table 3.3 Target results for

hyperelastic thick cylinder

under internal pressure

Criterion Target value

Displacement at the inner radius (in) 7.180

Stress at the first element (psi) �122.0
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u1 is fixed for those nodes on the yz-plane, and u2 is fixed for those nodes on
the xz-plane. It would be better to arrange elements in such a way that

element boundaries are aligned with lines with a constant angle θ, although
this will make small elements near the inner radius and large elements near

the outer radius. The other possibility is to further reduce the number of

elements along the angular direction because the results are independent of θ
(Fig. 3.17c). In such a case, axisymmetric condition can be imposed by

fixing the displacements in the normal direction to the cut plane. Since these

planes may not be parallel to any global coordinate direction, it is necessary

to establish local coordinates and apply displacement boundary conditions

using them. The number of elements along the radial direction can be

determined through the convergence analysis, but about five elements

should be reasonable. The stress evaluation point R¼ 8.16in is chosen as

the center of the first element when five equal-length elements are used in

the radial direction. Lastly, it is important to understand that when linear

elements are used, the circular boundaries of inner and outer circumferences

are approximated by piecewise straight line segments, which may cause an

error in the applied pressure in the inner surface.

(b) Plane-strain elements: The plane-strain elements only require modeling

the cross-sectional area (xy plane) and assume there is no deformation in the

axial direction. For the purpose of geometric modeling, either top or bottom

portion of the 3D solid elements in the previous section is required (see

Fig. 3.17d). 8-node or 4-node quadrilateral or 6-node triangular elements

can be used to model the circular cross section. Similar to the 3D solid

elements, either the first quadrant or a portion of small angle θ can be

modeled using proper symmetric boundary conditions. Since the plane-

strain elements do not have a degree of freedom in the z-direction, there is
no need to fix u3 displacement. For the standard plane-strain element, no

thickness information is required. In such a case, it is equivalent to assume

a unit thickness.

(c) Axisymmetric elements: An axisymmetric problem models a plane geom-

etry and rotates it with respect to an axis of rotation to build a 3D geometry.

Therefore, the cylinder model is cut by xz-plane, and the positive side of the
cross section is used to make axisymmetric elements (see Fig. 3.17e). The

same types of element geometry with the plane-strain elements can be used.

This is why many finite element programs use the same elements for plane

strain and axisymmetry and use different properties to distinguish them.

The conventional xyz coordinates are interpreted as rθz coordinates in

axisymmetric problems. For boundary conditions, the axisymmetric

model cannot move in the radial and angular directions. Therefore, only

u3 at the top and bottom edges need to be fixed. In axisymmetric problems,

u1 displacement is interpreted as the radial displacement ur, and the cir-

cumferential displacement u2 corresponds to uθ.

Hyperelastic circular plate [13]: A flat circular membrane made of a rubber

material is subjected to uniform pressure on the bottom surface (see Fig. 3.18a). The
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radius of membrane is R¼ 7.5in and thickness t¼ 0.5 in. The edge of membrane is

fixed. The Mooney-Rivlin hyperelastic material is used with material constants

A10¼ 80 psi and A01¼ 20 psi. The objective is to determine the response as pressure

is increased to 50 psi and to compare the results with the target values in Table 3.4.

Since the plate is thin compared to the radius, 3D solid elements will not perform

well. This is especially true when a thin plate goes through bending deformation.

At least four or five elements are required through the thickness direction in order to

capture the bending behavior. Then in order to maintain a good aspect ratio,

elements in xy plane should also be in the similar size. That means a huge number

of elements must be used to model the membrane structures using 3D solid element.

This is generally true for modeling structures made of sheet metals or membranes.

Therefore, it would be better to model the membrane using shell elements. Shell

elements need to be created on the neutral plane (midplane) of the membrane. The

thickness of membrane is given as a property in the shell element. In addition to the

three nodal displacements at each node, a shell element has two or three rotational

degrees of freedom, depending on the theory used for implementation. These

rotational degrees of freedom will be denoted by r1 and r2 in addition to displace-

ments u1, u2, and u3 for shell elements.

Similar to the pressurized cylinder problem, the problem is axisymmetric. The

easiest way of modeling is to make the circular plate, to fix the entire boundary, and

to apply a uniform pressure load (see Fig. 3.18b). However, in order to make the

axisymmetric behavior, elements should be laid out in the pattern of rotational

symmetry. Note that the shape of element at the center is triangular and all others

are quadrilateral. Since the results will not be a function of angular position θ, it is
possible to reduce the entire circle into the first quadrant with appropriate symmet-

ric boundary conditions. Since the shell element has additional rotational degree of
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Fig. 3.18 Hyperelastic circular plate

Table 3.4 Target results for

hyperelastic circular plate
Pressure (psi) Displacement u3 at the center (in)

4.0 2.250

24.0 6.200

38.0 10.900
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freedom, caution is required to apply for the symmetric boundary condition. First,

for the edge along the y-axis, u1¼ r2¼ 0, where r2 is the rotational degree of

freedom along y-axis. Similarly, for the edge along the x-axis, u2¼ r1¼ 0 (see

Fig. 3.18c). That is, the rotation along a symmetry line must vanish. Since the

results are independent of angular positions, the number of elements can be further

reduced by one in θ direction (see Fig. 3.18d). In that case, local coordinates are

required to provide the symmetric boundary condition. For the inclined edge, the

displacement normal to the edge and the rotation tangential to the edge must be

fixed for symmetric boundary condition.

Instead of 3D shell elements, axisymmetric shell elements can be used to model

the circular plate (see Fig. 3.18e). If a line is drawn from the center to the edge along

x-axis, and if the line is rotated by 360o degree with respect to z-axis, then it

becomes the circular plate. The shape of axisymmetric shell element is a line for

a linear element and a curve for a quadratic element. In the axisymmetric shell

element, there is no need to provide symmetric boundary conditions. The x- and z-
directional displacements at the node at the edge need to be fixed, and x-directional
displacement at the node at the center needs to be fixed. Note that x-axis should be

interpreted as r-axis.
Figure 3.19 shows the deformed shape of the membrane at different levels of

pressure. It shows that the thickness of the membrane gradually decreases as the

deformation increases. Since the membrane will go through a large deformation,

the surface area that the pressure is applied continuously varies; i.e., the applied

load depends on deformation. This is the case of force nonlinearity. Depending on

the relationship between force and displacement, it is possible that the deformation-

dependent force can cause instability. Therefore, it is beneficial to start with small

force increments and to plot the force–displacement graph to predict any possible

instability.
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Fig. 3.19 Deformed geometry and pressure–displacement curve for the hyperelastic circular plate
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Stretching of a sheet with a hole [13, 14]: The objective of this example is to

verify the results of hyperelastic materials in plane stress using the uniform large

stretching of a thin, initially square sheet containing a centrally located circular

hole. The results are compared with those provided in Oden (1972) for different

forms of the strain energy function using the experimental results of Treloar

(1944). The geometry and the mesh for a quarter-sheet are shown in Fig. 3.20.

The undeformed square sheet is 2 mm (0.079 in.) thick and is 165 mm (6.5 in.) on

each side. It has a centrally located internal hole of radius 6.35 mm (0.25 in). The

sheet is confined in y-direction at top and bottom and uniformly extended by 20in in

both positive and negative x-directions. This is a very large deformation as the

imposed displacement is seven times larger than the dimension of undeformed

geometry. The force–displacement curve can be obtained by calculating the reac-

tion force at the edge of imposing displacement.

For the modeling purpose, it is possible to make a mesh to the entire sheet.

However, since the deformation is symmetric with respect to both x- and y-axis, it is
better to use the symmetric modeling, in which only the first quadrant can be used

for generating finite elements. The body is modeled with 32 second-order plane

stress elements: CPS8R for Abaqus, PLANE183 for ANSYS, and CQUAD8 for

NEiNastran. For the cut edges, u2¼ 0 symmetric condition is applied to the edge

parallel to x-axis, while u1¼ 0 is applied to the edge parallel to y-axis.
The experimental data of Treloar (1944) composed of uniaxial, biaxial, and

planar tension data are applied to these models. The first hyperelastic material

model is the Mooney-Rivlin model that is discussed in this chapter, whose strain

energy density is given in the following form:

U ¼ A10 I1 � 3ð Þ þ A01 I2 � 3ð Þ
with the incompressibility condition. The second model is similar to the Mooney-

Rivlin model, but with more parameters. The Bidermanmodel uses four parameters:

U ¼ A10 I1 � 3ð Þ þ A01 I2 � 3ð Þ þ A20 I1 � 3ð Þ2 þ A30 I1 � 3ð Þ3

6.5in 

6.
5i

n 
R=0.25in

u1=20in u1=20in x

y
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u2=0 

u2=0 

u 1
=0

Fig. 3.20 Stretching of a sheet with a hole
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The constants used by Oden (1972) are A10¼ 0.1863 MPa (27.02 psi),

A01¼ 0.00979 MPa (1.42 psi), and, for the Biderman model, A20¼ –0.00186 MPa

(–0.27 psi) and A30¼ 0.0000451 MPa (0.00654 psi). It is noted that as the magni-

tudes of model parameters are gradually decreasing as the order of polynomial

increases. The third material model is the Ogden hyperelasticity model, which is

defined using the principal stretches, λ1, λ2, and λ3, as

U ¼
X3
i¼1

2μi
α2i

λ
αi
1 þ λ

αi
2 þ λ

αi
3 � 3

� �

where material parameters μi and αi can be calculated by fitting the experimental

data. Many finite element programs provide the capability of calculating model

parameters by fitting experimental data.

The final displaced configuration is shown in Fig. 3.21; and the load responses

are shown in Fig. 3.22, where the load is plotted as a function of the overall nominal

strain of the sheet in the x-direction. The results of Biderman and Ogden models are

seen to agree closely with Oden’s. The Mooney-Rivlin strain energy function (with

and as the only nonzero terms) cannot predict the “locking” of the response at

higher strains that is predicted by the Biderman and Ogden strain energy functions.

Fig. 3.21 Stretched geometry of a rectangular sheet with a hole
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Fig. 3.22 Load responses of a sheet with a hole
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Large deformation of a cantilever beam [15, 16]: A cantilever beam shown in

Fig. 3.23 is under bending moment at the tip. The beam is 10 m long with a

rectangular cross section of 100 mm x 147.8 mm. Since the length is hundred

times larger than the height of cross section, the beam can be considered as a

slender member. For material properties, Young’s modulus for 100 MPa is

assumed. The beam is modeled by 40 CPS4I elements in Abaqus. Since the beam

is modeled by plane solid elements, the moment is applied through a distributing

coupling constraint. The distributing coupling constraint is used to couple the nodes

at the cantilever tip to a reference node placed at the tip. The moment of

3384.78 N-m is applied to this reference node, resulting in a force-couple at the

bottom and top nodes of the cantilever tip. The value of tip moment is selected so

that the beam can wind twice, based on analytical relation of ML/EI¼ 2πn with

n¼ 2. Figure 3.23 shows the deformed plots of beam during nonlinear analysis. As

expected, the beam winds twice when the total bending moment is applied.

3.9 Fitting Hyperelastic Material Parameters
from Test Data

Although the hyperelastic materials in the previous sections can represent complex

behaviors of elastomers, it is difficult to obtain material parameters from experi-

ments. Compared to well-established test procedures for metallic materials [17], the

appropriate experiments are not yet clearly defined by national or international

standard organizations. This is partly because the complex mathematical models

are required to define the nonlinear and the nearly incompressible attributes of

Fig. 3.23 Large deformation of a beam under tip moment
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elastomers. This section explains how to determine hyperelastic material parame-

ters from experiments. For simplicity, we will only present the method using a

Mooney-Rivlin material. The material parameters of other types of hyperelastic

models can be determined in a similar way.

It is important to note that the procedure of material parameter determination

should be independent of the finite element model. That is, it would be inappropri-

ate to calculate material parameters by comparing finite element analysis

results with experimental data. This is because the finite element results may

have numerical errors in calculation. Therefore, experiments should achieve

“pure” states of strain such that the stress–strain curve represents the elastomer

behavior only in the desired state. In addition, since experiments are not failure

oriented, strain or stress is gradually increased in the working range, and data are

collected at various points.

3.9.1 Elastomer Test Procedures

Constitutive models for hyperelastic materials are developed from strain energy

functions and require nominal stress vs. nominal strain data to fit most models

available. In general, it is desirable to represent the three major strain states which

are uniaxial tension, uniaxial compression, and pure shear. If compressibility is a

concern, then bulk compressibility information is also recommended. For incom-

pressible elastomers, the basic strain states are simple tension, simple compression,

equi-biaxial tension, simple shear, pure shear, and volumetric compression. It will

be shown later that equi-biaxial tension is equivalent to simple compression. The

volumetric compression test is used to determine nearly incompressible attributes

of the elastomer through the dilatational parameter D. The other four tests are used
to determine the distortional constant A10 and A01. Most hyperelastic material

models share common test data input requirements. In general, engineering stress

and engineering strain2 data sets are obtained by stretching the elastomer in several

modes of deformation. The engineering stress is the current force divided by the

original area, and the engineering strain is the change in length divided by the

original length. All test data presented and discussed herein will use engineering

stress and engineering strain measures. These data sets are fitted to determine the

parameters in material models through least-square method. Figure 3.24 shows a

typical set of three stress–strain curves appropriate for input into fitting routines.

Simple tension test: Simple tension test is very popular for elastomers and is similar

to the conventional tension test in metals. The most significant difference from the

standardized test methods is that in order to achieve a state of pure tensile strain, the

specimen should be much longer in the direction of stretching than in the width and

thickness dimensions. In such a case, the specimen is at least 10 times longer than the

2 Since engineering stress and strain are often considered in infinitesimal deformation, it would be

appropriate to call them as nominal stress and nominal strain.
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width or thickness, so that there is no lateral constraint to specimen thinning. Also,

the cross section of the specimen is rectangular, as it is cut from a sheet. Since the

instrument clamps can produce complex stress and strain states, the specimen strain

must be measured on the specimen, but away from the clamp, where a pure tension

strain state is occurring. A non-contacting strain measuring device such as a video

extensometer or laser extensometer is often used for this purpose.

Pure shear test: A state of pure shear can be obtained by twisting a circular shaft.

Due to flexibility of elastomer, however, it is difficult to conduct a torsional test.

Instead, a test similar to simple tension test is used to generate a pure shear stress

state. Because the material is nearly incompressible, a state of pure shear exists in

the specimen at a 45� angle to the stretching direction. The specimen is perfectly

constrained in the lateral direction such that all specimen thinning occurs in the

thickness direction. The specimen must be at least 10 times wider than the length in

the stretching direction.

Simple compression test: Since most elastomers show quite different behaviors

between tension and compression, it is often required to provide compression test

data by compressing a specimen using two platens. The compression test specimen

is in the shape of a thick button. Due to extra thickness, the fabrication process can

be different from other test specimen. Also, it is difficult to achieve a pure state of

strain during the compression test because of the friction between the specimen and

instrument. As the cross section increases during compression, the specimen cannot

freely expand in the contacting surface, which generates a shear stress. Even a small

friction coefficient such as 0.1 can cause substantial shear strain; often the maxi-

mum shear strain exceeds the maximum compression strain.
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Fig. 3.24 Typical test data for elastomers [19]
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Equi-biaxial tension test: For incompressible or nearly incompressible materials,

equi-biaxial extension of a specimen creates a state of strain equivalent to pure

compression. Although the actual experiment is more complex than the simple

compression experiment, a pure state of strain can be achieved which results in a

more accurate material model. The equi-biaxial strain state may be achieved by

radially stretching a circular disc. As an elastomer is radially strained in all

directions in a single plane, the state of strain in the material is the same as that

in simple compression. The measured experimental parameters are radial strain and

the radial stress. These biaxial strains and biaxial stresses can be converted directly

to compression strains and compression stresses as follows:

σC ¼ σb 1þ εbð Þ3

εC ¼ 1

εb þ 1ð Þ2 � 1

where σC is nominal engineering compression stress, σb is nominal biaxial exten-

sion stress, εC is nominal engineering compression strain, and εb is nominal biaxial

extension strain. The biaxial stress can be obtained by σb¼F/(π*D*t), where D and

t are, respectively, the diameter and thickness of the specimen.

Volumetric compression test: Volumetric compression is an experiment where the

near-incompressibility of the material is examined. In this experiment, a cylindrical

specimen is constrained in a fixture and compressed. The actual displacement during

compression is very small, and great care must be taken to measure only the

specimen compliance and not the stiffness of the instrument itself. The initial

slope of the resulting stress–strain function is the bulk modulus. This value is

typically 2–3 orders of magnitude greater than the shear modulus for elastomers.

3.9.2 Data Preparation

It is possible to use any combinations of the above experiments for finding material

parameters. However, it is important that enough number of independent experi-

mental data must be provided so that the curve-fitting algorithm does not have rank

deficiency. Also, multiple test types are recommended in order to capture different

behaviors of the material.

All experimental data must be converted into stress–strain pairs. As mentioned

before, nominal stress vs. nominal stretch will be used for this purpose. Since all tests

measure principal stress and principle stretch, the following discussions will also be

in the principle values. Table 3.5 summarizes types of data used in curve fitting. It is

noted that all tests measure the principle stretches between two points as shown in

Fig. 3.25 and all principal stresses are based on the force divided by the initial area.

For Mooney-Rivlin material, it is necessary to determine the three material

parameters: A10, A01, and K. In practical point of view, since volumetric
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compression test is difficult, K is often assumed based on a desired level of

incompressibility. For example, it is possible to calculate equivalent

K corresponding to Poisson’s ratio of 0.499. In general, most hyperelastic materials

show incompressible or nearly incompressible behavior. However, in the process of

curve fitting, it is assumed that the material is completely incompressible to

determine the distortional coefficients A10 and A01.

Since all tests yield a simple stress state, it is convenient to present in the

coordinates parallel to the principle directions. Then, the stretch ratios that are

measured in Table 3.5 are nothing but the principle stretches. The deformation

gradient is then defined in terms of the principle stretches as

F ¼
λ1 0 0

0 λ2 0

0 0 λ3

2
4

3
5

where λ1, λ2, and λ3 are the principle stretches. If nominal strains are measures, then

the principle stretches can easily be calculated by λi¼ 1 + εi.

Table 3.5 Measuring stress and strain for elastomer characterization tests

Experiment type Stretch Stress

Uniaxial tension Stretch ratio λ¼ L/L0 Nominal stress TE¼F/A0

Equi-biaxial

tension

Stretch ratio λ¼ L/L0 in
y-direction

Nominal stress TE¼F/A0 in

y-direction

Pure shear test Stretch ratio λ¼ L/L0 Nominal stress TE¼F/A0

Volumetric test Compression ratio λ¼ L/L0 Pressure TE¼F/A0

FF L

Simple tension test

F

F

L

Pure shear test

L

F

Equal biaxial test 

F

L

Volumetric compression test

Fig. 3.25 Types of elastomer tests
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Because of incompressibility, det(F)¼ λ1λ2λ3¼ 1. In such a case, the deviatoric

invariants can be written in terms of the principle stretches as

J1 ¼ λ21 þ λ22 þ λ23
J2 ¼ λ�2

1 þ λ�2
2 þ λ�2

3 :

Using the incompressibility condition, all three principle stretches can be identified

once one of them is measured.

From the assumption of incompressibility, the strain energy density function can

be written in terms of the two invariants as

U ¼ A10 J1 � 3ð Þ þ A01 J2 � 3ð Þ ð3:154Þ

Therefore, the objective here is to analytically calculate the nominal stress as a

function of principle stretches. Since different tests have different principle

stretches, individual tests are treated separately.

Uniaxial test: The three principle stretches for uniaxial tension test can be

written in terms of the measured principle stretch, λ¼ λ1, as

λ1 ¼ λ, λ2 ¼ λ3 ¼ 1=
ffiffiffi
λ

p

The principle stress can be obtained by differentiating the strain energy density with

respect to the principal strain. Since the principle strain and the principle stretch

have a relation of λi¼ 1 + εi, the principle stress can also be obtained by differen-

tiating with respect to the principle stretch, that is,

T ¼ ∂U
∂λ

¼ 2 1� λ�3
� �

A10λþ A01ð Þ ð3:155Þ

Note that the nominal stress is a linear function of material parameters. Therefore,

the linear least-square method can be used to find these coefficients. In order to use

the least-square method, the above expression is rewritten as

T A10;A01; λð Þ ¼ xf gT bf g ¼ 2 λ� λ�2
� �

2 1� λ�3
� �� � A10

A01

� �
ð3:156Þ

where {x}T is a row vector, which will be used in the linear regression process, and

{b} is the vector of unknown coefficients.

Equi-biaxial test: The three principle stretches for equi-biaxial test can be

written in terms of the measured principle stretch, λ¼ λ1, as

λ1 ¼ λ2 ¼ λ, λ3 ¼ 1=λ2

Since the two principle stretches are applied, the nominal principle stress can be

calculated by
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T ¼ 1

2

∂U
∂λ

¼ 2 λ� λ�5
� �

A10 þ λ2A01

� � ð3:157Þ

In the case of equi-biaxial test, the row vector xT is defined as [2(λ – λ–5), 2(λ3 – λ–3)].
Pure shear test (planar test): The three principle stretches for pure shear test

can be written in terms of the measured principle stretch, λ¼ λ1, as

λ1 ¼ λ, λ2 ¼ 1, λ3 ¼ 1=λ

where λ1 is the principle stretch in the loading direction. In order to show that this test

is equivalent to the pure shear state, the following logarithmic strain can be calculated:

ε1 ¼ lnλ1 ¼ �lnλ3 ¼ �ε3, ε2 ¼ lnλ2 ¼ 0

which corresponds to a pure shear state at an angle of 45o to the loading direction.

The nominal principle stress can be obtained by

T ¼ ∂U
∂λ

¼ 2 λ� λ�3
� �

A10 þ A01ð Þ ð3:158Þ

In the case of pure shear test, the row vector xT is defined as [2(λ – λ–3), 2(λ – λ–3)].
Volumetric test: The three principle stretches for volumetric compression test

can be written in terms of the measured principle stretch, λ¼ λ1, as

λ1 ¼ λ2 ¼ λ3 ¼ λ

Therefore, J1¼ J2¼ 3, and J3¼ λ3¼V/V0 (volume ratio). For the Mooney-Rivlin

material model, the hydrostatic pressure can be written as

p ¼ K λ3 � 1
� � ð3:159Þ

Similar to uniaxial compression test, the volumetric test will also experience

shear deformation between the elastomer and instrument. However, since the

magnitude of shear stress is orders of magnitude smaller than the hydrostatic

pressure, its effect can be negligible.

3.9.3 Curve Fitting

In general, the curve fitting can be performed in two stages. If the volumetric

compression data is available, it is used to determine K first. If the volumetric

compression data is not available, the bulk modulus can be estimated from

Poisson’s ratio or can be assumed. After that, all other test data are used simulta-

neously to determine constants A10 and A01.
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Let us assume that there are an NDT number of experimental data. For example,

when 10 uniaxial tension test data and 5 pure shear test data are available,

NDT¼ 15. Then, the following array is created that contains test types, stretches,

and stresses for all data:

Type 1 1 1 . . . 4 4 . . . 4

λ λ1 λ2 λ3 . . . λi λiþ1 . . . λNDT

TE T E
1 T E

2 T E
3 . . . T E

i T E
iþ1 . . . T E

NDT

The superscript “E” in the stress is used because it is experimental data. The

objective of curve fitting is to find material constants, A10 and A01, such that the

difference between measured stress and calculated stress is minimized.

For the assumed material constants A10 and A01, the nominal stress can be

calculated using the principle stretches in Eqs. (3.155), (3.157), and (3.158).

Since there are NDT stretches, the nominal stress is calculated at each of these

stretches, which are called T(A10,A01, λk), k¼ 1,. . .,NDT. Then, the curve-fitting

process is to find the material constants, A10 and A01, to minimize the difference

between experimentally obtained stress and calculated stress using the material

constants:

minimize
A10,A01

XNDT
k¼1

T E
k � T A10;A01; λkð Þ� �2 ð3:160Þ

The above equation can be solved using an optimization algorithm and/or regres-

sion method. In the case of Mooney-Rivlin material, T(A10,A01, λk) is linear with
respect to A10 and A01. Therefore, a simple linear least-square regression can be

used for curve fitting. However, other materials, such as Ogden material, need an

optimization algorithm. In the following, the linear regression method is explained.

In order to apply the least-square method, nominal stresses from test data

and from model prediction are compared at the same value of principle stretch.

Since there are NDT test data, the same number of model predictions is combined

together in the following matrix form:

Tf g ¼

T1

T2

⋮

TNDT

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

x λ1ð ÞT

x λ2ð ÞT

⋮

x λNDTð ÞT

2
6666664

3
7777775

bf g ¼ X½ � bf g

where {x(λk)}
T is the row vector defined at each test type and {b} is the vector of

the unknown material parameters. Note that the dimension of coefficient matrix [X]

is NDT� 2. Also, the nominal stresses from all tests are combined together to build

the following vector:
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TE
� � ¼

T E
1

T E
2

⋮

T E
NDT

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Then, the objective function of the optimization problem in Eq. (3.160) can be

rewritten in terms of vector notation as

ef gT ef g ¼ TE � T
� �T

TE � T
� �

¼ TE � Xb
� �T

TE � Xb
� �

¼ TE
� �T

TE
� �� 2 bf gT X½ �T TE

� �þ bf gT X½ �T X½ � bf g

The above equation is nothing but the sum of squares of errors between test and

model prediction. The minimum of the above error that can be obtained by setting

the derivative of the above expression with respect to {b} is equal to zero.

Therefore, the following form of least-square equation can be obtained:

X½ �T X½ � bf g ¼ X½ �T TE
� � ð3:161Þ

Since the dimension of the coefficient matrix [X]T[X] is 2x2, the above equation

can be solved easily.

3.9.4 Stability of Constitutive Model

In uniaxial tension of a linear elastic material, the slope in the stress–strain curve is

always positive. It means that in order to extend the material, the force must be

increased; this is a fundamental requirement for a stable material. If the slope is

negative, it is possible that application of a load to a material point can lead to

arbitrary deformations. Such a requirement of stable material is called Drucker

stability [18]. Material stability is not an issue for linear elastic material because the

material will always be stable with a positive Young’s modulus and Poisson’s ratio.
In the case of nonlinear material, however, it is possible that the slope becomes

negative locally, especially when the material parameters are identified by fitting

test data. Therefore, it is important to check material stability after material

parameters are determined from test data.

In the case ofMooney-Rivlin hyperelasticmaterial, the stability requirement can be

defined in terms of the incremental work done by arbitrary change in deformation, as

dσ : dε > 0 ð3:162Þ
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Using the tangent stiffness, the above equation can be rewritten in terms of arbitrary

strain increment as

dε : D : dε > 0

The above requirement is identical to the positive-definite property of the material

tensor. It is clear that since D is positive definite for a linear elastic material, the

material satisfies the stability requirement. However, in the case of nonlinear mate-

rials, the material tensorD is a function of deformation, and it is impractical to check

all possible deformations. Therefore, the stability check is normally performed at

several specified deformations, such as uniaxial tension and compression, equi-biaxial

tension and compression, and planar tension and compression. Also, the range of the

stretch ratio over which the stability is checked can be chosen from 0.1 to 10.

Since the above deformations for checking stability are all in the principle

directions, the stability requirement can be written in the principle components as

dσ1dε1 þ dσ2dε2 þ dσ3dε3 > 0

In addition, in the case of incompressible materials, the hydrostatic pressure p¼
(σ1 + σ2 + σ3)/3 cannot cause any deformation. Therefore, it is possible to choose

any arbitrary hydrostatic pressure value. For convenience, p is chosen such that

σ3¼ dσ3¼ 0. Then, the above stability requirement can further be simplified by

dσ1dε1 þ dσ2dε2 > 0

By using the incremental stress–strain relation in the principle components, the

above stability requirement can be written as

dε1 dε2f g D11 D12

D21 D22

� �
dε1
dε2

� �
> 0

where D11, D12, D21, and D22 are components of material tensor for a hyperelastic

materials. For example, they can be calculated from Eq. (3.128) by considering the

three coordinate directions are principle directions. For Mooney-Rivlin materials,

the components of material tensor can be calculated by

D11 ¼ 4 λ21 þ λ23
� �

A10 þ λ22A01

� �
D22 ¼ 4 λ22 þ λ23

� �
A10 þ λ21A01

� �
D12 ¼ D21 ¼ 4λ23A10 þ 4λ�2

3 A01

In order to satisfy the stability requirement, the material tensor must be positive

definite, which is equivalent to the following requirements:

D11 þ D22 > 0

D11D22 � D12D21 > 0
ð3:163Þ

Note that these requirements must satisfy for all possible deformations.
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3.10 Summary

In this chapter, finite element formulations for nonlinear elastic problems are

discussed. Among four different nonlinearities, geometric and material nonlinearities

are considered. All nonlinearities in the chapter are considered to bemild because they

are path independent and the status of a material does not change abruptly. For large

deformation, the deformation gradient plays an important role in connecting

undeformed and deformed states. The left and right Cauchy–Green deformation

tensors are used to describe large deformation. It is shown that every deformation

can uniquely be decomposed into a principal stretch and a rigid-body rotation.

Depending on the frame of reference, different stress and strain measures need to be

used in large deformation. Engineering, Lagrangian, and Eulerian strains are defined.

It has been shown that Lagrangian and Eulerian strains are independent of rigid-body

motion, while engineering strain is not. The definition of stress also depends on the

frame of reference. Cauchy stress and the first and second Piola-Kirchhoff stresses are

defined. These stresses are related to each other through the deformation gradient.

Nonlinear elastic systems can be modeled using either the total or updated

Lagrangian formulation. Since the total Lagrangian formulation uses the undeformed

state as a frame of reference, the Lagrangian strain and the second Piola-Kirchhoff

stress are used to describe the status of amaterial. The principle ofminimumpotential

energy is used to derive the nonlinear variational equation, and the tangent stiffness is

calculated through linearization for the Newton–Raphson method. Since the updated

Lagrangian formulation uses the deformed state as a frame of reference, the engi-

neering strain and the Cauchy stress are used to describe the status of a material.

Instead of deriving the nonlinear variational equation and its linearization, the

expressions in the total Lagrangian formulation are transformed to the deformed

state using the deformation gradient. It has been shown that the two formulations are

mathematically identical. Selection between two methods should be based on the

given constitutive relation and convenience of computer implementation.

In nonlinear analysis, load–displacement curves sometimes do not show a

monotonic trend due to instability of the system, such as bifurcation or buckling.

The curve starts decreasing after it reaches the maximum load, which is called a

critical load. Normally nonlinear static analysis can be performed successfully for

the applied load that is less than the critical load. Then, the critical load can be

estimated using either the one-point or two-point method. The basic idea is to find

the state in which the tangent stiffness becomes singular. More advanced methods

such as the arclength method can be used to find the actual critical load as well as

the behavior of the system (post-buckling analysis).

Hyperelasticity includes both geometric and material nonlinearities. It is accus-

tomed to large deformation, and the stress–strain relation is nonlinear, which can be

obtained by differentiating the strain energy density. Several hyperelastic material

models are introduced, but the derivation for the nonlinear variational equation is

explained for the Mooney-Rivlin material. Hyperelastic materials, and also most

nonlinear elastic materials, show incompressibility or near-incompressibility. When

the penalty method with a large value of bulk modulus is used, numerical instability,

3.10 Summary 231



which is called volumetric locking, occurs. In order to eliminate or reduce volumetric

locking, several approaches are introduced, including selective reduced integration,

the mixed formulation, and the perturbed Lagrangian formulation. The first one is the

most convenient because only the integration scheme is changed. The other two

methods require introducing the hydrostatic pressure as an independent variable.

3.11 Exercises

P3.1 Derive the expression of the Eulerian strain in Eq. (3.17).

P3.2 Derive the relation in volume change in Eq. (3.26) for an infinitesimal

hexahedron whose edges are initially parallel to the coordinate directions.

P3.3 Consider a square block under oscillating simple shear deformation.

The relation between undeformed and deformed geometry is given as

x1 ¼ X1 þ aX2 sinωt, x2 ¼ X2, x3 ¼ X3

Calculate the deformation gradient and the change in volume.

P3.4 Many materials often show very different behaviors between volume-

changing deformation and volume-preserving deformation. The former is

called dilatation, while the latter is called distortion. In such a case, it is

necessary to separate the dilatational and distortional parts from the defor-

mation gradient. For example, the deformation gradient can be decomposed

into F¼Fv ·Fd, where Fv is the dilatational part and Fd is the distortional

part. Calculate Fv and Fd using the third invariant of the deformation tensor.

P3.5 Repeat Problem P3.4 for the Cauchy–Green deformation tensor; i.e., decom-

pose C¼Cv ·Cd.

P3.6 Consider a bar with a square cross section in the figure under uniaxial tension

loading. The principal stretch in the X1 direction is given by λ> 1. When

material is incompressible, compare the X1 component of normal strain

using Lagrangian, Eulerian, and engineering strains.

X1

X2

X3

F

Fig. P3.6

P3.7 A four-node square element undergoes large displacement and rotation in

the XY plane, as shown in the figure. The node initially at the origin is moved

to (1, 1 – sinπ/4) and the element is rotated by 45�. Calculate the deformation

gradient. Compute the Lagrangian strains and demonstrate that no strain

occurs during rigid-body motion.
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x

y

Initial

Current

Fig. P3.7

P3.8 A square plane-strain element is deformed as shown in the figure. The

relationship between deformed and undeformed coordinates is given as

x1 ¼ X1 � aX1X2, x2 ¼ X2, x3 ¼ X3

Compare the engineering strain and Lagrangian strain. Show that the two

strain measures become identical as “a” approaches zero.

2

2

a a

Original element
Deformed element

aa

X2

X1

Fig. P3.8

P3.9 The relationship between deformed and undeformed coordinates for the pure

bending of a plane-strain solid is given as

x1 ¼ X1 � aX1X2, x2 ¼ X2 þ 1

2
aX2

1, x3 ¼ X3

Compare the engineering strain and Lagrangian strain. Show that the two

strain measures become identical as “a” approaches zero.

P3.10 In the small deformation theory, the volumetric strain (dVx� dV0)/dV0 is

approximated by ε11 + ε22 + ε33, while in the large deformation theory, it is

given by J� 1. Show that when the deformation is small, the latter can be

approximated by the former.

P3.11 An initially straight beam AB is bent into a circular arc A0B0 as shown in the
figure. The deformation is specified as
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x1 ¼ g X2ð Þ cos π 1� X1ð Þ
2

, x2 ¼ g X2ð Þ sin π 1� X1ð Þ
2

, x3 ¼ X3

where g(X2) is a simple function of X2. (a) Find the deformation gradient in

terms of g(X2). (b) If the volume of the beam does not change, find g(X2).

(c) Using g(X2) in (b), find U, Q, and V.

X2

X1

Undeformed beam

Deformed beam

1 

1 

Fig. P3.11

P3.12 Consider a square element under pure shear deformation as shown in the

figure. The relation between deformed and undeformed coordinates becomes

x1 ¼ X1 þ kX2, x2 ¼ kX1 þ X2

(a) Calculate deformation gradient F, Lagrangian strain E, Eulerian strain e,

and engineering strain ε. (b) Calculate principal stretch tensors U and V and

rotation tensor Q.

X1

X2

Fig. P3.12

P3.13 A square block of surface area A on all sides is under pure shear deformation

due to the uniformly distributed load F on the top surface, as shown in the

figure. The deformation of the block is such that the deformed coordinates

can be written as
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x1 ¼ X1 þ aX2, x2 ¼ X2, x3 ¼ X3

Calculate Cauchy stress and the first and second Piola-Kirchhoff stresses.

F

X1

X2

Fig. P3.13

P3.14 A force F is applied at the tip of the uniform bar element shown in the figure.

The initial length and the cross-sectional area of the bar are, respectively, A0

and L0. The elastic modulus of the material is E. Calculate the tip displace-

ment by solving the total Lagrangian variational equation with the

St. Venant–Kirchhoff nonlinear elastic material model. Assume the follow-

ing numerical values: E¼ 700 MPa, A0¼ 1.0� 10�4 m2, L0¼ 1.0 m, and

R¼ 10kN. Compare the tip displacement with that from the linear elastic

model when (a) E¼ 700 MPa and (b) E¼ 70GPa.

L0=1m

1 2 F = 10kN

x

Fig. P3.14

P3.15 Solve Problem P3.14 using force equilibrium; i.e., internal force caused by

stress is equal to external force.

P3.16 Consider a plane-strain square element with unit depth as shown in the

figure. Use the St. Venant–Kirchhoff isotropic material model with two

Lame’s constants λ and μ. A uniformly distributed force Tx (force per area)
is horizontally applied at the top surface. Assuming it is a simple shear

problem, the deformation of the element can be written as
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x1 ¼ X1 þ kX2

x2 ¼ X2

�

(a) Find the relation between k and Tx, (b) find the reaction force in the X2

direction at the top surface, and (c) compare the results with that of the linear

elastic model.

Tx

X1

X2

Fig. P3.16

P3.17 Consider a deformation of a rectangular bar whose deformed geometry is

given as

x1 ¼ αX1, x2 ¼ βX2, x3 ¼ βX3

When the material is incompressible and St. Venant–Kirchhoff material

properties are given as E¼ 600 MPa and ν¼ 0.49, write the expression of

the S11 component of the second Piola-Kirchhoff stress as a function of α. In
addition, write the expression of σ11 of the Cauchy stress as a function of α.
Plot S11 and σ11 in the range of α¼ [0.7 1.5].

P3.18 Consider a simple shear deformation of a square whose deformed geometry

is given as

x1 ¼ X1 þ αX2, x2 ¼ X2, x3 ¼ X3

When the material is incompressible and St. Venant–Kirchhoff material

properties are given as E¼ 600 MPa and ν¼ 0.49, write the expression of

the S12 component of the second Piola-Kirchhoff stress as a function of α. In
addition, write the expression of σ12 of the Cauchy stress as a function of α.
Plot S12 and σ12 in the range of α¼ [0.0 1.5].

P3.19 Consider the following deformation with |α|� 1:

x1 ¼ X1 þ αX2, x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
X2, x3 ¼ X3

Assume St. Venant–Kirchhoff material with two material parameters λ and
μ. (a) Show that the above deformation is a pure shear deformation in terms
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of the Lagrangian strain. (b) Calculate the second Piola-Kirchhoff stress and

Cauchy stress in terms of α, λ, and μ.

P3.20 A force F is applied at the tip of the uniform bar shown in the figure. The

displacement of the bar is given as u(X)¼ λX where λ is the principal stretch.
The initial length and the cross-sectional area of the bar are, respectively, A0

and L0. The elastic modulus of the material is E. Calculate the tip displace-

ment by solving for the principal stretch using the total Lagrangian formu-

lation with the St. Venant–Kirchhoff material model. Assume the following

numerical values: E¼ 700 MPa, A0¼ 1.0� 10�4 m2, L0¼ 1.0 m, and F¼ 10

kN. Compare the tip displacement with that of the linear elastic model when

(a) E¼ 700 MPa and (b) E¼ 70 GPa.

L0=1m

F = 10kN

x

Fig. P3.20

P3.21 Solve Problem P3.20 using force equilibrium; i.e., internal force caused by

stress is equal to external force.

P3.22 Consider two bar elements under a force at the tip. Using the displacement-

controlled method, plot the load–displacement curve (F vs. u2 and u3).
Increase the tip displacement u3 up to 1.0 m by ten equal increments.

Assume St. Venant–Kirchhoff material with E¼ 100 MPa and cross-

sectional areas of A(1)¼ 1.0� 10�4 m2 and A(2)¼ 0.5� 10�4 m2.

Fig. P3.22

P3.23 Consider a nonlinear elastic uniaxial bar element under tip force F¼ 100 N

shown in Fig. 3.11. The stress–strain relation is given in terms of Cauchy

stress and engineering strain in the deformed geometry: σ11¼Eε11. Using
the updated Lagrangian formulation, solve for displacement at the tip and the

stress and strain of the uniaxial bar. Assume E¼ 200 Pa and the cross-

sectional area A¼ 1.0 m2.
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P3.24 Consider a deformation of a rectangular bar whose deformed geometry is

given as

x1 ¼ αX1, x2 ¼ βX2, x3 ¼ βX3

When the material is an incompressible Mooney-Rivlin hyperelastic mate-

rial with A10¼ 80 MPa and A01¼ 20 MPa, write the expression of the S11
component of the second Piola-Kirchhoff stress as a function of α. In

addition, write the expression of σ11 of the Cauchy stress as a function of

α. Plot S11 and σ11 in the range of α¼ [0.7 1.5].

P3.25 Consider a simple shear deformation of a square whose deformed geometry

is given as

x1 ¼ X1 þ αX2, x2 ¼ X2, x3 ¼ X3

When the material is incompressible Mooney-Rivlin hyperelastic material

with A10¼ 80 MPa and A01¼ 20 MPa, write the expression of the S12
component of the second Piola-Kirchhoff stress as a function of α. In

addition, write the expression of σ12 of the Cauchy stress as a function of

α. Plot S12 and σ12 in the range of α¼ [0.0, 1.5].

P3.26 Derive the energy form and its linearization of a Mooney-Rivlin hyperelastic

material using the perturbed Lagrangian method. Use a mixed variable

r¼ [uT, p]T.

P3.27 Derive the 3� 3 [D] matrix in Eq. (3.147) for a two-dimensional Mooney-

Rivlin material with three material parameters (A10, A01, and K ). Use the

penalty method for near-incompressibility.

P3.28 Derive the 3� 3 [D] matrix in Eq. (3.147) for a two-dimensional Mooney-

Rivlin material with three material parameters (A10, A01, and K ). Use the

perturbed Lagrangian method for near-incompressibility.

P3.29 A nearly incompressible rubber block is confined between two frictionless

rigid walls as shown in the figure. When uniform pressure P is applied to the

right end, the length of the block is changed by x1¼ (1� α)X1. When

α¼ 0.1, (a) calculate the value of the strain energy density and (b) the

magnitude of applied pressure P on the right end. Assume a plane-strain

problem and use a Mooney-Rivlin material with A10¼ 80 MPa,

A01¼ 20 MPa, and K¼ 1,000 MPa.

PRigid
wall

RubberX1

Fig. P3.29
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P3.30 Consider a unit cube shown in Fig. 3.15. Using an eight-node solid element,

perform biaxial extension analysis using Abaqus. Apply uniform extensions

in both X1 and X2 directions so that the deformed shape will be 5� 5� t3.
Plot stress σ11 and thickness t3 as a function of stretch.
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Chapter 4

Finite Element Analysis for Elastoplastic
Problems

4.1 Introduction

The unique property of nonlinear elastic materials in the previous chapter is that a

strain energy density exists and stress is defined by differentiating it with respect to

the appropriate strain. This property of elastic materials is called history indepen-
dent. For example, let the current strain of a nonlinear elastic bar be ε. This state can
be reached either by gradually stretching the bar until the strain becomes ε or by

gradually compressing it after stretching it beyond the strain ε. Even if these two

load histories are different, the bar will have the same value of stress because the

current strain is the same. Using the history-independent property, it is easy to

conclude that when stress disappears, strain does too. Thus, when the applied load is

removed, the structure will always come back to its initial geometry (reversible).

No permanent deformation will remain.

Different from elastic materials, some materials, such as steels or aluminum

alloys, show permanent deformation when a force larger than a certain limit (elastic

limit) is applied and removed. A simple example is bending a paper clip. If a small

force is applied and removed, the paper clip comes back to its initial geometry, but

when the force is larger than the elastic limit (irreversible), it does not. In contrast to

elasticity, this behavior of materials is called plasticity. Since these materials are

initially elastic and then become plastic, this behavior of materials is called

elastoplasticity, which is the main topic of this chapter.

Elastoplasticity, along with hyperelasticity in the previous chapter, belongs to

material nonlinearity, which comes from the constitutive relation, i.e., from the

stress–strain relation. Unlike hyperelasticity, there is no one-to-one relationship

between stress and strain for elastoplasticity. For example, let the bar in the

previous example be made of an elastoplastic material. Then, for a given value ε
of strain, stress can have different values depending on whether the bar is stretching

or compressing. In fact, depending on the history of loads, stress can have any value

less than the elastic limit. Thus, the stress–strain relation cannot be given in terms of
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total strain. Instead, the constitutive relation is given in terms of the rates of stress

and strain. This type of constitutive relation is called hypoelasticity, against

hyperelasticity. The term “rate” does not mean the time rate. Rather, it should be

understood as an increment in static analysis. Since the relation is given in the rate

form, stress can only be calculated by integrating the stress rate over the past load

history. Thus, stress calculation is history or path dependent.

A key step in elastoplastic analysis is to separate elastic and plastic strains from

total strain. Once elastic strain is calculated, stress can easily be calculated from it;

plastic strain does not contribute to stress. In fact, various constitutive relations in

Chap. 3 can be used by considering all strains to be elastic. When total strain is small

(infinitesimal deformation), it is possible to assume that the total strain can be

additively decomposed into elastic and plastic strains. In this case, no geometric

nonlinearity is considered; i.e., displacement–strain relation is linear and integration

is performed over the initial undeformed geometry. Considering that the plastic

deformation of metals normally occurs at 0.2 % strain, metal plasticity often satisfies

small strain conditions. Sections 4.2 and 4.3 are based on infinitesimal elastoplasticity.

In a large structure, even if strain is small, the structuremay undergo a large rigid-body

motion due to accumulated deformation. In such a case, it is possible to modify

infinitesimal elastoplasticity to accommodate stress calculation with the effect of

rigid-body motion. Since the rate of Cauchy stress is not independent of rigid-body

motion, different types of rates, called objective stress rates, are used in the constitu-

tive relation, which is discussed in Sect. 4.4. When deformation is large, the assump-

tion of additive decomposition of elastic and plastic strains is not valid anymore. A

hyperelasticity-based elastoplasticity is discussed in Sect. 4.5 in which the deforma-

tion gradient is multiplicatively decomposed into elastic and plastic parts and the

stress–strain relation is given in the principal directions. Thismodel can represent both

geometric and material nonlinearities during large elastoplastic deformation.

4.2 One-Dimensional Elastoplasticity

Elastoplasticity occurs when a material experiences both elastic and plastic defor-

mation. In this section, the basic concepts of elastoplastic finite element analysis are

introduced first using a one-dimensional bar. Generalization to multidimensional

elastoplasticity will be presented in Sect. 4.3. It is assumed that deformation is

small so that geometric nonlinear effects can be negligible. Therefore, no distinc-

tion between different stress measures will be necessary. Elastoplasticity with large

deformation will be considered in Sects. 4.4 and 4.5.

4.2.1 Elastoplastic Material Behavior

In a one-dimensional tension test, once a material deforms beyond the elastic limit,

it shows a complex stress–strain relation. For example, metals show that initially
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stress increases proportional to strain (elastic). After it reaches the elastic limit, also

called yield stress, the material starts deforming plastically (see Fig. 1.11 in

Chap. 1). At the first stage of plastic deformation, stress further increases propor-

tional to strain but with a much smaller slope (strain-hardening) until it reaches an

ultimate strength. After that, stress starts gradually decreasing (strain-softening)

until the material fractures. In addition, if the applied load is reduced (unloading)

after the material becomes plastic, it does not follow the previous stress–strain

curve; the material becomes elastic immediately. If cyclic loads are applied, then

the material behavior becomes more and more complicated.

Modeling the behavior of a material depends on the purpose of analysis. For

example, if the objective is to find the material behavior until it fractures, it is

necessary to model all stages of the stress–strain responses in detail. However,

when the objective is to find the material’s response under small deformation, it is

possible to simplify the material behavior by regarding the elastic and strain-

hardening parts only. Of course, this model is not appropriate to predict fracture

of the material. An idealized elastoplastic stress–strain behavior from a uniaxial

tension/compression test is shown in Fig. 4.1. When a tension load is applied, the

behavior is initially elastic until yield stress, σY, is reached (line o–a). The elastic
modulus is the slope of the line and denoted by E. If the applied load is removed

from this region, the stress–strain relation follows the same curve (line a–o). Point
a is called a yield point, and the material is not elastic anymore beyond this point.

After yielding, the plastic phase begins and stress further increases with a slope

of Et, known as the tangent modulus (line a–b). During this phase, strain is

composed of elastic and plastic parts. In this simplified model, it is assumed that

strain-hardening is linear. If the load is reduced after the material undergoes a

plastic state, it becomes elastic again, and stress decreases linearly with the same

initial elastic slope, E (line b–c). If the applied load is completely removed, a

permanent plastic strain remains (strain at point c). If the load increases again, then

a
b d

e

σ

εco

a
b d

σ

εco

Kinematic hardening Isotropic hardening

f

g

e
f

g

EE

Et EtYs Ys

Fig. 4.1 Hardening models for elastoplasticity
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the material follows line c–b and has a new yield stress (stress at point b). After that,
the stress increases by following the same slope as the tangent modulus (line b–d).
In the elastoplastic material, the yield stress changes due to the strain-hardening

effect. On the other hand, if a compressive load is applied at point c, which is a

stress-free state, the negative value of stress is developed with the slope of E. If the
compressive load continues, the material will eventually yield again in compression

(point e).
If the applied load is proportional, i.e., the load increases monotonically, the

strain-hardening is simply described by the tangent modulus, Et. However, when

combined cyclic loadings and unloadings are applied, it can be complicated

depending on when yielding occurs in the opposite direction. Several different

hardening models have been proposed for determining the yield stress in cyclic

loading situations. Figure 4.1 shows two of the most commonly used models, known

as the kinematic and the isotropic hardening. The kinematic hardening model

assumes that the elastic range (twice the initial yield stress) remains constant. The

center of the elastic regionmoves along the dashed line through the origin, parallel to

the strain-hardening line. Thus, line segments b–e and f–g are both equal and twice
the length o–a. In the isotropic hardeningmodel, themagnitude of yield stress for the

reversed loading is equal to that of the previous yield stress. That is, themagnitude of

stress is the same at points b and e. Thus, the elastic range grows in this model.

In nonlinear finite element analysis, the Newton–Raphson iterative method

solves for the displacement increment that can reduce the residual of nonlinear

equation. In addition, using the finite element interpolation scheme, it is easy to

calculate the strain increment from the given displacement increment. Thus, an

important task of elastoplastic analysis is to find stress increment from the given

strain increment. However, it is unknown that, out of the given strain increment,

how much is elastic and how much is plastic. Once this decomposition is done, the

stress increment can be calculated using the elastic strain increment. Note that

plastic strain does not contribute to the increase of stress. When the material is

elastic, whether it is in the initial elastic phase or becomes elastic due to unloading,

the strain increment is purely elastic and no plastic strain increment is present. Then

the stress increment can be obtained by multiplying the strain increment with the

elastic modulus. Since this procedure is basically identical to linear elastic systems,

only the case when the material is in the plastic phase will be discussed.

Figure 4.2 shows the stress–strain curve for a one-dimensional elastoplastic

material. When the applied load is proportional, both isotropic and kinematic

hardenings provide the same result. At the previous load increment, it is assumed

that the material is already in the plastic phase. At the current load increment, the

strain increment is given from the Newton–Raphson method. Since the material is

in the plastic phase and the load continuously increases, strain increment Δε can be
decomposed into elastic and plastic strains. That is,

Δε ¼ Δεe þ Δεp; ð4:1Þ
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where subscripts e and p denote elastic and plastic, respectively. The elastic portion

of strain will be removed when the applied load decreases or changes its direction

(unloading), whereas the plastic portion remains constant during elastic unloading

and increases again when the material yields. The plastic strain can only increase

even if the material yields in opposite directions; it never decreases as it is an

accumulation of plastic deformation. From the assumption of small deformation,

Eq. (4.1) can be used to yield

ε ¼ εe þ εp; ð4:2Þ

where εe and εp are the sum of elastic and plastic strain increments, respectively, for

all previous load increments.

Equation (4.2) provides a very important difference between nonlinear elastic

material and elastoplastic material. In the former, a unique stress is determined

from the given magnitude of total strain, which is in fact total elastic strain. In the

latter, however, it is possible to have infinitely different values of elastic strain for a

given total strain by changing the value of plastic strain. Thus, in elastoplasticity, it

is impossible to determine the amount of stress for a given total strain. Since the

plastic strain is accumulated every time the material yields, it is necessary to follow

every load increment to calculate the plastic strain. This property of elastoplasticity

is called path dependent or history dependent. In order to determine stress, complete

history of the load must be considered. The load history is taken into account by the

accumulated plastic strain, εp. In addition, the yield stress of the material is

determined by the magnitude of the plastic strain.

Although the objective is to separate the elastic strain increment from the plastic

strain increment, it is assumed for the moment that the elastic strain increment is

known. The stress increment, Δσ, can then be calculated using the elastic strain

increment as

Δσ ¼ EΔεe: ð4:3Þ

Reloading

σ

ε

E

Initial loading

E

Unloading

Elastic 
slope, E

σ

ε

E
σY

εY

Strain hardening slope, Et

Δσ

Δε

ΔεpΔεe

Fig. 4.2 One-dimensional elastoplasticity with strain-hardening
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In addition to the elastic and tangent moduli, a plastic modulus, H, is defined, which
is the slope of the strain-hardening portion of the stress–strain curve after removal

of elastic strain components. Thus,

H ¼ Δσ
Δεp

: ð4:4Þ

Even if the stress–strain curve in Fig. 4.2 is given in terms of E and Et, it is common

for the material properties to be given in terms of E and H. Since the stress–strain
curve for the proportional loading is same for both isotropic and kinematic hard-

ening, the plastic modulus is also same for both hardening models.

The three moduli (elastic, plastic, and tangent) are related to each other. The

stress increment during the plastic phase can be written using any of the three

moduli as

Δσ ¼ EΔεe ¼ HΔεp ¼ EtΔε: ð4:5Þ

The relation, Δσ¼HΔεp, may mislead that the plastic strain increases stress, but

this is due to the stain-hardening effect. By substituting the relation in Eq. (4.5) into

the strain increments in Eq. (4.1), we have

Δσ
Et

¼ Δσ
E

þ Δσ
H

) 1

Et

¼ 1

E
þ 1

H
: ð4:6Þ

Thus, for the given E and Et, the plastic modulus H can be determined as follows:

H ¼ EEt

E� Et

: ð4:7Þ

On the other hand, if E and H are specified, then Et can be computed as follows:

Et ¼ EH

Eþ H
¼ E 1� E

Eþ H

� �
: ð4:8Þ

When the material is under the elastoplastic strain (along line a–b in Fig. 4.1), the

plastic portion can be determined for the given total strain increment, as

Δε ¼ Δεe þ Δεp ¼ Δσ
E

þ Δεp ¼ HΔεp
E

þ Δεp ¼ Δεp
H

E
þ 1

� �
) Δεp ¼ Δε

1þ H=E

: ð4:9Þ

Thus, for the given amount of strain increment, the plastic strain increment can be

calculated using the ratio between plastic and elastic moduli. As a special case, when

no strain-hardening exists, i.e., stress remains at the constant yield stress during
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plastic deformation, the strain increment becomes purely plastic. Note that the

formula in Eq. (4.9) is not working when the material is initially in the elastic state.

Example 4.1 (Elastic and Plastic Strain) A force 12 kN is gradually applied at the

end of an elastoplastic bar.When the yield stress of thematerial is 100MPa, calculate

the elastic and plastic strains. Use the followingmaterial properties:E¼ 100GPa and

H¼ 10 GPa. The cross-sectional area of the bar is A¼ 1.0� 10�4 m2.

Solution In a one-dimensional bar, it is assumed that the force is uniformly distrib-

uted over the cross section. Since the total stress, σ¼F/A¼ 120 MPa, is larger than

the yield stress, it can be concluded that the material is under plastic deformation. In

addition, since the load is proportionally applied, there is no need to distinguish

isotropic and kinematic hardening. It is convenient to divide the entire deformation

into elastic and elastoplastic phases. The material is initially elastic until it reaches

yield stress. Thus, until stress reaches yield stress σ(1)¼ σY¼ 100 MPa, strain is

purely elastic:

Δε 1ð Þ
e ¼ σY

E
¼ 0:001:

After yielding, the remaining stress increment, Δσ¼ 20 MPa, is in the elastoplastic

phase. The elastic and plastic strain increments can be calculated from

Δε 2ð Þ
e ¼ Δσ 2ð Þ

E
¼ 0:0002;

Δε 2ð Þ
p ¼ Δσ 2ð Þ

H
¼ 0:002:

Thus, the total elastic and plastic strains become

εe ¼ Δε 1ð Þ
e þ Δε 2ð Þ

e ¼ 0:0012

εp ¼ Δε 2ð Þ
p ¼ 0:002

:

▄

4.2.2 Finite Element Formulation for Elastoplasticity

In this section, a finite element formulation for an elastoplastic bar element is

presented based on “the steps in the solution of nonlinear finite element analysis”

in Sect. 2.3. Due to the small deformation assumption, only material nonlinearity

will be considered.

In order to be more general, the incremental force method in Sect. 2.2.4 is

considered, where the applied load is first divided by N load increments, which

are denoted by [t1, t2, . . ., tN]. Even if the analysis procedure is static, these load
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increments are also called time increments. It is also assumed that the analysis

procedure has been completed up to load increment tn, and a new solution at load

increment tn+1 is sought using the Newton–Raphson method. In the following

explanation, the left superscript n or n+ 1 is used to denote the load increment,

while the right superscript, k or k+ 1, is used for the iteration counter. Since all

variables at tn are already converged, iteration counter only appears for those

variables at tn+1. When a variable does not show a load increment, it should be

considered a variable at tn+1 or a constant value. It is also assumed that iteration

k has been finished and the current iteration is k+ 1. The iteration count will be

omitted whenever possible unless it can cause confusions. For most cases, variables

at tn+1 represent the variables at (k + 1)th iteration, i.e., the current iteration.

Referring to Fig. 4.3, it is assumed that the entire structure is modeled by one bar

element, and the solution of the element is approximated by a vector, d¼ {u1, u2}
T,

of nodal displacements and its increment. In the view of load increment and

iteration counter, it is possible to consider two different definitions of displacement

increments, as

Δdk ¼ nþ1dk � nd

δdk ¼ nþ1dkþ1 � nþ1dk ,
ð4:10Þ

where Δd is the increment from the last converged load increment to the previous

iteration, while δd is the increment from the previous iteration. The former is used

to calculate the stress increment, while the latter is the displacement increment

calculated from the Newton–Raphson iteration. Therefore, δd is accumulated into

Δd during the Newton–Raphson iteration, and Δd is set to 0 before starting a new

load increment.

As discussed in Chap. 1, there is a suitable vector of interpolation functions,N(x)¼
[N1,N2], for the bar element so that the displacement increment can be interpolated by

Δu xð Þ ¼ N1N2½ � Δu1
Δu2

� �
¼ N � Δd: ð4:11Þ

The corresponding strain increment can also be calculated by differentiating the

above displacement by

Δε ¼ d

dx
Δuð Þ ¼ � 1

L

1

L

� �
Δu1
Δu2

� �
¼ B � Δd; ð4:12Þ

where B is the displacement–strain matrix—in the case of a bar element, it is a row

vector. Again, the strain increment is from the previous converged load increment

x1 x2

u1 u2
P1 P2

LFig. 4.3 One-dimensional

elastoplastic bar element
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to the previous iteration, which is known. Using the same interpolation scheme, the

increment from the previous iteration can also be calculated by δu(x)¼N � δd and

δε¼B � δd.
If the bar element in Fig. 4.3 is in equilibrium, the nodal forces due to internal

stresses must be equal and opposite in direction to the applied nodal forces. More

specifically, the weak form of structural equilibrium can be written as

d
T
Z L

0

BTnþ1σkþ1Adx ¼ d
Tnþ1F, 8d 2 R2; ð4:13Þ

where d ¼ u1; u2½ �T is the vector of virtual nodal displacements, A is the cross-

sectional area, and n+1F¼ [n+1F1,
n+1F2]

T is the vector of applied forces, which is

assumed to be given.

Since the relationship between stress and strain is nonlinear, the above varia-

tional equation is nonlinear in terms of strain or, equivalently, displacement. In

order to solve the nonlinear equation, the Newton–Raphson method in Chap. 2 can

be employed. Assuming that the applied load is prescribed or independent of

displacement, only the left-hand side of Eq. (4.13) needs to be linearized. Since

only material nonlinearity is considered, the stress is linearized using the first-order

Taylor series expansion, as

nþ1σkþ1 � nþ1σk þ ∂σ
∂ε

δε ¼ nþ1σk þ Depδε; ð4:14Þ

where Dep is the elastoplastic tangent modulus. From the stress–strain curve in

Fig. 4.1, the slope, Dep, can be determined by

Dep ¼ E if elastic

Et if plastic

(
: ð4:15Þ

By substituting Eq. (4.14) into Eq. (4.13) and moving known terms to the right-hand

side, the following linearized variational equation can be obtained:

d
T
Z L

0

BTDepBAdx

� �
δd ¼ d

T
F� d

T
Z L

0

BTnþ1σkAdx; ð4:16Þ

where the terms in the bracket is called the tangent stiffness matrix for the bar

element and can be written as

kT ¼ ADep

L

1 �1

�1 1

" #

4.2 One-Dimensional Elastoplasticity 249

http://dx.doi.org/10.1007/978-1-4419-1746-1_2


and the right-hand side of Eq. (4.16) is called the residual, R, which is defined as

nþ1Rk ¼ nþ1F �
Z L

0

BTnþ1σkAdx ¼
nþ1F1 þ nþ1σkA
nþ1F2 � nþ1σkA

� �
: ð4:17Þ

Note that if the residual in the above equation becomes 0, then it means that the

original nonlinear Eq. (4.13) is satisfied.1 Therefore, the Newton–Raphson iteration

stops and moves to the next load increment. In order to calculate the residual, it is

necessary to calculate stress, n+ 1σk. The stress calculations are more involved

because of nonlinearity in the stress–strain relation and dependency on the prior

stress history. For an elastoplastic material, the stress is a function of previous state,

plastic variables, and strain increment. Therefore, it can be written as

nþ1σk ¼ f nσ , nεp,Δεk, . . .
� 	

: ð4:18Þ

In stress calculation, the following situations must be considered: whether the

material is in the elastic or strain-hardening portions of the curve, loading or

unloading, and changes in the stress at which yielding takes place based on the

hardening rule employed. This process is called state determination and will be

explained in detail in the following section.

If the residual does not vanish, another iteration is required based on Eq. (4.16).

Since Eq. (4.16) must satisfy for arbitrary d 2 R2, it is equivalent to solving the

following incremental matrix equation:

kT � δdk ¼ nþ1Rk : ð4:19Þ

Therefore, the Newton–Raphson iteration solves for the incremental displacement

from the previous iteration using the residual at the last iteration. When the system

is composed of many bar elements, individual element equations are assembled in

the usual manner as in Chap. 1 and solved for displacement increments, after

applying boundary conditions. After obtaining the nodal displacement increments

by solving Eq. (4.19), the displacement increment, Δd, is updated by

Δdk+ 1¼Δdk+ δdk, and the process repeated until the residual vanishes.

4.2.3 Determination of Stress State

As discussed in the previous section, the relationship between stress and strain is

nonlinear when plastic deformation occurs. In this section, the procedure of deter-

mining stress will be discussed when strain and its increment are available. For the

1Although the iteration counter is different, it does not matter when the residual vanishes.
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purpose of explanation, isotropic and kinematic hardenings are treated separately,

but later a combined procedure will be presented.

4.2.3.1 Isotropic Hardening Model

During the Newton–Raphson iterative method, it is assumed that the following

variables are given: the strain increment (Δε) from the last load increment to the

previous iteration, plastic strain (nεp), and stress (
nσ) at load increment n. The basic

steps in computing stress are as follows.

1. Compute the current yield stress. This depends on the accumulated plastic

strain, nεp, and the plastic modulus, H.

nσY ¼ 0σY þ Hnεp; ð4:20Þ

where 0σY is the initial yield stress. Due to strain-hardening, the yield stress

increases according to plastic strain. Note that the yield stress is the same for

both tension and compression and it increases along with the plastic strain.

2. Elastic predictor. Assume an elastic behavior during the strain increment and

calculate stress increment and trial stress.

Δtrσ ¼ EΔε; ð4:21Þ
trσ ¼ nσ þ Δtrσ: ð4:22Þ

3. Check yield status. Check if the trial stress satisfies the yield condition; that is,

the stress must be lower than the yield stress. For that purpose, the following trial

yield function is defined:

trf ¼ 

trσ

� nσY: ð4:23Þ

If trf� 0, then the material stays elastic. As illustrated in Fig. 4.4, the material

is either on the initial loading curve below the yield stress or on the unloading/

reloading curve. In either case, the stress based on the elastic assumption is

correct. Set n+ 1σ¼ trσ and move on to the next load increment. In this case, the

Initial loading

Unloading
Reloading

s

s

De
e

s

Fig. 4.4 Stress state under

elastic region
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strain increment is purely elastic, and the plastic strain does not change,

i.e., n+ 1εe¼ nεe +Δε and n+ 1εp¼ nεp.
4. Plastic corrector. If trf> 0, then the material yields during this increment. As

illustrated in Fig. 4.5, at load increment tn, it is assumed that the material is at

point a (elastic). This elastic state is reached by unloading from a plastic state

(e.g., point d ). Thus, the current yield stress is nσY. At load increment tn+1, a
strain increment Δε is given, and the corresponding updated state of stress is

sought. If the material is continuously elastic, the updated stress will be at point

c (trial stress trσ). However, it is impossible for the state of stress to be above the

stress–strain curve in Fig. 4.5. Thus, a transition from elastic to plastic state

occurs in this step and the material moves up to point e (plastic). Considering

that the plastic strain increment does not contribute to the stress increment, the

trial stress is updated by subtracting the portion of plastic strain increment, as

nþ1σ ¼ trσ � sgn trσ
� 	

EΔεp; ð4:24Þ

where sgn() is a sign function, which takes “+1” when its argument is positive

and “�1” when negative. This function is added because the material can also

yield in compression. Since Eq. (4.24) corrects the trial stress by plastic strain

increment, this process is often called a plastic corrector. In addition, since it

makes the trial stress back to the yield stress, it is also called return-mapping. As
can be seen in Fig. 4.5, an algorithmic challenge is that while the trial stress

returns, the yield stress also increases (from point d to e). In Sect. 4.3, return-

mapping for multidimensional stress will be discussed.

5. Plastic consistency condition. In the plastic correction formula in Eq. (4.24),

the plastic strain increment is still unknown. In order to calculate it, the plastic
consistency condition is used, where the corrected stress must be on the yield

surface during the loading process. This condition can be written as

nþ1f ¼ 

nþ1σ


� nþ1σY ¼ 0: ð4:25Þ

Fig. 4.5 Elastic to plastic

transition
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Therefore, the goal is to find the plastic strain increment that satisfies the above

condition. Note that not only the plastic strain increment reduces the corrected

stress, n+ 1σ, but also it increases the yield stress, n+ 1σY. In order to calculate the
plastic strain increment, Eq. (4.25) can be expanded as

trσ � sgn trσð ÞEΔεp



� nσY þ HΔεp
� 	 ¼ 0

) 

trσ

� nσY � Eþ Hð ÞΔεp ¼ 0:

Note that the above formula works for both positive and negative trial stress.

Therefore, the plastic strain increment can be obtained as

Δεp ¼


trσ

� nσY
Eþ H

¼
trf

Eþ H
: ð4:26Þ

Since trf> 0, the plastic strain increment is always positive. With this plastic

strain increment, the stress in Eq. (4.24) can be updated, which concludes the

state determination. The plastic strain increment reduces the trial stress and

increases the yield stress so that the plastic consistency condition satisfies.

Since a linear hardening model with a constant plastic modulus,H, is used, the
plastic consistency condition in Eq. (4.25) can explicitly be solved in terms of

the plastic strain increment. If a nonlinear hardening model is used, however,

then the plastic consistency condition must be solved iteratively using a method

like the Newton–Raphson method.

In order to express the plastic strain increment in terms of the total strain

increment, a purely elastic fraction of strain increment, denoted by R in Fig. 4.5,

is calculated from similar triangles abc and dec as

Δεj j
Δtrσ


 

 ¼ 1� Rð Þ

Δε



trσ

� nσY

) R ¼ 1�
trf

Δtrσ


 

 : ð4:27Þ

It is mentioned that R is the interpolating factor between the elastic and tangent

moduli. When R is equal to one, the material is purely elastic. When R is equal to

0, the initial material status is plastic and the strain increment has both elastic

and plastic portions. Using the relation of trf¼ (1�R)E|Δε|, the plastic strain

increment in Eq. (4.26) can be written as

Δεp ¼ 1� Rð ÞE
Eþ H



Δε

: ð4:28Þ

Note that when R¼ 0, the relation becomes identical to that in Eq. (4.9). In a

similar way, the updated stress in Eq. (4.24) can be expressed as

nþ1σ ¼ trσ � sgn trσ
� 	 1� Rð ÞE2

Eþ H



Δε

: ð4:29Þ
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The first term on the right-hand side is from elastic trial, and the second term is

from plastic correction. Therefore, the algorithm for determining the state of

stress in elastoplastic is divided into (a) elastic trial and (b) plastic correction.

6. Algorithmic tangent stiffness. The elastoplastic tangent modulus Dep in

Eq. (4.15) represents the relation between the stress increment and strain incre-

ment (hypoelasticity), which is nothing but the slope of the stress–strain curve in

Fig. 4.2. It would be beneficial to compare the tangent modulus of the state

determination algorithm in Eq. (4.24) with the slope of the stress–strain curve. In

the literature, the former is referred to the algorithmic tangent modulus, while
the latter the continuum tangent modulus. When the material is elastic or in the

elastic state of unloading/reloading process, the plastic strain increment becomes

0 and the trial stress becomes the updated stress. Therefore, the algorithmic

tangent modulus becomes identical to the elastic modulus. When the material is

in the plastic state, the algorithmic tangent modulus can be obtained by differ-

entiating the updated stress increment with respect to the strain increment, as

Dalg ¼ ∂Δσ
∂Δε

¼ ∂trσ

∂Δε
� sgn trσ

� 	
E
∂Δεp
∂Δε

: ð4:30Þ

Since the trial stress is elastic, it is straightforward that the first term on the right-

hand side is nothing but the elastic modulus. The derivative of the plastic strain

increment can be obtained by differentiating Eq. (4.26) with respect to the strain

increment

∂Δεp
∂Δε

¼ 1

Eþ H

∂trf

∂Δε
¼ sgn trσ

� 	 E

Eþ H
:

After substituting into Eq. (4.30), the algorithmic tangent modulus can be

obtained as

Dalg ¼ E if elastic

Et if plastic

(
: ð4:31Þ

It is interesting to note that the continuum tangent modulus, Dep, in Eq. (4.15) is

identical to the algorithmic counterpart in Eq. (4.31); that is, the state determi-

nation algorithm is consistent with the stress–strain curve. In multidimensional

elastoplasticity in the next section, however, it will be shown that the two

tangent moduli are different and show a quite different convergence behavior

during Newton–Raphson iterations. In addition, the two tangent moduli will be

different when a nonlinear hardening model is employed.

Example 4.2 (Elastoplastic Bar (Isotropic Hardening)) An elastoplastic bar is

under variable load history. At load step tn, the stress and plastic strain are
nσ¼ 150 MPa and nεp¼ 1.0� 10� 4, respectively. When strain increment is

Δε¼ 0.002, calculate stress and plastic strain. Assume isotropic hardening with

E¼ 200 GPa, H¼ 25 GPa, and 0σY¼ 250 MPa.
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Solution At a given plastic strain nεp¼ 1.0� 10� 4, the yield stress is

nσY ¼ 0σY þ Hnεp ¼ 252:5 MPa:

Since nσ< nσY, the material is in the elastic state at load step tn (Refer to the initial

state in Fig. 4.6). For given strain increment, the trial stress can be obtained as

Δtrσ ¼ EΔε ¼ 400 MPa, trσ ¼ nσ þ Δtrσ ¼ 550 MPa:

Since trf¼ |trσ|� nσY¼ 297.5 MPa> 0, the material yields during the current load

increment. The plastic strain increment can be calculated from the plastic consis-

tence condition as

Δεp ¼
trf

Eþ H
¼ 1:322� 10�3:

Therefore, stress and plastic strain are updated as

nþ1σ ¼ trσ � sgn trσ
� 	

EΔεp ¼ 285:6 MPa;

nþ1εp ¼ nεp þ Δεp ¼ 1:422� 10�3:

Note that the updated stress is identical to the new yield stress n+ 1σY. ▄

4.2.3.2 Kinematic Hardening Model

The main difference between the kinematic and isotropic hardening models is the

evolution of yield surface. The elastic range (twice of yield stress) increases in

isotropic hardening, while the range remains constant in kinematic hardening.

Fig. 4.6 Elastoplastic bar

(not scaled)
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Instead, the center of elastic range moves parallel to the hardening curve as plastic

strain increases. In order to model this effect, the following shifted stress is defined:

η ¼ σ � α; ð4:32Þ

where α is called the back stress, which represents the center of elastic range. In

kinematic hardening, the shifted stress is used instead of σ in determining the

material status. Therefore, the back stress is considered as a plastic variable and

must be stored and updated at each load increment. The load history information is

stored in the back stress.

In the incremental formulation, it is assumed that the following variables are

given: the strain increment (Δε), stress (nσ), and back stress (nα) at load increment

tn. The basic steps in computing stress are as follows.

1. Elastic predictor. Assume an elastic behavior during the strain increment and

calculate stress increment and trial stress.

Δtrσ ¼ EΔε: ð4:33Þ
trσ ¼ nσ þ Δtrσ : ð4:34Þ

During the elastic predictor, the plastic variable remains constant as

trα ¼ nα: ð4:35Þ

Accordingly, the elastic predictor of the shifted stress is given as

trη ¼ trσ � trα: ð4:36Þ

2. Check yield status. Check if the trial stress satisfies the yield condition; that is,

the stress must be lower than the yield stress. For that purpose, the following trial

yield function is defined:

trf ¼ 

trη

� 0σY: ð4:37Þ

Note that in kinematic hardening, the initial yield stress remains constant; that is,

the elastic range does not increase. If trf� 0, then the material stays elastic.

Set n+ 1σ¼ trσ and move on to the next load increment. In this case, the

incremental strain is purely elastic, and the back stress does not change, i.e.,
n+ 1α¼ nα, and all strain increment is elastic, i.e., n+ 1εe¼ nεe +Δε.

3. Plastic corrector. If trf> 0, then the material yields during this increment. When

the material experiences plastic deformation, both the trial stress and back stress

are updated as

nþ1σ ¼ trσ � sgn trη
� 	

EΔεp; ð4:38Þ
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nþ1α ¼ nα þ sgn trη
� 	

HΔεp: ð4:39Þ

Note that the trial stress is reduced by the plastic strain increment proportional to

the elastic modulus, while the back stress is increased proportional to the plastic

modulus. The stress update formula is almost identical to that of isotropic

hardening, except that the shifted stress is used in sgn function. The back stress

is updated in a similar way of yield stress in isotropic hardening in Eq. (4.20)

because the stress–strain curve in a proportional loading is identical for both

hardening models. Therefore, the same plastic modulus is used. Even if the

plastic strain increment is always positive, the back stress can be negative

depending on the stress history; that is, the back stress increases if the yielding

occurs in tension, while decreases in compression.

4. Plastic consistency condition. In the plastic correction formulas in Eqs. (4.38)

and (4.39), the unknown plastic strain increment is calculated from the plastic

consistency condition as

nþ1f ¼ 

nþ1η


� 0σY ¼ 0: ð4:40Þ

The above consistency condition can be expanded in terms of plastic strain

increment as

trσ � sgn trη
� 	

EΔεp � trα � sgn trη
� 	

HΔεp


� 0σY ¼ 0

) 

trσ � trα


� 0σY � Eþ Hð ÞΔεp ¼ 0:

Note that the above formula works for both positive and negative trial stress.

Therefore, the plastic strain increment can be obtained as

Δεp ¼
trf

Eþ H
: ð4:41Þ

Note that the formula for plastic strain increment is identical to that of

isotropic hardening in Eq. (4.26). With this plastic strain increment, the stress

and back stress are updated according to Eqs. (4.38) and (4.39), which concludes

the state determination.

In the case of kinematic hardening, the plastic strain increment does not have

to be stored, as the load history information is stored in the back stress. Since the

plastic strain increment and stress update formula are identical for both isotropic

and kinematic hardening models, the same algorithmic tangent stiffness can be

used for both models.

Example 4.3 (Elastoplastic Bar (Kinematic Hardening)) An elastoplastic bar is

under variable load history. At load step tn, the stress and back stress are
nσ¼ 150 MPa and nα¼ 50MPa, respectively. When strain increment is

Δε¼�0.002, calculate stress and back stress. Assume kinematic hardening with

E¼ 200 GPa, H¼ 25 GPa, and 0σY¼ 200 MPa.
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Solution Since the shifted stress nη¼ nσ� nα¼ 100 MPa< 0σY, the material is in

the elastic state at load step tn (Refer to Fig. 4.7). For given strain increment, the

trial stresses can be obtained as

Δtrσ ¼ EΔε ¼ �400 MPa, trσ ¼ nσ þ Δtrσ ¼ �250 MPa
trα ¼ nα ¼ 50 MPa, trη ¼ trσ � trα ¼ �300 MPa

:

Since trf¼ |trη|� 0σY¼ 100 MPa> 0, the material yields in compression during the

current load increment. The plastic strain increment can be calculated from the

plastic consistence condition as

Δεp ¼
trf

Eþ H
¼ 0:444� 10�3:

Therefore, stress and back stress are updated as

nþ1σ ¼ trσ � sgn trη
� 	

EΔεp ¼ �161:1 MPa;

nþ1α ¼ trα þ sgn trη
� 	

HΔεp ¼ 38:9 MPa:

Note that the updated back stress is reduced due to the yielding in compression. ▄

4.2.3.3 Combined Isotropic/Kinematic Hardening Model

Many practical materials show a combined effect of isotropic and kinematic

hardenings, especially for polycrystalline metals. In such a case, the yield stress

initially increases due to plastic hardening, but it decreases when the direction of

strain changes. This phenomenon is related to the dislocation structure in the cold

worked metal. As deformation occurs, the dislocation accumulates at barriers and

Fig. 4.7 Elastoplastic bar

in kinematic hardening (not

scaled)
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produces dislocation pileups and tangles. This effect is often referred to as

Bauschinger effect.
In order to model the combined effect of kinematic and isotropic hardening, a new

parameter, β, is introduced. The parameter varies between 0 and 1. From the fact that

isotropic hardening changes the yield stress and the kinematic hardening changes the

back stress, the parameter interpolates between the two hardening models as

nþ1σY ¼ nσY þ 1� βð ÞHΔεp; ð4:42Þ
nþ1α ¼ nα þ sgn trη

� 	
βHΔεp: ð4:43Þ

When β¼ 0, it becomes isotropic hardening, while when β¼ 1, it becomes kine-

matic hardening. In the combined hardening model, both the plastic strain and back

stress are plastic variables and need to be updated and stored at each load increment.

It would be a good practice to show that the plastic strain increment that is obtained

from the plastic consistency condition is identical to the case of isotropic hardening

in Eq. (4.26) and of kinematic hardening in Eq. (4.41).

The above algorithms can easily be implemented in computer programs. Below

is a MATLAB program, combHard1D, that calculates stress, back stress, and

plastic strain for a given strain increment. The program also requires stress, back

stress, and plastic strain from the previous load step, as well as material properties.

PROGRAM combHard1D

%

% 1D Linear combined isotropic/kinamtic hardening model

%

function [stress, alpha, ep]=combHard1D(mp, deps, stressN, alphaN, epN)

% Inputs:

% mp = [E, beta, H, Y0];

% deps = strain increment

% stressN = stress at load step N

% alphaN = back stress at load step N

% epN = plastic strain at load step N

%

E=mp(1); beta=mp(2); H=mp(3); Y0=mp(4); %material properties

ftol = Y0*1E-6; %tolerance for yield

stresstr = stressN + E*deps; %trial stress

etatr = stresstr - alphaN; %trial shifted stress

fyld = abs(etatr) - (Y0+(1-beta)*H*epN); %trial yield function

if fyld < ftol %yield test

stress = stresstr; alpha = alphaN; ep = epN; %trial states are final

return;

else

dep = fyld/(E+H); %plastic strain increment

end

stress = stresstr - sign(etatr)*E*dep; %updated stress

alpha = alphaN + sign(etatr)*beta*H*dep; %updated back stress

ep = epN + dep; %updated plastic strain

return;
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Example 4.4 (Two Bars in Parallel) An assembly of two bars with different

material and section properties is subjected to an axial load as shown in Fig. 4.8.

The initial length of the two bars is 100. Determine axial displacement, stresses, and

strains when P¼ 15 is applied at the tip. Assume that the elongations of both bars

are the same. Assume the following properties for the bars:

• Bar 1: A¼ 0.75, E¼ 10,000, Et¼ 1,000, 0σY¼ 5, kinematic hardening

• Bar 2: A¼ 1.25, E¼ 5,000, Et¼ 500, 0σY¼ 7.5, isotropic hardening

Solution The two bars can be modeled using two nodes and two elements. Both

elements are connected to the same nodes. Since the node on the wall is fixed, its

displacement is 0 and can be ignored. Then, the finite element matrix equation

becomes a scalar equation with the node at the tip as a single degree of freedom.

Since a single load incrementwill be use, the index for load increment will not be used.

Iteration 1: Initially, both elements are in the elastic state. Thus, the incremental

finite element equation becomes

E1A1

L1
þ E2A2

L2

� �
Δu1 ¼ P� σ01A1 þ σ02A2

� 	
:

Note that at the first iteration, the stresses in both elements are 0. Thus, the

incremental displacement and incremental strain can be obtained from

Δu1 ¼ 0:1091, Δε1 ¼ 0:001091:

Note that the incremental strain is identical for both elements. Now, it needs to

calculate stress and plastic variables for both elements.

Element 1: Kinematic hardening

Δtrσ1
1 ¼ E1Δε1 ¼ 10:91, trσ1

1 ¼ σ
0

1 þ Δtrσ1
1 ¼ 10:91;

trα1
1 ¼ α

0

1 ¼ 0, trη11 ¼ trσ1
1 � trα1

1 ¼ 10:91;

trf 1 ¼


trη11

� σ

0

Y1
¼ 5:91:

Bar1

Bar2

Rigid P

Fig. 4.8 Two-bar assembly

subjected to axial load
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Since trf1> 0, the material is in the yield state. The plastic strain increment and

stress and back stress are updated as

Δε1p1 ¼
trf 1

E1 þ H1

¼ 5:3182� 10�4;

σ11 ¼ trσ1
1 � sgn trη11

� 	
E1Δε1p1 ¼ 5:5909;

α11 ¼ trα1
1 þ sgn trη11

� 	
H1Δε1p1 ¼ 0:5909;

ε1p1 ¼ ε0p1 þ Δε1p1 ¼ 5:3182� 10�4:

Element 2: Isotropic hardening

Δtrσ12 ¼ E2Δε1 ¼ 5:4545, trσ12 ¼ σ02 þ Δtrσ12 ¼ 5:4545;

trf 12 ¼


trσ12

� σ0Y2 ¼ �2:0455:

Since trf2< 0, the material remains elastic, and the trial state is the final state:

σ12 ¼ 5:4545, ε1p2 ¼ 0:

Residual check: Residual¼P� (σ11A1 + σ12A2)¼ 3.9886.

Since the residual is not equal to 0, it is not yet converged. Move to the next

iteration.

Iteration 2: Since Element 1 changes from elastic to plastic, the elastoplastic

tangent modulus Eep1¼Et1 can be used in calculating displacement increment,

while Element 2 uses the elastic modulus. Thus, the incremental equation becomes

Et1A1

L1
þ E2A2

L2

� �
Δu2 ¼ P� σ11A1 þ σ12A2

� 	
:

The displacement increment and the strain increment can be obtained from

Δu2 ¼ 0:0570, Δε2 ¼ 5:6981� 10�4, u2 ¼ u1 þ Δu2 ¼ 0:1661:

Element 1:

Δtrσ21 ¼ E1Δε2 ¼ 5:6981, trσ21 ¼ σ11 þ Δtrσ21 ¼ 11:2890;

trα21 ¼ α11 ¼ 0:5909, trη21 ¼ trσ21 � trα21 ¼ 10:6981;

trf 21 ¼


trη21

� σ0Y1 ¼ 5:6981:
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Since trf1> 0, the material is continuously yielding. Then, the plastic strain incre-

ment, stress, and back stress can be updated by

Δε2p1 ¼
trf 21

E1 þ H1

¼ 5:1280� 10�4;

σ21 ¼ trσ21 � sgn trη21
� 	

E1Δε2p1 ¼ 6:1607;

α21 ¼ trα21 þ sgn trη21
� 	

H1Δε2p1 ¼ 1:1607;

ε2p1 ¼ ε1p1 þ Δε2p1 ¼ 1:0446� 10�3:

Element 2:

Δtrσ2
2 ¼ E2Δε2 ¼ 2:8490, trσ2

2 ¼ σ
1

2 þ Δtrσ2
2 ¼ 8:3036;

trf 22 ¼


trσ2

2



� σ
0

Y2
¼ 0:8036:

Since trf2> 0, the material is in the yield state. The plastic strain increment and

stress can be updated as

Δε2p2 ¼
trf 22

E2 þ H2

¼ 1:446� 10�4;

σ22 ¼ trσ2
2 þ sgn trη22

� 	
E2Δε2p2 ¼ 7:5804;

ε2p2 ¼ ε1p2 þ Δε2p2 ¼ 1:4464� 10�4;

σ2Y2 ¼ σ0Y2 þ H2Δε2p2 ¼ 7:5804:

Residual check: Residual¼P� (σ21A1 + σ22A2)¼ 0.9040.

Since the residual is not equal to 0, it is not yet converged. Move to the next

iteration.

Iteration 3: Since both elements are in the plastic state, the tangent moduli are used

in the increment equation, as

Et1A1

L1
þ Et2A2

L2

� �
Δu3 ¼ P� σ21A1 þ σ22A2

� 	
:

The displacement increment and the strain increment can be obtained from

Δu3 ¼ 0:0657, Δε3 ¼ 6:5747� 10�4, u3 ¼ u2 þ Δu3 ¼ 0:2318:
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Element 1:

Δtrσ31 ¼ E1Δε3 ¼ 6:5747, trσ31 ¼ σ21 þ Δtrσ31 ¼ 12:7354;

trα31 ¼ α21 ¼ 1:1607, trη31 ¼ trσ31 � trα31 ¼ 11:5747;

trf 31 ¼


trη31

� σ0Y1 ¼ 6:5747:

Since trf1> 0, the material is continuously yielding. The plastic strain increment,

stress, and back stress can be updated by

Δε3p1 ¼
trf 31

E1 þ H1

¼ 5:9180� 10�4;

σ31 ¼ trσ31 � sgn trη31
� 	

E1Δε3p1 ¼ 6:8182;

α31 ¼ trα31 þ sgn trη31
� 	

H1Δε3p1 ¼ 1:8182;

ε3p1 ¼ ε2p1 þ Δε3p1 ¼ 1:6364� 10�3:

Element 2:

Δtrσ32 ¼ E2Δε3 ¼ 3:2873, trσ32 ¼ σ22 þ Δtrσ32 ¼ 10:8677;

trf 32 ¼


trσ32

� σ2Y2 ¼ 3:2873:

Since trf2> 0, the material is continuously yielding. The plastic strain and stress can

be updated by

Δε3p2 ¼
trf 32

E2 þ H2

¼ 5:9180� 10�4;

σ32 ¼ trσ32 þ sgn trη32
� 	

E2Δε3p2 ¼ 7:9091;

ε3p2 ¼ ε2p2 þ Δε3p2 ¼ 7:3636� 10�4:

Residual check: Residual¼P� (σ31A1 + σ32A2)¼ 0.0.

Since the residual is equal to 0, the iteration converges. ▄

Example 4.5 (Two Bars in Parallel) Solve the two bar problem in Example 4.4

using MATLAB programs.

Solution Below is the list of MATLAB programs that calculate the two bars in

parallel in Example 4.4. Since only the node at the right end is allowed to move, a

single nonlinear finite element equation is solved using the Newton–Raphson

method. The program converges in the third iteration with 0 residual. Table 4.1

shows the history of convergence iteration.
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%

% Example 4.5 Two elastoplastic bars in parallel

%

E1=10000; Et1=1000; sYield1=5;

E2=5000; Et2=500; sYield2=7.5;

mp1 = [E1, 1, E1*Et1/(E1-Et1), sYield1];

mp2 = [E2, 0, E2*Et2/(E2-Et2), sYield2];

nS1 = 0; nA1 = 0; nep1 = 0;

nS2 = 0; nA2 = 0; nep2 = 0;

A1 = 0.75; L1 = 100;

A2 = 1.25; L2 = 100;

tol = 1.0E-5; u = 0; P = 15; iter = 0;

Res = P - nS1*A1 - nS2*A2;

Dep1 = E1; Dep2 = E2;

conv = Res^2/(1+P^2);

fprintf(’\niter u S1 S2 A1 A2’);

fprintf(’ ep1 ep2 Residual’);

fprintf(’\n %3d %7.4f %7.3f %7.3f %7.3f %7.3f %8.6f %8.6f %10.3e’,. . .

iter,u,nS1,nS2,nA1,nA2,nep1,nep2,Res);

while conv > tol && iter < 20

delu = Res / (Dep1*A1/L1 + Dep2*A2/L2);

u = u + delu;

delE = delu / L1;

[Snew1, Anew1, epnew1]=combHard1D(mp1,delE,nS1,nA1,nep1);

[Snew2, Anew2, epnew2]=combHard1D(mp2,delE,nS2,nA2,nep2);

Res = P - Snew1*A1 - Snew2*A2;

conv = Res^2/(1+P^2);

iter = iter + 1;

Dep1 = E1; if epnew1 > nep1; Dep1 = Et1; end

Dep2 = E2; if epnew2 > nep2; Dep2 = Et2; end

nS1 = Snew1; nA1 = Anew1; nep1 = epnew1;

nS2 = Snew2; nA2 = Anew2; nep2 = epnew2;

fprintf(’\n %3d %7.4f %7.3f %7.3f %7.3f %7.3f %8.6f %8.6f %10.3e’,. . .

iter,u,nS1,nS2,nA1,nA2,nep1,nep2,Res);

end

▄
__________________________________________________________________

Table 4.1 Convergence history of two elastoplastic bars using the Newton–Raphson method

Iteration u σ1 σ2 εp1 εp2 Residual

0 0.0000 0.000 0.000 0.000000 0.000000 1.50E + 1

1 0.1091 5.591 5.455 0.000532 0.000000 3.99E + 0

2 0.1661 6.161 7.580 0.001045 0.000145 9.04E�1

3 0.2318 6.818 7.909 0.001636 0.000736 0.00E + 0
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4.3 Multidimensional Elastoplasticity

The basic concepts presented in the previous section for one-dimensional systems can

be generalized for multidimensional systems. However, in the one-dimensional case,

it is relatively straightforward to obtain the required stress–strain relation because

experiments are usually performed in the uniaxial tension test. The relationship is

given in terms of axial stress and strain. In addition, strain-hardening models are also

relatively straightforward because either the magnitude of yields stress increases

(isotropic hardening) or maintains the same range between tension and compression

(kinematic hardening). These strain-hardening behaviors can also be obtained using

uniaxial tension/compression tests. However, one-dimensional elastoplasticity can

only be used for very limited applications, such as bars and trusses.

When a structural system is in two or three dimensions, it is more difficult to apply

the theory of elastoplasticity from the previous section because now stress is not a

scalar quantity, but a tensor with up to six components. If a procedure similar to the

previous section is going to be used, then material tests with different combinations of

stress components must be performed. This is practically impossible because there are

infinite numbers of possible combinations. For example, let us consider biaxial loading

of a plane stress structure, which yields one of the simplest stress states beyond the

uniaxial case.Only nonzero stress components are σ11 and σ22. One possiblemethod of

stress combination is such that σ11 is fixed at 100 MPa (let’s say) and σ22 gradually
increases beyond yielding of thematerial. Now, different combinations are possible by

fixing σ11 at different values and gradually increasing σ22. All these possible combi-

nations of stress components must be tested in order to obtain the stress–strain

relationship for biaxial loadings. Thus, it is practically impossible to obtain stress–

strain relationships for multidimensional systems except for very limited cases.

Instead of developing stress–strain relationships for all possible combinations, a

key concept in multidimensional elastoplasticity is to use a physics-basedmodel that

can represent all possible cases. As mentioned in the above example, the possible

number of combinations is infinite even if only two stress components are involved.

Thus, a scalar measure of stress and strain that can represent the multidimensional

stress status should be used for practicality. In addition, this measure should be

independent of coordinate systems used for an isotropic material, i.e., invariant,

because the material shows identical behavior for all directions. For this purpose, an

equivalent stress and an effective strain are introduced in the first section. Since the

multidimensional model should also satisfy the one-dimensional case, the stress–

strain relationship can be obtained from uniaxial tension/compression tests. The key

ingredients are a certain form of yield criterion with a hardening rule and the

elastoplastic stress–strain law relating incremental stress to strain in the plastic

region. Among many different yield criteria, the von Mises yield criterion is widely

used for the isotropic metal plasticity, which will be discussed in the second section.

As discussed in Sect. 4.2, the kinematic and isotropic hardening models are

discussed in the multidimensional system. A general formulation for the incremental

elastoplastic stress–strain relationship is presented next. The remaining sections

give computational details for a few specific forms commonly used in practice.
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4.3.1 Yield Functions and Yield Criteria

Material yielding occurs due to relative sliding of the material’s molecules within

its lattice structure, which is similar to shear deformation. The material will not

come back to its original shape after the applied load is removed. As illustrated in

Fig. 4.9, such a sliding deformation preserves the volume of the material. If the

intermolecular distance is changed, then the volume is also changed. However, it is

very difficult to have a permanent deformation of a material by changing

intermolecular distance. Thus, it is commonly accepted that the material failure is

related to the shear deformation.

4.3.1.1 Maximum Shear Stress Criterion

One of the simplest failure criteria for a ductile material is the maximum shear

stress criterion, proposed by Tresca (1864). This criterion uses the maximum shear

stress, τmax, as an equivalent stress. The maximum shear stress is the radius of the

largest of Mohr’s circles. Let σ1, σ2, and σ3 be the three principal stresses, ordered
by σ1� σ2� σ3. Then, the maximum shear stress can be defined as

τmax ¼ σ1 � σ3
2

: ð4:44Þ

Note that τmax is independent of the coordinate system used because the principal

stresses are independent of the coordinate system used. This criterion assumes that

material failure occurs when τmax is equal to the shear stress in a tensile specimen at

yield, τY. Note that in the tensile test at yield, σ1¼ σY and σ2¼ σ3¼ 0. Thus, from

Mohr’s circles, it is easy to find that τY is a half of σY. When τmax is less than τY, the
material is elastic. It is impossible that τmax is greater than τY. In this criterion, the

elastic range of the material is defined when

τmax � τY ¼ 1

2
σY

� �
: ð4:45Þ

The yield criterion is the boundary of the elastic range, i.e.,

f σð Þ ¼ τmax � τY ¼ 0; ð4:46Þ

where f(σ) is the yield function and f(σ)¼ 0 is the yield criterion. Although the above

equation has a simple form, the actual combination of multidimensional stress states

Fig. 4.9 Material failures due to relative sliding
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can be complicated. Figure 4.10 shows the hexagonal failure envelope for the

two-dimensional maximum shear stress theory, i.e., σ3¼ 0. From the uniaxial tension

test, the material fails when σ1¼ σY and σ2¼ 0 (point A). If σ2 starts increasing from
point A, it does not affect the yield criterion until it increases to σY (point B) because
τmax is determined by σ1 and σ3. Along line BC, τmax is determined by σ2 and σ3.
Along line CD, τmax is determined by σ1 and σ2, and as σ1 becomes more negative, σ2
must decrease. The elastic range in Eq. (4.45) corresponds to the interior of the

hexagon, in which thematerial is elastic. The yield criterion in Eq. (4.46) corresponds

to the boundary, which is often called the yield surface.

Example 4.5 (Maximum Shear Stress Criterion) Consider a thin square plate in the

xy plane under biaxial tension. When σxx¼�200 MPa, determine σyy> 0 that

makes the material yield. Use the maximum shear stress criterion with

σY¼ 500 MPa.

Solution Since σxx and σyy are only nonzero stress components, σ1¼ σyy, σ2¼ 0,

and σ3¼ σxx. Thus, the maximum shear stress becomes

τmax ¼ σ1 � σ2
2

¼ σ1 þ 200

2
:

Since the shear stress at yield is τY¼ σY/2¼ 250 MPa, from the yield criterion

τmax ¼ σ1 � 200

2
¼ 250 MPa:

Thus, the material yields when σyy¼ 300 MPa. ▄

4.3.1.2 Distortion Energy Criterion

The maximum shear stress criterion is based on shear stress only. In general, a

deformation can be divided into volume-changing (dilatation) and volume-

preserving (distortion) parts. For example, for a given strain tensor ε, the volumetric
strain in a small deformation is defined as

s1

s2
Elastic region

Failure criterion

sY

sY

–sY

–sY A

BC

D

E F

Fig. 4.10 Maximum shear

stress criterion
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εV ¼ tr εð Þ ¼ ε11 þ ε22 þ ε33: ð4:47Þ

Then, it would be more general to say that plastic deformation is related to the

volume-preserving part of the strain, which is often called the deviatoric strain. In

the case of pure shear deformation, for example, ε12¼ ε21 are the only nonzero

strain components. Thus, the volumetric strain becomes 0, and the shear deforma-

tion is identical to the deviatoric strain. However, in the case of more complex

deformations, the deviatoric strain may have nonzero normal strain components,

e.g., ε11¼�(ε22 + ε33). The difficulty in using the deviatoric strain or stress for the

yield criterion is that it is not a scalar; it has six components in general and depends

on the coordinate system used. Thus, in order to use the deviatoric strain or stress, it

is necessary to have a scalar quantity that is defined from deviatoric strain or stress.

The next and more important criterion is the distortion energy criterion, which is

themain focus of this chapter. As stress gradually increases, so does the strain energy

density of the material. Since these two quantities are correlated, it is possible to use

the strain energy density for a failure criterion. The advantage of using the strain

energy density is that it is always a scalar even if all six stress components are

nonzero. As previously discussed, since volumetric deformation would not contrib-

ute to the material failure, this part of deformation must be removed from the strain

energy density before using it for the failure criterion. The strain energy density after

removing the volumetric part is called the distortion strain energy density. The

concept of the distortion energy criterion is to compare the distortion energy of a

multidimensional stress state to that of a tensile test at yield. The material is

considered to have failed when the distortion energy from multidimensional stress

has the same value with that of the tensile test at yield. When the distortion energy is

less than that of the tensile test at yield, the material is considered to be elastic.

The distortion strain energy is defined as the difference of the strain energy from

its volumetric part. In order to calculate the distortion energy, the volumetric parts

of stress (hydrostatic pressure) and strain (mean strain) are first defined as

σm ¼ 1

3
tr σð Þ ¼ 1

3
σ11 þ σ22 þ σ33ð Þ ð4:48Þ

and

εm ¼ 1

3
tr εð Þ ¼ 1

3
ε11 þ ε22 þ ε33ð Þ; ð4:49Þ

where tr(•) is a trace operator such that tr(σ) ¼ σkk. Note that the volumetric strain

differs from the mean strain by a factor of three. In order to calculate the distortion

energy, the deviatoric stress and strain tensors are defined as

s 	 σ� σm1 ¼ Idev : σ ð4:50Þ
and

e 	 ε� εm1 ¼ Idev : ε; ð4:51Þ
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where 1¼ [δij] is the second-order unit tensor, I is the fourth-order unit symmetric

tensor defined as Iijkl¼ (δikδjl + δilδjk)/2, Idev ¼ I� 1
3
1
 1 is the fourth-order unit

deviatoric tensor, 
 is the tensor product, and “:” is the double contraction operator

of tensors. Note that tr(s)¼ 0 and tr(e)¼ 0.

Example 4.6 (Fourth-Order Unit Symmetric Tensor) Show that ε¼ I : ε using the

definition of Iijkl¼ (δikδjl+ δilδjk)/2.

Solution From the property that the Kronecker delta symbol changes index, i.e.,

δijajk¼ aik, the double contraction between the fourth-order unit symmetric tensor

with strain tensor becomes

Iijklεkl ¼ 1

2
δikδjl þ δilδjk
� 	

εkl ¼ 1

2
εij þ εji
� 	 ¼ εij:

The symmetric property of the strain tensor is used in the last equality. ▄

For isotropic, linear elastic materials, the constitutive relation between the stress

and strain can be written as

σ ¼ λ1
 1þ 2μI½ � : ε 	 D : ε; ð4:52Þ

where λ and μ are Lamé’s constants, and D is the fourth-order constitutive tensor.

Using the property of 1 : ε¼ tr(ε)¼ 3εm, it is possible to decompose the constitutive

relation in Eq. (4.52) into volumetric and deviatoric parts, as

σ ¼ λ 3εmð Þ1þ 2μ eþ εm1ð Þ
¼ 3λþ 2μð Þεm1þ 2μe

: ð4:53Þ

If the above equation is compared with Eq. (4.50), the first part on the right-hand

side is the volumetric part and the second is the deviatoric part of the stress. Thus,

the following decomposed constitutive relation can be obtained:

s ¼ 2μe ð4:54Þ

and

σm ¼ 3λþ 2μð Þεm: ð4:55Þ

It is straightforward to show that the bulk modulus (the constant that relates σm with

εV) is defined as K¼ (3λ+ 2μ)/3. It is interesting to note that only the shear modulus
μ appears in the relation between deviatoric stress and strain.

Using Eqs. (4.50) and (4.51), the distortion energy density can be defined as

Ud ¼ 1

2
s : e: ð4:56Þ
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Using the relation s¼ 2μe, the deviatoric strain energy density can be rewritten in

terms of stress as

Ud ¼ 1

4μ
s : s: ð4:57Þ

In the case of a one-dimensional tensile test, the material fails when σ11¼ σY and

all other stress components are 0. Then, the deviatoric stress becomes

s ¼

2

3
σY 0 0

0 �1

3
σY 0

0 0 �1

3
σY

26666664

37777775: ð4:58Þ

Thus, the distortion energy density at the status of material failure in the tensile test

becomes

Ud




1D ¼ 1

6μ
σ2Y: ð4:59Þ

A material in multidimensional stress status yields when the distortion energy

density becomes equal to that of the tensile test at the yield point. By equating

Eq. (4.57) with Eq. (4.59), it can be concluded that the material in the

multidimensional stress status yields when the following stress measure equals to

the one-dimensional yield stress:

σe 	
ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
¼ σY: ð4:60Þ

In the above equation, σe is called the equivalent stress or the von Mises stress. The

material is considered to be elastic when the equivalent stress is less than the

one-dimensional yield stress. Thus, a similar state determination as in

one-dimensional stress can be used for multidimensional cases using the equivalent

stress. Note that even if the equivalent stress is used to determine the state of

material failure, it comes from the criterion based on distortion energy.

The counterpart of equivalent stress is the effective strain, which is defined using

the definition of distortion strain energy density as

Ud ¼ 1

2
s : e ¼ 1

2
σeee; ð4:61Þ
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where ee is the effective strain. Using Eqs. (4.57) and (4.60), the distortion energy

Ud can be expressed in terms of equivalent stress, as

Ud ¼ 1

4μ

2

3
σ2e

� �
¼ 1

6μ
σ2e : ð4:62Þ

By comparing Eq. (4.61) with Eq. (4.62), the effective strain can be written in terms

of equivalent stress, as

ee ¼ 1

3μ
σe ¼ 1

3μ

ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
: ð4:63Þ

By using the relation s¼ 2μe, the effective strain can be expressed in terms of

deviatoric strain as

ee ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

3
e : e

r
: ð4:64Þ

Note that the equivalent stress in Eq. (4.60) and the effective strain in Eq. (4.64)

have similar definitions from deviatoric stress and strain, respectively, except for

the coefficients. The usage of effective strain is related to the plastic deformation.

The scalar plastic strain in one-dimensional plasticity becomes a tensor in

multidimensional plasticity.

Example 4.7 (One-Dimensional Equivalent Strain) A bar is under axial stress σ
and axial strain ε. Calculate the equivalent stress and effective strain in terms of σ,
ε, and Poisson’s ratio ν.

Solution For a uniaxial tension problem, σ11¼ σ is the only nonzero stress com-

ponent. Thus, the deviatoric stress becomes

s ¼

2

3
σ 0 0

0 �1

3
σ 0

0 0 �1

3
σ

2666664

3777775:

Using Eq. (4.60), the equivalent stress can be obtained by

σe ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
¼ σ:

Note that the equivalent stress is identical to the axial stress. Thus, the material will

yield when the axial stress reaches the yield stress, which is consistent to the

definition of the yield stress.
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For a uniaxial tension problem, three nonzero strain components are ε11¼ ε,
ε22¼ ε33¼�νε. All shear strains are equal to 0. From Eq. (4.49), the mean strain

becomes εm¼ (1� 2ν)ε/3. The deviatoric strain is then obtained from Eq. (4.51), as

e ¼ 1þ νð Þε
3

2 0 0

0 �1 0

0 0 �1

24 35:
The effective strain can be obtained from Eq. (4.64), as

e : e ¼ 6
1þ νð Þε

3

� �2

;

ee ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

3
e : e

r
¼ 2 1þ νð Þ

3
ε:

▄

4.3.2 Von Mises Yield Criterion

The distortion energy theory in the previous section is also called the von Mises

yield criterion, which states that yielding occurs when the equivalent stress reaches

the yield stress of the material in uniaxial tension. The equivalent stress σe in

Eq. (4.60) can be expressed as follows:

σe ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
	

ffiffiffiffiffiffiffi
3J2

p
; ð4:65Þ

where J2 is the second invariant of the deviatoric stress.
2 It can be expressed in several

alternative forms as follows. In terms of stress components, it can be written as

J2 ¼ 1

6
σx � σy
� 	2 þ σy � σz

� 	2 þ σz � σxð Þ2
h i

þ τ2xy þ τ2yz þ τ2zx: ð4:66Þ

Or, in terms of principal stresses,

J2 ¼ 1

6
σ1 � σ2ð Þ2 þ σ2 � σ3ð Þ2 þ σ3 � σ1ð Þ2

h i
: ð4:67Þ

2 The same symbol was used for the reduced invariant of the Cauchy–Green deformation tensor in

Chap. 3. Since this symbol is widely used in the literature, it is kept here.
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Using the equivalent stress, the yield function and corresponding yield criterion can

be defined as

f
0 σð Þ 	 σ2e � σ2Y ¼ 3J2 � σ2Y ¼ 0; ð4:68Þ

where σY is the yield stress from the tensile test. Thus, even if the status of stress is

multidimensional, one-dimensional experimental data can still be used by consid-

ering the equivalent stress as a tensile stress.

From the definition of J2 in terms of principal stresses, it can easily be seen that

the von Mises yield function represents an ellipse in two dimensions. As shown in

Fig. 4.11, any point inside the ellipse ( f0 < 0) represents an elastic stress state. The

inside of the ellipse is called the elastic domain of the material. Points on the yield

surface ( f0 ¼ 0) correspond to the stress state that causes the material to yield. It is

impossible for a stress state to reside outside of the yield surface.

Figure 4.11 also plots the maximum shear stress criterion. Note that the two

criteria meet at the six vertices, but the maximum shear stress criterion is inside of

the von Mises criterion, which means that the former is more conservative than the

latter. For example, in the situation of uniaxial tension, which corresponds to the

stress state along the σ1 axis, both criteria predict the same yield point at σ1¼ σY.
However, in the situation of pure shear stress, along the line OA in Fig. 4.11, the

maximum shear stress criterion predicts the material failure earlier than the von

Mises criterion. It is also noted that the von Mises yield surface is smooth, while the

maximum shear stress criterion has six vertices. The smoothness of the yield

surface helps to find the yield point numerically.

A plastic deformation can be physically explained by atomic dislocation. An

elastic deformation corresponds to the variation in the intermolecular distance

without causing atomic dislocation, while a plastic deformation implies relative

1
3 Y=

Max shear 
stress criterion

sY

sY

–sY

–sY

A

O

Von Mises 
criterion

Elastic
region

1
2 Y=

s

s

s

1

s2

Fig. 4.11 Von Mises yield criterion
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sliding of the atomic layers and a permanent shape change without changing the

structural volume. Thus, plastic behavior can be efficiently described by the

deviator of a tensor, which preserves the volumetric components. As previously

discussed in Eq. (4.65), J2 is the second invariant of the deviatoric stress. Specif-

ically, consider a stress tensor σ ¼ [σij], (i, j¼ 1, 2, 3). The second invariant of the

deviatoric stress can be written as

J2 ¼ 1

2
s : s� tr sð Þ2
h i

¼ 1

2
s : s: ð4:69Þ

Note that tr(s)¼ 0 because the trace part of the stress tensor is moved to σm.
The yield function in Eq. (4.68) is given as a square of effective stress. Since

both the effective stress and the yield stress are always positive, it is unnecessary to

define the yield criterion using square terms. It is also more convenient to define the

yield criterion without having squares so that its unit is the same as that of stress.

Thus, the von Mises yield criterion can be rewritten as

f σð Þ ¼ 



s



� ffiffiffi
2

3

r
σY ¼ 0; ð4:70Þ

where ||s||¼ (s : s)1/2 is the norm of the deviatoric stress. The ellipse in Fig. 4.11

becomes a circle if it is plotted in the principal deviatoric stresses. It is then possible

to consider that
ffiffiffiffiffiffiffiffiffiffiffið2=3Þp

σY is the radius of the yield circle in deviatoric stress space.

Example 4.8 (Pure Shear Deformation) Consider a pure shear deformation of a

plane strain square block, as shown in Fig. 4.12 where a constant shear stress τ is
applied. The yield stress of the material is σY. Calculate the shear stress τ when the

material yields using the yield function formula in Eq. (4.70).

Solution In the pure shear problem, the stress tensor is identical to the deviatoric

stress because the volumetric part of the stress vanishes:

σ ¼
0 τ 0

τ 0 0

0 0 0

24 35 ¼ s:

x1

x2

τ

τ

τ

τ

Fig. 4.12 Pure shear

deformation
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Then, the von Mises yield function can be written as

f σð Þ ¼ 



s



� ffiffiffi
3

2

r
σY ¼

ffiffiffi
2

p
τ �

ffiffiffi
2

3

r
σY ¼ 0:

Thus, the material yields when the shear stress becomes

τ ¼ 1ffiffiffi
3

p σY:

Note that this value of shear stress is different from that of the maximum shear

stress criterion, τ¼ σY/2. In Fig. 4.10, line OA represents the case when a

shear stress gradually increases in a pure shear problem. Based on the maximum

shear stress criterion, the material yields at τ¼ σY/2, while τ ¼ σY=
ffiffiffi
3

p
from the von

Mises criterion. The maximum shear stress criterion provides more conservative

yield point. ▄

Example 4.9 (Uniaxial Tensile Test) An axial stress σ is applied to a uniaxial bar.

The yield stress of the material is σY. Calculate the tensile stress σ when the

material yields using the yield function formula in Eq. (4.70).

Solution In the uniaxial tension problem, the stress and its deviator can be written as

σ ¼
σ 0 0

0 0 0

0 0 0

24 35, s ¼ σ

3

2 0 0

0 �1 0

0 0 �1

24 35:
Then, the norm of the deviatoric stress becomes





s



 ¼ σ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 12 þ 12

p
¼

ffiffiffi
2

3

r
σ:

Thus, the von Mises yield criterion can be written as

f σð Þ ¼
ffiffiffi
2

3

r
σ �

ffiffiffi
2

3

r
σY ¼ 0 ) σ ¼ σY:

Thus, the von Mises yield criterion is consistent with the determination of yield

stress in tension test. ▄

4.3.3 Hardening Models

The yield criterion in the previous section determines whether a material yields or

not, based on the given yield stress of thematerial. In Eq. (4.70), it is assumed that the
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yield stress of the material remains constant. However, as discussed in Sect. 4.2, the

yield stress itself varies according to the plastic deformation, which is called strain-

hardening. In general, there are three classes of materials in terms of the yield stress

varies due to plastic deformation (see Fig. 4.13): (1) yield stress increases propor-

tional to plastic deformation (strain-hardening), (2) yield stress remains constant

(perfectly plastic), and (3) yield stress decreases as plastic deformation increases

(strain-softening). Generally, metals are strain-hardeningmaterials, and geotechnical

materials may exhibit strain-softening under certain conditions. The strain-hardening

material is regarded as stable and will be considered in this section.

In Fig. 4.1, two different modes of strain-hardening were discussed: isotropic and

kinematic hardenings. The elastic range of the isotropic hardening model continu-

ously grows due to plastic deformation, while it remains constant for the kinematic

hardeningmodel but moves parallel to the strain-hardening line. These definitions of

strain-hardening models can be extended to multidimensional plasticity. The yield

criterion in Eq. (4.70) can be considered as an equation of a circle with the center at

the origin and a radius of
ffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þp

σY. In the isotropic hardening model, the location

of the center is fixed, and the radius increases uniformly, i.e., σY increases. On the

other hand, for the kinematic hardeningmodel, the radius is fixed, and the location of

the center moves in the stress space; i.e., the norm of deviatoric stress changes to

jjs�αjj where α is the location of center of the yield surface. Figure 4.14 illustrates

these two hardening models. Since tensile tests are to be used for describing the

material behavior beyond yielding, the same hardening parameters that are used in

one-dimensional plasticity should be used for multidimensional hardenings. In the

following, these two hardening models will be discussed in detail.

4.3.3.1 Isotropic Hardening

In the isotropic hardening model, the subsequent yielding depends on the accumu-

lated effective plastic strain ep. For the linear isotropic hardening model, the yield

stress increases according to the effective plastic strain as

σY ¼ σ0Y þ Hep; ð4:71Þ

Strain-hardening 

Y

Strain-softening 

Perfectly plastic 

s

e

s

Fig. 4.13 Post-plastic

behaviors of materials
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where the plastic modulus H is obtained from the uniaxial stress–strain relationship

as follows:

H ¼ Δσ
Δep

: ð4:72Þ

The radius of the yield surface increases according to the effective plastic strain

proportional to the plastic modulus. The above definition of plastic modulus can be

applicable for general nonlinear hardening because it is defined as a rate form. In

such a case, H will be the slope of stress–plastic strain curve at a given total plastic

strain. In the case of linear hardening, H will be a constant.

WhenH¼ 0, the material is called elasto-perfectly-plastic. The class of perfectly

plastic material is an idealization with the purpose of keeping the constitutive

equation simple. This idealization is reasonable for materials that do not show

significant strain-hardening. The adequacy of this idealization depends on the

purpose and requirement of specific applications. If only monotonic loading is of

interest and does not call for a refined solution, then this idealization may lead to a

satisfactory solution. However, due to progress in industries which give rise to

problems that are subjected to complex loading conditions and impose stricter

requirements, this idealization is no longer adequate in many applications and

strain-hardening should be considered.

4.3.3.2 Kinematic Hardening

In the kinematic hardening, the subsequent yield surfaces are shifted in the stress

space (see Fig. 4.14). Thus, the equation for a subsequent yield surface can be

obtained from the one used for initial yield surface by introducing a shift in stress.

This shift in the center of the yield surface is called back stress and denoted by α.

σ

σσ

1

σ2

Initial yield surface

Isotropic hardening

σ1

σ2

Initial yield surface

Kinematic hardening

a

0
Y Y

Fig. 4.14 Hardening models in two dimension
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Then, the distance from the center of the yield surface to the yield surface can be

measured by the difference of s from α. It would be convenient to define the

following shifted stress first:

η ¼ s� α ð4:73Þ

Note that both the back stress and shifted stress are deviatoric stresses. Next, the

equation for subsequent yield surface is defined as follows:





η



� ffiffiffi
2

3

r
σY ¼ 0: ð4:74Þ

In kinematic hardening, σY is the initial yield stress and remains constant. The back

stress depends on the current stress and the accumulated effective plastic strain ep.
According to Ziegler’s rule, the increment in back stress of the linear kinematic

hardening model is written as

Δα ¼
ffiffiffi
2

3

r
HΔep

η
ηj jj j: ð4:75Þ

As with the isotropic hardening, the effective plastic strain plays an important role

in determining the evolution of the back stress. In addition, the back stress increases

in the parallel direction with the shifted stress. Since η¼ s�α is the radial direction

of the yield surface, the increment is always in the radial direction.

4.3.3.3 Combined Hardening

The difference between isotropic and kinematic hardening is clear. The former

increases the radius of the yield surface, while the latter moves the center of the

yield surface. However, many materials show a combined behavior of both models;

i.e., the yield stress increases due to plastic deformation, but the material yields

earlier in the opposite direction. This is caused by dislocation pileups and tangles

(back stress). When strain direction is changed, this makes the dislocation easy to

move. A combined linear isotropic/kinematic hardening model uses a parameter

β2 [0,1] to consider this combined effect, called the Bauschinger effect. In this

model, the yield surface is defined as





η



� ffiffiffi
2

3

r
σ0Y þ 1� βð ÞHep
� 
 ¼ 0 ð4:76Þ

and the increment of the back stress is determined by

Δα ¼
ffiffiffi
2

3

r
βHΔep

η
ηj jj j: ð4:77Þ
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This model is general enough to represent both isotropic and kinematic hardening

as special cases: β equals one for kinematic hardening and 0 for isotropic hardening.

Example 4.10 (Isotropic/Kinematic Hardenings) A uniaxial bar is under propor-

tional loading with axial stress σ. When the effective plastic strain is ep¼ 0.1,

calculate the value of axial stress. Consider three different hardening models:

(a) isotropic, (b) kinematic, and (c) combined hardening with β¼ 0.5. Assume

that the initial yield stress is 400 MPa and the plastic modulus is H¼ 200 MPa.

Solution Since the applied stress is proportional loading, it is expected that the

material is in the plastic phase, and all three models provide the same stress value.

The difference occurs only when the direction of loading changes. In the case of

uniaxial tension, the stress and deviatoric stress become

σ ¼
σ 0 0

0 0 0

0 0 0

24 35, s ¼

2

3
σ 0 0

0 �1

3
σ 0

0 0 �1

3
σ

2666664

3777775:
Thus, the norm of the deviatoric stress becomes





s



 ¼ ffiffiffi
2

3

r
σ:

(a) Isotropic hardening: from the definition of the yield function,





s



� ffiffiffi
2

3

r
σ0Y þ Hep
� 	 ¼ ffiffiffi

2

3

r
σ �

ffiffiffi
2

3

r
400þ 200� 0:1ð Þ ¼ 0;

σ ¼ 420 MPa:

(b) Kinematic hardening: from the definition of yield function,





s� α




� ffiffiffi

2

3

r
σ0Y ¼ 0:

Note thatΔα is parallel to η and the loading direction remains fixed. Thus, α is

parallel to s, in which the norm of the shifted stress can be written as

jjs�αjj ¼ jjsjj � jjαjj. Thus, the yield function can be rewritten as





s� α




� ffiffiffi

2

3

r
σ0Y ¼ 



s



� 



α



� ffiffiffi

2

3

r
σ0Y ¼

ffiffiffi
2

3

r
σ �

ffiffiffi
2

3

r
Hep �

ffiffiffi
2

3

r
σ0Y ¼ 0;
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σ ¼ σ0Y þ Hep ¼ 400þ 200� 0:1ð Þ ¼ 420 MPa:

(c) Combined hardening: Similar to the kinematic hardening model, α is parallel

to s. Thus, the yield function can be written as





s� α




� ffiffiffi

2

3

r
σ0Y þ 1� βð ÞHep
� 


¼ 



s



� 



α



� ffiffiffi
2

3

r
σ0Y þ 1� βð ÞHep
� 


¼
ffiffiffi
2

3

r
σ �

ffiffiffi
2

3

r
βHep �

ffiffiffi
2

3

r
σ0Y �

ffiffiffi
2

3

r
1� βð ÞHep

¼ 0

:

Thus, the applied stress can be solved:

σ ¼ σ0Y þ Hep ¼ 400þ 200� 0:1ð Þ ¼ 420 MPa:

Note that all three models provide the same stress value. ▄

4.3.4 Classical Elastoplasticity Model

In the previous section, the yield function and strain-hardening models for

multidimensional plasticity were discussed. With these models, the objective of

this section is to determine the current stress state and evolution of plastic variables.

Based on the von Mises yield criterion and isotropic/kinematic hardenings, the

plastic variables are effective plastic strain, ep, and back stress, α. The former is a

scalar, while the latter is a second-order tensor. First, all relations will be derived in

the rate form, and then written in the incremental form for the purpose of numerical

integration in the following section. For example, the relation between strain rate _ε
and strain increment Δε is that Δε ¼ Δt _ε where Δt is the time increment.

1. Additive Decomposition

The fundamental assumption in small deformation elastoplasticity is that the

elastic and plastic parts can be decomposed additively. This assumption is a

fundamental difference compared to the finite deformation elastoplasticity.

Assuming a small elastic strain, the strain and its rate can be additively

decomposed into elastic and plastic parts as

ε ¼ εe þ εp, _ε ¼ _εe þ _εp; ð4:78Þ

where superscripts e and p denote elastic and plastic parts, respectively. The

superposed “dot” denotes the rate of a quantity. It is reminded that in static

problems, the rate is equivalent to the load increment. From the assumption that
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the plastic deformation only occurs in the deviatoric space, the plastic strain εp
and its rate are deviatoric tensors, i.e., tr(εp)¼ 0. As with one-dimensional

plasticity, the total strain and its rate are given. However, it is unknown how

much of them are elastic or plastic. Thus, the objective is to find the elastic or

plastic strain for a given total strain and its rate. The elastic strain produces stress

in the material, while the plastic strain is independent of stress. However, the

plastic strain affects the yield stress in the strain-hardening model.

2. Strain Energy Density

It is usually assumed that a strain energy density exists for the elastic part, such

that the stress can be determined by taking a derivative of the strain energy

density with respect to the elastic strain. The elastic part of the elastoplasticity

model is the same as a linear elastic material. Since the relationship between

stress and elastic strain is linear, this function takes a quadratic form. Thus, the

following form of strain energy density can be considered:

W εeð Þ ¼ 1

2
εe : D : εe ¼ 1

2
ε� εpð Þ : D : ε� εpð Þ; ð4:79Þ

where D is a fourth-order constitutive tensor. The elastic part of the strain is

usually unknown until the plastic behavior of the material is identified. By

differentiating the above definition, stress can be related to the elastic strain as

σ ¼ ∂W εeð Þ
∂εe

¼ D : εe ¼ D : ε� εpð Þ: ð4:80Þ

Now, it is clear thatD is the constitutive tensor introduced in Eq. (4.52) when the

strain is interpreted as elastic. Due to the assumption in Eq. (4.78), the rate form

of the above equation can be written as

_σ ¼ D : _ε � _εpð Þ; ð4:81Þ

where D¼ (λ+ (2/3)μ)1
 1+ 2μIdev is the fourth-order isotropic constitutive

tensor. Using the decompositions in Eqs. (4.54) and (4.55), the relationship in

Eq. (4.81) can be further decomposed into volumetric and deviatoric parts as

_σm ¼ 1

3
tr _σð Þ ¼ λþ 2

3
μ

� �
tr _εð Þ ¼ 3λþ 2μð Þ _εm ð4:82Þ

and

_s ¼ 2μ _e � _epð Þ; ð4:83Þ

respectively. In Eq. (4.82), the property that tr _εpð Þ ¼ 0 is used. As can be found

in Eq. (4.82), the volumetric stress (hydrostatic pressure) is independent of

plastic deformation, which is consistent with the fact that the yield function is

defined using the deviatoric stress alone.
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3. Yield Function

For metal plasticity, the von Mises yield criterion with the associative flow rule

is commonly used to describe material behavior after elastic deformation.

Accordingly, the yield criterion or yield function is formulated as

f η; ep
� 	 	 



η



� ffiffiffi

2

3

r
κ ep
� 	 � 0; ð4:84Þ

where η¼ s�α is the shifted stress; α is the back stress, which is the center of

the yield surface (the elastic domain), and is determined by the kinematic

hardening model; κ(ep) is the radius of the elastic domain determined by the

isotropic hardening model; and ep is the effective plastic strain. The combined

isotropic/kinematic hardening model is used in Eq. (4.84). The elastic domain

generated by the yield function in Eq. (4.84) forms a convex set as

E ¼ η; ep
� 	

f η; ep

� 	 � 0
� �

: ð4:85Þ

In general, the yield surface defined by f in the above equation is smooth and

convex. In mathematical terms, the plasticity can be thought of as a projection of

the stress onto the yield surface. If the material is assumed to be purely elastic,

the stress will be much higher than that of the elastoplastic material for a given

strain. Then, elastoplasticity projects this stress onto the yield surface because it

is impossible for the stress to be outside of the elastic domain. Since the yield

surface is convex, the projection becomes a contraction mapping, which guar-

antees the existence of a unique projection. The same concept has been applied

in the case of one-dimensional plasticity in Sect. 4.2. Initially the stress incre-

ment is assumed to be purely elastic. If the estimated stress becomes larger than

the yield stress, this stress is brought back to the yield stress. This procedure

would be relatively easy if the yield stress is fixed. However, while the stress is

brought back to the yield surface, the yield surface itself changes according to

the hardening model. Thus, it is necessary to identify how the plastic deforma-

tion modifies the yield function.

4. Associative Flow Rule

The flow rule determines the evolution of the plastic strain εp. In the case of

one-dimensional plasticity, the plastic strain is a scalar and its value only

increases. For multidimensional plasticity, since εp is a tensor, it is necessary

to determine its magnitude as well as its direction. Thus, a general form of the

flow rule can be written as

_εp ¼ γr σ; ξð Þ; ð4:86Þ

where ξ¼ (α, ep) represents the plastic variables, and γ is called a plastic

consistency parameter. In general, γ� 0 where there is no plastic deformation

at 0. This is consistent to the fact that the plastic strain only increases in

one-dimensional plasticity.
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Advanced elastoplasticity shows that the flow rule can be obtained from the

constrained optimization theory in which Eq. (4.84) is an inequality constraint.

Referring to the principle of minimum potential energy in Chap. 3, the structural

equilibrium of an elastic material can be obtained by minimizing the potential

energy, which is the sum of strain energy and potential of applied loads. Thus, the

equilibrium equation is obtained from the optimality condition; i.e., the first-order

derivatives of the potential energy become 0. In elastoplasticity, this optimization

problem is modified such that the stress must stay within the elastic domain in

Eq. (4.84). This condition can be considered as a constraint to the optimization

problem. If the calculated stress from minimizing potential energy stays inside of

the elastic domain, no constraint is required. However, if the calculated stress is

outside of the elastic domain, it needs to be brought back to the boundary of the

elastic domain. In that case, the plastic consistency parameter becomes a Lagrange

multiplier to impose the constraint, and it is always nonnegative.

The expression of r(σ,ξ) depends on the plasticity model. It is often assumed

that there is a flow potential (or plastic potential), g, such that the plastic strain

evolves in the direction normal to the flow potential. That is,

_εp ¼ γ
∂g σ; ξð Þ

∂σ
; ð4:87Þ

where g(σ,ξ) is the flow potential. When the flow potential is the same as the

yield function, the plastic model is called associative. Thus,

_εp ¼ γ
∂f η; ep
� 	
∂η

¼ γ
η
ηj jj j ¼ γN; ð4:88Þ

where N is a unit deviatoric tensor normal to the yield surface, and γ is a plastic
consistency parameter, which is nonnegative. If the material status is elastic, γ
must be 0, but if it is plastic, then γ must be positive. Thus, the plastic strain

increases in the direction normal to the yield surface and has the magnitude of

plastic consistency parameter γ.
As the material undergoes plastic deformation, the plastic variables (back

stress and effective plastic strain) also change according to the hardening model.

A general form of hardening rule can be written as

_ξ ¼ γh σ; ξð Þ: ð4:89Þ

Note that the evolution of the plastic variables is also proportional to the plastic

consistency parameter. In particular, the rate of back stress can be determined by

the kinematic hardening model as

_α ¼ Hα ep
� 	

γ
∂f η; ep
� 	
∂η

¼ Hα ep
� 	

γN; ð4:90Þ
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where Hα(ep) is a nonlinear form of the plastic modulus for kinematic hardening.

In the case of linear hardening, it becomes a constant, Hα(ep)¼H. The rate of

effective strain can be expressed by

_ep ¼
ffiffiffi
2

3

r 



 _ep tð Þ



 ¼ ffiffiffi
2

3

r
γ; ð4:91Þ

where _ep is the rate of deviatoric plastic strain.
Although it is not covered in this text, nonlinear hardening models are also

available in literature. For example, a nonlinear kinematic hardening can be

defined as the following evolution of back stress:

_α ¼ H ep
� 	

_ep, H ep
� 	 ¼ H0exp � ep

e1p

 !
; ð4:92Þ

where e1p is the asymptotic limit of the plastic strain, and H0 is the initial

hardening modulus. This is also called the saturated hardening model. In the

case of nonlinear isotropic hardening, it is possible to define the following form

of the radius of yield surface:

κ ep
� 	 ¼ σ0Y þ σ1Y � σ0Y

� 	
1� exp � ep

e1p

 !" #
; ð4:93Þ

where σ1Y is the asymptotic limit of the yield stress.

5. Plastic Consistency Parameter

As mentioned before, γ is 0 when the material is elastic ( f< 0) and positive

when plastic ( f¼ 0). In optimization, this is called the Kuhn-Tucker condition

and can be written as

γ � 0, f � 0, γf ¼ 0: ð4:94Þ

It is possible to view the nonpositive property of the yield function as a

constraint, and the plastic consistency parameter γ can be seen as the Lagrange

multiplier corresponding to the inequality constraint. The above Kuhn-Tucker

condition satisfies all possible states of the material. For example, when the

material is in the elastic state, i.e., the stress is within the elastic domain, it

becomes

f < 0, γ ¼ 0 ) γf ¼ 0:
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When the stress is on the yield surface, i.e., in the plastic state, Eq. (4.94) is

satisfied because f¼ 0. However, when the state varies, it is possible to have

three different cases:

(a) Elastic unloading _f < 0, γ ¼ 0 ) γ _f ¼ 0.

(b) Neutral loading _f ¼ 0, γ ¼ 0, ) γ _f ¼ 0.

(c) Plastic loading _f ¼ 0, γ > 0, ) γ _f ¼ 0.

Thus, γf¼ 0 in Eq. (4.94) is equivalent to γ _f ¼ 0when the stress is on the yield

surface. Therefore, the rate form of Kuhn-Tucker condition can be used in

calculating the plastic consistency parameter. Among three possible cases,

only the last case, plastic loading, is of interest because the remaining cases

can be identified with γ¼ 0, which would not have any change in the plastic

variables. Thus, when the plastic loading state continues,

γ > 0 _f σ; ξð Þ ¼ 0; ð4:95Þ

which means that the yield function remains constant during the plastic loading

state. From the requirement that the yield surface remains 0, the following

condition can be obtained:

_f σ; ξð Þ ¼ ∂f
∂σ

: _σ þ ∂f
∂ξ

: _ξ ¼ 0:

By substituting the rates of stress and plastic variables, the above equation can be

written as

∂f
∂σ

: D : _ε � _εpð Þ þ ∂f
∂ξ

� γh ¼ 0:

Since the rate of plastic strain can also be written in terms of the plastic

consistency parameter, the above equation can be rewritten as

∂f
∂σ

: D : _ε � ∂f
∂σ

: D : γrþ ∂f
∂ξ

� γh ¼ 0:

The above equation can be solved for the plastic consistency parameter as

γ ¼
∂f
∂σ : D : _ε
D E

∂f
∂σ : D : r� ∂f

∂ξ � h
; ð4:96Þ

where hxi is equal to x if x> 0; otherwise, it is 0. From the requirement of γ> 0,

the numerator in the above equation must be nonnegative. The physical meaning

of this condition is that the normal direction to the yield surface and the stress
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increment rate must have an acute angle when the material is under plastic

loading (see Fig. 4.15):

cos θ ¼
∂f
∂σ : D : _ε
∂f
∂σ

��� ���



D : _ε




 : ð4:97Þ

If θ< 90�, the material is in plastic loading; if θ¼ 0�, it is in neutral loading;

and if θ> 90�, it is in elastic unloading.

6. Elastoplastic Tangent Stiffness

In one-dimensional systems, elastoplastic modulus Dep was calculated based on

elastic and plastic moduli. In multidimensional systems, the counterpart is called

the continuum elastoplastic tangent stiffness. It represents the relation between

the rates of stress and strain. By substituting the plastic consistency parameter

into Eq. (4.81),

_σ ¼ D : _ε � D : γr ¼ D : _ε � D : r

∂f
∂σ : D : _ε
D E

∂f
∂σ : D : r� ∂f

∂ξ � h
:

The above equation can be rewritten in terms of stress and strain rates, as

_σ ¼ D�
D : r
 ∂f

∂σ : D
D E
∂f
∂σ : D : r� ∂f

∂ξ � h

24 35 : _ε 	 Dep : _ε; ð4:98Þ

where Dep is the continuum elastoplastic tangent stiffness. In general, Dep is not

symmetric. However, when the associative flow rule is used, i.e., r¼∂f/∂σ, it
becomes symmetric. The explicit expression of Dep can be obtained when the

flow rule and hardening model are specified. Since a part of the strain rate is

plastic and therefore does not increase stress, the elastic stiffness D is reduced by

the plastic consistency parameter. A similar observation can be made for the

case of the one-dimensional system in Eq. (4.8).

Fig. 4.15 Angle between

elastic trial stress and

normal to the yield surface
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In order to be a stable material, the rate of work due to stress rate must be

positive, i.e., _σ : _ε > 0. Equation (4.98) implies that the elastoplastic tangent

stiffness Dep must be positive definite for a stable material. In addition, in order

to have a stable hardening behavior, the rate of work during the plastic defor-

mation must be positive, i.e., _σ : _εp � 0. These two conditions are called

Drucker’s postulate.

Example 4.11 (Plastic Consistency Parameter and Elastoplastic Tangent Stiff-
ness) Consider the following combined linear isotropic/kinematic hardening

model with associative flow rule:

κ ep
� 	 ¼ σ0Y þ 1� βð ÞHep

_α ¼ 2

3
βH _ep

: ð4:99Þ

Using five material parameters (λ, μ, β,H, σ0Y) and the current value of stress (σ) and
plastic variables (α, ep), calculate the plastic consistency parameters, γ, and

elastoplastic tangent stiffness, Dep.

Solution The plastic consistency parameter can be calculated from the rate of

change of yield function as

f s;α; ep
� 	 ¼ 



s� α





� ffiffiffi
2

3

r
σ0Y þ 1� βð ÞHep
� 
 ¼ 0;

_f ¼ ∂f
∂s

: _s þ ∂f
∂α

: _α þ ∂f
∂ep

_ep ¼ N : _s � N : _α �
ffiffiffi
2

3

r
1� βð ÞH _ep ¼ 0:

The purpose is to write the above equation in terms of the plastic consistency

parameter. The deviatoric stress rate, back stress rate, and effective plastic strain

can be written in terms of the plastic consistency parameter, as

_s ¼ 2μ _e � _epð Þ ¼ 2μ _e � 2μγN

_α ¼ 2

3
βH _ep ¼ 2

3
βHγN

_ep ¼
ffiffiffi
2

3

r
γ

:

By substituting these relations in the rate of yield function,

_f ¼ 2μN : _ε � 2μγN : N� 2

3
βHγN : N� 2

3
1� βð ÞHγ ¼ 0:
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Note that N :N¼ 1 and N : _e ¼ N : _ε are used. The above equation is linear with

respect to the plastic consistency parameter and can be solved for it, to yield

γ ¼ 2μN : _ε
2μþ 2

3
H
: ð4:100Þ

For elastoplastic tangent stiffness, consider the following constitutive relation in

a rate form:

_σ ¼ D : _ε � D : _εp ¼ D : _ε � _γD : N;

where D¼ (λ+ (2/3)μ)1
 1 + 2μIdev. Since N is a unit deviatoric tensor,

D : N¼ 2μN. Thus,

_σ ¼ D : _ε � 2μN
2μN : _ε
2μþ 2

3
H

¼ D� 4μ2

2μþ 2
3
H
N
 N

" #
: _ε:

Thus, the elastoplastic tangent stiffness can be obtained by

Dep ¼ D� 4μ2

2μþ 2
3
H
N
 N: ð4:101Þ

Note that the first term on the right-hand side of the expression of elastoplastic

tangent stiffnessDep is the elastic constitutive tensorD in Eq. (4.81). Thus, the effect

of plastic deformation appears in the second term through the plastic modulusH and

unit deviatoric tensor N, which depends on the current stress and back stress. ▄

Example 4.12 (Plastic Deformation of a Bar) Consider a bar under a uniaxial

tension load. At load step tn, the axial stress σ11¼ 300 MPa, and the material is

purely elastic before tn. At load step tn+1, a strain increment Δε11 ¼ _εΔt ¼ 0:1 is

given, determine stress and plastic variables. The material is combined linear

isotropic/kinematic hardening, and the material parameters are given in Table 4.2.

Solution Although it is a uniaxial problem, a three-dimensional stress state will be

considered. At load step tn, the stress and its deviator can be written as

σ ¼
300 0 0

0 0 0

0 0 0

264
375MPa, s ¼

200 0 0

0 �100 0

0 0 �100

264
375MPa:

Table 4.2 Elastoplastic

material parameters
E μ ν σY H β

2.4 GPa 1.0 GPa 0.2 300 MPa 100 MPa 0.3
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Due to the effect of Poisson’s ratio, the incremental strain and its deviator can be

written as

Δε ¼
0:1 0 0

0 �0:02 0

0 0 �0:02

264
375, Δe ¼

0:08 0 0

0 �0:04 0

0 0 �0:04

264
375:

Since the material is purely elastic, the plastic variables are all 0, i.e., nα¼ 0,
nep¼ 0. Accordingly, nη¼ ns� nα¼ ns. The trial state can be obtained by assuming

the strain increment is elastic:

trη ¼ trs ¼ ns þ 2μΔe ¼
360 0 0

0 �180 0

0 0 �180

24 35MPa:

In order to calculate the unit deviatoric tensor N, the trial shifted stress is

normalized 



trη



 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3602 þ 1802 þ 1802

p
¼ 180

ffiffiffi
6

p
MPa;

N ¼
trη
trη


 



 

 ¼ 1ffiffiffi

6
p

2 0 0

0 �1 0

0 0 �1

24 35:
It is necessary to check if the trial state satisfies the yield criterion or not. The yield

function with the trial state becomes

f trη, trep
� 	 ¼ 



trη



� ffiffiffi

2

3

r
κ nep
� 	 ¼ 180

ffiffiffi
6

p
� 300

ffiffiffi
2

3

r
¼ 80

ffiffiffi
6

p
> 0:

Thus, the trial state stays outside the yield surface, and the material will go through

plastic deformation. The plastic consistency parameter can be obtained by

γ ¼ 2μN : Δε
2μþ 2

3
H

¼ 0:0948:

Using the plastic consistency parameter, the stress and plastic variables are updated by

nþ1σ ¼ nσ þ D : Δε� 2μγN ¼
385:2 0 0

0 77:4 0

0 0 77:4

264
375MPa;
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nþ1α ¼ nα þ 2

3
βHγN ¼

1:54 0 0

0 �0:77 0

0 0 �0:77

24 35MPa;

nþ1ep ¼ nep þ
ffiffiffi
2

3

r
γ ¼ 0:0774:

Note that the stress is not uniaxial anymore. Due to plastic deformation, both σ22
and σ33 exist. ▄

4.3.5 Numerical Integration

Since constitutive relations and evolution of plastic variables are in the form of rates

in the elastoplastic model, they need to be integrated over time (or load) increments.

In static problems, the time increment should be understood as a load increment (refer

to Chap. 3). The full magnitude of load is first divided by N increments, and the

structural equilibrium at each increment is sought with the incremental forcemethod.

It is assumed that the solutions and the status of material at time tn are known, which
includes stress and plastic variables. Then, at time tn+1, the Newton–Raphsonmethod

solves for the incremental displacements during the convergence iteration. Thus, the

objective is to update stress and plastic variables from time tn to tn+1 using the given
displacement increments or equivalently using the given strain increments.

Note that the structural equilibrium is only satisfied at the discrete set of time

increments. Thus, it is possible that there might be discretization error in time,

especially when the status of material changes within a time increment. If smaller

size of time increment is used, the error will be reduced. This is different from the

nonlinear elastic systems in which the size of time increment is determined in order

to help convergence. In the case of elastoplastic systems, it may affect the accuracy

of analysis.

Although there are many integration methods for solving differential equations,

it is important that the method should provide accurate and robust results. The

backward Euler time integration method, which will be used in the following

derivations, has been popular because it is simple and provides unconditional

stability. It is well known that the return-mapping algorithm, with the radial return

method as a special case, is an effective and robust method for plasticity [1]. Thus,

time integration of elastoplasticity model using return-mapping algorithm will be

discussed in this section. In the return-mapping algorithm, a two-step method is

often used. First, the elastic trial status is computed in which all strain increments

are purely elastic. If the trial stress resides outside the elastic domain, then the trial

stress is projected onto the yield surface, which is a convex set. This step is called

the return-mapping to the yield surface. During the return-mapping step, the yield

surface itself changes due to the evolution of plastic variables (strain-hardening).

Thus, it is challenging to find the return-mapping point on the yield surface, while

the radius and center location of the yield surface are changing.
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1. Return-Mapping Algorithm

For associative plasticity, it is well known that the backward Euler method

produces the closest point projection. Since the displacement increment at time

tn+1 is known, the strain increment at time tn+1 can be computed from the definition

of strain. The first step is called the elastic predictor and uses this incremental

strain. The stress and hardening parameters are predicted elastically as

trs ¼ nsþ 2μΔe, trα ¼ nα, trep ¼ nep; ð4:102Þ
trη ¼ trs� trα; ð4:103Þ

where the left superscript n denotes the time tn, and “tr” denotes the trial status.

In the elastic predictor step, all strain increments are considered to be elastic and

thus, all plastic variables are fixed. Thus, there is no change in plastic variables.

Although both volumetric and deviatoric parts of stress change, only the change

in deviatoric stress is considered above because the hydrostatic stress does not

affect plasticity.

If the trial stress trη is within the elastic domain, i.e., f(trη, trep)� 0, then the

status of the material is elastic, and the stress and plastic variables are updated

using the trial predictors as

nþ1s ¼ trs, nþ1α ¼ trα, nþ1ep ¼ trep: ð4:104Þ

This is considered as the end of time integration when the status of the material is

elastic.

If the trial stress trη is outside the elastic domain, i.e., f(trη, trep)> 0, then the

status of the material becomes plastic, and the plastic correction step needs to be

carried out to find the plastic status of the material. The stress and plastic

variables are corrected by considering plastic deformation. Figure 4.16 illus-

trates the process of elastic prediction and plastic correction steps. First, because

the plastic strain does not contribute to the stress, the trial stress is reduced

proportional to the plastic strain increment as

nþ1s ¼ trs � 2μΔεp ¼ trs � 2μγ̂N: ð4:105Þ

The plastic variables are also updated simultaneously with the stress,

according to the flow rule as

nþ1α ¼ trα þ Hαγ̂N; ð4:106Þ
nþ1ep ¼ nep þ

ffiffiffi
2

3

r
γ̂ ; ð4:107Þ

where γ̂ ¼ γΔt is the plastic consistency parameter, andN¼ n+1η/||n+1η|| is a unit
deviatoric tensor, normal to the yield surface at time tn+1. Note that stress and

back stress are corrected in the parallel direction to N; the trial stress reduces,
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while the back stress increases. This fact makes it convenient for finding the

updated stress on the updated yield surface.

Note that the plastic strain increment Δεp, or equivalently, γ̂N is unknown yet.

In order to simplify the following calculations, consider the shifted stress at time

tn+1:

nþ1η ¼ nþ1s � nþ1α ¼ trη � 2μþ Hαð Þγ̂N: ð4:108Þ

Since n+1η is parallel to N, trη must also be parallel to N, which means that the

final updated stress moves in the same direction as the trial stress. Thus, the unit

normal tensor to the yield surface can be computed from the trial stress by

N ¼
trη
trη


 



 

 ; ð4:109Þ

which is known from the elastic predictor step. Thus, the plastic correction step

condenses to determine the plastic consistency parameter γ̂ , from which the

plastic strain increment can be obtained. The basic idea is to make the yield

Fig. 4.16 Return-mapping

of isotropic elastoplasticity
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function satisfy the yield condition at the updated state. Thus, at the return-

mapped point, the following yield condition must be satisfied:

f nþ1η, nþ1ep
� 	 ¼ 



nþ1η





� ffiffiffi
2

3

r
κ nþ1ep
� 	

¼ 



trη



� 2μþ Hα
nþ1ep
� 	� 	

γ̂ �
ffiffiffi
2

3

r
κ nþ1ep
� 	 ¼ 0;

ð4:110Þ

which is a nonlinear equation in terms of γ̂ . Equation (4.110) can be solved for γ̂
using the local Newton–Raphson method. Note that this is different from the

Newton–Raphson method for the convergence iteration in which equilibrium

between internal and external forces is sought (e.g., see Eq. (4.19)). This is a

local iteration to find the stress point on the yield surface. Thus, the solution

procedure for elastoplastic systems has double iteration loops. The inside, local

iteration loop usually converges quickly within five or six iterations, but it needs

to be performed at every integration point that has plastic deformation. Below is

the flowchart for the local Newton–Raphson iteration to find the stress point on

the yield surface:

1. Initialize variables

k ¼ 0, ekp ¼ nep, γk ¼ 0, f TOL ¼ σ0Y � 10�7, kMAX ¼ 20:

2. Yield function

f k ¼ 



trη



� 2μþ Hα ekp

� �� �
γk �

ffiffiffi
2

3

r
κ ekp

� �
:

3. Jacobian relation

∂f
∂γ

¼ 2μþ Hα þ
ffiffiffi
2

3

r
Hα,epγ

k þ 2

3
κ,ep :

4. Update the plastic consistency parameter and effective plastic strain

γkþ1 ¼ γk þ f k

∂f=∂γ
, ekþ1

p ¼ nep þ
ffiffiffi
2

3

r
γkþ1:

5. Check convergence

If (|fk|> fTOL) k¼ k+ 1 and go to Step 2.

If (k> kMAX) stop with error message.
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If isotropic/kinematic hardening is a linear function of γ̂ , or of the effective

plastic strain, then only one iteration is required to compute the return map point

because the equation becomes linear.

2. Updating Stress and Plastic Variables

After γ̂ is found, the deviatoric stress can be updated at time tn+1 by

nþ1s ¼ ns þ 2μΔe� 2μγ̂N: ð4:111Þ

However, once the return-mapped point is found, the deviatoric stress is no

longer necessary. Rather, the stress itself can be updated by

nþ1σ ¼ nσ þ Δσ; ð4:112Þ

where the stress increment can be calculated from

Δσ ¼ D : Δε� 2μγ̂N: ð4:113Þ

In addition, the back stress and the effective plastic strain are updated by

nþ1α ¼ nα þ Hαγ̂N; ð4:114Þ
nþ1ep ¼ nep þ

ffiffiffi
2

3

r
γ̂ : ð4:115Þ

Note that the stress and back stress increments corresponding to the plastic

correction component in Eqs. (4.113) and (4.114) are in the same direction as

N, which is a radial direction of the yield surface, as shown in Fig. 4.15.

Example 4.13 (Plastic Consistency Parameter) Consider the combined linear iso-

tropic/kinematic hardening model in Example 4.11. Calculate the plastic consistency

parameter γ̂ during time integration, and compare it with the rate form γ in Eq. (4.100).

Solution In the case of linear hardening, the yield criterion in Eq. (4.110) becomes

a linear function of the plastic consistency parameter. For the given combined linear

isotropic/kinematic hardening model, the yield function at tn+1 can be written as

f nþ1η, nþ1ep
� 	 ¼ trη � 2μþ 2

3
βH

� �
γ̂N

���� �����
ffiffiffi
2

3

r
κ nep
� 	� 2

3
1� βð ÞHγ̂ ¼ 0: ð4:116Þ

Since trη and N are parallel, the first term on the right-hand side (norm) can be split

into two individual norms, to yield

trη � 2μþ 2

3
βH

� �
γ̂N

���� ���� ¼ 



trη



� 2μþ 2

3
βH

� �
γ̂ :

Then, it is clear that Eq. (4.116) is a linear function of the plastic consistency

parameter, which can be solved using
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γ̂ ¼ 



trη



� ffiffi
2
3

p
κ nep
� 	

2μþ 2
3
H:

ð4:117Þ

The above equation provides a convenient implementation strategy for checking

plastic loading and calculating the plastic consistency parameter. The return-

mapping step starts when the trial stress stays outside the yield surface, as

f trη, trep
� 	 ¼ 



trη



� ffiffiffi

2

3

r
κ nep
� 	

> 0:

In fact, this trial yield function is identical to the numerator in Eq. (4.117). Thus, the

plastic consistency parameter can be calculated by

γ̂ ¼ f ðtrη, trepÞ
2μþ 2

3
H

:

It is noted that both the rate form γ and the incremental form γ̂ have the same

denominator. In order to compare the numerators, the trial yield function is explic-

itly written in terms of stress and plastic variables:

f trη, trep
� 	 ¼ 



nη þ 2μΔe





� ffiffiffi
2

3

r
κ nep
� 	

> 0:

The physical meaning of f(trη, trep) is the radial distance from the yield surface to trs
in stress space, as shown in Fig. 4.17. In order to plot the numerator in Eq. (4.100),

2μN : _ε, it is converted to the incremental counterpart as 2μN:Δe. Since N is a unit

deviatoric tensor, N:Δε¼N:Δe, which is a projection of Δe to N. As shown in

Fig. 4.17, the two formulations become equivalent when (a) the material is in the

plastic state at tn, and (b) Δe is parallel to the nη. In general, these two requirements

are satisfied when the size of time increment is very small. ▄

Fig. 4.17 Difference in the plastic consistency parameters from rate form and incremental form
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Example 4.14 (Plastic Deformation of a Bar) Determine stress and plastic vari-

ables in Example 4.12 using incremental time integration. The axial incremental

strain is given as Δε11¼ 0.1. Assume the same material properties and hardening

parameters with that of Example 4.12.

Solution The two formulations, rate and incremental forms, are identical until the

determination of plastic consistency parameter, which can be obtained using the

trial yield function in the incremental integration by

γ ¼ f ðtrη, trepÞ
2μþ 2

3
H

¼ 0:0948:

Note that the above plastic consistency parameter is identical with that of Example

4.12. This happens because (a) the material was initially plastic and (b) Δe is

parallel to the nη. Thus, the updated stress and plastic variables are supposed to

be identical, too:

nþ1σ ¼ nσ þ D : Δε� 2μγN ¼
385:2 0 0

0 77:4 0

0 0 77:4

24 35MPa;

nþ1α ¼ nα þ 2

3
βHγN ¼

1:54 0 0

0 �0:77 0

0 0 �0:77

24 35MPa;

nþ1ep ¼ nep þ
ffiffiffi
2

3

r
γ ¼ 0:0774:

▄

3. Consistent Tangent Stiffness

As discussed in Chap. 2, if the Jacobian matrix (or tangent stiffness here) is

accurate, the Newton–Raphson method shows a quadratic convergence. In struc-

tural analysis, since the residual force is related to stress, the Jacobian matrix

requires the derivative of stress with respect to strain, which is called the tangent

stiffness. The continuum elastoplastic tangent stiffness, Dep, in Eq. (4.98) can be

used to this purpose, but numerical tests show that the Newton–Raphson iteration

does not show a quadratic convergence when Dep is used. Simo and Taylor [2]

showed that this happens because Dep is not consistent with the time integration

algorithm. Dep is tangent stiffness between stress and strain rates, while the time

integration algorithm uses a finite size of time increment. The tangent stiffness

must be consistent with the time integration algorithm to achieve quadratic

convergence during Newton–Raphson iteration. In this section, the tangent

stiffness that is consistent with the time integration algorithm is derived. The

incremental stress in Eq. (4.113) is differentiated with respect to the incremental

strain, which produces a consistent constitutive relation with the return-mapping

algorithm as
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Dalg ¼ ∂Δσ
∂Δε

¼ D� 2μN
 ∂γ̂
∂Δε

� 2μγ̂
∂N
∂Δε

; ð4:118Þ

where Dalg stands for consistent (or algorithmic) tangent stiffness. The above

relation requires derivatives of the plastic consistency parameter and unit

deviatoric tensor.

Since the consistency condition in Eq. (4.110) must be satisfied for all strain

states between load steps tn and tn+1, the differential of f with respect to Δε must

vanish, from which the relation between γ̂ and Δε can be obtained. In order to

differentiate Eq. (4.110), the following relation can help:

∂




trη




∂Δε

¼ 2μ
trη
trη


 



 

 ¼ 2μN;

∂Hα
nþ1ep
� 	
∂Δε

¼
ffiffiffi
2

3

r
∂Hα

∂ep

∂γ̂
∂Δε

:

In the derivation of the above equation, the property that N is a deviatoric

tensor is used. In addition, the relation of Δep ¼
ffiffiffiffiffiffiffiffiffiffiffið2=3Þp

γ̂ is used. The yield

function in Eq. (4.110) can then be differentiated with respect to the strain

increment to obtain

∂f
∂Δε

¼ 2μN� 2μþ Hα þ
ffiffiffi
2

3

r
Hα,ep γ̂ þ 2

3
κ, ep

 !
∂γ̂
∂Δε

¼ 0;

where Hα,ep ¼ ∂Hα=∂ep and κ,ep ¼ ∂κ=∂ep. Thus, the derivative of the plastic
consistency parameter with respect to the strain increment can be obtained as

∂γ̂
∂Δε

¼ 2μN

2μþ Hα þ
ffiffi
2
3

p
Hα,ep γ̂ þ 2

3
κ,ep

� 	 : ð4:119Þ

Next, the increment of the unit normal tensor to the yield function can also be

expressed as

∂N
∂Δε

¼ ∂N
∂trη

:
∂trη
∂Δε

¼ I
trη


 



 

� trη 
 trη



trη



3

" #
: 2μIdev

¼ 2μ
trη


 



 

 Idev � N
 N½ �

:
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Thus, from Eq. (4.113) the consistent or algorithmic tangent stiffness becomes

Dalg ¼ ∂Δσ
∂Δε

¼ D� 4μ2N
 N

2μþ Hα þ
ffiffi
2
3

q
Hα,ep γ̂ þ 2

3
κ,ep

� 4μ2γ̂
trη


 



 

 Idev � N
 N½ �: ð4:120Þ

It is interesting to compare the above tangent stiffness with the continuum

elastoplastic tangent stiffness in Eq. (4.98). Since Eq. (4.98) is written in terms

of a general hardening model, it is simplified for the case of the isotropic/

kinematic hardening model, as

Dep ¼ D� 4μ2N
 N

2μþ Hα þ 2
3
κ,ep

: ð4:121Þ

By comparing the two equations, it is clear that Dep does not have the third

term as in Dalg, which represents the effect of change of N due to the strain

increment. Since the rate form only considers infinitesimal strain increment

(strain rate), it does not take into account the change in direction. However,

when the strain increment is not small, it may change the direction of shifted

stress, and thus, N. This effect did not appear in the 1D elastoplasticity model in

Sect. 4.2 because a scalar stress is used with fixed N. The other difference is the

denominator of the second term on the right-hand side. They are similar, but Dep

does not include the nonlinear hardening effect. Thus, they become identical

when the hardening is linear. This happens because, in a sense, the rate form

differentiates the hardening model first and then takes increments, while the

incremental form differentiates after taking increments. Note that the two tan-

gent stiffnesses become identical when γ̂ ¼ 0.

4. Incremental Equations for Elastoplasticity

For notational convenience, the energy form and its linearization are defined as

a nξ; nþ1uu
� 	 	 ZZ

Ω
ε uð Þ : nþ1σ dΩ; ð4:122Þ

a� nξ, nþ1u; δu,u
� 	 	 ZZ

Ω
ε uð Þ : Dalg : ε δuð ÞdΩ: ð4:123Þ

The notation a� ξ, u; δu,uð Þ is used such that the form implicitly depends on the

plastic variable ξ and the total displacement u and is bilinear with respect to δu
and u. The energy form also implicitly depends on the plastic variables. Note

that unlike the geometric nonlinear systems in Chap. 3, the initial stiffness term

does not appear, since only infinitesimal deformation is being considered.

Total and updated Lagrangian formulations become identical for the infinites-

imal deformation problem.

Since only material nonlinearity is considered, the weak form of structural

equilibrium can be written at load step tn as
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a nξ; nþ1u; u
� 	 ¼ ‘ uð Þ, 8u 2 ℤ: ð4:124Þ

Let the current load step be tn+1 and let the current iteration counter be k.
Assuming that the applied loads are independent of displacement, the linearized

incremental equation of is obtained as

a� nξ, nþ1u; δuk,u
� 	 ¼ ‘ uð Þ � a nξ; nþ1u; u

� 	
, 8u 2 ℤ; ð4:125Þ

and the total displacement is updated using

nþ1ukþ1 ¼ nþ1uk þ δuk: ð4:126Þ

Note that incremental equation (4.125) is in the form of [n+1Kk]∙{δuk}¼ {n+1Rk}

after discretization using finite elements. Equation (4.125) is solved iteratively

until the residual vanishes, which means that the original nonlinear equation

(4.124) is satisfied. It is emphasized here that the linearized increment

Eq. (4.125) solves for displacement increment δuk¼ n+ 1uk+ 1� n+ 1uk between

two consecutive iterations, but the strain increment should be calculated using

the displacement increment Δuk¼Δn+ 1uk+ nu as in Eq. (4.10). This is because

the stress and all history variables are updated from the previous converged load

increment, not from the previous iteration.

Unlike nonlinear elastic systems, the elastoplastic system requires one more

step after the nonlinear equation (4.124) converges at load step tn+1. Since the

stress and plastic variables will be used in the next load step, they need to

be updated at the end of the current load step. This step is identical to the

updating procedures for stress and plastic variables, described in

Eqs. (4.112)–(4.115). During iteration, these variables are calculated, but they

are not stored because they are not the converged values. Once the nonlinear

equation is converged, these values are updated and stored.

4.3.6 Computational Implementation of Elastoplasticity

In this section, implementation of the elastoplasticity with von Mises yield criterion

and combined linear isotropic/kinematic hardening model is presented. Even if it is

possible to develop the finite element formulation for various element types, an

eight-node hexahedral solid element in Chap. 1 will be used for demonstration

purposes. Since only the material nonlinearity is considered, it is assumed that the

strain as well as the rigid-body rotation is small.

In the computer implementation of finite element programs, matrix-vector

notation is more convenient than tensor notation. In matrix-vector notation,

a second-order symmetric tensor is expressed using a vector, while a fourth-order

symmetric tensor is expressed using a matrix. For example, the Cauchy stress and

incremental strain vectors are defined as
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σf g ¼ σ11 σ22 σ33 σ12 σ23 σ13½ �T

and

Δεf g ¼ Δε11 Δε22 Δε33 2Δε12 2Δε23 2Δε13½ �T;

respectively. In the above definitions, the symmetric property of the tensor is used.

It is assumed that the incremental displacement vectorΔdI¼ {ΔdI1,ΔdI2,ΔdI3}T

is given for each node of the element. The subscript I is used to denote the node such
that dIwill be the displacement vector for node I. In each element, the node numbers

are locally defined such that I¼ 1, 2, . . ., 8 for the hexahedral element (see Fig. 4.18).

The displacement increment within the element can be calculated using the follow-

ing interpolation scheme:

Δu ¼
X8
I¼1

NI ξð ÞΔdI; ð4:127Þ

where ξ¼ {ξ, η, ζ}T is the natural coordinate vector at the reference element, NI(ξ)
is the interpolation or shape function whose expression is given in Eq. (1.136), and

ΔdI is the vector of nodal displacement increment. Since stress and plastic variables

are calculated at the integration points, the value of natural coordinate is selected at

the integration point.

For given displacement increments, strain increments can be calculated in a

similar way as with the linear elastic material because the deformation is assumed

to be infinitesimal. Thus, the strain increment can be interpolated by

Finite Element 

a b

Reference Element 

ξ

η

ζ

(1,1,–1) 

(1,1,1) 

(–1,1,1) 

(–1,1,–1) x1

x2

x3x4

x5

x6

x7x8

x2

x1

x3
(1, –1,–1) 

(1, –1,1) 

(–1, –1,1) 

Fig. 4.18 Eight-node three-dimensional isoparametric solid element. (a) Finite Element

(b) Reference Element
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Δεf g ¼
X8
I¼1

BIΔdI;

where

BI ¼

NI, 1 0 0

0 NI, 2 0

0 0 NI, 3

NI, 2 NI, 1 0

0 NI, 3 NI, 2

NI, 3 0 NI, 1

26666664

37777775 ð4:128Þ

is the discrete displacement–strain matrix of a solid element, and NI,j¼∂NI/∂xj is
the derivatives of the shape function NI with respect to the physical coordinates

whose expression in given in Eq. (1.138). Note that since the shape function is

defined in the natural coordinates, it is necessary to use Jacobian relation between

the physical and natural coordinates. Because of the infinitesimal deformation

assumption, the total displacement and the total strain can be obtained by adding

all incremental displacements and strains, respectively. Thus, the total displace-

ments and strains at load increment tn+1 can be obtained by

nþ1u ¼ nu þ Δu

and

nþ1ε
� � ¼ nε

� �þ Δεf g:
In addition to the strain increment, the stress and plastic variables at the previous

load increment tn are required. In the case of combined linear isotropic/kinematic

hardening model, the following variables are needed: nep and

nσ
� � ¼ nσ11 nσ22 nσ33 nσ12 nσ23 nσ13f gT;
nα
� � ¼ nα11 nα22 nα33 nα12 nα23 nα13f gT:

Using the above stress and plastic variables andmaterial parameters (λ, μ, β,H, σ0Y), the
updated stress and plastic variables are calculated using the return-mapping algorithm.

4.3.6.1 Return-Mapping

At each integration point of the element, the stress and plastic variables are

determined using the return-mapping algorithm. In the following flowchart, the

parentheses for vectors are not used for notational briefness:

1. Unit tensor 1 ¼ 1 1 1 0 0 0½ �T.
2. Trial stress trσ¼ nσ +D �Δε.

4.3 Multidimensional Elastoplasticity 301

http://dx.doi.org/10.1007/978-1-4419-1746-1_1#Equ138


3. Trace of stress tr(trσ)¼ trσ11 +
trσ22 +

trσ33.
4. Shifted stress trη ¼ trσ� nα � 1

3
tr trσ
� 	

1.

5. Norm




trη



¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trη11ð Þ2þ trη22ð Þ2 þ trη33ð Þ2 þ 2 trη12ð Þ2 þ trη23ð Þ2 þ trη13ð Þ2
h ir

:

6. Yield function f ¼ 



trη



� ffiffi
2
3

q
σ0Y þ 1� βð ÞHnep
� 


.

7. Check for the yield status.

IF f< 0 THEN

The material is elastic

nþ1σ ¼ trσ;

Dalg ¼ D ¼

λþ 2μ λ λ 0 0 0

λ λþ 2μ λ 0 0 0

λ λ λþ 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

2666666664

3777777775
:

EXIT

ENDIF

8. Consistency parameter γ̂ ¼ f
2μþ2

3H
.

9. Unit deviatoric vector N ¼ trη
trηj jj j.

10. Update stress nþ1σ ¼ trσ � 2μγ̂N.
11. Update back stress nþ1α ¼ nα þ 2=3ð ÞβHγ̂N.

12. Update eff. plastic strain nþ1ep ¼ nep þ
ffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þp

γ̂ .
13. Consistent tangent stiffness

c1 ¼ 4μ2

2μþ 2
3
H
, c2 ¼ 4μ2γ̂

trη


 



 

 ;

Idev ¼

2

3
�1

3
�1

3
0 0 0

�1

3

2

3
�1

3
0 0 0

�1

3
�1

3

2

3
0 0 0

0 0 0
1

2
0 0

0 0 0 0
1

2
0

0 0 0 0 0
1

2

266666666666666666664

377777777777777777775

;
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D alg
ij ¼ Dij � c1 � c2ð ÞNiNj � c2 � I devij :

Note that the above calculation must be performed for each integration point of

an element. Accordingly, the stress and plastic variables at each integration point

must be stored and updated. There is no need to store the stress and plastic variables

during un-converged iteration. Once the Newton–Raphson method is converged at

load increment tn+1, they are stored, and next load increment starts.

In practical implementation, the stress update procedure is often separated from

algorithmic tangent stiffness calculation because the former is used more frequently

than the latter. Below are two MATLAB programs, combHard and

combHardTan. Both programs require stress, back stress, and effective plastic

strain at the previous load increment as inputs, as well as material parameters. It is

expected that stress and back stress are column vectors with dimension of 6� 1.

Program combHard then returns updates stress, back stress and effective plastic

strain, while combHardTan returns the algorithmic tangent stiffness matrix.

PROGRAM combHard

%

% Linear combined isotropic/kinematic hardening model

%

function [stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN)

% Inputs:

% mp = [lambda, mu, beta, H, Y0];

% D = elastic stiffness matrix

% stressN = [s11, s22, s33, t12, t23, t13];

% alphaN = [a11, a22, a33, a12, a23, a13];

%

Iden = [1 1 1 0 0 0]’;

two3 = 2/3; stwo3=sqrt(two3); %constants

mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5); %material properties

ftol = Y0*1E-6; %tolerance for yield

stresstr = stressN + D*deps; %trial stress

I1 = sum(stresstr(1:3)); %trace(stresstr)

str = stresstr - I1*Iden/3; %deviatoric stress

eta = str - alphaN; %shifted stress

etat = sqrt(eta(1)^2 + eta(2)^2 + eta(3)^2 …

+ 2*(eta(4)^2 + eta(5)^2 + eta(6)^2)); %norm of eta

fyld = etat - stwo3*(Y0+(1-beta)*H*epN); %trial yield function

if fyld < ftol %yield test

stress = stresstr; alpha = alphaN; ep = epN; %trial states are final

return;

else

gamma = fyld/(2*mu + two3*H); %plastic consistency param

ep = epN + gamma*stwo3; %updated eff. plastic strain

end

N = eta/etat; %unit vector normal to f

stress = stresstr - 2*mu*gamma*N; %updated stress

alpha = alphaN + two3*beta*H*gamma*N; %updated back stress
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PROGRAM combHardTan

%

% Tangent stiffness for linear combined isotropic/kinematic hardening

model

%

function [Dtan]=combHardTan(mp,D,deps,stressN,alphaN,epN)

% Inputs:

% mp = [lambda, mu, beta, H, Y0];

% D = elastic stiffness matrix

% stressN = [s11, s22, s33, t12, t23, t13];

% alphaN = [a11, a22, a33, a12, a23, a13];

%

Iden = [1 1 1 0 0 0]’;

two3 = 2/3; stwo3=sqrt(two3); %constants

mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5); %material properties

ftol = Y0*1E-6; %tolerance for yield

stresstr = stressN + D*deps; %trial stress

I1 = sum(stresstr(1:3)); %trace(stresstr)

str = stresstr - I1*Iden/3; %deviatoric stress

eta = str - alphaN; %shifted stress

etat = sqrt(eta(1)^2 + eta(2)^2 + eta(3)^2 …

+ 2*(eta(4)^2 + eta(5)^2 + eta(6)^2)); %norm of eta

fyld = etat - stwo3*(Y0+(1-beta)*H*epN); %trial yield function

if fyld < ftol %yield test

Dtan = D; return; %elastic

end

gamma = fyld/(2*mu + two3*H); %plastic consistency param

N = eta/etat; %unit vector normal to f

var1 = 4*mu^2/(2*mu+two3*H);

var2 = 4*mu^2*gamma/etat; %coefficients

Dtan = D - (var1-var2)*N*N’ + var2*Iden*Iden’/3;%tangent stiffness

Dtan(1,1) = Dtan(1,1) - var2; %contr. from 4th-order I

Dtan(2,2) = Dtan(2,2) - var2;

Dtan(3,3) = Dtan(3,3) - var2;

Dtan(4,4) = Dtan(4,4) - .5*var2;

Dtan(5,5) = Dtan(5,5) - .5*var2;

Dtan(6,6) = Dtan(6,6) - .5*var2;

4.3.6.2 Finite Element Procedure for Elastoplasticity

Once stress and plastic variables are determined, they can be used for solving the

nonlinear equilibrium equation. First, the variation of strain can be interpolated

using the same strain–displacement matrix BI as

ε uð Þf g ¼
X8
I¼1

BIdI ¼ B½ � d
� �

; ð4:129Þ
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where dI ¼ dI1; dI2; dI3
� �T

is the displacement variation at node I, while d ¼
dI; d2; . . . ; d8
� �T

is the displacement variation of all nodes in the element. Simi-

larly, [B]¼ [B1,B2, . . .,B8].

Using the above equation and the updated stress in Eq. (4.112), the discrete

version of the energy form can be derived as

a nξ; nþ1u; u
� 	 ¼ ZZ

Ω
ε uð ÞT nþ1σ

� �
dΩ ¼ d

� �TZZ
Ω
B½ �T nþ1σ
� �

dΩ

	 d
� �T

f int
� �

; ð4:130Þ

where {fint} is the discrete internal force vector. When numerical integration is

used, {fint} can be calculated by

f int
� � ¼

XNG
K¼1

B½ �T nþ1σ
� �

Jj j
� �

K
ωK;

where NG is the number of integration points, jJj is the Jacobian between the

physical and reference elements, and ω is integration weight.

In addition, the discrete external force vector can be derived from the definition

of the load form as

‘ uð Þ ¼
ZZ

Ω
uTfBdΩþ

Z
ΓS

uTfSdΓ

¼
X4
I¼1

d
T

I

ZZ
Ω
NI ξð ÞfbdΩþ

Z
ΓS

NI ξð ÞfSdΓ
� �

	 d
� �T

fextf g

: ð4:131Þ

When concentrated nodal forces are applied, they can directly be added to the

corresponding locations in {fext}. Since the applied loads are assumed to be

independent of deformation, the external force {fext} is a fixed vector. Thus, the

discrete version of solving the nonlinear equilibrium equation is to find the internal

force that has the same value as the external force, i.e.,

d
� �T

f int dð Þ� � ¼ d
� �T

fextf g, 8 d
� � 2 ℤh; ð4:132Þ

where ℤh is the discrete counterpart of space ℤ. Since the displacement variation

is 0 at the nodes where displacements are prescribed, Eq. (4.132) satisfies

{fint(d)}¼ {fext} for all nodes whose displacements are not prescribed.

Since the internal force is a nonlinear function of deformation, Eq. (4.132) needs

to be solved using an iterative method, such as the Newton–Raphson method, which

requires the Jacobian matrix, or equivalently, the tangent stiffness matrix. Using the

consistent tangent stiffness, the linearized energy form can be discretized by
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a� nξ, nþ1u; δu,u
� 	 ¼ d

� �TZZ
Ω
B½ �T Dalg
� 


B½ �dΩ δdf g: ð4:133Þ

The integral term in the above equation is called the tangent stiffness matrix. After

using numerical integration, it becomes

KT½ � ¼
XNG
K¼1

B½ �T Dalg
� 


B½ �

J

� �
K
ωK: ð4:134Þ

In general, the above integration as well as the one in the internal force in

Eq. (4.130) are evaluated using the Gauss quadrature rule. Normally, 2� 2 inte-

gration points are used for a quadrilateral element.

The discretized version of incremental equation in Eq. (4.125) can now be

written in the form of finite element matrix equation as

d
� �T

KT½ � δdf g ¼ d
� �T

fext � f int
� �

, 8 d
� � 2 ℤh: ð4:135Þ

The above linear system of equations needs to be solved iteratively until the

residual force (right-hand side) vanishes. Different methods of solving nonlinear

equations in Chap. 2 can be used. For example, in the case of the modified Newton–

Raphson method, the tangent stiffness matrix [KT] at the first iteration is repeatedly

used. In the case of the incremental force method, the external force vector {fext} is

divided by the number of increments, and the Newton–Raphson method is

employed at each load increment.

Finally, it is reminded that the above algorithm onlyworks under the assumption of

small deformation and rotation. When deformation becomes large, the assumption

of additive decomposition, i.e.,Δε¼Δεe +Δεp, cannot be valid.When deformation is

small but a rigid-body rotation is present, the assumption of additive decomposition

can still be used with caution, which will be discussed in the Sect. 4.4.

Example 4.15 (Shear Deformation of Elastoplastic Square) A plane strain square

undergoes simple shear deformation in the x–y plane.When the shear strain increment

isΔγ12¼ 0.004 at each step, plot shear stress τ12 vs. shear strain γ12 curve for 15 load
increments. Calculate the slopes in the elastic and plastic regions and compare these

slopes from theoretical ones. Assume linear isotropic hardening with the following

material properties: E¼ 24 GPa, ν¼ 0.2, H¼ 1.0 GPa, and σ0Y ¼ 200
ffiffiffi
3

p
MPa.

Solution Since the square undergoes simple shear deformation, only nonzero stress

and strain components are τ12 and γ12, respectively. There is no effect on the

deviatoric component because all diagonal components are 0. Below is the list of

MATLAB programs that solve for stresses with given strain increments. Note that

the input deps is the strain increment, not the total strain. Figure 4.19 shows shear

stress vs. shear strain curve. As shown in Example 4.8, in pure shear deformation,

the material will yield at

τ12 ¼ 1ffiffiffi
3

p σ0Y ¼ 200 MPa;

which is consistent with the curve in Fig. 4.19.
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%

% Example 4.15 - Shear deformation of elastoplastic square

%

Young = 24000; nu=0.2; mu=Young/2/(1+nu); lambda=nu*Young/((1+nu)*(1-

2*nu));

beta = 0; H = 1000; sY = 200*sqrt(3);

mp = [lambda mu beta H sY];

Iden=[1 1 1 0 0 0]’;

D=2*mu*eye(6) + lambda*Iden*Iden’;

stressN=zeros(6,1); deps= zeros(6,1); alphaN = zeros(6,1); epN=0;

for i=1:15

deps(4) = 0.004;

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);

X(i) = i*deps(4); Y(i) = stress(4); Z(i)

stressN = stress; alphaN = alpha; epN = ep;

end

X = [0 X]; Y=[0 Y]; plot(X,Y);

The slope of elastic region is 10,000 MPa, which corresponds to μ. The slope in
plastic region is 322.5 MPa, which corresponds to tangent stiffness in the plastic

region. Since τ12 is only nonzero stress component, the trial stress can be written in

the scalar form:

trτ12 ¼ nτ12 þ μΔγ12:

For the convenience of discussion, it is assumed that nτ12 is at the initial yield point,
i.e., nτ12¼ 200 MPa. Then, the yield function at the trial stress becomes positive

(outside of the yield surface):

f ¼
ffiffiffi
2

p
trτ12 �

ffiffiffi
2

3

r
σ0Y ¼

ffiffiffi
2

p
nτ12 þ

ffiffiffi
2

p
μΔγ12ð Þ �

ffiffiffi
2

3

r
σ0Y ¼

ffiffiffi
2

p
μΔγ12 > 0:
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Thus, the plastic consistency parameter can be calculated by

γ ¼
ffiffiffi
2

p
μ

2μþ 2
3
H
Δγ12:

Then, the return-mapping algorithm for the shear stress becomes

nþ1τ12 ¼ nτ12 þ μΔγ12 � μγN12:

It is straightforward to obtainN12 ¼ 1=
ffiffiffi
2

p
from the definition of N. After substitut-

ing the plastic consistency parameter, the updated shear stress becomes

nþ1τ12 ¼ nτ12 þ μ 1� 2μ

2μþ 2
3
H

" #
Δγ12:

The coefficient of Δγ12 is the slope in the plastic region of shear stress–shear

strain curve. ▄

4.4 Finite Rotation with Objective Integration

The elastoplasticity with return-mapping algorithm in the previous section can be

extended when the structure undergoes a small strain but with a finite rotation.

In such a case, if a body-fixed coordinate that rotates with the structure is used,

stresses will not be affected by the rigid-body rotation, which is the main idea in this

section. However, it can be shown that the rate of Cauchy stress is not invariant

under rigid-body rotation. The rate of a tensor that is independent of imposed rigid-

body rotation is called an objective rate. Thus, the concept of an objective stress rate

will be introduced first. For a finite rotational problem, objective rate tensors

have to be used to describe the motion of the structure and to obtain the material

frame independent results. Although an extensive amount of research has been done

pertaining to objective rates, only co-rotational Cauchy stress rate will be intro-

duced in this section. Other types of objective rates can be used in a similar manner.

The same constitutive relation for elastoplasticity in Sect. 4.3 can be used in terms

of objective stress rate. The approach is therefore valid for elastoplastic systems

with small elastic deformation, relatively large plastic deformation, and large rigid-

body rotation. Numerical difficulties associated with the objective rate include

the intricate transformation of a stress tensor into a rotation-free configuration,

the unsymmetric properties of the tangent stiffness, and the difficulty in obtaining

an exact tangent stiffness. Nevertheless, this model has been implemented in a good

deal of application software.
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4.4.1 Objective Tensor and Objective Rate

1. Objective Tensor

Any tensor that is not affected by superimposed rigid-body translations and rota-

tions of a spatial frame is called an objective tensor. It is noted that a rotation of the
body is equivalent to the rotation of the reference frame of the same magnitude but

in opposite direction. Consider two reference frames x� y� z and x� y� z in

Fig. 4.20. The former is translated by c(t) and rotated byQ(t)T to arrive at the latter.
The position of a particle P at time t is x in x� y� z frame and x in x� y� z frame.

The former vector x is seen by an observer sitting in x� y� z frame as Q(t)·x.
In fact, the position vectors are related by

x ¼ Q tð Þ � xþ c tð Þ; ð4:136Þ

where c(t) is the position vector of the origin of x� y� z frame and Q(t)T is the

orthogonal tensor that gives the orientation of x� y� z frame relative to x� y� z
frame. Thus, x� y� z frame is different fromx� y� zby a rigid-body translation c(t)
and a rotationQ(t)T.

Objectivity is also known as reference frame indifference. Quantities that

depend only on the orientation of the reference frame, which is given by Q, and

not on the other aspects of the motion of the reference frame (e.g., translation,

velocity and acceleration, angular velocity and angular acceleration) are said to be

indifferent or objective. Therefore, components of a tensor observed by two

different observers are different. This difference is due to the different orientations

of the observers but not to relative motions between the observers.

Definition Objective tensor. A scalar f, a vector v, and a second-order tensor T are

objective, if for reference frames x and x related by

x ¼ c tð Þ þQ tð Þx; ð4:137Þ

x

P

x

x y z− −

x y z− −

Fig. 4.20 Two frames

different by rigid-body

translation and rotation
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i.e., differing only by a rigid-body motion, the corresponding scalar f , vector v, and

tensor T are related by the following:

f ¼ f ;

v ¼ Qv;

T ¼ QTQT:

▄

In this context, the change of coordinate system is not considered (each observer is

free to choose a coordinate system), but it is concerned with the change of

observer’s positions and orientations, or the change of reference frame. It is

convenient to imagine that the observers are attached to the continua and move

with the continua. If two motions are different only by a rigid-body motion, then the

two reference frames as seen in the eyes of the two observers are different by a

translation of the origin and a rotation of orientation. Therefore, in the discussion of

objectivity, transformation of coordinate system does not play any part.

Example 4.16 (Objective Tensor) When the two spatial frames are related by

Eq. (4.137), show that how the deformation gradient F, the right Cauchy-Green

deformation tensor C¼FTF, and the left Cauchy-Green deformation tensor

b¼FFT transform.

Solution The deformation gradient in the two different frames can be written as

F ¼ ∂x
∂X

, F ¼ ∂x
∂X

:

Note that the material frame, X, never changes. The discussion in the objectivity is

only related to the spatial frames. By substituting the relation between the two

frames in Eq. (4.137),

F ¼ ∂x
∂X

¼ ∂ cþQxð Þ
∂X

¼ Q
∂x
∂X

¼ QF:

Note that the deformation gradient is a second-order tensor, but it behaves like a

vector. This happens because the deformation gradient depends on two frames: the

material frame (X) and the spatial frame (x). Since the vector in the material frame

remains unchanged, it behaves like a vector.

The right Cauchy-Green deformation tensor in x� y� z frame can be written as

C ¼ F
T
F ¼ QFð ÞT QFð Þ ¼ FTQTQF ¼ FTF ¼ C:

Thus, the right Cauchy-Green deformation tensor behaves like a scalar. This is

expected because C is a material tensor.
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The left Cauchy-Green deformation tensor in x� y� z frame can be written as

b ¼ FF
T ¼ QFð Þ QFð ÞT ¼ QFFTQT ¼ QbQT:

Thus, the spatial tensor b is an objective tensor. ▄

As discussed in the above example, only spatial tensors are considered to

determine objectivity. Consider the velocity gradient in two different frames:

L ¼ ∂v
∂x

, L ¼ ∂v
∂x

; ð4:138Þ

where the velocity can be obtained by differentiating the relation x ¼ Qx with

ignoring the rigid-body translation, as

v ¼ _x ¼ Qvþ _Qx:

Since Q is an orthogonal tensor, Q�1¼QT and x ¼ Q�1x ¼ QTx. Using this

relation, the above equation becomes

v ¼ Qvþ _QQTx: ð4:139Þ

Thus, the spatial velocity vector v is not objective under rigid-body rotation. The

velocity gradient in Eq. (4.138) can be obtained by differentiating the relation in

Eq. (4.139) as

L ¼ ∂v
∂x

¼ Q
∂v
∂x

∂x
∂x

þ _QQT ∂x
∂x

¼ QLQT þ _QQT: ð4:140Þ

This shows that the velocity gradient tensor is not an objective tensor because of the

presence of the second term. This means that the velocity gradient cannot be used to

describe the material behavior.

Example 4.17 (Rate of Deformation Tensor and Spin Tensor) The symmetric part

of the velocity gradient L is called the rate of deformation tensor d, whereas the

skew-symmetric part of L is called the spin tensorW. Show that d is objective and

W is not objective.

Solution From the definition of the velocity gradient, the rate of deformation can

be written as

d ¼ 1

2
Lþ L

T
� �

¼ 1

2

∂v
∂x

þ ∂v
∂x

� �T
 !

¼ 1

2

∂v
∂x

∂x
∂x

þ ∂v
∂x

∂x
∂x

� �T
 !

:
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Using the relation v ¼ Qvþ _Qx and ∂x=∂x ¼ QT, the above relation can be

simplified into

d ¼ 1

2
QLQT þQLTQT
� 	þ 1

2
_QQT þQ _Q

T
� �

:

It is clear that the first term on the right-hand side is the rate of deformation in

x� y� z frame. For the second term, consider the following property of orthogonal

tensor: QQT¼ 0. Since this relation is satisfied for all time, its time rate should be

0, i.e., _QQT þQ _Q
T ¼ 0. Thus, the second term in the above equation vanishes, and

d ¼ QdQT:

Thus, the rate of deformation is an objective rate. On the other hand, the spin tensor

becomes

W ¼ QWQT þ 1

2
_QQT �Q _Q

T
� �

:

Due to the second term on the right-hand side, the spin tensor is not an objective

tensor. ▄

In the above example, it is seen that L and W depend on the spin of the rotating

system, but d depends only on the orientation of the reference (spatial) frame. Note

that for two chosen coordinate systems, L transforms like a second-order tensor if
_Q ¼ 0.

2. Objective Rate

Suppose that T (any symmetric tensor) is an objective tensor. Is it true to say that its

rate _T is also objective? The concept of the rate of a tensor _T is important to find the

effect of deformation or loading history on the media. If a tensor is known as some

instantaneous moments, then by Taylor series expansion with respect to time, the

derivatives of this tensor field are required in order to determine the future response

of the media. In the rate form of elastoplasticity, the constitutive relation is given in

terms of stress and strain rates. Knowing an objective tensor T (stress or strain), the

question is whether _T is objective or not. If it is not objective, it cannot be used to

predict the future value of T.

Let T be an objective tensor such that it satisfies the following transformation

relation:

T ¼ QTQT: ð4:141Þ

Then the rate of T can be written as

_T ¼ _QTQT þQ _TQT þQT _Q
T
:
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The presence of _QTQT and QT _Q
T
in the above equation shows that _T is not an

objective rate. To determine an objective derivative, these two terms that include _Q

and _Q
T
need to be eliminated from the above expression, since these terms cannot

appear in an objective tensor transformation. From the transformation of the

velocity gradient in Eq. (4.140), _Q can be written as

_Q ¼ LQ�QL:

By taking the transpose of the above equation,

_Q
T ¼ QTL

T � LTQT:

By substituting the above two relations into the expression of _T,

_T ¼ LQ�QL
� 	

TQT þQ _TQT þQT QTL
T � LTQT

� �
¼ LQTQT �QLTQT þQ _TQT þQTQTL

T �QTLTQT

¼ LT�QLTQT þQ _TQT þ TL
T �QTLTQT

or, after rearranging,

_T� LT� TL
T ¼ Q _T � LT� TLT

� 	
QT:

Thus, it follows that the following rate is an objective derivative:

_T � LT� TLT: ð4:142Þ

Note that the above expression includes not only _T but also T itself. The above rate

is called the Truesdell rate. It is possible to show that that the following derivatives

are also objective:

Co-rotational rate (Jaumann rate):

_T
J 	 _T �WTþ TW: ð4:143Þ

Convective rate:

_T
C 	 _T þ LTþ TLT: ð4:144Þ

Any one of the above three derivatives is as good as another, although they are not

equal to each other. If T is stress, these are objective stress rates. In the spatial

description, the constitutive model is given between the rate of stress and the rate of
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strain. Since the constitutive model has to be independent of the reference frame, it

is important to use the objective stress rate in describing the constitutive model.

Example 4.18 (Objective Stress Rates) Using the properties of _Q ¼ QWT �W
T
Q

and _Q ¼ QLT � L
T
Q, derive (a) co-rotational rate and (b) convective rate.

Solution:

(a) Using the property, _Q ¼ QWT �W
T
Q, the rate of _T can be written as

_T ¼ _QTQT þQ _TQT þQT _Q
T

¼ QWT �W
T
Q

� �
TQT þQ _TQT þQT WQT �QTW

� 	
¼ Q WTT

� 	
QT �W

T
TþQ _TQT þQTWQT � TW:

After rearranging and using the property of WT¼�W, the transformation

relation becomes

_Tþ TW�WT ¼ Q _T þ TW�WT
� 	

QT:

Thus, _T þ TW�WT is an objective rate.

(b) Using the property, _Q ¼ QLT � L
T
Q, the rate of _T can be written as

_T ¼ _QTQT þQ _TQT þQT _Q
T

¼ QLT � L
T
Q

� �
TQT þQ _TQT þQT LQT �QTL

� 	
¼ Q LTT

� 	
QT � L

T
TþQ _TQT þQTLQT � TL:

After rearranging, the transformation relation becomes

_Tþ L
T
Tþ TL ¼ Q _T þ LTTþ TL

� 	
QT:

Thus, _T þ LTTþ TL is an objective rate. ▄

4.4.2 Finite Rotation and Objective Rate

1. Jaumann Stress Rate

It is well known that the rate of the Cauchy stress tensor is not objective, even if the

Cauchy stress itself is objective. As a body rotates without deformation, the Cauchy

stress tensor changes because the direction of the stress tensor has also changed. In

this section, instead of rate in the previous section, an increment is used; for
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example, the increment of rotation can be written asΔQ ¼ _QΔt. Let Ej be a basis in

the jth direction of the material frame and let ej be the corresponding basis in the

spatial frame that is under rigid-body rotation such that they are related by ej¼QEj.

The increment of ej can be computed by

Δej ¼ Wej; ð4:145Þ

where Wi,j¼ (Δui,j�Δuj,i)/2 is a component of the spin tensor that represents a

rigid-body rotation.

In spatial Cartesian coordinates, the Cauchy stress tensor can be written as

σ ¼ σijei 
 ej;

where ei is a unit basis vector in the ith direction of Cartesian coordinates. In the

above equation, the summation rule is used for the repeated indices.

The incremental form of the Cauchy stress tensor can be obtained by taking

increments of the above equation as

Δσ ¼ Δσijei 
 ej þ σijΔei 
 ej þ σijei 
 Δej:

In the above equation Δσij is the increment of stress component in the frame that

rotates with ei, which is the definition of co-rotational rate in Eq. (4.143). Thus, it is

indeed the Jaumann stress increment. After using the relation in Eq. (4.145), the

stress increment becomes

Δσ ¼ Δσ J
ijei 
 ej þ σijWikek 
 ej þ σijei 
Wjkek:

After changing dummy indices, the stress increment can be written in terms of the

spatial basis as

Δσ ¼ Δσ J
ij þ σkjWik � σikWkj

� �
ei 
 ej; ð4:146Þ

where ΔσJij is the Jaumann or co-rotational Cauchy stress increment, which is the

objective rate because it takes an increment of the tensor with respect to the

principal axis of the deformation rate tensor. Although the Jaumann stress incre-

ment is deficient with large shear strain problems because it produces an artificial

oscillation for a simple shear problem, it is the one most frequently used. Due to the

small strain assumption, the constitutive relation in the infinitesimal elastoplasticity

in Sect. 4.3 can still be used for finite rotational case. The constitutive equation in

Eq. (4.120) must be written in the form of the objective rate

ΔσJ ¼ Dalg : Δε: ð4:147Þ

The other two terms in Eq. (4.146) represent the effect of rigid-body rotation.
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2. Objective Time Integration

Even if the incremental constitutive relation in Eqs. (4.146) and (4.147) is written

using the objective stress rate, it is only accurate for small rigid-body rotations

because it is assumed that the spin tensorW is constant during the increment, which

is not true for finite rotation. Hughes and Winget [3] observed an excessive amount

of error in the rate form and proposed an algorithm to preserve objectivity for large

rotational increments. Their idea is to define the strain increment and spin tensor in

the midpoint configuration, which is between load steps tn and tn+1. In order to

rotate the strain increment and spin tensor to the rotation-free midpoint configura-

tion, the following relations have to be used:

nþ1
2x ¼ nx þ 1

2
Δu ¼ nþ1x � 1

2
Δu:

Since the updated Lagrangian formulation will be used for elastoplasticity, it is

convenient to use the second relation in the above equation. If the above relation is

differentiated with respect to the coordinate direction n+1x at the current

configuration,

∂nþ1
2x

∂nþ1x
¼ 1� 1

2

∂Δu
∂nþ1x

¼ 1� 1

2
L;

where L¼∂Δu/∂n+1x is the velocity gradient (from the fact that Δu¼ vΔt). The
inverse of the above relation can be obtained by

∂nþ1x

∂nþ1
2x

¼ 1� 1

2
L

� ��1

:

Then, the displacement gradient at the midpoint configuration can be obtained by

∂Δu
∂nþ1

2x
¼ ∂Δu

∂nþ1x

∂nþ1x

∂nþ1
2x

¼ L 1� 1

2
L

� ��1

:

Then, the strain increment and spin tensor are defined at the midpoint configuration as

Δε ¼ 1

2

∂Δu
∂nþ1

2x
þ ∂Δu
∂nþ1

2x

T
 !

; ð4:148Þ

W ¼ 1

2

∂Δu
∂nþ1

2x
� ∂Δu
∂nþ1

2x

T
 !

ð4:149Þ

and stress and back stress at the previous load step are updated to the rotation-free

configuration by
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nσ ¼ RnσRT, nα ¼ RnαRT; ð4:150Þ

where R¼ 1 + (1�½W)�1W, which is orthogonal and incrementally objective,

and can be obtained by applying the generalized midpoint rule to dR/dt¼WR. The

usual return-mapping algorithm from Sect. 4.3 can be applied to Eq. (4.150) after

the transformation.

The following MATLAB program, rotatedStress, can be used to update the

stress and back stress to the rotation-free configuration. Inputs to the program are

the velocity gradient (L¼∂Δu/∂n+1x, 3� 3 matrix), stress (6� 1 vector), and back

stress (6� 1 vector). Then, the program returns rotated stress and back stress. Once

the stress and back stress are rotated, they can be considered as the stress and back

stress at the previous load step in the return-mapping procedure.

PROGRAM rotatedStress

%

% Rotate stress and back stress to the rotation-free configuration

%

function [stress, alpha] = rotatedStress(L, S, A)

%L = [dui/dxj] velocity gradient

str=[S(1) S(4) S(6);S(4) S(2) S(5);S(6) S(5) S(3)];

alp=[A(1) A(4) A(6);A(4) A(2) A(5);A(6) A(5) A(3)];

factor=0.5;

R = L*inv(eye(3) + factor*L);

W = .5*(R-R’);

R = eye(3) + inv(eye(3) - factor*W)*W;

str = R*str*R’;

alp = R*alp*R’;

stress=[str(1,1) str(2,2) str(3,3) str(1,2) str(2,3) str(1,3)]’;

alpha =[alp(1,1) alp(2,2) alp(3,3) alp(1,2) alp(2,3) alp(1,3)]’;

4.4.3 Incremental Equation for Finite Rotation
Elastoplasticity

Even if small strain is assumed in elastoplastic deformation, it is considered to be

a large deformation problem due to finite rotations. This is a major difference

from the infinitesimal elastoplasticity in Sect. 4.3, in which both small strain and

small rotation are assumed. Thus, the deformed geometry must be separated from

the undeformed geometry, which is similar to the geometric nonlinear analysis in

Chap. 3. Thus, either the total or updated Lagrangian formulation can be used.

However, it is inconvenient to express the equilibrium equation of an

elastoplastic problem in the total Lagrangian formulation, since the evolution

of plastic variables is directly related to the Cauchy stress. Thus, the updated
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Lagrangian formulation is a natural choice. It is assumed that the stress and

plastic variables as well as deformed geometry up to load step tn are known, and
the same variables and geometry at current load step tn+1 are wanted to be

computed. In the updated Lagrangian formulation, the energy form can be written

at the current geometry as

a nξ; nþ1u; u
� 	 	 ZZ

nþ1Ω
∇nþ1u : nþ1σdΩ: ð4:151Þ

For a symmetric tensor S and nonsymmetric tensor L, it can be shown that S:L¼ S:

sym(L), where sym(L) is a symmetric part of L, i.e., sym(L)¼½(L+LT). Thus, the

integrand of the above equation is the same as ε uð Þ : nþ1σ, which is equivalent to

the updated Lagrangian formulation in Eq. (4.80). Note that in addition to displace-

ment and stress, the plastic variables from the previous load step are required to

calculate energy form at load step tn+1.
Equation (4.151) is a nonlinear function of displacement since the deformed

geometry and stress at the current load step are unknown a priori. A linearization is

required to solve the nonlinear equation using the Newton–Raphson method itera-

tively. Let the external load be independent of displacement, that is, conservative.

Since the derivatives and integration in Eq. (4.151) are carried out with respect to

the current geometry, it is convenient to transform them to the undeformed geom-

etry using the deformation gradient and the Jacobian relation. The energy form can

be transformed into an undeformed geometry by

a nξ; nþ1u; u
� 	 ¼ ZZ

0Ω
∇0uF

�1
� 	

: σJdΩ: ð4:152Þ

Note that F¼∂n+1x/∂X, dn+1Ω¼ Jd0Ω, and J¼ det(F). The integrand in this

equation is the same as T : F, where T¼ JF�1σ is the first Piola-Kirchhoff stress

tensor and the variation of displacement gradient is ∇0u ¼ F. This transformation

is temporary as the updated Lagrangian formulation will be recovered at the end of

linearization.

Since the constitutive relation is given by the rates of Cauchy stress and

engineering strain, the linearization is carried out with respect to Cauchy stress in

the undeformed geometry. Note that linearization is equivalent to taking increment.

To linearize Eq. (4.152), the increment of the deformation gradient is first written as

ΔF ¼ ∂
∂ω

∂ xþ ωΔuð Þ
∂X

� �
ω¼0

¼ ∂Δu
∂X

¼ ∇0Δu:

In addition, from the incremental relation of FF�1¼ 1, the following is given:
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Δ F�1
� 	 ¼ �F�1∇0ΔuF�1 ¼ �F�1∇nþ1Δu:

The incremental form of the Jacobian of the deformation gradient [4] can be derived

by direct linearization of the expression of |Fmn|¼ (1/6)eijkerstFirFjsFkt with the

identity of eijkeijr¼ 2δkr:

ΔJ ¼ Δdet Fð Þ ¼ J div Δuð Þ:

By using the above two relations, the linearization of the energy form in Eq. (4.152)

can be obtained as

Δ a nξ; nþ1u; u
� 	� 

¼ Δ

ZZ
0Ω

∇0uF
�1

� 	
: σJdΩ

� �
¼
ZZ

0Ω
∇0uΔ F�1

� 	� 	
: σJ þ ∇0uF

�1
� 	

: ΔσJ þ ∇0uF
�1

� 	
: σΔJ

� 

dΩ

:

For the notational convenience, the left superscript n+ 1 is omitted for the stress.

The first term of the integrands can be simplified as

∇0uΔ F�1
� 	

: σJ ¼ �∇0uF
�1∇nþ1Δu : σJ ¼ �∇nþ1u∇nþ1Δu : σJ:

In order to make the above expression convenient for the following derivations, the

following rearrangement can be performed. For second-order tensors, the following

relation can be satisfied: (AB):S¼A:SBT. This can be easily shown using the index

notation as AikBkjSij¼AikSijBkj. Thus, the above term can be rewritten as

∇0uΔ F�1
� 	

: σJ ¼ �∇nþ1u : σ∇nþ1ΔuTJ:

The second term can be simplified using the Jaumann rate as

∇0uF
�1

� 	
: ΔσJ ¼ ∇nþ1u : ΔσJ þWσ� σW

� 	
J:

Finally, the last terms can be simplified as

∇0uF
�1

� 	
: σΔJ ¼ ∇nþ1u : σdiv Δuð ÞJ:

Thus, after combining these three terms, the linearization of the energy form can be

written as

Δ a nξ; nþ1u; u
� 	� 

¼
ZZ

nþ1Ω
∇nþ1u : ΔσJ þWσ� σWþ σdiv Δuð Þ � σ ∇nþ1Δuð ÞT

h i
dΩ :

In the elastoplastic constitutive relation, the Jaumann rate is given as

ΔσJ¼Dalg:Δε, and the spin tensor can be written in terms of incremental
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displacement gradient. Thus, the integrands of the above equation can be explicitly

written in terms of incremental displacement gradient. For example, theWσ term in

the integrand can be expressed in terms of displacement increment, as

Wimσmj ¼ 1

2

∂Δui
∂xm

� ∂Δum
∂xi

� �
σmj ¼ 1

2
σmj δikδml � δmkδilð Þ∂Δuk

∂xl

¼ 1

2
σljδik � σkjδil
� 	

∇nþ1Δu½ �kl
:

Thus, after rearranging terms, the linearization of the energy form can be written as

Δ a nξ; nþ1u; u
� 	� 

¼
ZZ

nþ1Ω
∇nþ1u : Dalg � D�� 	

: ∇nþ1Δuþ σ : η u,Δuð Þ� 

dΩ

	 a� nξ, nþ1u;Δu,u
� 	 : ð4:153Þ

where the same notation as in Eq. (4.123) is used even if the above form is for the

updated Lagrangian formulation. In the above equation, σ : η Δu, uð Þ is the initial
stiffness term with η Δu,uð Þ ¼ sym ∇nþ1u

T∇nþ1Δu
� 	

, and

D�
ijkl ¼ �σijδkl þ 1

2
σilδjk þ σjlδik þ σikδjl þ σjkδil
� 	 ð4:154Þ

represents the rotational effect of the Cauchy stress tensor. Note that the linearized

energy form in Eq. (4.153) is not symmetric because D* is not symmetric. With

Eq. (4.153), the incremental equation of the Newton–Raphson method can be

obtained. Since the reference configuration is the current, unknown one, the last

iteration of the current load step is chosen as the reference configuration. Let the

current load step be tn+1 and let the current iteration counter be k+ 1. Assuming that

the external force is independent of displacement, the incremental equation is

obtained as

a� nξ, nþ1u;Δukþ1,u
� 	 ¼ ‘ uð Þ � a nξ; nþ1u; u

� 	
, 8u 2 ℤ: ð4:155Þ

The above iteration is repeated until the residual term on the right-hand side

vanishes. After the displacement increment is computed by solving linear systems

of equations using Eq. (4.155), the return-mapping procedure is carried out to

obtain the status of stress for each integration point, including internal plastic

variables.

Note that the linearized energy form in Eq. (4.153) is not an accurate Jacobian

relation because it does not include the effect of rotating stress and back stress to the

rotation-free midpoint configuration as in Eq. (4.150). For more accurate expression

of the linearized energy form, the readers are referred to Fish and someone [5].
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4.4.4 Computational Implementation of Finite Rotation

The implementation of elastoplasticity with finite rotation is an extension of the

infinitesimal elastoplasticity in Sect. 4.3.6. Thus, instead of explaining the entire

process, only different parts will be presented. Let the current load step be tn+1 and
the current iteration counter be k+ 1. Same with infinitesimal elastoplasticity, the

available variables are nσ, nα, nep, and displacement increment Δuk.
In the updated Lagrangian formulation with objective time integration, strain is

defined with respect to the geometry at tn+½. This can be achieved by calculating

velocity gradient at tn first and transform it to tn+½. The Jacobian relation at tn can be
defined as

nJ ¼
∂nx1
∂ξ

∂nx2
∂ξ

∂nx1
∂η

∂nx2
∂η

2664
3775;

where (nx1,
nx2) is the material coordinate at load step tn, while (ξ, η) is the

corresponding coordinate in the reference element. Then, the derivatives of shape

functions with respect to (nx1,
nx2) can be written in terms of the derivatives with

respect to (ξ, η) by

∂NI

∂nx1
∂NI

∂nx2

2664
3775 ¼ nJ�1

∂NI

∂ξ
∂NI

∂η

2664
3775:

Using the above derivatives of shape function, the velocity gradient can be inter-

polated by

∂Δu
∂nx

� �
ij

¼
X4
I¼1

∂NI

∂nxj
ΔdIi:

Then, from the relation that n+½x¼ nx +(1/2)Δu, the incremental deformation

gradient can be defined as

∂nþ1=2
x

∂n
x

¼ ∂ nxþ 1
2
Δuð Þ

∂n
x

¼ 1þ 1

2

∂Δu
∂xn

:

Then the velocity gradient at tn+½ can be obtained by

∇nþ1
2
Δu ¼ ∂Δu

∂xnþ1
2

¼ ∂Δu
∂xn

� ∂xn

∂xnþ1
2

¼ ∂Δu
∂xn

1þ 1

2

∂Δu
∂xn

� ��1

:
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Using the above velocity gradient at the midpoint configuration, the following steps

will update stress and plastic variables and will solve for incremental displacement:

1. Strain increment and spin tensor at the midpoint

Δε ¼ sym ∇nþ1
2
Δu

� 	
, W ¼ skew ∇nþ1

2
Δu

� 	
:

2. Rotation matrix R ¼ 1þ 1� 1
2
Wð Þ�1W.

3. Rotated stress and back stress

σn ¼ RσnRT αn ¼ RαnRT:

4. Return-mapping with nσ and nα (use the procedures in Sect. 4.3.6).

5. Internal force f int
� � ¼

XNG
K¼1

B½ �T nþ1σ
� �

Jj j
� �

K
ωK.

6. Tangent stiffness KT½ � ¼
XNG
K¼1

B½ �T Dalg � D�� 

B½ �

J

� �

K
ωK .

D� ¼

�σ11 σ11 σ11 �σ12
σ22 �σ22 σ22 �σ12
σ33 σ33 �σ33 0

�σ12 �σ12 0 �1

2
σ11 þ σ22ð Þ

26664
37775:

7. Initial stiffness KS½ � ¼
XNG
K¼1

BG½ �T Σ½ � BG½ �

J

� �
K
ωK .

BG½ � ¼
N1,1 0

N1,2 0

0 N1,1

0 N1,2

� � �
N4,1 0

N4,2 0

0 N4,1

0 N4,2

2664
3775 Σ½ � ¼

σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12
0 0 σ12 σ22

2664
3775:

8. Solve for incremental displacement

KT þKS½ � δdkþ1
� � ¼ fextf g � f int

� �
:

9. Update displacement

nþ1dkþ1 ¼ nþ1dk þ δdkþ1

Δdkþ1 ¼ Δdk þ δdkþ1:

If the residual force does not vanish, the iteration counter k is changed to k+ 1 and

the above procedures are repeated. When the iteration converges, updated stress
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and plastic variables are stored and n is changed to n+ 1, and the next load step

starts. Note that the Newton–Raphson iteration solves for displacement increment

between iterations k and k+ 1, δdk+1, which is different from the displacement

increment between load steps n and n+ 1, Δdk+1. Thus, it is important to update

both d and Δd using δd.

It is reminded that the elastoplasticity with finite rotation is only valid when the

rigid-body rotation is large but the strain is small so that additive decomposition

between elastic and plastic strains is possible. As the strain becomes large, it is not

accurate to assume the additive decomposition. In addition, the assumption of

linear constitutive relation between stress and elastic strain is not valid anymore.

Thus, more general model is required for elastoplasticity with finite deformation.

Example 4.19 (Objective Time Integration) A plane strain square undergoes rigid-

body rotation and shear deformation such that the velocity gradient at each load step

is given as

∂Δu
∂x

� �
¼

0 0:024 0

�0:02 0 0

0 0 0

24 35:
Compare the stresses from infinitesimal deformation and finite rotation

elastoplasticity by plotting shear stress τ12 vs. shear strain γ12 curve for 15 load

increments. Compare all stress components at the last load step. Assume linear

isotropic hardening with the following material properties: E¼ 24 GPa, ν¼ 0.2,

H¼ 1.0 GPa, and σ0Y ¼ 200
ffiffiffi
3

p
MPa:

Solution The given velocity gradient includes spin tensor (skew-symmetric part)

and rate of deformation part (symmetric part). After removing the rigid-body

rotation, the strain increment becomes Δγ12¼ 0.004. The latter is related to the

strain increment, while the former represents the rigid-body rotation. Below is the

list of MATLAB program that solves for the shear deformation problem with and

without considering the rotational effect. The variable “stress” is the updated

stress from infinitesimal deformation assumption, while “stressR” is the one

from finite rotation assumption. At the last load increment, these two stresses are

stress ¼ 0 0 0 212:9 0 0½ �T
stressR ¼ 43:4 �43:4 0 208:2 0 0½ �T :

The difference in shear stress σ12 is relatively small. However, in the finite

rotational formulation, the normal stresses are developed due to the rotation of

the reference frame. Figure 4.21 show the shear stress vs. shear strain curve.
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%

% Example 4.19 - Shear deformation of a square (finite rotation)

%

clear;

Young = 24000; nu=0.2; mu=Young/2/(1+nu); lambda=nu*Young/((1+nu)*(1-

2*nu));

beta = 0; H = 1000; sY = 200*sqrt(3);

mp = [lambda mu beta H sY];

Iden=[1 1 1 0 0 0]’;

D=2*mu*eye(6) + lambda*Iden*Iden’;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

L = zeros(3,3);

stressN=[0 0 0 0 0 0]’;

deps=[0 0 0 0 0 0]’;

alphaN = [0 0 0 0 0 0]’;

epN=0;

stressRN=stressN; alphaRN=alphaN;epRN=epN;

for i=1:15

deps(4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;

[stressRN, alphaRN] = rotatedStress(L, stressRN, alphaRN);

[stressR, alphaR, epR]=combHard(mp,D,deps,stressRN,alphaRN,epRN);

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);

X(i) = i*deps(4); Y1(i) = stress(4); Y2(i) = stressR(4);

stressN = stress; alphaN = alpha; epN = ep;

stressRN = stressR; alphaRN = alphaR; epRN = epR;

end

X = [0 X]; Y1=[0 Y1]; Y2=[0 Y2]; plot(X,Y1,X,Y2);

▄
__________________________________________________________________
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4.5 Finite Deformation Elastoplasticity
with Hyperelasticity

Many difficulties associated with finite deformation can be resolved by using a new

plasticitymodel, where the constitutive relation is based on hyperelasticity. Remem-

ber that hyperelasticity is a general model for nonlinear elastic relation between

stress and strain. In elastoplasticity, the hyperelastic relation can be used between

stress and elastic strain because the plastic strain cannot produce stress. However,

this requires a complete reformulation of plasticity. Among many elastoplasticity

theories with finite deformation, Simo [6] proposed a method that is close to the

infinitesimal plasticity in Sect. 4.3. This formulation will be discussed in this section.

4.5.1 Multiplicative Decomposition

The theory of multiplicative plasticity proposed by Lee [7] is used to overcome the

assumption of small elastic strain in the theory of classical infinitesimal plasticity,

which uses an additive decomposition of the strain and its rate. The computational

framework of this theory is proposed by Simo, which preserves the conventional

return-mapping algorithm in the principal stress space. Although the new plasticity

theory is based on completely different assumptions, at the end, it becomes surpris-

ingly close to the classical infinitesimal elastoplasticity at the implementation level.

In finite deformation, the deformation gradient plays an important role.

The deformation gradient F(X) relates a vector dX in the undeformed configuration

to a vector dx in the deformed configuration. This theory assumes that there exists

an imaginary, intermediate configuration, Ωp, such that F(X) can be decomposed

into Fe(X) and Fp(X), as shown in Fig. 4.22. Since stress is only dependent on

Fig. 4.22 Multiplicative decomposition of deformation
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elastic strain, if stress is removed from the current configuration, the intermediate

configuration can be obtained. Of course, there is no guarantee that a continuous

intermediate configuration can be obtained. However, as least locally at a material

point X, this can be achievable. Thus, F(X) takes the following form of the local

multiplicative decomposition:

F Xð Þ ¼ Fe Xð ÞFp Xð Þ ð4:156Þ

where Fp(X) denotes the deformation through the intermediate configuration,

which is related to the internal variables, and Fe� 1(X) defines the local, stress-

free, unloaded process. In this decomposition, it is clear that plastic deformation

leads to the intermediate configuration, from which elastic deformation leads to the

current configuration. This does not mean that physically plastic deformation

occurs first, followed by elastic deformation. It is a mathematical decomposition

of the finite deformation elastoplasticity. In fact, plastic deformation simulta-

neously occurs with elastic deformation.

4.5.2 Finite Deformation Elastoplasticity

In the infinitesimal elastoplasticity, it was discussed that the Cauchy stress needs to

be used because the elastoplastic deformation occurs at the current configuration.

In the finite deformation, not only the evolution of stress but also that of the

geometry needs to be accounted for. Thus, it would be convenient if the following

stress measure is used:

τ ¼ Jσ; ð4:157Þ

where τ is the Kirchhoff stress and J¼ |F| is the Jacobian relation between

deformed and undeformed configurations. Then the constitutive relation can

cover the effects of both stress and change in domain. For example, an integral

over the deformed geometry can be converted into an integral over the undeformed

geometry by ZZ
nþ1Ω

σdΩ ¼
ZZ

0Ω
τdΩ:

However, the Kirchhoff stress is different from the first Piola-Kirchhoff stress P and

they are related by τ¼FP (refer to Sect. 3.2.5). Note that when deformation is

infinitesimal, the Kirchhoff stress approaches the Cauchy stress. The elastic domain

is defined using the Kirchhoff stress as

E ¼ τ; qð Þ

f τ; qð Þ � 0
� �

; ð4:158Þ

326 4 Finite Element Analysis for Elastoplastic Problems



where q is the vector of stress-like plastic variables that characterize the hardening

property of the material. The yield function f(τ,q) in Eq. (4.158) is an isotropic

function of τ due to the principle of objectivity, that is, the yield function does not

depend on the orientation of the stress or on plastic variables, such as the von Mises

yield function.

In thermodynamics, a free energy is the irreversible energy that is available for

doing thermodynamic work. In mechanical systems, it is assumed that the free

energy locally depends on Fe(X) only, since the free energy represents stored

energy through elastic deformation. The free energy is independent of the orienta-

tion, in the same context of the yield function. Thus, similar to the strain energy

density in Chap. 3, it can be defined using either right or left Cauchy-Green

deformation tensor. Since the plastic evolution occurs at the current configuration,

it would be convenient to define it using the left Cauchy-Green deformation tensor

b. Since the deformation is composed of elastic and plastic parts, the free energy is

defined as

ψ ¼ ψ be; ξð Þ; ð4:159Þ

where be	FeFeT is the elastic left Cauchy-Green deformation tensor, and ξ is the
vector of strain-like plastic variables conjugate to q in the sense that q¼�∂ψ /∂ξ.
In the viewpoint of classical plasticity, q can be seen as back stress, and ξ as the

effective plastic strain. Here, the general notation q and ξ is kept until a specific

plastic model is introduced.

The stress–strain relation can be obtained by defining a local dissipation function

and using the principle of maximum dissipation, which says that the plastic

deformation occurs in the direction that maximizes the dissipation function.

By ignoring thermoelastic parts, local dissipation function D is defined per unit

reference volume as the difference between the rate of stress work and the rate of

free energy change as

D 	 τ : d� d

dt
ψ be; ξð Þ � 0; ð4:160Þ

where d¼ sym(L) denotes the rate of deformation and L ¼ _FF�1 is the velocity

gradient. The time rate of the free energy can be obtained using the chain rule and

the time rate of be¼FCp� 1FT, with Cp¼FpTFp as

_b
e ¼ Lbe þ beLT þ Lv beð Þ; ð4:161Þ

where Cp is the plastic, right Cauchy-Green tensor, and Lv(b
e) is referred to as the

Lie derivative of be, which is obtained by pulling be back to the undeformed

configuration and, after taking a time derivative, pushing be forward to the current

configuration (see Example 4.20). Considering _b
e
as the rate of elastic strain, the

first two terms on the right-hand side correspond to the total rate of strain, while the
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Lie derivative corresponds to the negative of the rate of plastic strain. Thus, the

above equation is suitable for the elastic predictor and plastic correction algorithm.

In order to obtain the constitutive and evolution relations, it is necessary to

expand the local dissipation function D as

D 	 τ : d� d

dt
ψ be; ξð Þ

¼ τ : d� ∂ψ
∂be

: _b
e � ∂ψ

∂ξ
� _ξ

¼ τ : d� ∂ψ
∂be

: Lbe þ beLT þ Lv beð Þ� 	þ q � _ξ

¼ τ : d� 2
∂ψ
∂be

be : Lþ 2
∂ψ
∂be

be
� �

: �1

2
Lv beð Þbe�1

� �
þ q � _ξ

¼ τ� 2
∂ψ
∂be

be
� �

: dþ 2
∂ψ
∂be

be
� �

: �1

2
Lv beð Þbe�1

� �
þ q � _ξ � 0

: ð4:162Þ

For symmetric matrices, the property A:BC¼AC:B is used, and the skew-

symmetric part of L (the spin tensor) vanishes by multiplying it with the symmetric

matrix; i.e., for a symmetric tensor S, S:L¼ S:d. Inequality in Eq. (4.162) holds for

all admissible stresses and plastic variables. When the material is in the elastic

range, the rate of plastic variables becomes 0, i.e., Lv beð Þ ¼ _ξ ¼ 0. Then the first

term on the right-hand side of the last equation must be 0 because the dissipation

function must be nonnegative for arbitrary d. For example, if the term yields a

positive dissipation with d1, then it would yield a negative dissipation for d2¼�d1.

Thus, the only possible way is that the coefficient of d in the above equation must

vanish. Thus, the following constitutive relations and reduced form of dissipation

inequality can be obtained:

τ ¼ 2
∂ψ
∂be

be; ð4:163Þ

D ¼ τ : �1

2
Lv beð Þbe�1

� �
þ q � _ξ � 0: ð4:164Þ

Equation (4.163) provides a stress–strain relation in terms of the Kirchhoff stress

and elastic left Cauchy-Green tensor. Note that this relation is given in the form of

hyperelasticity, not in the rate form.

In the principle of maximum dissipation, the state variables {τ, q} maximize the

dissipation function D for given rate Lv beð Þ, _ξ� �
of plastic variables. This is

equivalent to say that for all possible state variables within the elastic domain,

the following inequality holds:

D ¼ τ� τ�ð Þ : �1

2
Lv beð Þbe�1

� �
þ q� q�ð Þ � _ξ � 0, 8 τ�; q�f g 2 E: ð4:165Þ

The two terms (stress and plastic variables) in the above equation can be considered

separately. For the stress term, for example, the Lie derivative term must be in the
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normal direction to the elastic domain in order to make the dissipation nonnegative

for arbitrary τ* ( see Fig. 4.23). Thus, the above dissipation inequality satisfies if

and only if the Lie derivative term is parallel to the normal direction to the elastic

domain E. This is similar to the classical plasticity in which the rate of plastic strain

is normal to the yield surface. Thus, the evolution equations can be obtained by

using the normal property and plastic consistency parameter γ, as follows:

�1

2
Lvb

e ¼ γ
∂f τ; qð Þ

∂τ
be: ð4:166aÞ

_ξ ¼ γ
∂f τ; qð Þ

∂q
: ð4:166bÞ

γ � 0, f τ; qð Þ � 0, γf τ; qð Þ ¼ 0: ð4:166cÞ

The first two equations become hardening models for plastic variables. The last

equation is the same as the Kuhn-Tucker condition of the classical elastoplasticity

problem such that γ¼ 0 when the material is elastic, while f¼ 0 when it is plastic.

Example 4.20 (Time Derivative of the Elastic Left Cauchy-Green Tensor) Derive

the time derivative of the elastic left Cauchy-Green tensor in Eq. (4.161). Define an

appropriate form of the Lie derivative.

Solution From the relation of Fe¼FFp� 1, be can be written as

be ¼ FFp�1
� 	

Fp�TFT
� 	 ¼ F FpTFp

� 	�1
FT ¼ FCp�1FT:

The time rate of be can then be written as

_b
e ¼ _FCp�1FT þ FCp�1 _F

T þ F
d

dt
Cp�1
� 	

FT:

Using the velocity gradient L ¼ _FF�1, the above equation can be written as

_b
e ¼ LFCp�1FT þ FCp�1FTLT þ F

d

dt
Cp�1
� 	

FT

¼ Lbe þ beLT þ F
d

dt
Cp�1
� 	

FT
:

Fig. 4.23 Principle of

maximum dissipation
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By comparing with Eq. (4.161), it is clear that the Lie derivative can be defined as

Lv beð Þ ¼ F
d

dt
Cp�1
� 	

FT:

From the observation that Cp�1 is obtained by transforming the Eulerian tensor be

to the undeformed configuration (pull-back operation),

Cp�1 ¼ F�1beF�T:

The physical meaning of Lie derivative is (a) pulling back be to the undeformed

configuration, (b) differentiating it at the undeformed configuration, and (c) pushing

forward it to the current configuration. ▄

4.5.3 Time Integration

The rate form elastoplastic evolution in the previous section needs to be integrated

to calculate plastic variables at a given load step. Let the system be converged at

load step tn such that all variables, {nF, nbe, nξ}, are known. At new load step tn+1,
the Newton–Raphson iteration provides displacement increment Δu. Then, the
objective is to update the variables {n+1F, n+1be, n+1ξ} at load step tn+1. Note that

be is a primary variable instead of stress in the classical plasticity model. Once be is

known, the stress can be calculated by differentiating the free energy with respect to

be. Thus, in this model, strain is updated, rather than stress. In the following

derivations, the left superscript n+ 1 is omitted when it is clear in the context.

Deformation between load step tn and tn+1 can be represented using the following
relative deformation gradient:

f xð Þ ¼ ∂nþ1x

∂nx
¼ 1þ∇nΔu; ð4:167Þ

which can be obtained by differentiating n+1x¼ nx+Δu with respect to nx. The

deformation gradient at time tn+1 is then n+1F(X)¼ f(x)nF(X). The first-order

system of evolution equations can be obtained by inserting Eq. (4.166) into

Eq. (4.161) as follows:

_b
e ¼ Lbe þ beLT

� 
� 2γ
∂f τ; qð Þ

∂τ
be; ð4:168aÞ

_ξ ¼ γ
∂f τ; qð Þ

∂q
; ð4:168bÞ

γ � 0, f τ; qð Þ � 0, γf τ; qð Þ ¼ 0: ð4:168cÞ

The above differential equations need to be solved using time integration with the

following initial conditions: {f, be, ξ}¼ {1, nbe, nξ}.
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Kirchhoff stress and stress-like plastic variables are derived using the primary

variables by the following constitutive law:

τ ¼ 2
∂ψ be; ξð Þ

∂be
be; ð4:169Þ

q ¼ �∂ψ be; ξð Þ
∂ξ

; ð4:170Þ

This process represents the major difference from the classical plasticity model,

where an evolution equation is expressed in terms of stress and back stress.

As in classical infinitesimal plasticity, the evolution equations in Eq. (4.168) can

be split into a trial elastic state and a plastic return-mapping. In Eq. (4.168a), the

first term, [Lbe + beLT], corresponds to the trial elastic state in which the displace-

ment increment in L is used to increase be. In practice, this can be achieved using

the relative deformation gradient. From the given displacement increment, the

relative deformation gradient can first be calculated using Eq. (4.167). The trial

elastic state can then be obtained by eliminating plastic flow and pushing the elastic

left Cauchy-Green deformation tensor forward to the current configuration using

the relative deformation gradient as

trbe ¼ fnbe fT, trξ ¼ nξ: ð4:171Þ

In termsofdeformationgradient, this process is equivalent to trFp¼ nFp and trFe¼ f nFe.

Thus, the incremental deformation is assumed to be purely elastic.

If τ and q, which are evaluated using the trial state, are within the elastic domain,

then the trial stress and the stress-like plastic variable are exact, and time integration

is finished with the material being elastic. Otherwise, the material is plastic, and

plastic return-mapping is carried out by integrating Eq. (4.168) between load step tn
and tn+1 with constraints imposed on the stress through the yield function in

Eq. (4.168c). By integrating the differential part of Eq. (4.168), the following

return-mapping algorithm can be obtained:

be ¼ trbeexp �2Δγ
∂f τ; qð Þ

∂τ

� �
; ð4:172aÞ

ξ ¼ trξ þ Δγ
∂f τ; qð Þ

∂q
; ð4:172bÞ

Δγ � 0, f τ; qð Þ � 0, Δγf τ; qð Þ ¼ 0: ð4:172cÞ

The property that the solution of differential equation _y ¼ Ay is y¼ y0exp(AΔt) is
used in Eq. (4.172a), and Δγ¼ γΔt is used. This integration algorithm has first-

order accuracy and unconditional stability.

Note that the return-mapping procedure in the above equations are different from

that of the classical plasticity because it is based on strains (be, ξ), not stresses (τ, q).
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In addition, the return-mapping of be is given in terms of multiplication with an

exponential function, which is not straightforward to implement. The idea proposed

by Simo was that if logarithm is taken in Eq. (4.172a), the multiplication will be

converted into an addition, and the strains in be will be converted into logarithmic

strains. Another important concept is that when a material is isotropic, the principal

directions of τ is aligned with that of be by using the isotropic assumption. From

this observation, the spectral decompositions of be and τ can be written as

be ¼
X3
i¼1

λi
2eni 
 eni ð4:173Þ

and

τ ¼
X3
i¼1

τ pi eni 
 eni; ð4:174Þ

respectively, where λi is the principal stretch, τp¼ {τp1, τp2, τp3}
T is the vector of

principal Kirchhoff stresses, and eni is the spatial eigenvector corresponding to the

material eigenvector eNi. In addition, it is assumed that the plastic return-mapping

occurs with the fixed principal directions. Since trbe has the same principal direc-

tions as be, the principal directions of τ and be can be computed from the known

principal directions of trbe. Thus, the return-mapping occurs in the principal

stretches with fixed principal directions. The counterpart in the classical plasticity

is the radial return-mapping in which the trial shifted stress trη is parallel to the

updated shifted stress η (see Fig. 4.15).

The facts that the principal directions of τ and be are the same and the principal

directions are fixed during the return-mapping make it possible to modify the

algorithm into stress-based one. In addition, the algorithm becomes similar to the

classical plasticity when principal stresses and principal logarithmic stretches are

used. For the simplicity of derivations, the vector of logarithmic, elastic principal

stretches are defined by e¼ [e1, e2, e3]
T¼ [log(λ1), log(λ2), log(λ3)]

T. In the

elastoplasticity theory, it can be assumed that the free energy is in the following

quadratic form:

ψ e; ξð Þ ¼ 1

2
λ e1 þ e2 þ e3½ �2 þ μ e1

2 þ e2
2 þ e3

2
� 
þ K ξð Þ; ð4:175Þ

where K(ξ) denotes energy from isotropic hardening law and λ and μ are Lame’s

constants. Then the hyperelastic constitutive relation in Eq. (4.169) can be reduced

to τp¼∂ψ /∂e in principal space. Using the above free energy, the relation between
principal stress and the logarithmic elastic principal stretch becomes
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τp ¼ ∂ψ
∂e

¼ cee; ð4:176Þ

where ce ¼ λþ 2
3
μ

� 	e1 
 e1 þ 2μ1dev is the elastic 3� 3 constitutive tensor for an

isotropic material, e1 ¼ 1, 1, 1½ �T is the first-order vector, and 1dev ¼ 1� 1
3
e1 
 e1� �

is the second-order unit deviatoric tensor. These notations can be thought of as a

second-order version of the fourth-order notations given in Eq. (4.50). Taking the

logarithm of Eq. (4.172a) and pre-multiplying by ce yields the following return-

mapping algorithm forms in the principal stress space:

trτp ¼ ceetr; ð4:177aÞ

τp ¼ trτp � Δγce
∂ef τp; qð Þ

∂τp
; ð4:177bÞ

ξ ¼ nξ þ Δγ
∂ef τp; qð Þ

∂q
; ð4:177cÞ

Δγ � 0, ef τp; qð Þ � 0, Δγef τp; qð Þ ¼ 0; ð4:177dÞ

where etr is the logarithmic principal stretch of trbe and ef τp; qð Þ is a different

expression of f(τ,q), whose explicit expression will be presented later. The normal

to the yield surface in the stress space can be written in the normal to the principal

stress space by∂f=∂τ ¼
X3

i¼1
∂ef =∂τ pi eni 
 eni. This return-mapping algorithm is the

same as that of the classical plasticity, with a difference that principal Kirchhoff stress

and logarithmic strain are used instead of Cauchy stress and engineering strain.

4.5.4 Return-Mapping Algorithm

Since a plastic behavior can be efficiently described by the deviatoric part of a vector,

which preserves the volume change, a deviatoric principal stress is defined by

s ¼ τp � 1

3
τp � e1� �e1 ¼ 1dev � τp: ð4:178Þ

For plasticity, the von Mises yield criterion and the associative flow rule are

commonly used to describe metal-like material behavior after elastic deformation.

Accordingly, the yield criterion or yield function is formulated as

f η; ep
� 	 ¼ 



η



� ffiffiffi

2

3

r
κ ep
� 	 ¼ 0; ð4:179Þ
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where η is equal to s�α and α is the back stress, which is the center of the yield

surface and is determined by the kinematic hardening law. κ(ep) is the radius of the
yield surface and is determined by the isotropic hardening rule. For a general

nonlinear hardening rule, κ(ep) can be expressed by

κ ep
� 	 ¼ σ0Y þ K,ep ep

� 	
; ð4:180Þ

where σ0Y is the initial yield stress from a uniaxial tension test, and K,ep ep
� 	 ¼

∂K=∂ep is the isotropic hardening law. The effective plastic strain ep can be

determined by integrating the rate of plastic strain as

ep ¼
Z t

0

ffiffiffi
2

3

r 



 _ep τð Þ



dτ: ð4:181Þ

The plastic variables are reduced to the effective plastic strain and back stress. Note

that the above yield function and hardening models are similar to that of the

classical plasticity in Sect. 4.3. The only difference is that they are formulated in

the principal stress space.

Now, the return-mapping algorithms in Eq. (4.177) can be implemented in the

principal Kirchhoff stress space by

trτp ¼ ceetr; ð4:182aÞ
τp ¼ trτp � 2μΔγN; ð4:182bÞ
α ¼ nα þ ΔγHαN; ð4:182cÞ

ep ¼ nep þ
ffiffiffi
2

3

r
Δγ; ð4:182dÞ

where Hα(ep) is a plastic modulus for kinematic hardening and

N 	 η
ηj jj j ¼

trη
trη


 



 

 ð4:183Þ

is an outward unit normal vector on the yield surface. The plastic consistency

parameter, Δγ, is computed from the fact that the yield function remains 0 during

the plastic deformation:

f η; ep
� 	 ¼ 



η



� ffiffiffi

2

3

r
κ ep
� 	

¼ 



trη



� 2μþ Hα ep
� 	� 	

Δγ �
ffiffiffi
2

3

r
κ ep
� 	 ¼ 0; ð4:184Þ

which is a nonlinear equation with respect to Δγ. Equation (4.184) can be solved

using a local Newton–Raphson method to compute Δγ. As the elastic domain E is

smooth and convex, the return-mapping algorithm becomes robust. If the
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isotropic/kinematic hardening is a linear function of Δγ or of the effective plastic

strain, then Δγ can explicitly be calculated without any iteration. When the hard-

enings are nonlinear, the following derivative of the yield function with respect to

Δγ is required during the iteration:

∂f
∂Δγ

¼ 2μþ Hα þ
ffiffiffi
2

3

r
Hα,epΔγ þ

2

3
κ,ep :

This part of algorithm is the same as the return-mapping algorithm in Sect. 4.3.5.

Once Δγ is obtained, it is used to calculate principal stresses and plastic variables in
Eq. (4.182).

The Kirchhoff stress tensor can be obtained from Eq. (4.174) using the principal

stress and principal direction as

τ ¼
X3
i¼1

τ pi m
i; ð4:185Þ

where mi ¼ eni 
 eni is the matrix of principal directions. The left Cauchy-Green

deformation tensor is updated and stored by the formula in Eq. (4.173), which

represents the intermediate configuration:

be ¼
X3
i¼1

exp 2ei½ �eni 
 eni; ð4:186Þ

where e¼ etr�ΔγN is an elastic logarithmic principal strain. Equation (4.186)

corresponds to the update of Cp� 1¼F� 1beF�T.

Example 4.21 (Incompressible Elastic Cube) An incompressible elastic cube

undergoes the following deformation:

x1 ¼ αX1, x2 ¼ βX2, x3 ¼ βX3:

Using the linear relationship between principal Kirchhoff stress and logarithmic

stretch, find the Kirchhoff stress tensor as a function of stretch α. Use the following
material properties: λ and μ.

Solution Since the cube is elastic, there is no need to separate elastic and plastic

part of deformation. Thus, the superscript “e” will be omitted in the following

derivation. For given deformation, the deformation gradient and left Cauchy-Green

deformation tensor become

F ¼
α 0 0

0 β 0

0 0 β

24 35, b ¼ FFT ¼
α2 0 0

0 β2 0

0 0 β2

24 35:
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From the requirement of incompressibility, the relation between α and β can be

obtained as β ¼ 1=
ffiffiffi
α

p
. Since b has only diagonal components, the three eigen-

values and eigenvectors become

λ1 ¼ α2, n1 ¼ 1 0 0½ �T
λ2 ¼ α�1, n2 ¼ 0 1 0½ �T
λ3 ¼ α�1, n3 ¼ 0 0 1½ �T

:

Then, the logarithmic stretch can be obtained by

e ¼ 2logα �logα �logαf gT:
The stress–strain relation in the principal space, τp¼ c·e, can be written as

τp ¼
λþ 2μ λ λ

λ λþ 2μ λ
λ λ λþ 2μ

24 35 2logα
�logα
�logα

8<:
9=; ¼

4μlogα
�2μlogα
�2μlogα

8<:
9=;:

Then, the Kirchhoff stress can be obtained using

τ ¼
X3
i¼1

τ pi n
i 
 ni ¼ 2μlogα

2 0 0

0 �1 0

0 0 �1

24 35:
Note that the relation between stress and logarithmic stretch is linear. ▄

4.5.5 Consistent Algorithmic Tangent Operator

The exact tangent operator can be obtained by taking the derivative of the Kirchhoff

stress tensor with respect to the strain. This spatial tangent operator has the

following relation to the material tangent operator:

cijkl ¼ 2FiIFjJFkKFlL
∂SIJ
∂CKL

; ð4:187Þ

where CKL is a component of the right Cauchy-Green tensor, and SIJ is a component

of the second Piola-Kirchhoff stress defined by S¼F�1σF�T. Since stress is a

function of elastic trial strain and since the intermediate configuration is held fixed

in the elastic trial process, all material tensors are referred to the intermediate

configuration and linearization is carried out with respect to that configuration.

The return-mapping in the previous section gives the following relation:

calg 	 ∂τp

∂etr
¼ ce � 4μ2N
 N

2μþ Hα þ
ffiffi
2
3

q
Hα,epΔγ þ 2

3
κ,ep

� 4μ2Δγ
ηtrj jj j 1dev � N
 N½ �;

ð4:188Þ
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which is a 3� 3 symmetric matrix in the principal stress space. Equation (4.188)

has the same form as the classical plasticity model in Eq. (4.120), except that

principal stress and logarithmic stretch are now used. Using the property in

Eq. (4.187), the stress in Eq. (4.185) is differentiated to yield

∂τ
∂ε

¼
X3
i¼1

∂τ pi
∂e trj

2Fe
∂e trj
∂Ce F

eT

� �

mi þ 2τ pi Fe ∂m

i

∂Ce F
eT

� �" #
; ð4:189Þ

where etrj is a function of total deformation and is independent of the plastic

evolution law. The following relation is the differential version of the eigenvalue

problem CeeN ¼ λ2eN, derived in Sect. 4.6.1:

2Fe
∂e trj
∂Ce F

eT ¼ mj: ð4:190Þ
The last term in Eq. (4.189) is independent of plastic flow because plastic evolution

is carried out in the fixed, principal direction. In Sect. 4.6.2, it is explicitly shown

from finite elasticity that

Fe ∂m
i

∂Ce F
eT ¼ 1

di
Ibe � be 
 be � I3λi

�2 I� 1�mi
� 	
 1�mi

� 	� 
� �
þ λi

2

di
be 
mi þmi 
 be þ I1 � 4λi

2
� 	

mi 
mi
� �

	 ĉ i

; ð4:191Þ

where di¼ (λ2i � λ2j )(λ
2
i � λ2k) with an even permutation between i–j–k, I1 and I3 are

the first and third invariant of be, and Ibijkl ¼ 1
2
bikbjl þ bilbjk
� 	

can be obtained by

pushing I forward to the current configuration. The algorithmic tangent operator in

Eq. (4.187) can thus be expressed as

c ¼
X3
i¼1

X3
j¼1

c algij mi 
mj þ 2
X3
i¼1

τ pi ĉ
i; ð4:192Þ

which contains all symmetric properties between indices.

4.5.6 Variational Principles for Finite Deformation

The energy form at time tn can be written using Kirchhoff stress and engineering

strain at the current configuration as

a nξ; u; u
� 	 ¼ ZZ

0Ω
τ : ε uð ÞdΩ: ð4:193Þ
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Since Kirchhoff stress is used, the integration domain is an undeformed

configuration. It is assumed that the constitutive equation is given in the total

form for elastic material as in Eq. (4.187). The explicit form of cijkl can be obtained
from Eq. (4.192). The updated Lagrangian formulation of the linearized energy

form has a specific expression as

a� nξ, nbe ,u;Δu,u
� 	 	 ZZ

0Ω
ε uð Þ:c : ε Δuð Þ þ τ:η Δu,uð Þ½ �dΩ: ð4:194Þ

If current load step is tn+1 and the iteration counter is k + 1, then the linearized

incremental equation becomes

a� nξ, nþ1ukþ1 ;Δukþ1, u
� 	 ¼ ‘ uð Þ � a nξ; nþ1u; u

� 	
, 8u 2 ℤ: ð4:195Þ

The above equation is solved iteratively until the right-hand side (the residual force)

vanishes. After convergence, time is increased and the same analysis procedure

described above is repeated until a final configuration is reached. Note that inte-

gration of the internal energy term is carried out on the undeformed configuration

because Kirchhoff stress is used.

4.5.7 Computer Implementation of Finite
Deformation Elastoplasticity

The implementation of the above finite deformation elastoplasticity can be similar

to the infinitesimal elastoplasticity if the Kirchhoff stress and logarithmic strain are

used in the principal space. Below are the lists of two MATLAB programs:

mulPlast and mulPlastTan. The former performs return-mapping to find

stress and plastic variables, while the latter calculates consistent tangent stiffness

matrix. Since there is no shear stress, the principal stress and logarithmic strain are

stored in 3� 1 vectors. The input parameters are velocity gradient at the current

load step, and plastic variables from the previous load step along with material

properties. First, the incremental deformation gradient is calculated from the

velocity gradient, and the elastic left Cauchy-Green deformation tensor, be, is

updated using the incremental deformation gradient. Second, the eigenvalues

(principal stretches) and eigenvectors (principal directions) of be are calculated.

Third, using logarithmic principal stretches, the return-mapping procedure is

performed to find principal Kirchhoff stresses. Lastly, stress and plastic variables

are updated using the plastic consistency parameters. The Kirchhoff stress is

calculated using the principal stresses and principal directions.

The tangent stiffness of the multiplicative plasticity consists of two stages. In the

first stage, the consistent tangent stiffness matrix between principal stresses and

principal logarithmic stretches is calculated, which is similar to that of the infini-

tesimal plasticity. The second stage is to calculate the effect of elastic principal

stretches and that of the principal directions.
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PROGRAM mulPlast

%

% Multiplicative plasticity with linear combined hardening

%

function [stress, b, alpha, ep]=mulPlast(mp,D,L,b,alpha,ep)

%mp = [lambda, mu, beta, H, Y0];

%D = elasticity matrix b/w prin stress & log prin stretch (3x3)

%L = [dui/dxj] velocity gradient

%b = elastic left C-G deformation vector (6x1)

%alpha = principal back stress (3x1)

%ep = effective plastic strain

%

Iden = [1 1 1]’; two3 = 2/3; stwo3=sqrt(two3); %constants

mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5); %material properties

ftol = Y0*1E-6; %tolerance for yield

R = inv(eye(3)-L); %inc. deformation gradient

bm=[b(1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)];

bm = R*bm*R’; %trial elastic left C-G

[V,P]=eig(bm); %eigenvalues and vectors

b=[bm(1,1) bm(2,2) bm(3,3) bm(1,2) bm(2,3) bm(1,3)]’;

M=zeros(6,3); %eigenvector matrices

M(1,:)=V(1,:).^2;

M(2,:)=V(2,:).^2;

M(3,:)=V(3,:).^2;

M(4,:)=V(1,:).*V(2,:);

M(5,:)=V(2,:).*V(3,:);

M(6,:)=V(1,:).*V(3,:);

eigen=[P(1,1) P(2,2) P(3,3)]’; %principal stretch

%if abs(eigen(1)-eigen(2)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

%if abs(eigen(2)-eigen(3)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

deps = 0.5*log(eigen); %logarithmic

sigtr = D*deps; %trial principal stress

eta = sigtr - alpha - sum(sigtr)*Iden/3; %shifted stress

etat = norm(eta); %norm of eta

%etat=sqrt(eta(1)^2+eta(2)^2+eta(3)^2);

fyld = etat - stwo3*(Y0+(1-beta)*H*ep); %trial yield function

if fyld < ftol %yield test

sig = sigtr; %trial states are final

stress = M*sig; %stress (6x1)

else

gamma = fyld/(2*mu + two3*H); %plastic consistency param

ep = ep + gamma*stwo3; %updated eff. plastic strain

N = eta/etat; %unit vector normal to f

deps = deps - gamma*N; %updated elastic strain

sig = sigtr - 2*mu*gamma*N; %updated stress

alpha = alpha + two3*beta*H*gamma*N; %updated back stress

stress = M*sig; %stress (6x1)

b = M*exp(2*deps); %updated elastic left C-G

end
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PROGRAM mulPlastTan

%

% Tangent stiffness of multiplicative plasticity with linear hardening

%

function [Dtan]=mulPlastTan(mp,D,L,b,alpha,ep)

%

Iden = [1 1 1]’; two3 = 2/3; stwo3=sqrt(two3); %constants

mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5); %material properties

ftol = Y0*1E-6; %tolerance for yield

R = inv(eye(3)-L); %inc. deformation gradient

bm=[b(1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)];

bm = R*bm*R’; %trial elastic left C-G

[V,P]=eig(bm); %eigenvalues and vectors

b=[bm(1,1) bm(2,2) bm(3,3) bm(1,2) bm(2,3) bm(1,3)]’;

M=zeros(6,3); %eigenvector matrices

M(1,:)=V(1,:).^2;

M(2,:)=V(2,:).^2;

M(3,:)=V(3,:).^2;

M(4,:)=V(1,:).*V(2,:);

M(5,:)=V(2,:).*V(3,:);

M(6,:)=V(1,:).*V(3,:);

eigen=[P(1,1) P(2,2) P(3,3)]’; %principal stretch

%if abs(eigen(1)-eigen(2)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

%if abs(eigen(2)-eigen(3)) < 1E-12; eigen(2) = eigen(2) + 1E-12; end;

deps = 0.5*log(eigen); %logarithmic

sigtr = D*deps; %trial principal stress

eta = sigtr - alpha - sum(sigtr)*Iden/3; %shifted stress

etat = norm(eta); %norm of eta

fyld = etat - stwo3*(Y0+(1-beta)*H*ep); %trial yield function

if fyld >= ftol %yield test

gamma = fyld/(2*mu + two3*H); %plastic consistency param

N = eta/etat; %unit vector normal to f

sig = sigtr - 2*mu*gamma*N; %updated stress

var1 = 4*mu^2/(2*mu+two3*H);

var2 = 4*mu^2*gamma/etat; %coefficients

D = D - (var1-var2)*N*N’+ var2*Iden*Iden’/3;%tangent stiffness

D(1,1) = D(1,1) - var2; %contr. from 4th-order I

D(2,2) = D(2,2) - var2;

D(3,3) = D(3,3) - var2;

end

J1 = sum(eigen);

J3 = eigen(1)*eigen(2)*eigen(3);

I2=[1 1 1 0 0 0]’;

I4=eye(6);I4(4,4)=.5;I4(5,5)=.5;I4(6,6)=.5;

Ibb=[0,b(4)^2-b(1)*b(2),b(6)^2-b(1)*b(3),0,b(4)*b(6)-b(1)*b(5),0;

b(4)*b(4)-b(1)*b(2),0,b(5)^2-b(2)*b(3),0,0,b(4)*b(5)-b(2)*b(6);

b(6)^2-b(1)*b(3),b(5)^2-b(2)*b(3),0,b(5)*b(6)-b(3)*b(4),0,0;
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0,0,b(5)*b(6)-b(3)*b(4),(b(1)*b(2)-b(4)^2)/2,. . .

(b(2)*b(6)-b(4)*b(5))/2,(b(1)*b(5)-b(4)*b(6))/2;

b(4)*b(6)-b(1)*b(5),0,0,(b(2)*b(6)-b(4)*b(5))/2,. . .

(b(2)*b(3)-b(5)^2)/2,(b(3)*b(4)-b(5)*b(6))/2;

0,b(4)*b(5)-b(2)*b(6),0,(b(1)*b(5)-b(4)*b(6))/2,. . .

(b(3)*b(4)-b(5)*b(6))/2,(b(1)*b(3)-b(6)^2)/2];

%

d1=1/((eigen(2)-eigen(1))*(eigen(3)-eigen(1)));

d2=1/((eigen(3)-eigen(2))*(eigen(1)-eigen(2)));

d3=1/((eigen(1)-eigen(3))*(eigen(2)-eigen(3)));

t11=-J3*d1/eigen(1);t12=-J3*d2/eigen(2);t13=-J3*d3/eigen(3);

t21=d1*eigen(1);t22=d2*eigen(2);t23=d3*eigen(3);

t31=t21*(J1-4*eigen(1));t32=t22*(J1-4*eigen(2));t33=t23*(J1-4*eigen

(3));

%

CT1=d1*Ibb+t11*(I4-(I2-b)*(I2-b)’)+t21*(b*M(:,1)’+M(:,1)*b’)+t31*M

(:,1)*M(:,1)’;

CT2=d2*Ibb+t12*(I4-(I2-b)*(I2-b)’)+t22*(b*M(:,2)’+M(:,2)*b’)+t32*M

(:,2)*M(:,2)’;

CT3=d3*Ibb+t13*(I4-(I2-b)*(I2-b)’)+t23*(b*M(:,3)’+M(:,3)*b’)+t33*M

(:,3)*M(:,3)’;

%

Dtan = M*D*M’ + 2*(CT1*sig(1)+CT2*sig(2)+CT3*sig(3));

Example 4.22 (Shear Deformation of a Square) Solve the shear deformation of a

square in Example 4.19 using multiplicative plasticity. Plot shear stresses from

small strain, finite rotation, and large strain as a function of shear stress.

Solution The shear stresses from the small strain and finite rotation are available in

Example 4.19. Below is the list of MATLAB program that solves for the shear

deformation problem for all three cases. The variable “stress” is the updated

stress from infinitesimal deformation assumption, “stressR” is the one from

finite rotation assumption, and “stressM” is the one from large strain assumption.

At the last load increment, these three stresses are

stress ¼ 0 0 0 212:9 0 0½ �T
stressR ¼ 43:4 �43:4 0 208:2 0 0½ �T
stressM ¼ �56:9 �152:3 �78:7 206:7 0 0½ �T

:

The difference in shear stress σ12 is relatively small. However, in the finite rotational

and large strain formulations, the normal stresses are developed due to the rotation of

the reference frame. Figure 4.24 shows the shear stress vs. shear strain curve.
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%

% Example 4.22 - Shear deformation of a square

%

Young = 24000; nu=0.2; mu=Young/2/(1+nu); lambda=nu*Young/((1+nu)*(1-

2*nu));

beta = 0; H = 1000; sY = 200*sqrt(3);

mp = [lambda mu beta H sY];

Iden=[1 1 1 0 0 0]’;

D=2*mu*eye(6) + lambda*Iden*Iden’;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

Iden=[1 1 1]’;

DM=2*mu*eye(3) + lambda*Iden*Iden’;

L = zeros(3,3);

stressN=[0 0 0 0 0 0]’;

deps=[0 0 0 0 0 0]’;

alphaN = [0 0 0 0 0 0]’;

epN=0;

stressRN=stressN; alphaRN=alphaN;epRN=epN;

bMN=[1 1 1 0 0 0]’;

alphaMN = [0 0 0]’;

epMN=0;

for i=1:15

deps(4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;

[stressRN, alphaRN] = rotatedStress(L, stressRN, alphaRN);

[stressR, alphaR, epR]=combHard(mp,D,deps,stressRN,alphaRN,epRN);

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);

[stressM, bM, alphaM, epM]=mulPlast(mp,DM,L,bMN,alphaMN,epMN);

X(i)=i*deps(4);Y1(i)=stress(4);Y2(i)=stressR(4);Y3(i)=stressM(4);

stressN = stress; alphaN = alpha; epN = ep;

stressRN = stressR; alphaRN = alphaR; epRN = epR;

bMN=bM; alphaMN = alphaM; epMN = epM;

end

X = [0 X]; Y1=[0 Y1]; Y2=[0 Y2]; Y3 = [0 Y3]; plot(X,Y1,X,Y2,X,Y3);

▄
__________________________________________________________________
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4.6 Mathematical Formulas from Finite Elasticity

In this section, mathematical formulas used in the finite elasticity are derived

in detail.

4.6.1 Linearization of Principal Logarithmic Stretches

Let the reference frame be the intermediate configuration for an elastoplastic

problem, which is fixed in the trial state. The principal stretches λi are functions

of the total deformation and independent of the plastic flow. For simplicity, all

variables denote elastic trial status in this section without being given a specific

notation. The right and left Cauchy-Green tensors have the same principal values

λi
2, and the eigenvalue problem is

CeNi ¼ λ2i eNi, beni ¼ λ2i eni: ð4:196Þ
The relation between principal directions is

FeNi ¼ λieni: ð4:197Þ
By differentiating Eq. (4.196), the following relation can be obtained:

dCeNi þ CdeNi ¼ 2λidλieNi þ λ2i deN, no sum on i: ð4:198Þ

Then, taking an inner product with eN and using the property that eN � deN ¼ 0, the

following can be obtained:

2λidλi ¼ eNidCeNi ¼ tr dC eNi 
 eNi
� �h i

ð4:199Þ

or

∂λi
∂C

¼ 1

2λi
eNi 
 eNi: ð4:200Þ

Since the logarithmic strain is defined by the principal stretch,

ei ¼ log λið Þ ð4:201Þ

and

2
∂ei
∂C

¼ 2
∂ei
∂λi

∂λi
∂C

¼ λ�2
i
eNi 
 eNi: ð4:202Þ

The push-forward of this result along with the relation in Eq. (4.197) yields
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2F
∂ei
∂C

FT ¼ eni 
 eni: ð4:203Þ

Since all the relations are transformed to the current configuration, the properties of

the intermediate configuration are completely removed.

4.6.2 Linearization of the Eigenvector of the Elastic Trial
Left Cauchy-Green Tensor

For simplicity, all superscripts of elastic trial status are ignored. Let enA be the

principal direction of b corresponding to the principal value λ2A, and let eNA be the

principal direction of C. The following relation is thus satisfied:

C ¼
X3
A¼1

λ2AeNA 
 eNA, b ¼
X3
A¼1

λ2AenA 
 enA ð4:204Þ

and I1, I2, and I3 are the three invariants of C. The relation of eigenvector bases

between material and spatial description is

MA 	 λ�2
A
eNA 
 eNA ¼ F�1 enA 
 enA

� 	
F�T ¼ F�1mAF�T: ð4:205Þ

The explicit form of MA can be computed by Serrin’s representation theorem,

namely,

MA ¼ 1

dA
C� I1 � λ2A

� 	
1þ I3λ

�2
A C�1

� 

; ð4:206Þ

where dA¼ (λ2A � λ2B)(λ
2
A � λ2C)¼ 2λ4A � I1λ2A + I3λ

� 2
A with A, B, and C having an even

permutation. The following properties can be derived by using the chain rule of

differentiation and direct computation:

∂C
∂C

¼ I ¼ 1

2
δikδjl þ δilδjk
� 	

; ð4:207Þ

∂C�1

∂C
¼ �C�1 ∂C

∂C
C�1 ¼ �IC�1 ¼ �1

2
C�1
ik C�1

jl þ C�1
il C�1

jk

� �
; ð4:208Þ

∂λ2A
∂C

¼ λ2AM
A; ð4:209Þ

∂I1
∂C

¼ 1,
∂I3
∂C

¼ I3C
�1; ð4:210Þ

344 4 Finite Element Analysis for Elastoplastic Problems



∂dA
∂C

¼ 4λ4A � I1λ
2
A � I3λ

�2
A

� 	
MA � λ2A1þ I3λ

�2
A C�1: ð4:211Þ

The derivative of Eq. (4.206) with respect to C becomes

∂MA

∂C
¼ 1

dA

∂C
∂C

� 1
 ∂I1
∂C

� ∂λ2A
∂C

� �� �
þ 1

dA
λ�2
A C�1 
 ∂I3

∂C
� I3λ

�4
A C�1 
 ∂λ2A

∂C
þ I3λ

2
A

∂C�1

∂C
�MA 
 ∂dA

∂C

� � :
ð4:212Þ

By using the property of Eqs. (4.207) through (4.211), the following explicit form

can be obtained:

∂MA

∂C
¼ 1

dA
I� 1
 1� I3λ

�2
A IC�1 � C�1 �MA

� 	
 C�1 �MA
� 	� 
� 


þ λ2A
dA

1
MA þMA 
 1
� 	þ I1 � 4λ�4

A

� 	
MA 
MA

� 
 : ð4:213Þ

This relation was originally derived by Simo and Taylor [8]. The spatial version of

Eq. (4.213) can be obtained through a transformation as

∂mA

∂g
¼ 1

dA
Ib � b
 b� I3λ

�2
A I� 1�mA

� 	
 1�mA
� 	� 
� 


þ λ2A
dA

b
mA þmA 
 b
� 	þ I1 � 4λ�4

A

� 	
mA 
mA

� 
 ; ð4:214Þ

which is equivalent to F(∂mA/∂C)FT.

4.7 MATLAB Code for Elastoplastic Material Model

In this section, two MATLAB codes, PLSET.m and PLAST3D.m, are introduced that

can solve for nonlinear elastoplastic problemswith three different options: (1)MID¼1
for elastoplasticity with infinitesimal strain (Sect. 4.4), (2) MID¼ 2 for elastoplasticity

with finite rotation (Sect. 4.4), and (3) MID¼ 31 for finite deformation elastoplasticity

(Sect. 4.5). The codes are called from NLFEA.m in Chap. 2.

PLSET.m initializes plastic variables before starting analysis. Therefore, this

function is called only once from NLFEA.m. First, PLSET.m allocates memory for

global arrays for history-dependent variables, SIGMA and XQ. These variables are
used at each integration point of every element. Since the current implementation

uses two-point integration in each coordinate direction, the size of array should be

8*NE, where NE is the number of elements. At each integration point, the size of

XQ is either 7 or 4, and that of SIGMA is 6 or 12, depending on plasticity
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formulations. PLSET.m also calculates the elastic stiffness matrix ETAN using the

two Lame’s constants, LAM and MU.
As explained in Fig. 2.25, the main function of PLAST3D.m is to build the

tangent stiffness matrix, [K], and the residual force vector, {R}. Then, NLFEA.m

will solve for the displacement increment as a part of the Newton–Raphson

iteration. Also, PLAST3D keeps track of history-dependent variables and stores

them in global arrays after the solution converges at a given load increment.

PLAST3D.m shares most of its input variables with that of ELAST3D.m in

Chap. 1, which was explained in Table 1.5. The only difference is that MID and

PROP are used in addition to ETAN. MID should be 1, 2, or 31 for elastoplastic

material models. The array PROP stores elastoplastic material constants. The current

implementation uses combined linear hardening model using von Mises criterion,

which uses five material properties, PROP¼ [lambda, mu, beta, H, Y0]. The
first two variables are Lame’s constant, beta is the combined hardening parameter,

H is the plastic modulus, and Y0 is the initial yield stress. As with ELAST3D.m in

Chap. 1, the logical variable, UPDATE, is used to store the stresses and history

variables in the global array SIGMA and XQ, respectively, and the logical variable,

LTAN, is used to calculate the tangent stiffness matrices and store them in the global

array GKF. The residual force, FORCE, will always be calculated.
In order to assemble the local stiffness matrix into the global stiffness matrix, the

IDOF array is used to store the location of the global DOFs corresponding to the

local 24 DOFs. The XG and WGT arrays store one-dimensional integration points

and corresponding weights, as in Table 1.4. In this implementation, only two-point

integration is used for each coordinate direction.

At each integration point of an element, the derivatives of finite element shape

functions are calculated by calling SHAPEL.m. It is noted that the derivatives of

shape function from SHAPEL.m is with respect to the undeformed configuration;

that is, SHPD ¼ ∂NI/∂XJ. Since the formulations with MID ¼ 2 or 31 use the

updated Lagrangian formulation, the material derivatives are converted into the

spatial derivatives by multiplying with the inverse of the deformation gradient.

The global array XQ stores both the back stress and the effective plastic strain at

the previous converged load increment. When MID¼ 1 or 2, it stores [α11, α22, α33,
α12, α23, α13, ep] at each integration point, while when MID¼ 31, it stores [α11, α22,
α33, ep] because this model uses the principal components of back stress. When MID
¼ 1 or 2, the global array SIGMA stores stress components at the previous

converged load increment, [σ11, σ22, σ33, σ12, σ23, σ13]. When MID ¼ 1, SIGMA
stores stress components as well as the elastic left Cauchy-Green deformation

vector, [σ11, σ22, σ33, σ12, σ23, σ13, b11, b22, b33, b12, b23, b13].
With a given strain increment, DDEPS, combHard.m and mulPlast.m are used

to calculate stress and history variables. For the case of finite rotation, the stress

and back stress are rotated to the neutral configuration in rotatedStress.m.

The outcomes of these functions are stress, back stress, effective plastic strain,

and elastic left Cauchy-Green deformation vector. If the logical variable UPDATE
is true, then these variables are stored in the global arrays, SIGMA and XQ. This
only occurs when the residual becomes less than the convergence tolerance TOL
(TOL is an input variable to NLFEA.m).
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Once the stress is calculated, it is used to build the global residual vector,

FORCE, which represents {fint} in Eq. (4.130). The tangent stiffness array, GKF,
is calculated only when the logical variable, LTAN, is true. This functionality can be
used when the modified Newton–Raphson iteration is used.

function ETAN=PLSET(PROP, MID, NE)

%********************************************************************

% Initialize history variables and elastic stiffness matrix

% XQ : Back stress alpha and Effective plastic strain

% SIGMA : Stress for rate-form plasticity

% : added Left Cauchy-Green tensor B for multiplicative plasticity

% ETAN : Elastic stiffness matrix

%********************************************************************

%%

global SIGMA XQ

%

LAM=PROP(1);

MU=PROP(2);

%

N = 8*NE;

%

if MID > 30

SIGMA=zeros(12,N);

XQ=zeros(4,N);

SIGMA(7:9,:)=1;

ETAN=[LAM+2*MU LAM LAM ;

LAM LAM+2*MU LAM ;

LAM LAM LAM+2*MU];

else

SIGMA=zeros(6,N);

XQ=zeros(7,N);

ETAN=[LAM+2*MU LAM LAM 0 0 0;

LAM LAM+2*MU LAM 0 0 0;

LAM LAM LAM+2*MU 0 0 0;

0 0 0 MU 0 0;

0 0 0 0 MU 0;

0 0 0 0 0 MU];

end

end
_____________________________________________________________________

function PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)

%********************************************************************

% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR

% PLASTIC MATERIAL MODELS

%********************************************************************

%%

global DISPDD DISPTD FORCE GKF XQ SIGMA

%

% Integration points and weights (2-point integration)
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XG=[-0.57735026918963D0, 0.57735026918963D0];

WGT=[1.00000000000000D0, 1.00000000000000D0];

%

% Index for history variables (each integration pt)

INTN=0;

%

%LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F

for IE=1:NE

% Nodal coordinates and incremental displacements

ELXY=XYZ(LE(IE,:),:);

% Local to global mapping

IDOF=zeros(1,24);

for I=1:8

II=(I-1)*NDOF+1;

IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+3;

end

DSP=DISPTD(IDOF);

DSPD=DISPDD(IDOF);

DSP=reshape(DSP,NDOF,8);

DSPD=reshape(DSPD,NDOF,8);

%

%LOOP OVER INTEGRATION POINTS

for LX=1:2, for LY=1:2, for LZ=1:2

E1=XG(LX); E2=XG(LY); E3=XG(LZ);

INTN = INTN + 1;

%

% Determinant and shape function derivatives

[~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY);

FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;

%

% Previous converged history variables

if MID > 30

NALPHA=3;

STRESSN=SIGMA(7:12,INTN);

else

NALPHA=6;

STRESSN=SIGMA(1:6,INTN);

end

ALPHAN=XQ(1:NALPHA,INTN);

EPN=XQ(NALPHA+1,INTN);

%

% Strain increment

if MID == 2 || MID == 31

F=DSP*SHPD’ + eye(3);

SHPD=inv(F)’*SHPD;

end

DEPS=DSPD*SHPD’;

DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) …

DEPS(1,2)+DEPS(2,1) DEPS(2,3)+DEPS(3,2) DEPS(1,3)+DEPS(3,1)]’;

%
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% Computer stress, back stress & effective plastic strain

if MID == 1

% Infinitesimal plasticity

[STRESS, ALPHA, EP]=combHard(PROP,ETAN,DDEPS,STRESSN,ALPHAN,EPN);

elseif MID == 2

% Plasticity with finite rotation

FAC=FAC*det(F);

[STRESSN, ALPHAN] = rotatedStress(DEPS, STRESSN, ALPHAN);

[STRESS, ALPHA, EP]=combHard(PROP,ETAN,DDEPS,STRESSN,ALPHAN,EPN);

elseif MID == 31

[STRESS, B, ALPHA, EP]=mulPlast(PROP,ETAN,DEPS,STRESSN,ALPHAN,EPN);

end

%

% Update plastic variables

if UPDATE

SIGMA(1:6,INTN)=STRESS;

XQ(:,INTN)= [ALPHA; EP];

if MID > 30

SIGMA(7:12,INTN)=B;

end

continue;

end

%

% Add residual force and tangent stiffness matrix

BM=zeros(6,24);

BG=zeros(9,24);

for I=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BM(:,COL)=[SHPD(1,I) 0 0;

0 SHPD(2,I) 0;

0 0 SHPD(3,I);

SHPD(2,I) SHPD(1,I) 0;

0 SHPD(3,I) SHPD(2,I);

SHPD(3,I) 0 SHPD(1,I)];

%

BG(:,COL)=[SHPD(1,I) 0 0;

SHPD(2,I) 0 0;

SHPD(3,I) 0 0;

0 SHPD(1,I) 0;

0 SHPD(2,I) 0;

0 SHPD(3,I) 0;

0 0 SHPD(1,I);

0 0 SHPD(2,I);

0 0 SHPD(3,I)];

end

%

% Residual forces

FORCE(IDOF) = FORCE(IDOF) - FAC*BM’*STRESS;

%
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% Tangent stiffness

if LTAN

if MID == 1

DTAN=combHardTan(PROP,ETAN,DDEPS,STRESSN,ALPHAN,EPN);

EKF = BM’*DTAN*BM;

elseif MID == 2

DTAN=combHardTan(PROP,ETAN,DDEPS,STRESSN,ALPHAN,EPN);

CTAN=[-STRESS(1) STRESS(1) STRESS(1) -STRESS(4) 0 -STRESS(6);

STRESS(2) -STRESS(2) STRESS(2) -STRESS(4) -STRESS(5) 0;

STRESS(3) STRESS(3) -STRESS(3) 0 -STRESS(5) -STRESS(6);

-STRESS(4) -STRESS(4) 0 -0.5*(STRESS(1)+STRESS(2)) -0.5*STRESS(6)

-0.5*STRESS(5);

0 -STRESS(5) -STRESS(5) -0.5*STRESS(6) -0.5*(STRESS(2)+STRESS(3)) -

0.5*STRESS(4);

-STRESS(6) 0 -STRESS(6) -0.5*STRESS(5) -0.5*STRESS(4) -0.5*(STRESS

(1)+STRESS(3))];

SIG=[STRESS(1) STRESS(4) STRESS(6);

STRESS(4) STRESS(2) STRESS(5);

STRESS(6) STRESS(5) STRESS(3)];

SHEAD=kroon(eye(3),SIG);

EKF = BM’*(DTAN+CTAN)*BM + BG’*SHEAD*BG;

elseif MID == 31

DTAN=mulPlastTan(PROP,ETAN,DEPS,STRESSN,ALPHAN,EPN);

SIG=[STRESS(1) STRESS(4) STRESS(6);

STRESS(4) STRESS(2) STRESS(5);

STRESS(6) STRESS(5) STRESS(3)];

SHEAD=zeros(9);

SHEAD(1:3,1:3)=SIG;

SHEAD(4:6,4:6)=SIG;

SHEAD(7:9,7:9)=SIG;

%

EKF = BM’*DTAN*BM + BG’*SHEAD*BG;

end

GKF(IDOF,IDOF)=GKF(IDOF,IDOF)+FAC*EKF;

end, end, end

end

end

end

_____________________________________________________________________
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4.8 Elastoplasticity Analysis of Using Commercial Finite
Element Programs

4.8.1 Usage of Commercial Programs

In this section, elastoplasticity analysis procedures using three commercial finite

element programs are discussed.

1. Abaqus

Although elastoplasticity analysis for isotropic material using von Mises crite-

rion is presented in this chapter, Abaqus supports broader range of plasticity

including anisotropic plasticity, rate-dependent yield criteria, creep and swelling,

porous media plasticity, etc. In this section, the metal plasticity with von Mises

criterion in Abaqus will be discussed. Abaqus supports linear and nonlinear isotro-

pic/kinematic hardening models.

The elastic material properties are the same as elastic material. For small elastic

strain assumption, the linear elastic material properties can be used for this purpose

(keyword *ELASTIC). In order to specify hardening properties, Abaqus requires

data in the pairs of yield stress and effective plastic strain.

In Abaqus plastic materials, Cauchy stress and logarithmic plastic strain are

used. Since material properties in tensile test are calculated from nominal stress and

engineering strain, they need to be converted using the following relations:

σtrue ¼ σnom 1þ εnomð Þ; ð4:215Þ
εplln ¼ εln � ε elln ¼ ln 1þ εnomð Þ � σtrue

E
; ð4:216Þ

where σtrue and σnom are respectively the Cauchy stress and nominal stress, εnom is

engineering strain, and εplln is the logarithmic plastic strain. Consider the Cauchy stress

and logarithmic strain curve in Fig. 4.25. TheYoung’smodulus can be calculated from

the initial slope of the curve and it becomesE¼ 200GPa.Let the Poisson’s ratio be0.3.

If the stress unit is MPa, then the *ELASTIC keyword is defined as

*ELASTIC

200.E3,.3

The material starts yielding at σtrue¼ 200 MPa and is linearly hardened until

220 MPa at logarithmic strain εln¼ 0.002. At the initial yielding the plastic strain is

0, and at εln¼ 0.002, the plastic strain is εplln¼ 0.0009. After that the hardening is 0. In

this case, the keyword *PLASTIC can be used to describe the hardening as

*PLASTIC

200.0, 0.0

220.0, 0.0009
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By default, Abaqus assumes the isotropic hardening model. In order to use kine-

matic or combined hardening model, HARDENING option can be used. The following

keyword defines elastoplastic material with linear kinematic hardening:

*PLASTIC, HARDENING¼KINEMATIC

Example 4.23 (Uniform Tension of a Cube) Consider a unit cube as shown in

Fig. 4.26. An eight-node solid element (C3D8) is used tomodel the cube. The positive

X1 face (Face 4) is extended with a strain ε¼ 0.004. The following boundary

conditions are given: u1¼ 0 at Face 6, u2¼ 0 at Face 3, and u3¼ 0 at Face 1. Using

Abaqus, calculate the relation between Cauchy stress and strain. Use elastoplastic

with isotropic hardeningmaterial. The elastic properties areE¼ 200GPa and ν¼ 0.3.

The initial yields stress is σY¼ 200 MPa and is linearly hardened until 220 MPa at

logarithmic strain εln¼ 0.002. After that, there is no hardening (see Fig. 4.25).

Compare the stress–strain curve from the material definition and the response from

Abaqus.

Solution Below is the list of Abaqus commands used to solve the uniform exten-

sion of an elastoplastic cube. An eight-node linear brick element, C3D8, in Abaqus

1
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is used. The stress–strain curve in Fig. 4.27 shows that the numerical results agree

well with the hardening curve.

*HEADING *MATERIAL,NAME=ALLE

- Extension of elastoplastic cube *ELASTIC

*NODE,NSET=ALL 200.E3,.3

1, *PLASTIC

2,1. 200.,0.

3,1.,1., 220.,.0009

4,0.,1., *STEP,INC=20

5,0.,0.,1. UNIAXIAL TENSION

6,1.,0.,1. *STATIC,DIRECT

7,1.,1.,1. 1.,20.

8,0.,1.,1. *BOUNDARY,OP=NEW

*NSET,NSET=FACE1 FACE1,3

1,2,3,4 FACE3,2

*NSET,NSET=FACE3 FACE6,1

1,2,5,6 FACE4,1,1,0.004

*NSET,NSET=FACE4 *OUTPUT,FIELD,FREQ=1

2,3,6,7 *ELEMENT OUTPUT

*NSET,NSET=FACE6 S,E

4,1,8,5 *NODE OUTPUT

*ELEMENT,TYPE=C3D8,ELSET=ONE U,RF

1,1,2,3,4,5,6,7,8 *END STEP

*SOLID SECTION,ELSET=ONE,MATERIAL=ALLE
▄

__________________________________________________________________

2. ANSYS

ANSYS supports bilinear/multilinear/nonlinear isotropic/kinematic hardening

models as well as anisotropic plasticity. The term bilinear is the same with linear

hardening in this text becauseANSYS considers that thematerial response is linear for

both elastic and plastic states. For elastoplastic materials, TB, TBDATA, and TBPT
commands are used to define stress–strain behavior. By default, ANSYS assumes

infinitesimal deformation. When structures experience large strain, the NLGEOM
command should be used to include the effect of geometric nonlinearity. For large

strain analyses, stress–strain properties must be input in terms of true stress and

logarithmic strain.

TB, Lab, MAT, NTEMP, NPTS

The TB command activates a data table for nonlinear material properties. The first

parameter Lab specifies hardening models. Lab can take the following options:

BISO: Bilinear isotropic hardening
BKIN: Bilinear kinematic hardening

KINH: Multilinear kinematic hardening (strain–stress data)
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MISO: Multilinear isotropic hardening

MKIN: Multilinear kinematic hardening (plastic strain–stress data)

PLASTIC: Nonlinear plasticity with stress vs. plastic strain data

The second parameter, MAT, is a material reference number that can be used by MAT
command. If the temperature varies during the plasticity analysis, NTEMP is used to

set the number of temperatures for which data will be provided. NPTS is the number

of data points to be specified for a given temperature. Data points are defined with

the TBDATA or TBPT commands.

TBDATA, STLOC, C1, C2, C3, C4, C5, C6

The TBDATA command defines data for the data table. The first parameter STLOC
is the starting location in table for entering data. For example, if STLOC¼ 1, data

input in the C1 field applies to the first table constant, C2 applies to the second table

constant, etc. If STLOC¼ 5, data input in the C1 field applies to the fifth table

constant, etc. C1, C2, C3,. . ., C6 are data values assigned to six locations starting

with STLOC.

TBPT, Oper, X, Y

The TBPT commend adds/deletes a point on a nonlinear data curve. If Oper ¼
DEFI, it adds a point at (X, Y). If a point already exists with the same X value, it is

replaced. If Oper ¼ DELE, it deletes a point at point X.
The following example defines an elastoplastic material with bilinear kinematic

hardening model in the Newton millimeter units. TBDATA is used to provide the

yield stress and hardening modulus.

MP,EX,1,200E3 ! Young’s modulus ¼ 200GPa

MP,PRXY,1,0.3 ! Poisson’s ratio ¼ 0.3

TB,BKIN,1,1 ! Activate a data table

TBDATA,1,200.,20.E3 ! σy ¼ 200MPa; H ¼ 20GPa

The following example defines an elastoplastic material with multilinear kinematic

hardening model. Three data points are provided in terms of (strain, stress).

TB,KINH,1,1,3 ! Activate a data table

TBPT,,0.001,200. ! Strain ¼ 0.001, Stress ¼ 200MPa

TBPT,,0.002,220. ! Strain ¼ 0.002, Stress ¼ 220MPa

TBPT,,0.200,250. ! Strain ¼ 0.200, Stress ¼ 250MPa

3. NEiNastran

NEiNastran supports four different yield criteria using von Mises, Tresca, Mohr-

Coulomb, and Drucker-Prager models. In terms of hardening, it supports isotropic,

kinematic, and combined hardening models. MATS1 bulk data card is used to

specify elastoplastic material properties.

MATS1
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This entry defines elastoplastic hardening models and parameters. It must be

associated with the elastic material properties that are defined in MAT1, MAT2,
MAT8, MAT9, or MAT12. The parameters of the MATS1 entry are as follows:

MATS1 MID TID TYPE H YF HG LIM1 LIM2

The MATS1 card can define either nonlinear elastic material or elastoplastic

material. For the latter, TYPE ¼ PLASTIC is used. MID is the identification

number of MAT1, MAT2, MAT8, MAT9, or MAT12. The hardening parameters can

be provided either using either the table identification TID or the work hardening

slope H, but not both. H is the plastic modulus (slope of stress vs. plastic strain) in

units of stress. For more than a single slope in the plastic range, the stress–strain

data must be supplied on a TABLES1 entry referenced by TID, and this field must

be blank. YF field specifies the yield function criterion (1¼ von Mises, 2¼Tresca,

3¼Mohr-Coulomb, 4¼Drucker-Prager). The hardening rule is specified in HG
(1¼ isotropic, 2¼ kinematic, 3¼ combined isotropic and kinematic hardening).

If TID is given, TABLES1 entries (Xi, Yi) of stress–strain data (εk, σk) must

conform to the following rules. The curve must be defined in the first quadrant. The

first point must be at origin (ε1¼ 0, σ1¼ 0) and the second point (X2, Y2)must be

at the initial yield point (σY) specified on the MATS1 entry. The slope of the line

joining the origin to the yield stress must be equal to the valued of E.

4.8.2 Modeling Examples of Elastoplastic Materials

In this section, several analysis problems are used to discuss about modeling issues

as well as verifying the accuracy of analysis results with that of literature.

Elastoplastic Cylinder Under Internal Pressure: An elastoplastic cylinder,

subjected to internal pressure, is shown in Fig. 4.28. Assuming that both ends are

fixed, a plane strain condition can be applied. The internal pressure is applied such

that the inner radius experiences a large change (a factor of three). The geometry of

the cylinder is given such that the inner radius is 254 mm (10 in.) and the outer

radius of 508 mm (20 in.). It is noted that axisymmetric modeling can also be used

as both the geometry and load conditions are identical for a given angle q. Either ten

four-node quadrilateral elements (CPE4 for Abaqus or CQUAD4 for NEiNastran)

or five eight-node hexahedral elements (CPE8 for Abaqus or CQUAD8 for

NEiNastran) can be used to model the cylinder with periodic boundary condition.

The cylinder is assumed to be made of an elasto-perfectly-plastic material with the

following material properties: Young’s modulus E¼ 207 GPa (30,000 ksi),

Poisson’s ratio ν¼ 0.3, and yield strength σY¼ 207 MPa (30 ksi).

This is a good example to discuss about the difference between the force-

controlled and displacement-controlled method. In the case of elasto-perfectly-

plastic material, the material cannot support loads beyond its yield strength. There-

fore, if a force-controlled method is used, it is possible that the user can apply a load

larger than the material can support. Then, the system becomes unstable and the
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nonlinear iteration diverges. In fact, at the point of material yield, the deformation

continuously increases without further increase in the load. On the other hand, the

displacement-controlled method can maintain stability during nonlinear iteration

even if the force remains constant or decreases. This difference is explained in

Fig. 2.23 of Chap. 2. In the case of elastoplastic cylinder under internal pressure,

the inner radius is gradually increased by prescribing the radial displacement at the

innermost nodes, and the applied pressure is then calculated as a reaction force to

these prescribed displacements. The cylinder is expanded to three times its initial

radius in a small number of increments. This requires very large strain increments

and would probably be too large for a more complicated problem that involves

shear and rotation as well as direct straining. However, large strain increments are

suitable for this simple case.

Normally, it is difficult to obtain analytical solution for elastoplastic problems

except for very limited cases. In this example, however, since the strains are so

large, the results can be compared by the exact, rigid-plastic solution by Prager and

Hodge [9]. The stresses from the rigid-plasticity theory are given as

σrr Rð Þ ¼ 1ffiffiffi
3

p σYln
R2 þ r2i � R2

i

R2
o þ r2i � R2

i

� �
σθθ Rð Þ ¼ σrr Rð Þ þ 2ffiffiffi

3
p σY

σzz Rð Þ ¼ σrr Rð Þ þ 1ffiffiffi
3

p σY

;

where Ri and Ro are the initial inner and outer radii, respectively; ri is the current

inner radius; and R is the radius, in the initial configuration, of the material point at

Ro=20"

Ri=10"

x

y 

p 

Prescribed displacement 

Final geometryInitial geometry

Fig. 4.28 Elastoplastic

cylinder under internal

pressure
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which the stresses are being calculated. Note that since σθθ and σzz are a function of
σrr, only σrr needs to be compared.

In order to test the performance of different element formulations, three types of

elements are used in Abaqus: CPE8, CPE8H, and CPE4. Figure 4.29 compares the

radial stress at R/Ri¼ 1.5 location at different levels of deformation using these

three element models to that given by the exact, rigid-plastic solution. Both CPE8H

and CPE4 modes agree very closely with the exact solution, but the results from the

fully integrated 8-node (CPE8) element are significantly different.

The pure displacement 8-node elements (CPE8) give poor results because the

strains are calculated directly from the interpolation functions at each integration

point and the incompressibility requirement causes a severe oscillation in the

mean pressure stress throughout each element. However, in the hybrid, eight-

node elements the mean pressure stress is interpolated independently, so an accu-

rate value is obtained for this variable. In addition, the four-node elements in

Abaqus are constant strain/stress elements for this case (because these elements

are coded with a constant hoop strain value and use “selective reduced integration,”

in which the volume strain is computed at the centroid only) and so also provide

accurate pressure stress values.

Results for models using the fully integrated versions of plane strain elements

are shown here to caution the user. With rare exceptions the fully integrated 8-node

quadrilaterals are not as effective as the reduced integration versions of the same

elements; the reduced integration 8-node quadrilaterals are, hence, almost always

recommended over their fully integrated counterparts. This particular problem
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σ r
r

1 1.5 2 3
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-0.8

-0.6
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x 104

ri/Ri

Analytical
CPE4
CPE8H
CPE8

Fig. 4.29 Stress σrr at R/Ri¼ 1.5
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gives a dramatic illustration of a difficulty encountered with full integration in a

problem in which the bulk behavior of the material is very much stiffer than the

shear behavior, a type of behavior commonly encountered.

Stretching of a Plate with a Hole: A square 30� 30 plate containing a hole of

radius 4 is stretched in the y-direction, while displacements in the x-direction are

restrained along its outer perimeter. Figure 4.30 shows the initial quarter symmetry

models with four-node quadrilateral elements. The elastic material properties of the

plate are a Young’s modulus of 1� 109 and a Poisson’s ratio of 0.3. The isotropic

von Mises plasticity specification uses constant isotropic hardening with an initial

yield of 1� 106 and a hardening modulus of 4� 105.

The analysis is performed in Abaqus/Explicit, where the plate is stretched by

ramping the velocity at the top nodes to 5 for the first half of the step time and then

keeping a constant velocity of 5 at these nodes for the rest of the analysis. At the end

of time, the vertical displacement at the top nodes is 2.5.

The contours of the equivalent plastic strain in each of the plates, obtained from

the analysis performed exclusively in Abaqus/Explicit, are shown in Fig. 4.30.

Fig. 4.30 Finite element model and results for a plate with a hole
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Inspection of the deformed shapes and regions of high plastic strain shows that the

hole enlarges not only in the stretching direction but also in the lateral direction,

where the highest plastic deformation is observed. The contour of equivalent plastic

strain at the end of the import analysis is also shown in Fig. 4.30.

4.9 Summary

In this chapter, finite element formulations for elastoplastic problems are discussed,

which correspond to material nonlinearity. Elastoplastic problems are considered

rough nonlinear because their responses are history dependent and the status of

material can change abruptly. Permanent material dislocation during plastic defor-

mation is represented using the evolution of internal plastic variables. For large

deformation problems, both material and geometry nonlinearities exist, which

makes the problem more difficult to solve.

First, one-dimensional plasticity is introduced with linear hardening models and

small deformation assumption in Sect. 4.2. Two different hardening models are

discussed: isotropic and kinematic hardenings. The former increases the elastic

domain, while the latter maintains the size of elastic domain but moves the center

of it. From the small strain assumption, the strain is additively decomposed into

elastic and plastic strains in which only elastic strain is related to stress. Plastic

deformation depends on load history and it is stored in plastic strain. The state

determination of stress is based on (a) elastic trial and (b) plastic return-mapping.

In the elastic trial state, the strain increment is assumed to be elastic and stress

increases accordingly. If the trial stress is out of elastic range (i.e., beyond the current

yield stress), it is returned to the yield stress. The plastic strain increment is identified

during this return-mapping process.

In multidimensional stress states, it is impractical to perform tests in all possible

stress combinations. One-dimensional tension test data can still be used for deter-

mining failure of multidimensional stress using failure theories, which are based on

equivalent stress. Since failure criteria should be independent of coordinate systems,

they are defined using invariants. The Tresca criterion uses the maximum shear stress,

while the von Mises criterion uses the second invariant (J2) of deviatoric stress. Same

as one-dimensional case, the algorithm is composed of elastic trial and plastic return-

mapping. In the case of von Mises criterion, the return-mapping occurs in the radial

direction of deviatoric stress. While the stress is returning from the trial states, the

yield surface varies simultaneously. The final return-mapping point is determined by

the plastic consistency condition. It is shown that when linear hardening is used, this

return-mapping point can be found explicitly. Otherwise, the local Newton–Raphson

method is required to find the return-mapping point. Since the continuum tangent

stiffness is inconsistent with finite step size of time integration, the convergence

iteration does not show quadratic convergence. In order to guarantee the quadratic

convergence of the Newton–Raphson iteration, an algorithmic tangent stiffness that is
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consistent with the return-mapping algorithm is obtained by differentiating the time

integration algorithm with finite step size.

When the structure experiences small strain but finite rigid-body motion, the

classical theory of elastoplasticity with the assumption of infinitesimal deformation

needs to be modified to take into account the rigid-body motion. The objective rate

and objective time integration play important roles to express the rigid-body motion

systematically. An objective stress rate must be used to define the constitutive

relation because the material response should be independent of coordinate

systems. In addition, the midpoint configuration is used to reduce errors involved

in nonuniform rotation and spin. Although a good deal of research has been

performed on the objective rate, difficulties still remain concerning numerical

integration methods that satisfy all physical requirements. The difficulty in

obtaining an exact tangent stiffness operator is another drawback to this approach.

A new method for expressing the kinematics of finite deformation elastoplasticity

using the hyperelastic constitutive relation is becoming a desirable approach to

isotropic material. This method defines a stress-free intermediate configuration

composed of a plastic deformation, and obtains the stress simply by taking a

derivative of the strain energy density with respect to the intermediate configuration.

The multiplicative decomposition of an elastoplastic deformation is converted into an

additive decomposition by defining appropriate stress and strain measures. Even if

the final variational equation is represented using the updated Lagrangian formula-

tion, the reference for a constitutive relation is implicitly a stress-free intermediate

configuration. By using the constitutive relation between principal stresses and

logarithmic stretches, better accuracy is obtained for a large elastic strain problem

than with the classical elastoplasticity method. In addition, the same return-mapping

algorithm from classical theory can be used in the principal stress space.

4.10 Exercises

P4.1 A force is gradually applied at the end of an elastoplastic bar such that it is in

the plastic phase. When the total magnitude of strain is ε¼ 0.003, calculate

the applied force, axial stress, elastic strain, and plastic strain. Use the

following material properties: E¼ 100 GPa,H¼ 10 GPa, and σY¼ 100MPa.

The cross-sectional area of the bar is A¼ 1.0� 10�4 m2.

P4.2 A force 12 kN is gradually applied and then removed at the end of an

elastoplastic bar. When the yield stress of the material is 100 MPa, calculate

plastic strains and tip displacement after removing the applied force. Use the

following material properties: E¼ 100 GPa and H¼ 10 GPa. The cross-

sectional area of the bar is A¼ 1.0� 10�4 m2 and the length of the bar is

L0¼ 1 m.

P4.3 A uniaxial bar is under tensile force F¼ 12 kN at load step tn. (a) When the

plastic strain is εnp ¼ 0.002, determine the yield status of the material. (b) If

360 4 Finite Element Analysis for Elastoplastic Problems



the applied force is increased to F¼ 15 kN at load step tn+1, calculate plastic
strain and tip displacement. Assume the initial yield stress σY¼ 100 MPa,

E¼ 100 GPa, and H¼ 10 GPa. The cross-sectional area of the bar is

A¼ 1.0� 10�4 m2 and the length of the bar is L0¼ 1 m.

P4.4 An elastoplastic bar is under variable load history. At load step tn, the stress
and plastic strain are σn¼ 200 MPa and εnp ¼ 1.0� 10� 4, respectively. (a) Is

the material in elastic or plastic state? (b) When strain increment is

Δε¼�0.003, calculate stress and plastic strain. Assume isotropic hardening

with E¼ 200 GPa, H¼ 25 GPa, and σY¼ 250 MPa.

P4.5 Repeat Problem P4.4 using the kinematic hardening model. For back stress,

use αn¼ 2.5MPa.

P4.6 Repeat Problem P4.5 using the combined hardening model with β¼ 0.5.

P4.7 For the combined isotropic/kinematic hardening model, derive the expres-

sion of plastic strain increment from the plastic consistency condition.

P4.8 An elastoplastic bar is clamped at the left end, and variable loads are applied at

the right end, as shown in the table. Plot the stress–strain curve by changing the

applied forces by 5 kN increments. Assume the following material properties

with isotropic hardening: E¼ 70 GPa, H¼ 10 GPa, σY¼ 250 MPa. The length

of the bar is L¼ 1 m, and the cross-sectional area is A¼ 1.0� 10�4 m2.

Load step 1 2 3 4

Force (kN) 30 20 35 20

P4.9 An elastoplastic bar is clamped at the left end, and variable displacements

are applied at the right end, as shown in the table. Plot the stress–strain curve

by changing the tip displacement by 1 mm increments. Assume the follow-

ing material properties with isotropic hardening: E¼ 70 GPa, H¼ 10 GPa,

σY¼ 250 MPa. The length of the bar is L¼ 1 m, and the cross-sectional area

is A¼ 1.0� 10�4 m2.

Load step 1 2 3 4

Displacement (mm) 5.0 3.0 7.0 6.0

P4.10 A force of P¼ 15 is applied to the two parallel bars in Example 4.2 and then

removed. Using combHard1D programs, calculate tip displacement and

residual stresses for the two bars after unloading. Use 15 load increments

for each loading and unloading cycle. Plot stresses vs. tips displacement in

the XY graph.

P4.11 A force 12 kN is gradually applied at the end of an elastoplastic bar. When

the yield stress of the material is 100 MPa, calculate displacement at the tip.

Use the following material properties: E¼ 100 GPa and H¼ 10 GPa. The

cross-sectional areas of the bars are A(1)¼ 1.0� 10�4 m2 and

A(2)¼ 0.5� 10�4 m2.
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Fig. P4.11

P4.12 Two one-dimensional bars are connected serially as shown in the figure. At

load step n, bar1 was plastic and bar2 was elastic. At load step n+ 1, the
increments of nodal displacements are given as Δu¼ [Δu1, Δu2, Δu3]¼ [0.0,

�0.01, 0.0]. Calculate stresses and plastic strains of both bars at load step n+ 1.

bar1 bar2
1 2 3

L=100 L=100

Fig. P4.12

bar1 bar2

Young modulus (E) 10,000 5,000

Tangent modulus (Et) 1,000 500

Previous stress (σn) 6.0 7.4

Initial yield stress (σY) 5.0 7.5

Plastic strain (εp) 9E�4 0.0

Yield status Plastic Elastic

Hardening Isotropic Isotropic

P4.13 Write the expression of the fourth-order unit symmetric tensor and unit

deviatoric tensor in the 6� 6 matrix notation.

P4.14 A solid shaft as shown in the figure is subjected to tensile force P and a

torque T. The force and torque are such that the normal stress σxx¼ σ and

shear stress τ¼ σ. The shear stress is along the circumference of the shaft.

Using the von Mises criterion, determine the values of σ when the material

yields first time. The yield stress from the uniaxial tension test is σY.

P 

T 

X1

X2

X3

Fig. P4.14
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P4.15 A plane stress plate is under biaxial stress state in which σxx¼�σyy¼ σ.
When the applied load is proportional, determine σ when the material yields

first time. The yield stress from the uniaxial tension test is σY.

P4.16 A square is under proportional loading with shear stress τ12¼ τ21¼ τ. When

the effective plastic strain is ep¼ 0.1, calculate the value of shear stress.

Consider three different hardening models: (a) isotropic, (b) kinematic, and

(c) combined hardening with β¼ 0.5. Assume that the initial yield stress is

400 MPa and the plastic modulus is H¼ 200 MPa.

P4.17 A pure shear deformation is applied to the square element as shown in the figure

such that σ12¼ σ21 is only nonzero stress component. At load step n, the stress
value was σ12¼ 50, and there was no plastic deformation. At load step n+1,
incremental strainΔε12¼Δε21¼ 0.005 is applied. Calculate stress components

andeffectiveplasticstrainat loadstepn+1.Usethefollowingmaterialproperties:

shearmodulus μ¼ 1,000, plasticmodulusH¼ 100, initial yield stress σY¼ 100.

X1

X2

Fig. P4.17

P4.18 Displacements of a simple shear deformation in the figure can be expressed by

u1¼ kx2,u2¼ 0.At loadstepn,k¼ 0.016andthematerial iselastic.At loadstepn
+1,Δk¼ 0.008.Calculate stressandplastic strain.Check if theupdatedstate ison

the yield function, i.e., f(σn+1, enþ 1
p )¼ 0. Use the following material properties:

shear modulus μ¼ 100, plastic modulusH¼ 10, initial yield stress σY ¼ ffiffiffiffiffi
12

p
.

F

x1

x2

Fig. P4.18
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P4.19 At load step tn, a unit square is under unaxial stress state with σ11¼ 100MPa,

and all other stress components and plastic variables are 0. At load step tn+1,
additional shear stress is applied such that Δγ12¼ 0.002. Determine stress,

back stress, and effective plastic strain. Assume the following material

properties: λ¼ μ¼ 100 GPa, H¼ 10 GPa, σY¼ 100 MPa, combined isotro-

pic/kinematic hardening with β¼ 0.5.

P4.20 Using Abaqus perform a uniaxial tension test of a unit cube (C3D8) in x3-
direction. Assume elastoplastic material with linear isotropic hardening

(E¼ 2.0E5, ν¼ 0.3, σY¼ 200, H¼ 2.0E4). Displace at x3¼ 1 surface is

controlled as shown in the figure with three steps. Use ten increments in

each step. Plot stress–strain curve for all 30 increments.

t2t1 t3

0.001

0.004

0.006

Fig. P4.20

P4.21 Calculate Dep and Dalg for one-dimensional elastoplasticity problem using

the von Mises yield criterion and linear combined isotropic/kinematic hard-

ening. Assume material properties: (E,H, σ0Y, β).

P4.22 In the saturated isotropic hardening model, the yield stress starts from initial

value of σ0Y and approaches σ1Y as the plastic strain increases.

κ ep
� 	 ¼ σ0Y þ σ1Y � σ0Y

� 	
1� exp � ep

e1p

 !" #
:

Since the hardening model is nonlinear, it is required to have a local

Newton–Raphson method to find the plastic consistency parameter. Modify

MATLAB program combHard so that it can solve for the above saturated

isotropic hardening model. Test the program by solving the pure shear

problem in P4.15. Assume the following material properties: shear modulus

μ¼ 1,000, plastic modulus H¼ 100, initial yield stress σY¼ 100, asymptotic

yield stress¼ 200, and asymptotic effective plastic strain¼ 0.05.

P4.23 An plane strain square undergoes the following elastic deformation:

x1 ¼ X1 þ kX2, x2 ¼ X2, x3 ¼ X3:

Using the linear relationship between principal Kirchhoff stress and loga-

rithmic stretch, find the Kirchhoff stress tensor when k¼ 0.02. Use the

following material properties: λ¼ μ¼ 100 GPa.
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P4.24 A history of biaxial loadings is applied to a 1 mm� 1 mm square, as shown

in the figure. The square is constrained in the Y-direction along the bottom

edge and in the X-direction along the left edge. The model is displaced in the

X and Y directions at the right and top edges by R¼ 2.5� 10�5 mm, respec-

tively. Calculate σxx, σyy, σzz, and von Mises stress at each load step. Use the

following material properties: E¼ 250 GPa, ν¼ 0.25, σY¼ 5 MPa, and

ET¼ 50 GPa.

Fig. P4.24

Load step ΔX ΔY Description

1 R 0 First yield

2 R 0 Plastic flow

3 0 R Elastic unloading

4 0 R Plastic reloading

5 �R 0 Plastic flow

6 �R 0 Plastic flow

7 0 �R Elastic unloading

8 0 �R Plastic flow
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Chapter 5

Finite Element Analysis for Contact
Problems

5.1 Introduction

When two or more bodies collide, contact occurs between two surfaces of the

bodies so that they cannot overlap in space. Metal formation, vehicle crash,

projectile penetration, various seal designs, and bushing and gear systems are

only a few examples of contact phenomena. During sheet-metal formation, for

example, a simple-shaped blank is formed into a desired shape through contact

against a punch and die. In such a case, it is important to determine contact locations

between a deformable blank and a rigid or deformable punch and die. In a broader

sense, contact is a common and important aspect of mechanical systems, where

multiple parts are assembled to compose the system. In fact, contact is the main tool

to join multiple parts together, which includes screws, bolts, welds, etc.

The objective of contact analysis is to answer the following questions:

(a) whether two or more bodies are in contact, (b) if they are, where the location

or region of contact is, (c) how much contact force or pressure occurs in the contact

interface, and (d) if there is a relative motion after contact in the interface. In this

chapter, these questions will be addressed in the continuum and finite element

domains.

Contact is categorized as boundary nonlinearity, in contrast to both geometric

nonlinearity, which emerges from finite deformation problems, and material

nonlinearity, which is a product of nonlinear constitutive relations. The nonlinearity

of contact can be explained in two aspects. Firstly, if two separate bodies come into

contact, the graph of the contact force vs. displacement looks like a cliff because the

contact force stays at zero when two bodies are separate and increases vertically

after the bodies come into contact. In such a case, a functional relationship is not

available because there is no one-to-one relationship between contact force and

displacement. A similar phenomenon happens in the tangential direction under

friction where two bodies are stuck together until the tangential force reaches a

threshold, after which continuous sliding occurs without further increasing the
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tangential force. Such an abrupt change in contact force and slip makes the problem

highly nonlinear. Secondly, in order to be a well-posed problem in mechanics,

either displacement (kinematics) or force (kinetics), but not both, must be given for

every material point. Then, the finite element equation solves for unknown infor-

mation with given information. On the displacement boundary, for example, if

displacement is given, reaction force should be calculated. On the other hand, on

the traction boundary, if the applied force is given, the corresponding displacement

is to be calculated. Note that these two boundaries are clearly identified in the

problem definition stage. In the case of contact, however, both displacement and

contact force are unknown, except for very limited cases; that is, the contact

boundary is a part of the solution. The user can only identify a candidate of contact

boundary before solving the problem. Therefore, the finite element analysis proce-

dure must find (a) whether a material point in the boundary of a body is in contact

with the other body, and if it is in contact, (b) the corresponding contact force must

be calculated. Since the contact force at a material point can affect the deformation

of neighboring points, this process needs to be repeated until finding right states for

all points that are possible in contact. Because of this procedural nature, contact

nonlinearity is often addressed algorithmically (Fig. 5.1).

For the case of an elastic system, equilibrium can be described as finding a

displacement field that minimizes the potential energy. Contact can then be con-

sidered as a constraint of the optimization formulation, such that the potential

energy is minimized while satisfying the contact constraint; that is, a body cannot

penetrate the other body.1 The constrained optimization problem can be converted

into an unconstrained one by using the penalty regularization or Lagrange multi-

plier methods. Therefore, most contact algorithms are derived based on these two

methods. Once understanding that contact can be considered as a constraint to the

structural equilibrium, it can be applicable to nonelastic materials, such as

elastoplastic material, as it is basically independent of material models used.

Therefore, it is possible to treat the contact formulation independent of constitutive

models.

Although contact problems can be formulated in a variety of ways, the slave–

master concept is commonly used in finite element-based applications. In the slave–

master concept, one body is called a slave body, and the other is called a master

body. Although the selection of slave and master bodies is arbitrary, some guide-

lines will be given later in the chapter. The contact constraint is then imposed in

such a way that the slave surface cannot penetrate the master surface. Or, in finite

elements, the nodes on the slave boundary cannot penetrate the surface elements on

the master boundary. It is also possible that the role of slave and master can be

changed so that the master surface cannot penetrate the slave surface.

1 Rigorous discussions on this topic with variational inequality and its equivalence to the

constrained optimization can be found in J. Sokolowski and J. P. Zolesio, Introduction to Shape

Optimization, Springer-Verlag, Berlin, 1991. A brief summary will be presented in Sect. 5.3.
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This chapter is organized as follows. In Sect. 5.2, simple one-point contact

examples are presented in order to show the characteristics of contact phenomena

and possible solution strategies. In Sect. 5.3, a general formulation of contact is

presented based on the variational formulation similar to previous chapters. To

facilitate comprehension, the complexity of formulation is gradually increased by

moving from flexible-to-rigid contact to flexible-to-flexible contact, from line-to-

line to surface-to-surface contact, and including friction. Section 5.4 focuses on

finite element discretization and numerical integration of the contact variational

form. Three-dimensional contact formulation is presented in Sect. 5.5. From the

finite element point of view, all formulations involve the use of some form of

constraint equation. Because of the highly nonlinear and discontinuous nature of

contact problems, great care and trial and error are necessary to obtain solutions to

practical problems. Section 5.6 presents modeling issues related to contact analysis,

such as selecting slave and master bodies, removing rigid-body motions, etc.

5.2 Examples of Simple One-Point Contact

In order to illustrate key features of a contact problem, simple one-point contact

examples are presented in this section. The concepts in this section will be gener-

alized to curve or surface contact problems in Sect. 5.3.

5.2.1 Contact of a Cantilever Beam with a Rigid Block

Consider a cantilever beam subjected to a distributed load. The deflection of the

free end of the cantilever is limited by a rigid block. There is a small gap between

the end of the beam and the rigid block as shown in Fig. 5.2. The following

numerical data are assumed: distributed load q¼ 1 kN/m, length of the beam

L¼ 1 m, flexural rigidity EI¼ 105 N m2, and initial gap δ¼ 1 mm.

Fig. 5.1 Contact boundary and contact force
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5.2.1.1 Solution Using Trial and Error

In such a simple case, there are two possibilities. If the initial gap is larger than the

deflection of the beam, then there will be no contact. On the other hand, if the

deflection is larger than the gap, then the gap is closed under the given load. One

solution strategy would be first to assume that the gap is large enough so that it will

not close under the given load. In that case, the rigid block has no influence on the

deformations. From the Euler beam model, the deflection curve and the tip deflec-

tion can be given as

vN xð Þ ¼ qx2

24EI
x2 þ 6L2 � 4Lx
� �

, vN Lð Þ ¼ qL4

8EI
¼ 0:00125m:

The solution shows that the tip deflection is larger than the gap, and therefore, the

assumption of gap not closing is wrong.

Now, when the gap is closed, contact occurs between the beam and the rigid

block. Even if the rigid block has a finite width, it is assumed that the contact only

occurs at the tip of the beam, i.e., one-point contact. Since the rigid block prevents

the deflection of the beam, its effect can be modeled by applying a force, i.e., a

contact force, such that the beam cannot penetrate the rigid block. Since the beam

deflection is small, the rule of superposition is used for the effect of the two loads.

The deflection curve and the tip deflection of the beam under the force at the tip can

be given as

vc xð Þ ¼ �λx2

6EI
3L� xð Þ, vc Lð Þ ¼ �λ

3� 105
:

Here, a negative sign is used for the force because the direction of contact force is

opposite to the applied distributed load. At this point, the contact force, λ, is
unknown, which can be calculated from the condition that the beam cannot

penetrate the rigid block; that is, the deflection of the combined loads is the same

with the gap, as

vtip ¼ vN Lð Þ þ vc Lð Þ ¼ 0:00125� λ

3� 105
¼ 0:001 ¼ δ:

q

gap
EI

Rigid
block

Fig. 5.2 Cantilever beam

supported by a rigid block

with a gap
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From the above relation, the contact force can be calculated to be λ¼ 75 N.

The deflection curve can then be obtained by combining the two deflection curves,

as v(x)¼ vN(x) + vc(x).

5.2.1.2 Solution Using Contact Constraint

The issue in the previous trial-and-error approach is that the solution (deflection of

the beam) has to be calculated first in order to determine the status of contact. When

contact occurs at multiple points, the procedure can be quite complicated to check

all possible combinations of the contact points. A more systematic contact formu-

lation can be developed by considering both the contact force and the gap between

the beam and the rigid block as unknowns and adding an additional constraint. The

unknown contact force is denoted by λ that acts on the beam and the rigid block in

the opposite directions.2

In order to assign consistent directions, one of the two contact points is consid-

ered a master and the other a slave. The master is assumed to be fixed while the

slave moves to initiate the contact. For a general situation, when both bodies in

potential contact are loaded, the choice between a master and a slave may be

arbitrary. More details will be discussed in Sect. 5.5 for selecting the master and

slave. In this problem, the beam obviously is the slave and the rigid block is the

master.

With the downward deflection being positive, Fig. 5.3 shows the positive

directions for this contact force on the beam and the rigid block. The contact

force is treated as an externally applied load, even if it is unknown. Because of

Newton’s third law, the contact force acts in an equal and opposite direction to the

beam and the block. In this particular example, since the rigid block is fixed, it is

unnecessary to consider the equilibrium of the rigid block.

Treating the contact forces as externally applied loads and using the superposi-

tion rule of two independent loads, the beam deflection curve can be obtained by

Fig. 5.3 Deflection of

cantilever beam with gap

and contact force

2 It will be clear later that the contact force is equivalent to the Lagrange multiplier in the

constrained optimization, which is the reason to use the Greek symbol λ.
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v xð Þ ¼ qx2

24EI
x2 þ 6L2 � 4Lx
� �� λx2

6EI
3L� xð Þ: ð5:1Þ

This deflection curve must be supplemented by a contact constraint, which is

defined using the following gap function:

g ¼ vtip � δ � 0: ð5:2Þ

The physical requirements of contact are that there should be no penetration, the

contact force should be positive, and when the gap is greater than zero, the contact

force should be zero and vice versa. These requirements dictate that the solution

satisfies the following three conditions:

No penetration : g � 0,

Positive contact force : λ � 0,

Consistency condition : λg ¼ 0:
ð5:3Þ

The above requirements are exactly the same as those of the Lagrange multiplier in

a constrained optimization problem. The consistency condition in the above equa-

tion can be used to find the correct contact status as well as the contact force. Since

the gap is also a function of contact force, using Eqs. (5.1) and (5.2), the above

consistency condition can be written as

λg ¼ λ 0:00025� λ

3� 105

� �
¼ 0:

The above quadratic equation has two solutions: λ¼ 0N or λ¼ 75N. When λ¼ 0N,

the gap becomes g¼ 0.00025> 0, which violates the condition of no penetration.

Therefore, this cannot be a possible configuration. On the other hand, when

λ¼ 75N, the gap becomes g¼ 0. Since this solution satisfies all requirements,

this is the solution. In fact, the solution is consistent with the solution from the

direct method.

In the above example, the additional unknown (contact force) is added as a

Lagrange multiplier, and the consistency condition is used to determine contact

status and contact force. In the penalty method, it is also possible to impose the

contact constraint without introducing additional unknowns. In the penalty method,

a small amount of penetration is allowed, and the contact force is applied propor-

tional to the amount of penetration. Since the gap in Eq. (5.2) can be both positive

and negative, the following penetration function is defined:

ϕN ¼ 1

2
gj j þ gð Þ; ð5:4Þ

which is zero when g� 0 and has the same value with g when g> 0. Then, the

contact force is defined using the penetration function
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λ ¼ KNϕN; ð5:5Þ

where KN is a penalty parameter. The contact force will be zero when the gap is

open and proportionally increase with the penetration. The basic concept is that this

method allows a small amount of penetration and then penalizes it by applying a

large force. A benefit is that the contact force is now related to the gap, albeit the

relationship is nonlinear.

The definition of the gap in Eq. (5.2) can be used to calculate the contact status

and contact force, as

g ¼ 0:00025� KN

3� 105
1

2
gj j þ gð Þ:

When g� 0 is assumed, the above equation is self-conflicting, which means that

penetration occurs. When g> 0, the above equation can be solved for the gap with a

given penalty parameter KN. Table 5.1 shows the amount of penetration and contact

forces for different values of the penalty parameter. It can be observed that as the

penalty parameter increases, the penetration decreases and the contact force con-

verges to the accurate value.

Example 5.1. Lagrange multiplier when no contact When the distributed load is

500 N/m, calculate the tip deflection of the beam and determine if contact occurs or

not using the Lagrange multiplier method.

Solution From Eq. (5.1), the tip deflection can be written in terms of the Lagrange

multiplier as

vtip ¼ 0:625� 10�3 � λ

3� 105
:

Using the gap function in Eq. (5.2), the contact consistency condition in Eq. (5.3)

can be written as

λg ¼ λ �0:375� 10�3 � λ

3� 105

� �
¼ 0:

Table 5.1 Penetrations and

contact forces for different

penalty parameters

Penalty parameter Penetration (m) Contact force (N)

3� 105 1.25� 10�4 37.50

3� 106 2.27� 10�5 68.18

3� 107 2.48� 10�6 74.26

3� 108 2.50� 10�7 74.92

3� 109 2.50� 10�8 75.00
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The above equation has two solutions: λ¼� 112.5N and λ¼ 0. The former violates

the inequality condition of the Lagrange multiplier; therefore, it is an invalid

solution.3 The latter yields the gap function of g¼� 0.375� 10� 3< 0, which

satisfies the inequality condition; therefore, it is a valid solution. In fact, it physically

means that the gap is not closed and contact does not occur. This can be confirmed by

the tip deflection of vtip¼ 0.625mm, which is smaller than the initial gap. ▄

5.2.2 Contact of a Cantilever Beam with Friction

Consider a slightly more complicated problem that involves both a normal contact

and friction. A cantilever beam is subjected to a distributed load and an axial load.

The free end of the cantilever could potentially contact the block, as shown in

Fig. 5.4. Again, it is assumed that the contact can occur only at the tip of the beam.

The block surface has a known coefficient of friction μ. The load sequence is such

that the transversely distributed load q is applied first, followed by the axial load P.
The same numerical data as in Sect. 5.2.1 are used for the beam deflection. For the

axial direction, the following data are used: axial load P¼ 100 N, axial rigidity

EA¼ 105 N, and friction coefficient μ¼ 0.5.

5.2.2.1 Solution with No Frictional Resistance

From the assumption of infinitesimal deformation, the transverse behavior of the

beam can be decoupled with the axial behavior. Therefore, the beam deflection will

be identical to the previous section, and the beam will be in contact with the rigid

block with a contact force of 75 N. In the axial direction, the displacement can be

modeled using an axially loaded bar. Therefore, the tip displacement due to the

axial load becomes

uno-frictiontip ¼ PL

EA
¼ 1:0mm: ð5:6Þ

This tip displacement will be compared with the case when friction exists at the

contact point.

gap

Rigid block

q

EI
P

Fig. 5.4 Cantilever beam

supported with a potential

frictional contact at the tip

with a rigid block

3 It is interesting to note that the physical interpretation of the negative Lagrange multiplier is the

force that is required to apply at the tip of the beam in order to close the gap.
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5.2.2.2 Frictional Constraint Function

When friction exists on the interface, the contact point may or may not slip,

depending on interface conditions, such as friction coefficient, contact force, and

tangential force. In Coulomb’s friction model, sliding along the contact surface

will take place when the tangential component of the contact force is greater

than the frictional resistance. Similar to the normal contact case, the tangential

friction force also occurs both in the beam and the rigid block in equal and

opposite directions. The positive directions of contact and friction forces are

shown in Fig. 5.5. Denoting the normal force at the contact surface as λ and

tangential force t, the physical requirements for a frictional constraint are as

follows.

Stick condition : t� μλ < 0, utip ¼ 0,

Slip condition : t� μλ ¼ 0, utip > 0,

Consistency condition : utip t� μλð Þ ¼ 0:
ð5:7Þ

When the stick condition occurs, the contact point will not move in the tangential

direction, and the tangential force will be determined based on the equilibrium with

the externally applied loads, whose magnitude should be less than μλ. When the slip

condition occurs, the tangential force will be the same as μλ and the contact point

will continuously move tangentially until the system finds an equilibrium.

The above frictional constraint is similar to the one in Eq. (5.3). Therefore, either

the penalty method or Lagrange multiplier method can be applied. The only

difference is that now the slip displacement utip is considered as a Lagrange

multiplier, while the friction force is considered as a constraint.

5.2.2.3 Solution Using Trial and Error

In the trial-and-error approach, one condition is assumed first, and then after solving

the problem, the other requirements are checked. If all requirements are satisfied,

Fig. 5.5 Tangential slip of

cantilever beam with

friction force
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then the initial assumption is correct and the state is determined. Otherwise, other

conditions are assumed until all possible conditions are exhausted.

If the stick condition is assumed first, it means that

utip ¼ PL

EA
� tL

EA
¼ 0 ) t ¼ P ¼ 100N:

However, this tangential friction force violates the requirement t� μλ< 0. There-

fore, the stick condition is not valid.

In order to check with the slip condition, the friction force is first calculated from

t¼ μλ¼ 37.5N. The friction force will generate the following displacement:

utip ¼ PL

EA
� tL

EA
¼ 0:625mm; ð5:8Þ

which satisfies the requirement. Therefore, the slip condition is valid. Note that the

slip is less than that of the frictionless assumption in Eq. (5.6).

5.2.2.4 Solution Using Frictional Constraint

In the Lagrange multiplier method, the consistency condition in Eq. (5.7) is used to

impose the constraint condition. Compared to the case of normal contact, the choice

of the Lagrange multiplier is not obvious in this case. Between the tip displacement

and frictional force, the tip displacement is chosen as a Lagrange multiplier and the

frictional forcing term, t� μλ, is chosen as a constraint. For the case when the

Lagrange multiplier and constraint are switched, the readers are referred to Exercise

Problem P5.2. Using the tip displacement formula in Eq. (5.8), the tangential force

can be written in terms of the tip displacement as

t ¼ P� EA

L
utip:

Therefore, the consistency condition can be written as

utip P� EA

L
utip � μλ

� �
¼ 0: ð5:9Þ

The above consistency condition has two solutions: utip¼ 0 and

utip ¼ P� μλð ÞL
EA

:

The first solution, utip¼ 0, corresponds to the stick condition and yields t¼P.
However, since t� μλ¼ 62.5N> 0, it violates the stick condition. The second

solution,
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utip ¼ P� μλð ÞL
EA

¼ 0:625mm > 0

corresponds to the slip condition and yields t¼ μλ, which satisfies the slip condi-

tion. Therefore, this is the valid state.

In the penalty method, the constraints on the frictional force are penalized when

it violates the condition, that is, when t� μλ> 0. In the same way with the normal

contact case, the following penalty function is defined for the frictional force:

ϕT ¼ 1

2
t� μλj j þ t� μλð Þ: ð5:10Þ

Note that ϕT¼ 0 when t� μλ� 0 and ϕT¼ t� μλ> 0 when the constraint is vio-

lated. In the penalty method, the relationship between the slip displacement and the

frictional force can be established by

utip ¼ KTϕT ; ð5:11Þ

where KT is the penalty parameter for the tangential slip. When t� μλ� 0, the

above equation represents a stick condition exactly; i.e., utip¼ 0. Therefore, no

approximation is involved in the case of a stick condition. On the other hand, the

above equation shows a slip condition when t� μλ> 0, i.e., when the constraint is

violated. However, the slip condition is penalized with a large value of penalty

parameter KT so that the violation remains small.

In order to find the tip displacement using the penalty method, the frictional

force is expressed in terms of the tip displacement, as

t ¼ P� EA

L
utip: ð5:12Þ

By substituting the above equation into Eq. (5.11), the following tip displacement

can be obtained:

utip ¼ KTL P� μλð Þ
Lþ KTEA

:

For a large value of KT, the above equation can be approximated by

utip � P� μλð ÞL
EA

;

and the frictional force becomes
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t ¼ P� EA

L
utip � μλ;

which is nothing but the slip condition. Table 5.2 shows the tip displacements and

frictional forces for different values of penalty parameter. It can be observed that as

the penalty parameter increases, the tip displacement and the frictional force

converges to the accurate value of 0.625 mm and 37.5 N, respectively. It is noted

that the penalty parameter is relatively small compared to the case of normal

contact because the penalty parameter relates the frictional force to the slip

displacement.

Example 5.2. Lagrange multiplier for friction When the force at the tip is P¼ 25 N,

calculate the tip displacement of the beam and determine if a stick of slip occurs

using the Lagrange multiplier method.

Solution From Eq. (5.9), the consistency condition has two solutions: utip¼ 0 and

utip¼ (P� μλ)L/EA. The first solution, utip¼ 0, corresponds to the stick condition

and yields t¼P¼ 25N. Since t� μλ¼� 7.5N< 0, it satisfies the stick condition.

Therefore, the beam is in the stick condition. On the other hand, if the slip condition

is checked, the tip displacement

utip ¼ P� μλð ÞL
EA

¼ �0:075mm < 0

becomes negative, which violates the stick condition. Therefore, the stick condition

is not a valid state. ▄

5.3 General Formulation for Contact Problems

The one-point contact examples in the previous section are limited to a practical

point of view, as most contact in engineering applications occurs along a line (one

or two dimensional) or a surface (three dimensional). In this section, the basic

concepts of one-point contact are extended to two or three dimensions. In order to

simplify the presentation, only the penalty method will be discussed.

Table 5.2 Tip displacement and frictional forces for different penalty parameters

Penalty parameter Tip displacement (m) Frictional force (N)

1� 10�4 5.68� 10�4 43.18

1� 10�3 6.19� 10�4 38.12

1� 10�2 6.24� 10�4 37.56

1� 10�1 6.25� 10�4 37.50

1� 100 6.25� 10�4 37.50

378 5 Finite Element Analysis for Contact Problems



5.3.1 Contact Condition with Rigid Surface

The general formulation is illustrated with reference to contact between two bodies,

as shown in Fig. 5.6. The concepts can easily be generalized to contact involving

more than two bodies. Note that each body is assumed to be properly supported

such that no rigid-body motion is possible even without the contact. In the case of

contact with a rigid body, it is natural that the flexible body is selected as a slave

body and the rigid body as a master body.

Contact conditions can be divided into normal impenetrability and tangential

slip. The impenetrability condition prevents the slave body from penetrating into

the master body, while the tangential slip represents the frictional behavior on the

contact surface. Figure 5.6 illustrates a general contact condition with a rigid

surface in two dimensions. A part of the slave boundary is denoted by contact

boundary, Γc. Although the actual contact region is unknown and is a part of the

solution, the user specifies the contact boundary such that all possible contacts can

only occur within this boundary. It is assumed that a point x on the contact boundary

will be in contact with a point xc on the master surface if the contact actually occurs.

In the following, the contact condition will only be discussed with respect to a

single slave point x. Since the motion of the rigid surface is prescribed throughout

the analysis, a natural coordinate ξ is used to represent the location on a rigid

surface. Thus, the coordinates of contact point xc on the master surface can also be

represented using a natural coordinate at the contact point ξc by

xc ¼ xc ξcð Þ: ð5:13Þ

However, the contact point xc, or equivalently ξc, is yet unknown. In the three-

dimensional space case, two natural coordinates are required to describe the master

surface.

In general, contact analysis is to find the contact point and the contact force at the

contact point, including contact pressure and frictional force. In finite element

analysis, either displacement or force is known at the boundary and the other

Fig. 5.6 Contact condition

in two dimensions
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unknown variable is solved through the equilibrium requirements. In contact

analysis, however, both the contact point xc and the contact force at that point are

unknown, which makes the contact problem challenging. Usually, a trial-and-error

approach is taken in which the contact point is searched from the current geometry,

and the contact constraint is imposed once the point is in contact.

The first step of contact analysis is to find the contact point xc(ξc) on the master

surface corresponding to a slave point x. It is necessary to identify this point in order

to determine if the two points are in contact or not. Mathematically, this is called the

orthogonal projection, or the closest point from the slave point x. When the master

boundary is a straight line, the closest point can explicitly be found. For a general

nonlinear curve, however, the following nonlinear equation is solved to find the

contact point:

φ ξcð Þ ¼ x� xc ξcð Þð ÞTet ξcð Þ ¼ 0; ð5:14Þ

where et¼ t/||t|| is the unit tangential vector and t¼ xc,ξ is the tangential vector at

the contact point. The subscribed comma represents differentiation with respect to

the following variable; i.e., xc,ξ¼∂xc/∂ξ. Equation (5.14) is called the contact

consistency condition, and xc(ξc) is the closest projection point of x2Гc onto the

rigid surface that satisfies Eq. (5.14).

Once the contact point is found, it is necessary to determine if the contact

actually occurs, which can be done by measuring the distance between the two

points. At the same time, the impenetrability condition can be imposed by using the

same distance, as shown in Fig. 5.5. The impenetrability condition can be defined

by using the normal gap function gn, which measures the normal distance, as

gn � x� xc ξcð Þð ÞTen ξcð Þ � 0, x 2 Γc; ð5:15Þ

where en(ξc) is the unit outward normal vector of the master surface at the contact

point.

As the contact point moves along the master boundary, a frictional force in a

tangential direction to the master boundary resists the tangential relative movement.

The tangential slip function gt is the measure of the relative movement of the

contact point along the rigid surface and is defined as

gt � t0
�� �� ξc � ξ0c

� �
; ð5:16Þ

where both the tangential vector t0 and the natural coordinate ξ0c are the values at the
previously converged time increment or load increment. The superscript “0” will

denote the previous configuration time in the following derivations.

Example 5.3. Projection to a parabola When a rigid boundary is given as y¼ x2,
find a projection point from x¼ {3, 1}T using Eq. (5.14) and distance using

Eq. (5.15) when x> 0.
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Solution In order to use the contact consistency condition to find a project point, it

is necessary to represent the rigid boundary using a parameter. In the case of the

given parabola, the parametric relation can be written as xc¼ {ξ, ξ2}T. The unit

tangential vector can be calculated by

et ¼ xc,ξ

xc,ξ
�� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ξ2
p 1

2ξ

� 	
:

By defining the unit normal vector in the z-coordinate ask ¼ 0 0 1f gT, the unit
normal vector to the rigid boundary can be defined as

en ¼ et � k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ2

p 2ξ
�1

� 	
:

Then, the closest project point from x¼ {3, 1}T can be found by

φ ξð Þ ¼ x� xc ξð Þð ÞTet ξð Þ ¼ 3þ ξ� 2ξ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ2

p ¼ 0:

Since the solution is in the first quadrant, ξ> 0, the numerator of the above equation

can be solved for ξc¼ 1.29. Therefore, the contact point on the rigid boundary

becomes xc¼ {1.29, 1.66}T, as shown in Fig. 5.7.

The distance between the slave point x and contact point xc can be obtained using
the gap function, as

0 1 2 3 4
0

1

2

3

4Fig. 5.7 Projection

to a parabola

5.3 General Formulation for Contact Problems 381



gn ¼ x� xcð ÞTen ¼ �ξ2c þ 6ξc � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ2c

q ¼ 1:83:

The above result can be verified by using the distance formula between two points

as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 1:29ð Þ2 þ 1� 1:66ð Þ2

q
¼ 1:83:

▄

5.3.2 Variational Inequality in Contact Problems

Before deriving a contact variational formula, it is beneficial to discuss the funda-

mental properties of the contact problem. Although only a linear elastic problem

will be considered for simplicity, due to the inequality constraint on the deforma-

tion field, the contact problem is nonlinear even in a linear elastic case. The

differential equation of the contact problem can be written as follows:

Governing equilibrium equation:

σij, j þ f Bi ¼ 0, x 2 Ω,
ui xð Þ ¼ 0, x 2 Γg,

σijnj ¼ f Si , x 2 ΓS:
ð5:17Þ

Contact conditions:

uTen þ gn � 0,

σn � 0, x 2 Γc,

σn uTen þ gnð Þ ¼ 0:
ð5:18Þ

The first inequality in Eq. (5.18) can be obtained from the incremental form of the

impenetrability condition in Eq. (5.15), since a small deformation linear problem is

assumed. Note that the expression of contact conditions in Eq. (5.18) is similar to

that of Eq. (5.3). Therefore, either the Lagrange multiplier method or the penalty

method can be used to impose the contact condition. The inequality contact

constraint in Eq. (5.18) can be considered by constructing a closed convex set ,

defined as

 ¼ w 2 H1 Ωð Þ
 �NjwjΓg ¼ 0 and wTen þ gn � 0 on Γc

n o
: ð5:19Þ

The convex set  satisfies all kinematic constraints (displacement conditions).
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If u is the solution to Eqs. (5.17) and (5.18), then u2 . The variational

inequality can be derived from the weak formulation of the differential

Eq. (5.17). In previous chapters, the weak form is obtained by multiplying the

governing differential equation with a virtual displacement u, which belongs to the

space of kinematically admissible displacements. In order to make the elements in

the convex set kinematically admissible, the virtual displacement u is substituted

by w� u for all w2 . Therefore, after multiplying w� u and integrating by parts,

the weak form becomes

Z
Ω
σij uð Þεij w� uð Þ dΩ

¼ �
Z
Ω
σij, j wi � uið Þ dΩþ

Z
ΓS[Γc

σijnj wi � uið Þ dΓ

¼ ‘ w� uð Þ þ
Z
Γc

σijnj wi � uið Þ dΓ;

ð5:20Þ

where the last term in Eq. (5.20), which is not known until the solution is obtained,

is always nonnegative, as shown below:

Z
Γc

σijnj wi � uið Þ dΓ

¼
Z
Γc

σn wn � unð Þ dΓ

¼
Z
Γc

σn wn þ gn � un � gnð Þ dΓ

¼
Z
Γc

σn wn þ gnð Þ dΓ � 0, 8w 2 :

ð5:21Þ

Thus, variational equation (5.20) becomes a variational inequality as

a u,w� uð Þ � ‘ w� uð Þ, 8w 2 ; ð5:22Þ

where u2 is the solution.

Figure 5.8 shows the relationship between the solution without contact, u0 2ℤ,
and the solution with contact, u. If the solution u0 belongs to the convex set , it

satisfies the contact condition and is the solution. However, if u0 is out of the convex
set, that is, u0 violates the contact condition, then it has to move to u0 through the

orthogonal project, which belongs to the convex set. This conceptual explanation

can be illustrated using the beam deflection problem in Sect. 5.2.1. As shown in

Fig. 5.9, v0 is the deflection curve when there is no rigid block or contact constraint.
Since the distributed load is large enough so that the tip deflection is larger than the

initial gap, the contact constraint is violated. That is, v0 belongs to the space of

kinematically admissible displacements, but not in the convex set. Therefore, v0 is
projected to v on the boundary of the convex set by applying the contact force. The
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physical meaning of the contact force is the force required to project v0 onto the

convex set, i.e., to satisfy the contact constraint.

The existence and uniqueness of the solution to the variational inequality has

been extensively studied for linear elastic material by Duvaut and Lions [1] and

Kikuchi and Oden [2]. The existence of a solution to Eq. (5.22) for the nonlinear

elastic problem has been proved by Ciarlet [3] for a polyconvex strain energy

function.

The same variational inequality in Eq. (5.22) can be used for the nonlinear

elastic contact problem with the appropriate structural energy form, as seen in

previous chapters. The constraint set of a large deformation problem contains the

impenetrability condition in Eq. (5.15) as

 ¼ w 2 H1 Ωð Þ
 �N��w��Γg ¼ 0 and x� xc ξcð Þð ÞTen � 0 on Γc

n o
: ð5:23Þ

From an engineering point of view, however, it is not convenient to solve the

variational inequality directly without mentioning the construction of a test func-

tion on constraint set . The good news is that it is possible to show that the

variational inequality is equivalent to the constrained optimization problem of the

total potential energy. If the total potential energy is

Fig. 5.8 Projection of a

solution on to a convex set
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Fig. 5.9 Beam deflection with and without rigid block
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Π uð Þ ¼ 1

2
a u; uð Þ � ‘ uð Þ; ð5:24Þ

where a(u, u) is positive definite, then the directional derivative of Π(u) in the

direction of v is defined as

DΠ uð Þ, vh i ¼ a u; vð Þ � ‘ vð Þ; ð5:25Þ

where the bilinear property of a(�,�) and the linear property of ‘(�) are used. Using
the directional derivative, the variational inequality a(u,w – u)� ‘(w – u) can then

be rewritten as

DΠ uð Þ,w� uh i � 0: ð5:26Þ

To show that Eq. (5.26) is equivalent to the constrained minimization problem,

let us consider the following relation. For an arbitrary w2 ,

Π wð Þ � Π uð Þ ¼ DΠ uð Þ,w� uh i þ 1

2
a w� u,w� uð Þ: ð5:27Þ

Since a(�,�) is positive definite, the last term in Eq. (5.27) is always nonnegative;

thus,

Π wð Þ � Π uð Þ þ DΠ uð Þ,w� uh i, 8w 2 ; ð5:28Þ

which means

Π uð Þ ¼ min
w2

Π wð Þ ¼ min
w2

1

2
a w;wð Þ � ‘ wð Þ


 �
: ð5:29Þ

If Π(w) is convex, and set  is closed and convex, then both the constrained

minimization problem in Eq. (5.29) and the variational inequality have a unique

solution u. The variational inequality in Eq. (5.22) can be solved using the

constrained minimization problem in Eq. (5.29). Many optimization theories can

be used, including mathematical programming, sequential quadratic programming,

and active set strategies. For further information on the numerical treatment of

contact constraints, the mathematical programming method [4, 5], active set strat-

egies [6], and the sequential quadratic programming method [7] are available.

5.3.3 Penalty Regularization

In the viewpoint of finite element analysis, the constrained optimization problem in

Eq. (5.29) is not trivial to solve, because the fundamental idea of finite element

analysis is to build test functions that satisfy zero displacement (kinematic)
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boundary conditions, which is nothing but the space of kinematically admissible

displacements. Using nodal interpolation of finite elements, this condition can

easily be obtained by setting the nodal displacement to zero for those nodes that

belong to the displacement boundary. However, it is not trivial to build test

functions that satisfy the contact constraint because the contact boundary is

unknown until the problem is solved.

Instead of solving the constrained optimization, it is easier to convert the

constrained optimization problem into an unconstrained optimization problem by

using either the penalty method or the Lagrange multiplier method. The former

penalizes the potential energy proportional to the amount of constraint violation

such that the minimum of the penalized potential energy approximately satisfies the

contact constraint. The latter augments the potential energy by a product of the

contact constraint and a Lagrange multiplier, which corresponds to the force to

impose the contact constraint, such that the minimum of augmented potential

energy can satisfy the contact constraint as well as identify the Lagrange multiplier

or the contact force. The advantages and disadvantages of the two methods can be

found in traditional optimization textbooks [8]. In this section, only the penalty

method will be discussed, but a similar approach can be developed for the Lagrange

multiplier method.

In order to penalize when w =2  in Eq. (5.29), if a region Гc exists that violates
the impenetrability condition in Eq. (5.15), then the potential energy is penalized

using a penalty function. That is, the potential energy is penalized when penetration

occurs. Similarly, the tangential movement of Eq. (5.16) can also be penalized

under the stick condition. The contact penalty function must first be defined for the

penetrated region by

P ¼ 1

2
ωn

Z
Γc

gn
2 dΓþ 1

2
ωt

Z
Γc

gt
2 dΓ; ð5:30Þ

where ωn and ωt are the penalty parameters for normal contact and tangential slip,

respectively. The penalty function defined in Eq. (5.30) leads to an exterior penalty

method whereby the solution approaches from the infeasible region. This means

that the impenetrability condition will be violated, but the amount of violation

decreases as the penalty parameter is increased.

The constrained minimization problem in Eq. (5.29) is converted to an

unconstrained minimization problem by adding a penalty function to the total

potential energy. Thus,

Π uð Þ ¼ min
w2

Π wð Þ � min
w2ℤ

Π wð Þ þ P wð Þ½ 	: ð5:31Þ

Note that the solution space is changed to ℤ from because of the penalty function.

Therefore, it is much more convenient to build test functions w 2 ℤ. The variation
of Eq. (5.31) contains two contributions that will be examined in this section: one
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from the structural potential and the other from the penalty function. The variation

of P yields the contact variational form, which is defined by

b u; uð Þ � ωn

Z
Γc

gngn dΓþ ωt

Z
ΓC

gtgt dΓ

¼ bN u; uð Þ þ bT u; uð Þ;
ð5:32Þ

where bN u; uð Þ and bT u; uð Þ are the normal and tangential contact variational forms,

respectively. The variable with an over-bar represents the variation of the variable.

bT u; uð Þ appears only when there is friction in the contact interface. In Eq. (5.32),

ωngn corresponds to the compressive normal contact force, and ωtgt corresponds to
the tangential traction force. The latter increases linearly with the tangential slip gt
until it reaches a normal force multiplied by the friction coefficient. The contact

variational form in Eq. (5.32) can be expressed in terms of the displacement

variation. To make subsequent derivations easier to follow, it is necessary to define

several scalar symbols, as follows:

α � eTn xc,ξξ, β � eTt xc,ξξ, γ � eTn xc,ξξξ
c � tk k2 � gnα, ν � tk k t0

�� ��=c: ð5:33Þ

Note that α, β, and γ are related to the higher-order derivatives of the master

boundary. If the rigid boundary is approximated by a piecewise linear function,

then α¼ β¼ γ¼ 0 and ν¼ 1.

Example 5.4. Penalty method for beam contact Using the potential energy and the

penalty method, calculate the deflection curve for the cantilever beam example in

Sect. 5.2.1 with different values of penalty parameter. Assume the following form

of beam deflection curve v(x)¼ a2x
2 + a3x

3 + a4x
4 and calculate unknown

coefficients.

Solution The potential energy of a cantilever beam under a distributed load can be

written as

Π ¼ 1

2

Z L

0

EI v,xxð Þ2 dx�
Z L

0

qvdx: ð5:34Þ

Since the given form of deflection curve satisfies the essential boundary conditions

at x¼ 0, i.e., v(0)¼ v,x(0)¼ 0, it already belongs to the space of kinematically

admissible displacements.

In order to apply the penalty constraint to the region where the impenetrability

constraint is violated, the deflection curve of the beam should be calculated first by

minimizing the potential energy in Eq. (5.34). If the impenetrability constraint is

violated, then the penalty constraint is applied to the violated region. This process

makes the problem nonlinear, and the solution can be found through an iterative
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procedure. However, to simplify the presentation, it is assumed that the impenetra-

bility constraint is violated only at the tip.

In this particular problem, the contact boundary becomes a point at the tip of the

beam. In order to define the penalty function, the following form of gap function is

defined first:

gn ¼ δ� vtip ¼ δ� a2 � a3 � a4:

The integral form of the penalty function in Eq. (5.30) is defined at a point, x¼ L, as

P ¼ 1

2
ωng

2
n:

Therefore, the penalized potential energy becomes

Πþ P ¼ 1

2

Z L

0

EI v,xxð Þ2 dx�
Z L

0

qvdxþ 1

2
ωng

2
n:

Note that the above penalized potential function is a function of unknown coeffi-

cients, a2, a3, and a4. The requirement of its minimum is that the potential energy is

stationary with respect to these unknown coefficients.4 By substituting the expres-

sion of v and v,xx into the penalized potential energy, and differentiating with

respect to a2, a3, and a4, the following linear system of equations can be obtained:

4EI þ ωn 6EI þ ωn 8EI þ ωn

6EI þ ωn 12EI þ ωn 18EI þ ωn

8EI þ ωn 18EI þ ωn

144

5
EI þ ωn

2
6664

3
7775

a2

a3

a4

8><
>:

9>=
>; ¼

1

3
qþ ωnδ

1

4
qþ ωnδ

1

5
qþ ωnδ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

For the given material, geometric, and load parameters, the three unknown coeffi-

cients can be calculated by solving the above matrix equations. For a positive

penalty parameter, the coefficient matrix is positive definite. Therefore, a unique

solution is expected. Table 5.3 shows the three unknown coefficients, penetration

(a2 + a3 + a4 – δ), and the contact force (–ωngn) for different values of the penalty

parameter. Similar to the results in Table 5.1, the tip displacement converges to the

accurate value as the penalty parameter increases. ▄

4 This is the Rayleigh-Ritz method. For details, readers are referred to N. H. Kim and B. V. Sankar,

Introduction to Finite Element Analysis and Design, Wiley & Sons, NY, 2008.
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5.3.4 Frictionless Contact Formulation

As an ideal case, the contact formulation when there is no friction in the contact

interface is addressed first. Computationally, the frictionless contact problem with

elastic material is path independent; that is, the equilibrium state is independent of

the load history. From a mechanics point of view, a potential energy (or augmented

potential energy with contact penalty function) exists, and all field variables are

functions of the current configuration.

The first step is to express the normal contact variational form in terms of

displacement variation. By taking the first variation of the normal gap function in

Eq. (5.15) and using the variation of the contact consistency condition in Eq. (5.14),

the first variation of the normal gap function can be obtained as

gn u; uð Þ ¼ uTen; ð5:35Þ

where the variation of the natural coordinate at the contact point is canceled by an

orthogonal condition. The normal gap function can vary only in a normal direction

to the rigid surface, which is physically plausible. By using Eq. (5.35), the normal

contact form is expressed in terms of displacement variation as

bN u; uð Þ ¼ ωn

Z
Γc

gnu
Ten dΓ: ð5:36Þ

This contact form originates in the impenetrability condition and the fact that the

magnitude of the impenetrability force is proportional to the violation of the

impenetrability condition.

Note thatbN u; uð Þ is linear with respect touand implicit with respect to u through

gn and en. Since bN u; uð Þ is nonlinear in displacement, the same linearization

Table 5.3 Coefficients of deflection curve, penetrations, and contact forces for different penalty

parameters

Penalty

parameter a1 a2 a3

Penetration

(m)

Contact force

(N)

3� 105 2.31� 10�3 �1.60� 10�3 4.17� 10�4 1.25� 10�4 37.50

3� 106 2.16� 10�3 �1.55� 10�3 4.17� 10�4 2.27� 10�5 68.18

3� 107 2.13� 10�3 �1.54� 10�3 4.17� 10�4 2.48� 10�6 74.26

3� 108 2.13� 10�3 �1.54� 10�3 4.17� 10�4 2.50� 10�7 74.92

3� 109 2.13� 10�3 �1.54� 10�3 4.17� 10�4 2.50� 10�8 75.00

True value 2.13� 10�3 �1.54� 10�3 4.17� 10�4 0.0 75.00
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procedure is required that was used for the structural energy form in Chaps. 3 and 4.

The increment of the normal gap function can be obtained in a similar procedure to

Eq. (5.35) as

Δgn u;Δuð Þ ¼ eTn Δu: ð5:37Þ

To obtain the increment of the unit normal vector, it is necessary to compute the

increment of natural coordinate ξc at the contact point using Eq. (5.14), since the

normal vector changes along ξc. The increment of Eq. (5.14) solves Δξc in terms of

Δu as

Δ x� xcð ÞTet
h i
¼ Δu� tΔξcð ÞTet þ x� xcð ÞTΔet
¼ ΔuTet � tk kΔξc þ x� xcð ÞTen 1

tk ke
T
n xc,ξξ

� �
Δξc ¼ 0:

ð5:38Þ

Thus, using the definition in Eq. (5.33), we can calculate the increment of the

natural coordinates in terms of increment of displacement, as

Δξc ¼
tk k
c

eTt Δu: ð5:39Þ

If e3 is the fixed unit vector in the out-of-plane direction, then the increment of the

unit normal vector can be obtained from the relation en¼ e3� et as

Δen ¼ e3 � Δet
¼ e3 � Δ

t

tk k

 �

¼ e3 � 1

tk k Δt� et e
T
t Δt

� �
 �

¼ � 1

tk k et e
T
n Δt

� �
 �

¼ � αΔξc
tk k et

¼ �α

c
et e

T
t Δu

� �
:

ð5:40Þ

Thus, from Eqs. (5.37) and (5.40), the linearization of the normal contact form is

obtained as

b
N u;Δu, uð Þ ¼ ωn

Z
Γc

uTene
T
n ΔudΓ� ωn

Z
Γc

αgn
c

uTete
T
t ΔudΓ: ð5:41Þ

Note that there is a component in the tangential direction because of the effect of

curvature. The first term is the conventional contact tangent term for linear
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kinematics. The contribution of the second term is usually small, as the contact

violation is reduced. If the contact boundary is linear, the second term disappears as

α¼ 0.

In the case of a general nonlinear material with a frictionless contact problem,

the principle for virtual work can be written as

a u; uð Þ þ bN u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ: ð5:42Þ

The above equation is obtained from the first variation of the penalized potential

energy function in Eq. (5.31), which is equated to zero to satisfy the Kuhn-Tucker

condition. Suppose the current time is tn and the current iteration counter is k + 1.
Assuming that the external force is independent of displacement, the linearized

incremental equation of Eq. (5.42) is obtained as

a
 nuk ;Δukþ1,u
� �þ b
N

nuk ;Δukþ1, u
� �

¼ ‘ uð Þ � a nuk ; u
� �� bN

nuk ; u
� �

, 8u 2 ℤ:
ð5:43Þ

Equation (5.43) is linear in incremental displacement for a given displacement

variation. The linearized system of Eq. (5.43) is solved iteratively with respect to

incremental displacement until the residual forces on the right side of the equation

vanish at each time step.

Example 5.5. Frictionless contact of a block A unit square block is under a

uniformly distributed load at the top surface and a frictionless contact condition

with a rigid body at the bottom surface, as shown in Fig. 5.10. Using the penalty

method, calculate the displacement field, penetration, and contact force at the

contact interface. Use EA¼ 105 N and q¼ 1.0 kN/m and vary the penalty parameter

from 105 to 108. Assume plane strain with zero Poisson’s ratio.

Solution In a two-dimensional problem, the displacement and its variation can be

written as u¼ {ux, uy}
T and u ¼ ux, uy

� �T
, respectively. Since the contact

surface is flat and parallel to the x-coordinate, the unit normal vector is constant

as en¼ {0, 1}T. In this simple problem, the contact boundary can be parameterized

by ξ¼ x. Accordingly, the slave contact point and corresponding master point can

be written as x¼ {ξc, 0}
T and xc¼ {ξc, uy}

T. Therefore, the gap function can be

defined as

gn ¼ x� xcð ÞTen ¼ uy:

Therefore, the contact form in Eq. (5.36) can be written in terms of displacement as
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bN u; uð Þ ¼ ωn

Z 1

0

uyuy
��
y¼0

dx:

The penalized potential energy for a two-dimensional plane strain problem can be

written as

Πþ P ¼ 1

2

ZZ
A

εTDεdA�
Z 1

0

�qð Þuy
��
y¼1

dxþ 1

2
ωn

Z 1

0

g2n
��
y¼1

dx: ð5:44Þ

From the assumption of zero Poisson’s ratio, the stress–strain matrix D becomes a

diagonal matrix, and all stress–strain relations are decoupled. In addition, since the

load is only applied to y-direction, it can be concluded that εxx¼ γxy¼ 0. Therefore,

the only nonzero displacement component will be uy. Based on the Rayleigh–Ritz

method, the following forms of uy and its variation are assumed:

uy ¼ a0 þ a1y, uy ¼ a0 þ a1y:

After substituting these approximations into Eq. (5.44) and taking the variation, we

have

Πþ P ¼
ZZ

A

Ea1a1 dA�
Z 1

0

�qð Þ a0 þ a1ð Þdxþ ωn

Z 1

0

a0a0 dx ¼ 0:

Since a0 and a1 are arbitrary, their coefficients must be zero in order to satisfy the

above equation, from which the two coefficients can be determined by

a0 ¼ � q

ωn

, a1 ¼ � q

EA
:

Therefore, the displacement uy can be determined by

x

y q

Rigid body 

Elastic body

0 1

Contact
boundary

Fig. 5.10 Frictionless

contact of an elastic block
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uy ¼ � q

ωn

� q

EA
y, 0 � y � 1:

The first term on the right-hand side is the contact constraint violation due to the

penalty method, while the second term represents the constant strain due to the

distributed load. The constraint violation will be reduced as the penalty parameter

increases. On the other hand, the contact force remains the same as

�ωngn¼�ωnuy|y¼ 0¼ q; that is, the product of penetration and penalty parameter

remains constant. Note that the contact force is equal and opposite in direction to

the distributed load in order to create equilibrium for the block. ▄

5.3.5 Frictional Contact Formulation

As mentioned before, frictionless contact is independent of load history. When

friction exists at the contact interface, the solution depends on the history of the load

applied to the structure. The sequence of the load needs to be considered, and the

friction force is determined using not only the current but also the previous location

of the contact point. Therefore, it is natural to discuss frictional behavior in the

framework of load increment. The current load increment is tn, and the previous

load increment tn–1 is converged. For the notational convenience, all variables at

load increment tn–1 are denoted by a right superscript “0,” and all variables at the

current load increment are denoted without any superscript.

The classical Coulomb friction law is commonly used in computational mechan-

ics. However, as mentioned in Sect. 5.2.2, due to the discontinuity in the relation-

ship between slip and friction force, it is difficult to handle in the framework of

iterative solution procedures based on the Newton–Raphson method, which

assumes that the solution is continuous and smooth. As an alternative, the frictional

interface law of Wriggers et al. [9] is employed here. This friction law is a

regularized version of Coulomb law, such that the vertical portion of the Coulomb

model is changed to an inclined line, as shown in Fig. 5.11. The slope of the

regularized line can be related to experimental observation.

The tangent slip form bT u; uð Þ in Eq. (5.32) can be expressed in terms of a

displacement variation. The first variation of the tangential slip function, presented

in Eq. (5.16), becomes

gt ¼ t0
�� ��ξc ¼ νuTet; ð5:45Þ

where a procedure similar to Eq. (5.39) is used. Note that the first variations of

kt0k and ξ0c are zero, since they are the solutions to the previous time increment

and fixed at the current time. By using Eq. (5.45), the tangential slip variational

form in Eq. (5.32) can be rewritten in terms of the displacement variation as
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bT u; uð Þ ¼ ωt

Z
Γc

νgtu
Tet dΓ: ð5:46Þ

The frictional traction force ωtgt works in the tangential direction, is proportional to
the tangential slip, and is scaled by curvature through ν. As discussed in Eq. (5.33),
the variable v¼ 1 when the contact boundary is straight.

The frictional force is bounded above by a compressive normal force multiplied

by the friction coefficient in the Coulomb friction law. In the case of a small slip

(micro-displacement), however, traction force is proportional to the tangential slip.

The penalty parameter ωt is the proportional constant for this case. An exact stick

condition represented by a step function in the classical Coulomb friction law is

now regularized by a piecewise linear function, with the penalty parameter ωt

serving as a regularization parameter. As shown in Fig. 5.11, this regularized

friction law is reduced to the classical law as ωt!1. The regularized stick

condition occurs when

ωtgt � μωngnj j: ð5:47Þ

Otherwise, it becomes a slip condition and ωtgt¼ –μωngn. In Eq. (5.47), μ is the

Coulomb friction coefficient. In the case of a slip condition, the contact variational

form has to be modified. Thus, Eq. (5.46) must be divided into two cases as

bT u; uð Þ ¼
ωt

Z
Γc

νgtu
Tet dΓ if ωtgtj j � μωngnj j

�μωnsgn gtð Þ
Z
Γc

νgnu
Tet dΓ otherwise

8>><
>>:

: ð5:48Þ

Thus, linearization of the tangential slip variational form has to be separated into

stick and slip conditions.

-μωngn

gt

ωt

Fig. 5.11 Frictional interface model
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5.3.5.1 Linearization of Stick Condition

The first equation in Eq. (5.48) implicitly depends on displacement through v, gt,
and et. The incremental form of gt can be obtained using the relation in Eq. (5.39) as

Δgt u;Δuð Þ ¼ t0
�� ��Δξc

¼ νeTt Δu:
ð5:49Þ

The incremental form of the unit tangential vector can be derived using a procedure

similar to that used in Eq. (5.40) with et¼ e3� en

Δet ¼ �e3 � Δen
¼ α

c
en eTt Δu
� �

: ð5:50Þ

In addition, the increment of v can be obtained from its definition in Eq. (5.33).

After some algebraic calculation, the linearization of Eq. (5.46) leads to the

tangential stick bilinear form

b
T u;Δu,uð Þ ¼ ωt

Z
Γc

ν2uTete
T
t ΔudΓ

þ ωt

Z
Γc

ανgt
c

uT ene
T
t þ ete

T
n

� �
ΔudΓ

þ ωt

Z
Γc

νgt
c2

γ tk k � 2αβð Þgn � β tk k2
� �

uTete
T
t ΔudΓ:

ð5:51Þ

Again, for the case of a straight contact boundary, only the first terms on the right-

hand side of the above equation survives.

The contact bilinear form is the sum of Eqs. (5.41) and (5.51) as

b
 u;Δu, uð Þ ¼ b
N u;Δu, uð Þ þ b
T u;Δu,uð Þ: ð5:52Þ

In the case of a stick condition, the contact bilinear form in Eq. (5.52) is symmetric

with respect to the incremental displacement and variation of displacement. It is

noted that the elastic stick contact condition is a conservative system.

5.3.5.2 Linearization of Slip Condition

As the contact point is forced to move along the contact surface, leading to a

violation of Eq. (5.47), the slip contact condition is applied and the second equation

from Eq. (5.48) is used. In the case of a slip contact condition, the tangential penalty

parameter ωt is related to the impenetrability penalty parameter ωn according to the

following relation:
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ωt ¼ �μωnsgn gtð Þ: ð5:53Þ

The tangential slip form for the slip condition is

bT u; uð Þ ¼ ωt

Z
Γc

νgnu
Tet dΓ: ð5:54Þ

The linearization of Eq. (5.54) leads to the tangential slip bilinear form as

b
T u;Δu,uð Þ ¼ ωt

Z
Γc

νuTete
T
n ΔudΓ

þ ωt

Z
Γc

ανgn
c

uT ene
T
t þ ete

T
n

� �
ΔudΓ

þ ωt

Z
Γc

νgn
c2

γ tk k � 2αβð Þgn � β tk k2
� �

uTete
T
t ΔudΓ:

ð5:55Þ

In the case of a slip condition, the contact bilinear form in Eq. (5.55) is not

symmetric with respect to the incremental displacement and variation of the

displacement. The system is no longer conservative because frictional slip dissi-

pates energy.

In the case of a general nonlinear material with a frictional contact problem, the

principle for virtual work can be written as

a u; uð Þ þ b u; uð Þ ¼ ‘ uð Þ, 8u 2 ℤ: ð5:56Þ

The current time is tn and the current iteration counter is k+ 1. Assuming that the

external force is independent of displacement, the linearized incremental equation

of Eq. (5.56) is obtained as

a
 nuk ;Δukþ1,u
� �þ b
 nuk ;Δukþ1,u

� �
¼ ‘ uð Þ � a nuk ; u

� �� b nuk ; u
� �

, 8u 2 ℤ:
ð5:57Þ

Equation (5.57) is linear in incremental displacement for a given displacement

variation. This linearized equation is solved iteratively with respect to incremental

displacement until the residual forces (the right side of the equation) vanish at each

time step.

Example 5.6. Frictional slip of a cantilever beam The cantilever beam in Example

5.4 is now under additional axial load P¼ 100 N at the tip, after the distributed load

q is applied. Using the variation of the penalized potential energy, determine the

stick or slip condition and calculate the tip displacement. Use friction penalty

parameter ωt¼ 106, axial rigidity EA¼ 105 N, and friction coefficient μ¼ 0.5.

Assume the axial displacement in the form of u(x)¼ a0 + a1x.
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Solution From Example 5.4, the cantilever beam is in contact with the rigid block

with the contact force of Fc¼ –ωngn¼ 75 N. From the infinitesimal deformation

assumption, the bending behavior of the beam can be decoupled (or sequential)

with the axial behavior. Therefore, it is possible to write the penalized potential

energy of the axial behavior and take a variation to find an equilibrium. The

penalized potential energy becomes

Πa ¼
Z L

0

EA u,xð Þ2 dx� Pu Lð Þ þ 1

2
ωtg

2
t

����
x¼L

:

The variation of the penalized potential energy becomes

Πa ¼
Z L

0

EAu,xu,x dx� Pu Lð Þ þ ωtgtgtjx¼L ¼ 0, 8u 2 ℤ:

The assumed axial displacement must satisfy the essential boundary condition,

which is u(0)¼ 0 in this case. Therefore, the first coefficient should be zero, and

u(x)¼ a1x; only one coefficient needs to be identified. The gradient and its variation
of displacement can be written in terms of the unknown coefficient as u,x¼ a1 and
u,x ¼ a1.

The tangential slip function needs to be expressed in terms of displacement using

the definition in Eq. (5.16). In order to simplify the calculation, it can be assumed

that the parametric coordinate x has an origin at x¼ L, and it has the same length as

the x-coordinate. Based on this setting, it can be derived that kxc,ξk¼ktk¼kt0k¼ 1

and ξ0c ¼ 0. In addition, the tangential slip becomes gt¼ ξc¼ u(L )¼ a1.
First, the stick condition is assumed; that is, ωtgt� |μωngn| must be satisfied once

the solution is obtained. After substituting the above variables, the variation of the

penalized potential energy becomes

a1 EAa1 þ ωta1 � Pð Þ ¼ 0, 8a1 2 ℝ;

where ℝ is the space of real number. In order to satisfy the above equation for all a1,
the terms in the parenthesis must vanish, which can be solved for the unknown

coefficient a1. Therefore, the axial displacement becomes

u xð Þ ¼ Px

EAþ ωt
¼ 9:09� 10�5x:

Using the tip displacement, the stick condition should be checked, as

ωtgt ¼ 90:9 > 37:5 ¼ μωngnj j:

Since the assumption of the stick condition is violated, the beam is under the slip

condition, where the variation of the penalized potential energy can be written as
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Πa ¼
Z L

0

EAu,xu,x dx� Pu Lð Þ � μωnsgn gtð Þgngtjx¼L ¼ 0, 8u 2 ℤ:

From the normal contact result in Example 5.4, it can be concluded that

� μωngn¼ 37.5 N. Therefore, the above penalized potential energy becomes

a1 EAa1 � Pþ 37:5ð Þ ¼ 0, 8a1 2 ℝ

which yields a1¼ 62.5� 10� 5 and the tip displacement utip¼ 0.625mm, which is

consistent with the result in Eq. (5.8). ▄

5.4 Finite Element Formulation of Contact Problems

As mentioned before, since the contact formulation is independent of constitutive

models, it is enough to discuss finite element formulation of the contact variational

form in Eq. (5.30). Then, it can be added to the matrix equation of different

materials, for example, elastic material models in Chap. 3 and elastoplastic material

models in Chap. 4. Therefore, in the following, only the discretization of the contact

variational form will be discussed.

Since the contact problem is solved as a part of finite element analysis, it makes

sense to formulate the contact problem in the same context. For that purpose, the

contact variational form in Eq. (5.30) is calculated on the boundary of the

discretized finite element domain. If the structural domain is discretized by

two-dimensional finite elements, then the contact problem is defined on the bound-

ary of two-dimensional finite elements, that is, along a boundary curve. In the case

of three dimensions, the contact problem is defined on the boundary surface. In this

section, contact conditions in two dimensions are discussed. In order to make the

presentation simple, the contact between a flexible body and a rigid body will be

discussed first in Sect. 5.4.1, followed by contact between two flexible bodies in

Sect. 5.4.2.

5.4.1 Contact Between a Flexible Body and a Rigid Body

The simplest formulation of a contact problem can be obtained when a flexible body

is in contact with a rigid body, which is the main topic of this section. In general, it

is possible that the rigid body can move to satisfy the equilibrium; but in this text, it

is assumed that either the rigid body is fixed or its motion is prescribed. In such a

case, it is obvious to choose the flexible body as a slave body and the rigid body as a

master body so that the flexible body cannot penetrate the rigid body. In fact, it is

sufficient to define the master boundary, not the entire master body. In addition,
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since the master body is not governed by equilibrium, the contact variational form

is only calculated on the slave boundary.

Let Гc be a portion of the slave boundary where the slave body penetrates the

master body as shown in Fig. 5.12. This boundary is represented by a set of slave

nodes that penetrate the master boundary. In the following, a single slave node is

considered. Although different ways of defining contact constraints exist in finite

elements, in this section it is assumed that the contact constraint is defined using a

pair that includes a slave node and a master segment. In addition, only a straight

master segment that is defined by two nodes is considered. Therefore, a contact pair

can be defined using a slave node and two master nodes, as X¼ {xs, x1, x2}
T. It is

possible that one slave node can be associated with different master segments that

have a possibility of making contact with the slave node. The two master nodes are

ordered in such a way that the master body is located on the right-hand side of the

directional line segment from node x1 to node x2. The natural coordinate ξ on the

master boundary is defined such that it is zero at x1 and one at x2.

For a given contact pair X, the objectives are (1) to find if the contact pair is in

contact or in separation and (2) to calculate the contact force and penetration if it is

in contact. The first objective is called “contact search.” In a large-scale model,

many slave nodes have a possibility of making contact with many master segments.

Therefore, the number of contact pairs is huge and a lot of computational time is

often consumed in search of contact pairs that are actually in contact. Once these

actual contact pairs are identified, the contact force is calculated for these pairs in

the second step.

5.4.1.1 Normal Contact

For a given contact pair, the unit normal and tangential vectors can be defined as

t ¼ x2 � x1, et ¼ t

tk k, en ¼ e3 � et:

Since the master segment is straight and fixed, the above vectors are also fixed.

Because of the linear master segment, the contact consistency condition in

ξ 

xs

x1 x2
xc

Slave body Ω1

Master body Ω2

gn

en

et

Fig. 5.12 Continuum vs. discrete contact conditions
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Eq. (5.14) and the gap in Eq. (5.15) can explicitly be calculated. First, the gap can

be calculated by

gn ¼ xs � x1ð ÞTen: ð5:58Þ

If gn> 0, then contact does not occur in this pair and no further calculation is

required. If gn� 0, then one more check is required. That is, the natural coordinate

at the contact point must be within 0� ξc� 1 so that the contact occurs within this

master segment. The natural coordinate at the contact point can be calculated by

ξc ¼
1

tk k xs � x1ð ÞTet:

If ξc< 0 or ξc> 1, then contact does not occur in this segment and no further

calculation is required. If 0� ξc� 1, then contact occurs in the segment and needs

to calculate the contact force, which acts in the direction to the normal vector and

proportional to penetration, as

f cn ¼ �ωngnen:

In Newton–Raphson iteration during nonlinear analysis, the tangent stiffness of

the above contact force is required. Since en is fixed, no linearization is required.

Therefore, only the gap needs to be linearized, which is similar to the variation of

the gap in Eq. (5.35), by replacing the displacement variation with the displacement

increment. Therefore, the contact stiffness can be obtained by

k c
n ¼ ωnene

T
n :

In the continuum formulation, bN u; uð Þ is expressed as an integral along the

boundary Гc. However, using the slave–master pair and collocation integration, the

boundary integral along the Гc is approximated by the summation for those violated

slave nodes. Let the contact boundary of body Ω2 in Fig. 5.12 be represented by

piecewise linear master segments, with a slave node on the contact boundary of Ω1.

Since Гc is not known in priori, contact search has to be carried out first to find those
violated nodes. Let NC be the number of slave nodes that penetrate the master

segment. Then, the discretized contact variational form becomes

bN u; uð Þ �
XNC
I¼1

uT ωngnenð Þ
 �
I
¼

XNC
I¼1

uT �f cn
� �
 �

I
� uT

g �F c
n

� �
; ð5:59Þ

where Fc
n is the contact force in the global coordinate, which is constructed by

adding contact forces at each slave node to the corresponding global degrees of

freedom. Since the contact variational form occurs on the left-hand side of

Eq. (5.56), it will be moved to the right-hand side as a residual force during a
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Newton–Raphson iteration as in Eq. (5.57). Including a negative sign in front of the

contact force in Eq. (5.59) is equivalent to adding the contact force to the global

residual force.

At this point, it is a good idea to discuss collocation integrals. In general,

numerical integration of a function approximates the integral by function values

and associated weights at selected integration points. A collocation integral simply

chooses the integration points at the node. This choice is a matter of convenience

and accuracy. Since most field variables are calculated at nodes in the finite element

method, it is convenient to use the nodal values in integration. This is why many

finite element programs use collocation integrals for contact analysis. Since the

accuracy of numerical integration depends on the number of integration points, a

single point integration at a node is less accurate. The weight represents the domain

that an integration point covers. For example, if a constant function is integrated

over an area with a single integration point, then the weight is the same as the area.

However, it is not commonly known that the weight of integration is implicitly

included in the function in a collocation integral. For the case of the contact

variational form in Eq. (5.59), the weight is included in the gap, gn. This concept
is further explained in Example 5.7.

In a Newton–Raphson iteration during nonlinear analysis, linearization of the

contact variational form needs to be calculated, which yields the tangent stiffness

matrix. Linearization of bN u; uð Þ becomes

b
N u;Δu,uð Þ ¼
XNC
I¼1

ωnu
Tene

T
n Δu

� �
I
¼

XNC
I¼1

uTk c
nΔu

� �
I
� uT

g K
c
nΔug; ð5:60Þ

where Kc
n is the contact stiffness in the global coordinate, which is constructed by

adding contact stiffness matrices at each slave node to the corresponding global

degrees of freedom. Using a too-large value for the penalty parameter can cause a

numerical difficulty because it makes the matrix ill-conditioned.

Example 5.7. Contact force and gap of a block A unit square block is under a

uniformly distributed load q¼ 1.0 kN/m on the top surface. The bottom surface is

under contact constraint against the rigid floor. When the block is modeled by one

and four finite elements, as shown in Fig. 5.13, calculate contact forces and gaps at

contact nodes. Assume isotropic material and no friction in the contact interface.

Use the penalty parameter ωn¼ 105.

Solution Since a uniformly distributed load is applied, the finite elements are under

constant stress. Therefore, without detailed calculation, the contact forces at the

bottom two nodes should be fc1 ¼ fc2 ¼ 500N. Since the contact force is generated by

the gap multiplied by the penalty parameter, the gap at two nodes should be

gn1¼ gn2¼� 105� 500¼� 0.005.

In the case of four elements, the two bottom elements are in contact with the

rigid floor. Since each element is under constant stress and distributes the equal

contact force to the two nodes, the contact forces at the three nodes become
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fc1 ¼ fc3 ¼ 250N and fc2 ¼ 500N. Again, using the penalty method, the gap at each

node can be calculated using the contact force by gn1¼ gn3¼� 0.0025 and

gn2¼� 0.005. As more elements are used along the contact boundary, the gap

will become smaller. It is clear that the normal gap changes as the element size

changes, which means that the discretized normal gap includes the integration

weight implicitly. ▄

5.4.1.2 Frictional Slip

Different from the normal contact, the tangential slip under friction requires

information from the current as well as the reference configuration. The reference

configuration can be the initial state or the previous time increment, but for a large

deformation problem, the previous time increment can be more accurate. For the

straight master segment, the tangential slip is first defined by

gt ¼ l0 ξc � ξ0c
� �

; ð5:61Þ

where the right superscript “0” denotes the value evaluated at the previous time,

ξc2 [0, 1] is the natural coordinate corresponding to the contact point on the master

segment, and l0 is the length of the master segment. Since the master segment is

rigid, its length does not change, but the above definition is used in order to be

compatible with the case of two flexible bodies in contact.

In the penalty method, the friction force is generated if the tangential slip is not

zero, proportional to the tangential penalty parameter ωt, as

f ct ¼ �ωtgtet: ð5:62Þ

The above linear relationship is called the stick condition because the tangential slip

disappears if the tangential force vanishes. Therefore, the two bodies stick together

and behave similar to an elastic material. Also, in the stick condition, the friction

force can be understood as a recovery force against tangential deformation. There-

fore, the stick condition represents an elastic deformation before slip occurs.

Fig. 5.13 Contact forces of square block
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However, the tangential force cannot indefinitely increase in the Coulomb

friction model. The magnitude of the tangential force is limited by the friction

coefficient multiplied by the normal contact force as in Eq. (5.47). Once the slip is

greater than the limit, then the tangential force is limited by

f ct ¼ μωnsgn gtð Þgnet, if ωtgtj j � μωngnj j; ð5:63Þ

where μ is the frictional coefficient. Thus, the tangential contribution is separated

into two cases: the stick and slip conditions. The stick condition is applied when the

tangential force is small such that only a microscopic relative movement is

observed and the frictional force is proportional to the relative deformation. The

slip condition is applied when macroscopic movement is occurred with the critical

force. In this case, Eq. (5.63) is used to calculate tangential friction force.

For the stick condition, the tangent stiffness of the above frictional force

becomes

k c
t ¼ ωtete

T
t

while the tangent stiffness of the slip condition becomes

k c
t ¼ μωnsgn gtð ÞeteTn :

Note that the tangent stiffness matrix is unsymmetric for the slip condition.

Now, the tangential slip form representing the frictional behavior of the contact

interface can be discretized by

bT u; uð Þ �
XNC
I¼1

uT �f ct
� �
 �

I
� uT

g �F c
t

� �
; ð5:64Þ

where Fc
t is the frictional force in the global coordinate, which is constructed by

adding frictional forces at each slave node to the corresponding global degrees of

freedom. And the linearization of the tangential slip form yields

b
T u;Δu,uð Þ �
XNC
I¼1

uTk c
t Δu

� �
I
� uT

g K
c
t Δug;

where Kc
t is the contact stiffness in the global coordinate, which is constructed by

adding contact stiffness matrices at each slave node to the corresponding global

degrees of freedom.
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5.4.2 Contact Between Two Flexible Bodies

When both the slave and master bodies are flexible, the finite element discretization

becomes more complicated as the contact force is applied to both bodies. In this

case, the slave nodes are the boundary nodes of the slave finite elements, while the

master segments are the edges of master finite elements. In the case of self-contact,

the slave finite elements are the same with the master finite elements.

The contact force is directly calculated at the slave node. However, in the case of

the master segment, the contact force is applied at the ξc location of the segment.

Therefore, the contact force is distributed to the twomaster nodes proportional to the

distance from the contact point. For example, when the contact force fcn occurs at ξc,
this force is distributed to two master nodes by [fcn1, fcn2]¼ [�(1� ξc)fcn, � ξcfcn].
The negative sign is added in the contact force because the direction of contact force

is reversed at the master segment. Therefore, in the contact pair, x̂ ¼ xs; x1; x2f gT,
the contact forces can also be written in the same format as

f̂ c
n ¼ f cn , � 1� ξcð Þf cn , � ξcf

c
n

� �T
. Considering the contact force as an internal

force, the sum of contact forces in a contact pair vanishes. In the following, the

superposed “hat” symbol will be used to represent the nodal values in a contact pair,

for example, û ¼ us, u1, u2f gT.
In the multi-body contact, the contact variational forms in Eq. (5.32) need to be

modified to include the effect of master surface, as

bN u; uð Þ ¼ ωn

Z
Γc

gne
T
n us � ucð ÞdΓ;

bT u; uð Þ ¼ ωt

Z
Γc

gt νeTt us � ucð Þ þ gn t0
�� ��
c

eTn uc,ξ

� �
dΓ:

Note that the tangential slip form has a normal component; the contact point can

move in both normal and tangential directions due to the movement of master

surface. For detailed derivations of the above equations, readers are referred to Kim

et al. [10].

For notational convenience of derivations, the following sets of vectors (6� 1)

are defined, which has become quite standard [11]:

û ¼
us
u1
u2

2
4

3
5, N ¼

en
� 1� ξcð Þen

�ξcen

2
4

3
5, T ¼

et
� 1� ξcð Þet

�ξcet

2
4

3
5, P ¼

0
�en
en

2
4

3
5, Q ¼

0
�et
et

2
4

3
5

Cn ¼ N� gn
l
Q, Ct ¼ Tþ gn

l
P:

ð5:65Þ

Then, the contact variational form b u; uð Þ can be discretized by
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b u; uð Þ ¼ bN u; uð Þ þ bT u; uð Þ

�
XNC
I¼1

û
T
ωngnNð Þ

h i
I
þ
XNC
I¼1

û
T
ωtgtCtð Þ

h i
I

� uT
g �FCð Þ;

ð5:66Þ

where FC is the contact force in the global coordinate, which is constructed by adding

contact forces at slave andmaster nodes to thecorrespondingglobal degrees of freedom.

The linearization of the above contact variational form can be obtained by

following a similar procedure as with the previous section. First, linearization of

bN u; uð Þ becomes

b
N u;Δu,uð Þ ¼
XNC
I¼1

ωnû
T
CnC

T
n


 �
Δû

� �
I
� uT

g KNΔug: ð5:67Þ

Linearization of bT u; uð Þ should be considered in two different cases.

For the stick condition,

b
T u;Δu,uð Þ ¼
XNC
I¼1

ωtû
T

CtC
T
t þ 2gt

l
sym CnP

T
� �� sym CtQ

T
� �� �
 �

Δû
� �

I

� uT
g KTΔug:

ð5:68Þ

For the slip condition,

b
T u;Δu,uð Þ ¼
XNC
I¼1

ωtû
T

CtN
T þ 2gN

l
sym CnP

T
� �� sym CtQ

T
� �� �
 �

Δû
� �

I

,

� uT
g KTΔug;

ð5:69Þ

where ωt¼ μωnsgn(gt) is used for the slip condition in Eq. (5.69) and sym(·) is the

symmetric part of the matrix. Note that the matrix KT in the slip condition is not

symmetric. Thus, the linearization of the contact variational form is obtained as

b
 u;Δu,uð Þ ¼ b
N u;Δu, uð Þ þ b
T u;Δu,uð Þ
� uT

g KNΔug þ uT
g KTΔug

¼ uT
g KCΔug;

ð5:70Þ

where KC is the contact tangent stiffness matrix in the global coordinate. After

combining with the structural matrix equation and transforming to the physical

coordinate, the incremental variational equation and corresponding matrix equation

are obtained as
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uT
g KΔug þ uT

g KCΔug ¼ uT
g Fres þ uT

g FC: ð5:71Þ

The incremental discrete variational equation (5.71) must satisfy for all ug that

satisfy the homogeneous essential boundary conditions. One of the common

methods in imposing this condition is to delete those rows that correspond to the

essential boundary from the above matrix equation. After performing this removal

process, we can obtain the reduced form of the incremental matrix equation:

KþKCð ÞΔug ¼ Fres þ FC: ð5:72Þ

As can be seen in the above equation, the contribution from the contact constraints

is separated from the contribution from the structural problem. Thus, the contact

constraints can be implemented independently of the structural constitutive model.

For both the elastic problem in Chap. 3 and elastoplastic problem in Chap. 4, the

contact stiffness matrixKC and the contact residual force FC need to be added to the

system matrix equation.

5.4.3 MATLAB Code for Contact Analysis

The MATLAB program cntelm2d calculates the contact force and contact tangent

stiffness for a contact pair, whose current coordinates are defined in the ELXY array.

The format of the ELXY array is

ELXY ¼ xs x1 x2
ys y1 y2


 �
:

ELXYP is the same as ELXY, except that the array stores the coordinates of the

contact pair at the previous time increment. OMEGAN, OMEGAT, and CFRI are,

respectively, the two penalty parameters and the coefficient of friction. If LTAN is

not zero, then cntelm2d calculates the contact tangent stiffness matrix STIFF. The
contact force, FORCE, will always be calculated.

The program first checks if contact occurs in the given contact pair. This check is

performed in two ways: (1) the gap must be negative and (2) the natural coordinate

at the contact point must be between zero and one. Also, the program checks if the

contact interface has friction, based on the value of the coefficient of friction. Once

these two conditions are satisfied, then the contact force vector, whose dimension is

(6� 1), is calculated. If LTAN is not zero, then the contact tangent stiffness matrix,

whose dimension is (6� 6), is also returned.
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PROGRAM cntelm2d

function [FORCE, STIFF] = cntelm2d(OMEGAN, OMEGAT, CFRI, ELXY, ELXYP, LTAN)

%********************************************************************

% SEARCH CONTACT POINT AND RETURN STIFFNESS AND RESIDUAL FORCE

% IF CONTACTED FOR NORMAL CONTACT

%********************************************************************

%

ZERO = 0.D0; ONE = 1.D0; EPS = 1.E-6; P05 = 0.05; FORCE=[]; STIFF=[];

XT = ELXY(:,3)-ELXY(:,2); XLEN = norm(XT);

if XLEN < EPS, return; end

XTP = ELXYP(:,3)-ELXYP(:,2); XLENP = norm(XTP);

%

% UNIT NORMAL AND TANGENTIAL VECTOR

XT = XT/XLEN;

XTP = XTP/XLENP;

XN = [-XT(2); XT(1)];

%

% NORMAL GAP FUNCTION Gn = (X_s - X_1).N

GAPN = (ELXY(:,1)-ELXY(:,2))’*XN;

%

% CHECK IMPENETRATION CONDITION

if (GAPN >= ZERO) || (GAPN <= -XLEN), return; end

%

% NATURAL COORDINATE AT CONTACT POINT

ALPHA = (ELXY(:,1) - ELXY(:,2))’*XT/XLEN;

ALPHA0 = ((ELXYP(:,1)-ELXYP(:,2))’*XTP)/XLENP;

%

% OUT OF SEGMENT

if (ALPHA > ONE+P05) || (ALPHA < -P05), return; end

%

% CONTACT OCCURS IN THIS SEGMENT

XLAMBN = -OMEGAN*GAPN;

XLAMBT = 0;

LFRIC = 1; if CFRI == 0, LFRIC = 0; end

if LFRIC

GAPT = (ALPHA - ALPHA0)*XLENP;

XLAMBT = -OMEGAT*GAPT;

FRTOL = XLAMBN*CFRI;

LSLIDE = 0;

if abs(XLAMBT) > FRTOL

LSLIDE = 1;

XLAMBT = -FRTOL*SIGN(ONE,GAPT);

end

end

%

% DEFINE VECTORS

NN = [XN; -(ONE-ALPHA)*XN; -ALPHA*XN];

TT = [XT; -(ONE-ALPHA)*XT; -ALPHA*XT];

PP = [ZERO; ZERO; -XN; XN];

QQ = [ZERO; ZERO; -XT; XT];
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CN = NN - GAPN*QQ/XLEN;

CT = TT + GAPN*PP/XLEN;

%

% CONTACT FORCE

FORCE = XLAMBN*CN + XLAMBT*CT;

%

% FORM STIFFNESS

if LTAN

STIFF = OMEGAN*(CN*CN’);

if LFRIC

TMP1 = -CFRI*OMEGAN*SIGN(ONE,GAPT);

TMP2 = -XLAMBT/XLEN;

if LSLIDE

STIFF = STIFF + TMP1*(CT*CN’) + TMP2*(CN*PP’+PP*CN’-CT*QQ’-QQ*CT’);

else

STIFF = STIFF + OMEGAT*(CT*CT’) + TMP2*(CN*PP’+PP*CN’-CT*QQ’-QQ*CT’);

end

end

end

end
__________________________________________________________________

5.5 Three-Dimensional Contact Analysis

The two-dimensional contact formulation in Sect. 5.3 and its finite element

discretization in Sect. 5.4 can be extended to three dimensions. However, three-

dimensional contact formulations are quite complicated without providing much

insight in physical understandings. In this section, a finite element formulation of

three-dimensional contact is introduced without considering continuum variational

formulation. In order to simplify the presentation, it is assumed that the master body

is a rigid body and the master surface is discretized by four-node quadrilateral

elements. Only frictionless contact between a slave node and a master element is

considered. An extended formulation of three-dimensional contact formulations

can be bound in the work by Laursen and Simo [12] or Kim et al. [13].

Figure 5.14 shows the contact situation between a flexible slave body and a rigid

master body. In the discretized domain, the contact condition between a slave node

and a master element is considered. The reference coordinates in finite elements can

be used as natural coordinates in contact formulation. Therefore, the master element

is be represented by the two parameters ξ1 and ξ2 such that a point on the element

can be expressed as xc(ξ1, ξ2).
Two tangential vectors in the parametric direction on the master element are

defined as

tα ¼ xc,α, α ¼ 1, 2; ð5:73Þ
where the subscribed comma denotes a partial derivative with respect to the

parametric coordinate, i.e., xc,α¼∂x/∂ξα, α¼ 1, 2. In this section, Greek letters
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are used for the index in the direction of the parametric coordinates. Note that t1 and

t2 are not necessarily orthogonal to each other, but are parallel to the contact

surface. In the quadrilateral master element, the two tangent vectors can be calcu-

lated by differentiating shape functions

tα ¼
X4
I¼1

∂NI ξαð Þ
∂ξα

xI, α ¼ 1, 2:

The unit outward normal vector on the master surface can be obtained using

Eq. (5.73) as

en ¼ t1 � t2

t1 � t2k k : ð5:74Þ

One of the most important steps in contact analysis process is locating the

contact point in an accurate and efficient way. The contact point on the master

element corresponding to the slave point can be found from the following consis-

tency condition:

φα ¼ xs � xc ξ1; ξ2ð Þð ÞTtα ξ1; ξ2ð Þ ¼ 0, α ¼ 1, 2; ð5:75Þ

which provides the closest projection point xc of xs, and the corresponding para-

metric coordinates at the contact point are denoted by (ξc1, ξ
c
2). For a general master

surface, no explicit form of the solution to Eq. (5.75) is available. Finding contact

point xc efficiently is very important for a large deformation problem. A local

Newton–Raphson method can be used to solve nonlinear Eq. (5.75) with a close

initial estimate. The contact consistency Eq. (5.75) is two equations with two

gn

xs

xc e1

e2en

Master element 

Slave node Fig. 5.14 Contact

kinematics and design

velocities of two bodies
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unknowns. Using the first-order Taylor series expansion, the following equation for

Newton–Raphson iteration can be obtained:

∂φ1

∂ξ1

∂φ1

∂ξ2
∂φ2

∂ξ1

∂φ2

∂ξ2

2
664

3
775 Δξ1

Δξ2

� 	
¼ �φ1

�φ2

� 	
:

Once the contact point is found, it is necessary to check if the contact point is

within the master element or not. If ξα< –1 or ξα> 1, then contact does not occur in

this element and no further calculation is required. If –1� ξα� 1, the gap function

is defined by the distance between the slave node and the contact point on the

master element as

gn ¼ xs � xcð ÞTen � 0; ð5:76Þ

where the inequality constraint represents the impenetrability condition: the slave

point cannot penetrate the master surface. If the gap at the contact point is greater

than zero, contact does not occur and no further calculation is required. The violated

region of constraint Eq. (5.76) is penalized by applying the contact force, which acts

in the direction of the normal vector and proportional to penetration, as

f cn ¼ �ωngnen:

In a Newton–Raphson iteration during nonlinear analysis, the tangent stiffness

of the above contact force is required. Since en is fixed, no linearization is required.

Therefore, only the gap needs to be linearized, which is similar to the variation of

the gap in Eq. (5.35) by replacing the displacement variation with the displacement

increment. Therefore, the contact stiffness can be obtained by

k c
n ¼ ωnene

T
n :

The assembly process is identical to two-dimensional contact.

The MATLAB program cntelm3d calculates the contact force and contact

tangent stiffness for a contact pair, whose current coordinates are defined in the

ELXY array. Since the master segment is discretized by four-node quadrilateral

elements, the format of the ELXY array is

ELXY ¼
xs x1 x2 x3 x4
ys y1 y2 y3 y4
zs z1 z2 z3 z4

2
4

3
5:

OMEGAN and LTAN are the same with cntelm2d.
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The master element is parameterized by two natural coordinates, XI and ETA, and
the contact point XC is found by determining these two natural coordinates at the

contact point. Different from a two-dimensional contact problem, these natural coor-

dinates cannot be determined explicitly; that is, the contact consistency conditionmust

be solved iteratively using the Newton–Raphson-type method. Since the convergence

of the Newton–Raphson method strongly depends on the initial estimate, cntelm3d

projects the slave node to the master element and approximately estimates the natural

coordinates by projecting the projected slave node to the two tangent vectors.

% INITIAL CONTACT POINT ESTIMATE.

[T1, T2, XS]¼CUTL(0,0,ELXY);

XN¼cross(T1, T2); XN¼XN/norm(XN);

XI¼(XS’*T1)/(2*norm(T1)^2);

ETA¼(XS’*T2)/(2*norm(T2)^2);

GN¼XN’*XS;

If the estimated XI and ETA are out of their ranges with a safety margin [–2, 2],

then it is clear that the current contact pair is not in contact and no further

calculation is performed. Also, if the estimated gap is positive with a safety margin,

it is also concluded that no contact occurs.

Once the initial estimate is within the thresholds, then Newton–Raphson itera-

tion is performed to find the accurate contact point. Since the master element is

linear quadrilateral, the iteration should converge within two or three iterations.

Once the accurate contact point is determined and if the gap is negative, then the

contact force is calculated proportional to the amount of penetration. Also, if LTAN
is not zero, then the contact tangent stiffness matrix, whose dimension is (6� 6), is

also returned.

PROGRAM cntelm3d

function [FORCE, STIFF] = cntelm3d(OMEGAN, ELXY, LTAN)

%********************************************************************

% CALCULATE CONTACT FORCE AND STIFFNESS FOR NORMAL CONTACT FOR 3D

%********************************************************************

%

EPS=1.E-6; TL1=2; TL2=0.1; TL3=1.01; FORCE=[]; STIFF=[];

%

% INITIAL CONTACT POINT ESTIMATE.

[T1, T2, XS] = CUTL(0,0,ELXY);

XN = cross(T1, T2); XN=XN/norm(XN);

XI = (XS’*T1)/(2*norm(T1)^2);

ETA = (XS’*T2)/(2*norm(T2)^2);

GN = XN’*XS;

XX=(ELXY(:,2)-ELXY(:,3)+ELXY(:,4)-ELXY(:,5))/4;

%

% INITIAL SCREENING OF OUT OF BOUNDS

if((XI<-TL1)||(XI>TL1)||(ETA<-TL1)||(ETA>TL1)||GN>TL2), return; end

%
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% FIND EXACT CONTACT POINT THROUGH NEWTON-RAPHSON METHOD

for ICOUNT=1:20

[T1, T2, XS] = CUTL(ETA,XI,ELXY);

A=[-T1’*T1, XS’*XX-T2’*T1; XS’*XX-T2’*T1, -T2’*T2];

B=[-XS’*T1; -XS’*T2];

DXI=A\B;

XI=XI+DXI(1); ETA=ETA+DXI(2);

if(norm(DXI)<EPS), break; end

end

%

% CHECK THE RANGE OF NATURAL COORD.

if((XI<-TL3)||(XI>TL3)||(ETA<-TL3)||(ETA>TL3)), return; end

%

% NORMAL GAP FUNCTION AND CONTACT FORCE

XN = cross(T1, T2); XN=XN/norm(XN);

GN = XN’*XS;

if GN>0, return; end

FORCE = -OMEGAN*GN*XN;

%

% FORM STIFFNESS (NONFRICTION)

if LTAN, STIFF = OMEGAN*(XN*XN’); end

end

function [T1, T2, XS] = CUTL(ETA,XI,ELXY)

%********************************************************************

% COMPUTE COORD. OF CENTEROID AND TWO TANGENT VECTORS

%********************************************************************

XNODE=[0 -1 1 1 -1; 0 -1 -1 1 1];

T1 = zeros(3,1); T2 = zeros(3,1); XC = zeros(3,1); XS = zeros(3,1);

for J = 1:3

T1(J) = sum(XNODE(1,2:5).*(1+ETA*XNODE(2,2:5)).*ELXY(J,2:5)./4);

T2(J) = sum(XNODE(2,2:5).*(1+XI *XNODE(1,2:5)).*ELXY(J,2:5)./4);

XC(J) = sum((1+XI*XNODE(1,2:5)).*(1+ETA*XNODE(2,2:5)).*ELXY(J,2:5)./4);

XS(J) = ELXY(J,1) - XC(J);

end

end
__________________________________________________________________

5.6 Contact Analysis Procedure and Modeling Issues

The contact formulations in the previous sections are relatively straightforward

compared to nonlinear constitutive models in the previous chapters. However, in

practice, users often experience difficulty of solving nonlinear problems due to

contact. The lack of convergence and significant amount of calculation error can be

caused by poorly modeled contact conditions. Therefore, it is important to under-

stand the modeling characteristics of contact problems, which is the objective of

this section.
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5.6.1 Contact Analysis Procedure

In general, contact analysis requires three steps: (1) defining contact pairs and types,

(2) searching for the contact point, and (3) calculating contact force and tangent

stiffness.

5.6.1.1 Definition of Contact Pairs and Types

Since the user does not know the location of the contact boundary, it is necessary to

define contact pairs that are already in contact or have a possibility of contact. This

is especially important for a large deformation problem where the structural

boundary can change its shape significantly during the analysis. Many commercial

programs provide a tool to generate all contact pairs automatically or with mini-

mum user actions. In addition to contact pairs, it is also necessary to define the

properties of contact interface, including (a) weld contact, (b) rough contact,

(3) stick contact, and (4) slip contact.

In weld contact, the slave node is bonded to the master element and there is no

relative motion in the interface. There will be no contact search, and all contact

pairs are assumed already in contact, which makes this formulation fastest. Con-

ceptually, this is equivalent to the rigid link element or multipoint constraint; the

only difference is that the force in the interface is decomposed into normal and

tangential components. However, the interface is still under infinitesimal elastic

deformation, as it is a part of an elastic body.

Rough contact is similar to weld contact, except that the contact interface may

not be initially in contact or the initial contact point can be separated. But once it is

in contact, it behaves similar to a weld contact. Therefore, its behavior is similar to

the case where the contact interface is rough such that there is no relative motion in

the interface, independent of the magnitude of normal contact force.

Stick contact is similar to rough contact in the sense that the contact interface can

be closed or separated. The difference from rough contact is that the interface can

have a relative motion similar to elastic deformation. When a tangential force acts

on the contact interface, rough contact behaves like a rigid link, while stick contact

shows a small elastic deformation in the interface. The user needs to specify the

tangential stiffness. It is noted that the tangential stiffness matrix is symmetric.

Slip contact is the most general contact formation, where the contact point can be

closed or separated. In addition, the contact interface can have a relative motion

governed by the Coulomb friction model. In practice, the stick condition is first

applied before the slip condition is used in many contact algorithms. Different from

stick contact, the tangent stiffness of slip contact is unsymmetric.
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5.6.1.2 Contact Search

The easiest way of performing a contact search is for the user to specify the master

element with which that a slave node will contact. This is only possible when

deformation is small and no relative motion exists in the contact interface. Slave

and master nodes are often located at the same position and connected by a

compression-only spring (node-to-node contact). This type of contact pairing

works for very limited cases where the user makes slave elements and master

elements such that both elements coincide at the contact interface. Also, the contact

surface must be simple enough so that the user knows the exact contact region in

advance.

In general cases, however, the user does not know about the contact pairs that are

actually in contact. Instead, the user specifies all possible candidates. During the

contact analysis, the program searches for all contact pairs and determines those

pairs that are actually in contact, that is, the violated pairs of the impenetrability

condition. Since contact pairs include all possible pairs, the number of pairs is

significantly large. For example, if 1,000 slave nodes have a possibility of contacting

1,000 master elements, then theoretically it is necessary to check onemillion contact

pairs. Considering this is required during a single iteration of nonlinear analysis, the

program will repeat this search numerous times in order to finish iterative nonlinear

analysis. Therefore, it is important to effectively search for contact pairs. Some-

times, it is useful to store the currently contacting master element information for a

given slave node, such that in the following iteration, the contact search is performed

for only neighboring master elements of the previous one.

In general, contact search is categorized by a node-to-surface and surface-to-

surface search (Fig. 5.15). The former is to search if a slave node penetrates the

master surface, which is often used when the master surface is rigid. The latter is to

search for an impenetrability condition between a slave surface and a master

surface. This is useful when the two flexible bodies are under a large slip such

that the distinction of slave and master is unclear. Although the latter represents the

impenetrability condition more accurately, it takes more computational time due to

bidirectional contact (Fig. 5.16).

Fig. 5.15 Contact search methods. (a) Node-to-surface contact search. (b) Surface-to-surface
contact search
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Contact tolerance: Since searching for all possible contact pairs is very expensive,

commercial programs often use the concept of contact tolerance, which is the

minimum distance to search for contact. The default value can be 1 % of the contact

element length. This can be used for detecting bodies about to make contact as well

as excluding bodies that are on opposite sides. The contact tolerance can be used for

compensating for geometric tolerance in the case of weld contact. If two contact

surfaces are within the contact tolerance, they are considered in contact and the

contact force is calculated. In the case of rough and general contact, contact pair is

established when two surfaces are within the contact tolerance.

For example, the two separate bodies in Fig. 5.17 are going to be in contact.

Contact tolerance is set in two ways: d1 for separation and d2 for penetration. In the
cases of (b) and (c), the initial separation or penetration is within the tolerance, the

contact pair is established, and the convergence analysis is performed by generating

appropriate contact force. In the case of (c), since penetration is relatively large, the

load increment is bisected to reduce the amount of penetration. However, in the

cases of (a) and (d), the initial separation or penetration is larger than the contact

tolerance, the search algorithm fails to detect contact, and, as a result, the two

surfaces will be penetrated without contact.

Therefore, an appropriate load increment, as in Fig. 5.18a, should be used in

order to make initial contact detection. If the load increment is too large, as in

Fig. 5.18c, then the contact search algorithm fails to detect contact because the

movement is larger than the contact tolerance. In this case, the contact condition is

not established, and, as a result, a too-large penetration occurs in the next load

increment, which may completely miss contact detection. In the case of Fig. 5.18b,

the contact surface is within the contact tolerance; even if a large penetration may

occur, the contact pair will be generated, and the impenetrability condition will be

satisfied through bisecting the load increment.

Fig. 5.16 Contact search and contact force

Fig. 5.17 Contact tolerance and detecting contact
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5.6.1.3 Contact Force and Tangent Stiffness

Once the contact pairs are actually in contact (or violated the impenetrability

condition), either the penalty method or the Lagrange multiplier method can be

applied to satisfy contact constraint. The penalty method is simple and intuitive but

allows a small amount of constraint violation. That is, the impenetrability condition

will be slightly violated. The amount of violation can be controlled by the penalty

parameter. A large penalty parameter allows only a small amount of violation, but a

too-large penalty parameter can cause numerical instability because it makes the

stiffness matrix ill-conditioned.

Contact stiffness: In practice, the penalty parameter is better selected based on

material stiffness, element size, and element height normal to the contact interface.

Therefore, it is often called the contact stiffness. If two contacting bodies have

different material stiffness, it is calculated based on the softer material. A large

value of contact stiffness can reduce penetration, but can also cause a problem in

convergence. Therefore, a proper value of contact stiffness must be determined

based on allowable penetration, which requires experience. Normally many pro-

grams suggest the contact stiffness based on the elastic modulus of contacting

bodies and allow users to change it by multiplying a scale factor with a default of

one. The user can start with a small initial scale factor and gradually increase it until

a reasonable penetration can be achieved.

Tangential stiffness: If the contact stiffness is for the normal contact, tangential

stiffness is for the frictional force in the contact interface. Since the frictional force

is generated through normal contact force, it depends on the contact stiffness, and

its behavior is more complicated because of friction. In the penalty formulation, an

elastic stick condition applies before slip occurs under a tangential load. If the

tangential load is removed, then the body returns to its original state. The tangential

stiffness controls this stick condition. If the tangential stiffness is too large, then the

contact interface shows slip without stick. If too small, then the stick condition will

be overextended.

Contact force: When two bodies are in contact, the contact force in the interface

can be considered as either an internal or external force, depending on how the

system is defined. If a free-body diagram is constructed of each body separately,

Fig. 5.18 The effect of load increment in contact detection
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then the contact force is the externally applied force on the boundary. From this

viewpoint, the contact problem is called boundary nonlinearity, because both the

boundary and force are unknown. However, if the free-body diagram includes both

contacting bodies, then the contact force can be viewed as an internal force. If the

entire system is in equilibrium, then all internal forces must vanish. Therefore, the

contact force on the slave nodes must be equal and opposite in direction to the

contact force on the master elements. This can also be viewed from Newton’s third
law: equal and opposite forces act on interface. Figure 5.19 shows two contacting

bodies in equilibrium. Because the individual bodies as well as both bodies together

are in equilibrium, the following relation should be satisfied:

F ¼
XNp

i¼1

pci ¼
XNq

i¼1

qci: ð5:77Þ

It is noted that in Eq. (5.77), individual pci and qci are different in magnitudes

because of discretization. The force distribution can be different. However, the

resultants should be the same, as the two bodies are in equilibrium.

5.6.2 Contact Modeling Issues

In this section, several modeling issues in contact analysis are summarized. The

contents that are covered in this section are by no means complete. However, users

should be familiar to these issues in order to solve convergence problems as well as

accuracy of analysis results.

Fig. 5.19 Contact force on

slave nodes and master

elements
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5.6.2.1 Definition of Slave and Master

When two bodies are in contact, the slave–master concept distinguishes body

1 from body 2. Although there is no theoretical reason to distinguish body 1 from

body 2, the distinction is often made for numerical convenience. One body is called

a slave body, while the other is called a master body. Then, the contact condition is

imposed such that the slave body cannot penetrate into the master body. This means

that hypothetically the master body can penetrate into the slave body, which is not

physically possible but numerically possible because it is not checked. There is not

much difference in a fine mesh, but the results can be quite different in a coarse

mesh, as shown in Fig. 5.20. When a curved boundary with a fine mesh is selected

as a master body, a straight slave boundary with a coarse mesh shows a significant

amount of penetration, even if none of slave nodes penetrate into the master body.

Therefore, it is important to select the slave and master body in order to minimize

this type of numerical error. In general, in order to minimize penetration, a flat and

stiff body is selected as a master body, while a concave and soft body is selected as

a slave body. Also, it is suggested that a body with a fine mesh be a slave and a body

with a coarse mesh be a master. In the case of flexible–rigid body contact, the rigid

body is selected as a master body and the flexible one as a slave body.

No matter how the slave and master are selected, it is possible that a master node

can penetrate into the slave element. In order to prevent penetration from either

body, it is necessary to define the slave–master pair twice by changing their role, as

shown in Fig. 5.21. Some surface-to-surface algorithms use this technology to

prevent penetration from either body.

Fig. 5.20 Definition of

slave and master

Fig. 5.21 Alternating definition of slave–master pairs in order to prevent penetration from

either body
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5.6.2.2 Flexible Contact vs. Flexible–Rigid Contact

Since all bodies are flexible in the viewpoint of mechanics, it seems natural to

model all contacting bodies as flexible and apply contact conditions between

flexible bodies. However, since modeling is an abstraction of physical phenomena,

it is possible to consider one body as a rigid body, even if in reality it is flexible.

Therefore, in such a case, a flexible–rigid body contact condition can be applied.

The question is why we want to use flexible–rigid body contact and when we can

apply that condition.

The flexible–flexible contact can be applied when two bodies have a similar

stiffness and both can deform. For example, metal-on-metal contact can be modeled

as flexible–flexible contact. However, when the stiffness of two bodies are signif-

icantly different, such as contact between rubber and metal, the behavior of metal

can be approximated as a rigid body, because the deformation of metal can be

negligible compared to that of rubber. However, this can also depend on physical

behavior of the system. For example, if a rubber ball impacts on a thin metal plate,

then the plate needs to be modeled as a flexible body because the deformation of the

plate can be large.

There are obvious advantages of using flexible–rigid body contact over two

flexible–body contact. When two bodies have a large difference in stiffness, the

stiffness matrix becomes ill-conditioned and the matrix equation loses many sig-

nificant digits. Therefore, accurate calculation becomes difficult. In addition, as

shown in previous section, the numerical implementation of flexible–rigid body

contact formulation is much easier than multi-body contact formulation.

5.6.2.3 Sensitivity of Mesh Discretization

At the continuum level, it is assumed that the contact boundary varies smoothly

and the boundary is differentiated two or three times in deriving contact force and

tangent stiffness. In the numerical model, however, the contact boundary is

approximated by piecewise continuous curves (or straight lines), and only C0

continuity is guaranteed across the element boundary. Therefore, the slope of the

contact boundary is not continuous. Unfortunately, the contact force is very

sensitive to the boundary discretization and strongly depends on this slope:

contact force acts in the normal direction of the contact boundary. Therefore, if

the actual contact point is near the boundary of two elements with a large slope

change, it is possible that the Newton–Raphson iteration may have difficulty in

convergence.

Another important aspect related to mesh is the distribution of contact stress/

contact pressure. As shown in Fig. 5.22, if a uniform pressure is applied on top of a

slave body, it is natural to think that the contact pressure on the bottom surface will

also be uniform. However, due to the effect of a large master surface at the bottom,

the contact pressure is high on the edge of the contacting region. Therefore, the
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contact stress/pressure is not uniform. Theoretically, the contact stress on the edge

can be twice the inside contact stress.

Another important observation on contact stress distribution is that it is sensi-

tive to mesh discretization. As shown in Fig. 5.23, the contact stress distribution is

different for different locations of the block. Therefore, it is dangerous to deter-

mine the maximum contact stress using a single coarse mesh. It is always

recommended to perform mesh sensitivity study to show convergence of contract

stress.

5.6.2.4 Rigid-Body Motion

Rigid-body motion in contact is one of the most commonly confused concepts to

users. This is also a good example of contact boundary conditions that are different

from the displacement boundary conditions. Figure 5.24 shows a cylindrical slave

body between two rigid masters. It is assumed that the slave body slightly pene-

trates into the lower master body, while it has a slight gap with the upper master

body. Since the contact force is generated proportional to penetration, the upward

contact force will be applied at the lower part of the cylinder, which will move the

cylinder upward, as in Fig. 5.24a. Next, the body now penetrates the upper master

body because of the previous upward motion. Then, the contact force is now

applied from the upper master body and it is not in contact with the lower master

Fig. 5.22 Contact stress

distribution under uniform

pressure load

Fig. 5.23 Variation of

contact stress distribution as

a function of block location
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body, which will cause a downward contact force. Under this situation, the slave

body can either oscillate between the two master surfaces (Fig. 5.24a) or fly out if it

is in contact with a single master body (Fig. 5.24b). In fact, without contact, the

cylinder is not well constrained. Even if in real physics a body can be stable

between two contacting bodies, in numerical analysis, it is better to constrain the

flexible body without contact, so that the rigid-body motion can be removed. When

a body has rigid-body motion, an initial gap can cause a singular matrix (infinite/

very large displacements). The same is true when there is an initial overlap. In order

to remove rigid-body motion, it is possible to add a small, artificial bar element so

that the body is well constrained while minimally affecting analysis results, as

shown in Fig. 5.25, where the shaft is constrained by two bar elements.

5.6.2.5 Convergence Difficulty

Common difficulties in contact analysis are (a) the contact condition does not work,

i.e., penetration occurs, and (b) the Newton–Raphson iteration does not converge.

The former is related to the contact definition or a too-large load increment.

Fig. 5.24 The effect of rigid-body motion in contact

Fig. 5.25 Contact stress at bushing due to shaft bending
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Therefore, this type of problem can be solved relatively easily. On the other hand,

the lack of convergence is the most common difficulty in nonlinear analysis, and it

is not trivial to find the cause because they can be caused by different reasons.

As the convergence of Newton–Raphson method depends on the initial esti-

mate, it is possible that the method can improve the convergence by starting with

the initial estimate that is close to the solution. In the increment force method in

Chap. 2, the solution is a function of load increment. A small increment means

that the solution from a previous increment is close to the solution in the current

load increment. Therefore, using a small load increment is the most common

remedy when convergence cannot be obtained. Many commercial programs have

the capability to automatically control the load increment. When a given load

increment does not converge, then the current increment is reduced by half or a

quarter and convergence iteration is retried. This bisection process is repeated

until the convergence can be achieved or the program stops when the maximum

allowed bisections are consumed or the minimal size of load increment is not

converged.

If the Newton–Raphson iteration failed to converge with the smallest load

increment, the problem resides in fundamental issues. The basic assumption in

Newton–Raphson method is that the nonlinear function is smooth with respect to

input parameters. In the context of contact analysis, this can be interpreted as the

contact force varies smoothly throughout deformation. Unfortunately, this is a

strong assumption in finite element analysis because of discretization. As shown

in Fig. 5.26, the slope of finite elements is discontinuous across the element

boundary, especially when the contact boundary is curved. As illustrated in the

figure, this discontinuity can make the contact force oscillate between two master

elements and discontinuously change the direction of contact force. In order to

minimize such a situation, it is necessary to use more elements to represent the

curve boundary. As a rule of thumb, it is recommended to generate about 10 contact

elements along the 90� corner fillet or use higher-order elements.

A nonsmooth contact boundary can also affect the accuracy of contact analysis.

As an example, Fig. 5.27 shows contact between a shaft and a hole. In Fig. 5.27a,

both the shaft and hole are discretized by 15 linear elements along the circumfer-

ence. When the mesh locations of both parts are different, the inaccuracy of

representing circular geometry significantly affects contact results. Some nodes

Fig. 5.26 Discontinuity of

contact force by nonsmooth

contact boundary

422 5 Finite Element Analysis for Contact Problems

http://dx.doi.org/10.1007/978-1-4419-1746-1_2


are out of contact, while others are under excessive contact force due to over-

penetration. Therefore, the contact stress contour does not show a smooth variation

of contact stress. Rather, a localized random and discrete contact stress distribution

may be observed. On the other hand, if higher-order elements are used as in

Fig. 5.27b, the two contact boundaries become much more conforming and smooth

contact stress distribution can be obtained.

5.7 Exercises

P5.1 For the beam contact problem in Sect. 5.2.1, determine the contact force and

tip deflection using the Lagrange multiplier method. Choose the gap g as a

Lagrange multiplier.

P5.2 For the beam contact problem in Sect. 5.2.1, determine the contact force and

tip deflection using the Lagrange multiplier method. Model the beam using a

two-node Euler beam element. Compare the results with the results in

Sect. 5.2.1, and explain the reason for different results.

P5.3 For the frictional contact problem in Sect. 5.2.2, determine the frictional force

and slip displacement using the Lagrange multiplier method. Choose the slip

utip as a Lagrange multiplier.

P5.4 During a Newton–Raphson iteration, a rectangular plane element is in contact

with a rigid surface as shown in the figure. Due to the penalty method, the

penetration of g¼ –1� 10–4 m is observed with penalty parameter ωn¼ 106.

In the two-dimensional problem, the element has eight degrees of freedom

{u1x, u1y, u2x, u2y, u3x, u3y, u4x, u4y}
T. Calculate the contact force and contact

stiffness matrix in terms of 8� 1 vector and 8� 8 matrix, respectively.

Fig. 5.27 Discretization of circular shaft and hole using (a) linear and (b) quadratic elements
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1 2

34

Rigid surface 

Fig. P5.4 Contact of a rectangular block

P5.5 A sphere of radius r¼ 8 mm is pressed against a rigid flat plane. Using a

commercial program, determine the contact radius, a, for a given load F¼
(30� 2π) N. Assume a linear elastic material with Young’s modulus

E¼ 1,000 N/mm2 and Poisson’s ratio ν¼ 0.3. Use an axisymmetric model.

Compare the finite element result with the analytical contact radius of

a¼ 1.010 mm.

r

F

x
y

Fig. P5.5 Contact of a sphere

P5.6 A long rubber cylinder with radius r¼ 200 mm is pressed between two rigid

plates using a maximum imposed displacement of δmax¼ 200 mm. Determine

the force–deflection response. Use Mooney-Rivlin material with

A10¼ 0.293 MPa and A01¼ 0.177 MPa. Assume a plane strain condition

and symmetry. Compare the results with the target results of F¼ 250 N at

δ¼ 100 mm and F¼ 1,400 N at δ¼ 200 mm.

r

dmax

Fig. P5.6 Rubber cylinder contact problem

P5.7 Two long cylinders of radii R1¼ 10 mm and R2¼ 13 mm, in frictionless

contact with their axes parallel to each other, are pressed together with a

force per unit length, F¼ 3,200 N/mm. Determine the semi-contact length

b and the approach distance d. Both materials are linear elastic with

E1¼ 30,000 N/mm2 and v1¼ 0.25 for Cylinder 1 and E2¼ 29,120 N/mm2

and v2¼ 0.3 for Cylinder 2. Assume a plane stress condition with a unit
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thickness and symmetry. Compare the results with the target results of

d¼�0.4181 mm and b¼ 1.20 mm.

d

x

y

R2

R1

E1, 1

E2, 2

b

FSymmetric 
model 

Fig. P5.7 Hertzian contact problem

P5.8 Deep drawing is a manufacturing process that can create a complex shape out

of a simply shaped plate (blank). The deep-drawing configuration is shown in

the figure, which is composed of a blank, punch, die, and blank holder. The

thickness of the initial blank is 0.78 mm. The die is fixed throughout the entire

process, while the punch moves down by 30 mm to shape the blank. The

holder controls the slip of the blank by applying friction force. The fillet radii

of both punch and die are 5 mm. After the maximum downstroke of the punch,

both the punch and holder are removed. Then, the blank will experience

elastic springback. The objective of this project is to simulate the final

geometry of the blank after springback.

Model the process using an axisymmetric problem. You many use CAX4R

elements. The whole simulation is divided by three steps. (1) The blank holder

is pushed (displacement control) to provide about 100 kN of holding force.

(2) While the blank holder is fixed at the location of step (1), the punch is

moved down by 30 mm. (3) Punch, die, and blank holder are removed so that

the blank is elastically deformed by springback. It is possible to change

processes.

The following results need to be submitted: (1) deformed shape plots of five

different steps, (2) graph of radial position vs. radial strain, and (3) graph of

radial position vs. thickness change, (4) graph of punch displacement

vs. punch force, and (5) comparison of deformed shapes at the maximum

stroke and after springback.
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Die

Punch Blank Holder

Blank

5 mm

Plane of Symmetry

25 mm

E = 206.9 GPa
ν = 0.29
σy = 167 MPa
H = 129 MPa
μf = 0.144
Isotropic Hardening

26 mm

u1

u2

u3

u4

u6

u5

Fig. P5.8 Deep-drawing problem
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Assembly, 57

Associative plasticity, 291

B
Back stress, 282, 334

Backward Euler method, 291

Balance of momentum, 37

Basis vectors, 4

Baushinger effect, 278

Broyden, Fletcher, Goldfarb, and

Shanno (BFGS) method, 107

Bisection, 116

Boundary condition, 38, 54

essential, 54

natural, 54

Boundary valued problem, 38, 54

Bulk modulus, 192

C
Cauchy–Green tensor, 145, 147, 176, 191,

327, 331, 343

left, 147, 327, 331, 343

right, 145, 327, 343

Cauchy’s Lemma, 20

Consistency condition, 372, 380

contact, 380, 409

Constitutive relation, 31

Constrained optimization, 384

contact, 384

Contact force, 372, 410, 417

normal, 410

Contact form, 387

normal, 387

tangential, 387

Contact pair, 413

Contact problem, 367

Contact search, 414

Contact stiffness, 410, 416

Contact tolerance,415

Contraction, 8

Convergence, 94, 421

Convex set, 382

Coulomb friction, 375, 393

Critical displacement, 180

Critical load, 179, 181, 183

actual load factor, 183

load factor, 181

one-point, 181

two-point, 181

Cross product. See Vector, product

D
Deformation field, 27

Deformation gradient, 144, 330

relative, 330

Deviator, 274

Directional derivative, 385

Displacement field, 27

Displacement gradient, 144

Dissipation function, 327, 328

Dissipation inequality, 328

Distortion energy theory, 268

Divergence, 11

Divergence theorem, 12

Dual vector, 10

Dyadic product, 5
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E
Effective plastic strain, 282

Eigenvalue, 23, 182

Eigenvector, 23

Elastic domain, 282, 326

Elasticity matrix, 34

Elasticity tensor, 32

Elastic limit, 32

Elastic modulus, 243

Elastic predictor, 291

Elastoplasticity, 241, 273, 308, 325, 360

finite deformation, 360

finite rotation, 308

infinitesimal, 273

multiplicative plasticity, 325

Euclidean norm, 157

F
Failure envelope, 267

Finite element, 50, 51, 62

shape function, 62

Flow potential, 283

Form, 44

energy bilinear, 44

load linear, 44

Frame indifference, 21

Fréchet differentiable, 43

Free energy, 327, 332

Friction, 374

G
Gap, 370, 390

Gap function, 410

Gauss integration, 65

Gauss’ theorem, 47

Generalized Hooke’s law, 31, 32

Generalized solution, 40

Gradient, 11

Green’s identity, 14

H
Hooke’s law, 15

generalized, 15

Hydrostatic pressure, 192

Hyper-elastic material, 184

I
Impenetrability, 372

Impenetrability condition, 379, 380

Incremental force method, 109

Initial stiffness, 170, 298

Inner product, 4

Integration-by-parts, 13

Interpolation function, 53

Invariant, 185

Isoparametric mapping, 62

Isotropic hardening, 282

J
Jacobian, 94

Jacobian matrix, 116

K
Kinematically admissible displacement, 40

Kinematic hardening, 282, 283

Kronecker delta symbol, 4, 164

Kuhn–Tucker condition, 284, 329

L
Lagrange multiplier, 284, 368, 372, 376

Lagrangian strain, 167

Lame’s constants, 33, 163, 281

Laplace operator, 11

Lie derivative, 327

Load step, 110

Lower and upper (LU) decomposition, 101

M
Master, 371

Master element, 408

Material description, 168

Matrix, 5, 23, 34

determinant, 23

elasticity, 34

Modified Newton–Raphson method, 101–103

Mooney–Rivlin material, 186–187

N
Natural coordinate, 379

contact problem, 379

Necking, 32

Neo–Hookean material, 186

Newton–Raphson method, 93, 168

Nonlinear elastic problem, 162

Nonlinearity, 162, 241, 367

boundary, 367

force, 90–91
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geometric, 85–87, 164

kinematic, 89–90

material, 87–89, 241

Nonlinear solution procedure, 91

Norm, 5, 8

Normal gap, 380

O
Objective rate, 360

Operator, linear, 81

P
Penalty, 368, 372, 377

Penalty method, 386

Penalty parameter, 373, 386

Penetration, 372

Permutation, 10, 156

Plane strain, 34

Plane stress, 34

Plastic consistency

parameter, 283

Plastic corrector, 291

Plastic modulus, 246, 284, 334

Poisson’s ratio, 33

Polar decomposition, 150

Potential energy, 166, 384, 386

Principal stress direction, 22, 24

Principal stretch, 332

Principle of minimum potential

energy, 39

Principle of virtual work, 46

Projection, 4, 290, 380

Proportional limit, 32

R
Reference element, 65

Residual, 94, 116

Residual load, 170, 299

Return mapping, 292, 333, 360

Reynolds transport theorem, 13

Rigid-body motion, 421

Rigid body rotation, 315

Rotation tensor, 150

S
Secant method, 104

Secant stiffness matrix, 107

Shape function, 53

Shear modulus, 33

Slave, 371

Slave-master, 368

Slave node, 399

Slip, 375, 393

Slip condition, 394

Sobolev space, 40

Solution, 44, 52

generalized, 44

trial, 52

Spatial description, 174

Spatial velocity gradient, 327

Spin tensor, 315

Stick, 375

Stick condition, 395

Stiffness matrix, 57, 64, 296

consistent, 296

solid, 64

Strain, 7, 26, 28–30, 145, 147, 167,

170, 174, 268, 332, 334

deviatoric, 30, 268

effective plastic, 334

elastic principal stretch, 332

engineering, 174

engineering shear, 28

Eulerian, 147

infinitesimal, 145, 172

Lagrangian, 145, 167, 170

normal, 28

shear, 28

symmetric, 29

tensorial shear, 28

volumetric, 30

Strain energy, 39, 163, 281

elastic, 281

Strain energy density, 268

distortion, 268

Strain hardening, 32

Stress, 17, 18, 20–22, 24, 31, 32, 159,

160, 174, 268, 291, 314, 316, 326

Cauchy, 159, 174, 314

deviatoric, 21, 268

first Piola–Kirchhoff, 159, 318

invariant, 24

Kirchhoff, 160, 326

mean, 21

normal, 20

principal, 22

second Piola–Kirchhoff, 159

shear, 20

symmetry, 18

tensor, 17

trial, 291

ultimate, 32
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Stress (cont.)
uniaxial, 31

yield, 32

Stress rate, 315

Jaumann, 315

Stress vector, 15

Stretch tensor, 150

Strong form, 38

Structural energy form, 168, 185,

298, 337

elastic, 168

elastoplasticity, 298

finite deformation, 337

nonlinear, 175

St. Venant–Kirchhoff material, 163

Surface traction, 15

T
Tangential slip, 379, 380

Tangential traction force, 387

Tangent modulus, 243

Tangent operator, 297, 336, 337

consistent, 297, 337

material, 336

spatial, 336

Tangent stiffness matrix, 94

Tensor, 5–7, 9, 10, 17, 32

Cartesian, 5

elasticity, 32

identity, 5

orthogonal, 9

skew, 6, 10

spin, 7

stress, 17

symmetric, 6

Tensor product, 269

Time step, 110

Total Lagrangian formulation, 168

Trace, 8, 268

Transpose, 3

Trial function, 50

U
Updated Lagrangian formulation, 174

V
Variational equation, 43, 167

Variational inequality, 383

Vector, 3, 10

dual, 10

product, 10

Virtual displacement, 42

Virtual work, 391

contact, 391

W
Weak form, 44, 115, 166, 249, 298, 383

Work, 39

Y
Yield criterion, 282

von Mises, 282

Yield function, 282, 327

Yield surface, 282

Young’s modulus, 33, 83
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